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Abstract

We investigate the small deviations under various norms for stable processes defined
by the convolution of a smooth function f : ]0, +∞[ → R with a real SαS Lévy process.
We show that the small ball exponent is uniquely determined by the norm and by the
behaviour of f at zero, which extends the results of [17] where this was proved for f

being a power function (Riemann-Liouville processes). In the Gaussian case, the same
generality as [17] is obtained with respect to the norms, thanks to a weak decorrelation
inequality due to Li [11]. In the more difficult Non-Gaussian case, we use a different
method relying on comparison of entropy numbers and restrict ourselves to Hölder and
Lp-norms.
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1 Introduction

Small ball probability problems consist in finding the right asymptotics of the function

log P [||X|| < ε]

when ε → 0 for a given process X and norm ||.||, with an expected behaviour in −Kε−γ

for some constants γ,K > 0. A particular feature of these large deviation type estimates

is that the critical exponent γ usually depends, among other parameters, on the regularity

of the process X, which is not the case in classical large deviations where γ enjoys more

universality. More precisely, a general rule is that a smoother process will have more chance

to stay close to the zero function, so that γ will be smaller. For example, one has [13]

ε1/H log P

[

sup
t∈[0,1]

|BH
t | < ε

]

→ −K ∈ (0,+∞), ε→ 0,

where BH stands for the fractional Brownian motion with Hurst parameter H. Consider now

a more general stable Volterra process defined by

Mt =

∫

R

K(t, x)Z(dx)

where Z is a stable random measure and K : R
2 → R some integration kernel. Several

examples [21] show that the sample path regularity of M is determined by the behaviour

of K on the diagonal, so that one should try to connect this behaviour with the small ball

probabilities of M . In this paper, we investigate this connection within the framework of

convolution kernels: we study processes of the type

Xt =

∫ t

0

f(t− s) dZs, t ∈ [0, 1], (1.1)

where Z is a real symmetric α-stable Lévy process (α ∈ (0, 2]) and f : [0, 1] → R is a

function which is smooth, except possibly at zero. When α < 1, the integral in (1.1) is

understood in the Riemann-Stieltjes sense, since Z has bounded variation. When Z has

unbounded variation, that is α ≥ 1, the integral in (1.1) is understood in the stochastic

sense. Integrating by parts, it is easy to see that the regularity of X depends only on the

behaviour of f at 0. For example, if f (0)(0) = . . . = f (k−1)(0) = 0 and f (k)(0) 6= 0 for some

k ≥ 0, then

Xt = f (k)(0)Ak
t +

∫ t

0

f (k+1)(t− u)Ak
u du, t ∈ [0, 1],
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where

A0
t = Zt and Ai+1

t =

∫ t

0

Ai
sds

for every i ≥ 0, so that X has the same regularity as Ak. In the homogeneous case f(x) ≡ xc

for some c ≥ 0, the process X is the α-stable Riemann-Liouville (or fractional integrated)

process RH with self-similarity parameter H = c+ 1/α > 0:

RH
t =

∫ t

0

(t− s)H−1/α dZs, t ∈ [0, 1],

a process whose small deviations were recently studied under a wide class of semi-norms [17].

Assuming now that f(x) ≡ xcg(x) for some c ≥ 0 and g is, say, an analytic function in the

neighbourhood of zero, we can represent X as a mixture of non-independent RL processes:

Xt =
∞
∑

n=0

anR
H+n
t , t ∈ [0, 1], (1.2)

where {an, n ≥ 0} is a sequence of real numbers with a0 = 1. The processes X and RH have

the same regularity, and the purpose in this paper is to show that they have also the same

small ball probabilities.

In Section 2, the Gaussian case α = 2 is investigated. Borrowing wavelet techniques from

[17] and using a corollary to a weak decorrelation inequality due to Li [11], we can separate

both terms RH and X −RH , and show the desired result, together with the existence of the

small deviation constant for X. Recall indeed that Li’s decorrelation inequality states that

γ(A ∩B) ≥ γ(λA)γ((1 − λ2)1/2B) (1.3)

for every λ ∈ (0, 1), where γ is a centered Gaussian measure on a Banach space E and A,B

two symmetric convex sets in E. Letting λ tend to 0 or 1 in (1.3) makes it then possible

to preserve the rate and the constant in Gaussian small deviation probability problems - see

Theorem 1.2 in [11]. From the generality of (1.3), one should expect our separation technique

to be efficient for more general Gaussian Volterra processes as well, but we did not search in

this direction further.

In the Non-Gaussian case, no decorrelation inequality like (1.3) is available for stable

measures and we have to employ other tools, which lead unfortunately to less general results

with respect to the norms. The results are also less precise since we cannot prove the existence

of the small ball constant. The latter problem is probably difficult without Gaussianity, and

it is not completely clear either if the constant really exists in this non-self-similar context.
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In Section 3, we study the small deviations of X under Lp and Hölder norms in the

Non-Gaussian case. Whereas the lower bound comes rather easily after a time-integration

formula, the upper bounds turns out to be more involved without self-similarity, and we have

to use the connection between small deviation and metric entropy for stable processes which

was discovered in [15]. It is more than likely that other norms could be tackled along the

same way, but an annoying feature of entropy numbers is their dependence on dual function

spaces which become increasingly complicated, so that it seems difficult to use them within a

global formalism, as in [17]. We also feel that these two particular cases have some generality:

the critical exponent does not depend on the norm in the first case, and does in the second.

In Section 4, we discuss two important examples: the stable Ornstein-Uhlenbeck processes

(which was the starting point of this research) where f(x) = ex in the representation (1.1),

and the fractional Ornstein-Uhlenbeck processes as recently introduced in [5, 18, 23], where

f(x) = xcex in the representation (1.1). These new fractional processes seem important

for applications, especially in network traffic [23]. Let us finally mention that convolution

processes like (1.1) have been studied in mathematical finance for the so-called forward

interest rate curve [8].

Throughout, we will denote by C a constant independent of the involved parameters

whose value may change from line to line, and we will use the functional notation f(x) ≈ g(x)

if there are constants C1, C2 such that 0 < C1 < f(x)/g(x) < C2 < +∞ for all sufficiently

small or large x. Unless explicitly mentioned, every function or process will be considered

on [0, 1] only and starting from 0.

2 The Gaussian case

Let us first briefly recall the definition of the set N(β, p) of β-self similar and p-pseudo

additive semi-norms – in abbreviation (β, p) semi-norms, which was introduced in [17]. If

F is a linear space of real functions containing the set C `
K (functions having a continuous

derivative of l-th order and compact support) for some ` ∈ N, a semi-norm ||·|| on F belongs

to N(β, p) if the following properties hold:

(A) || · ||I ≤ || · ||J for all real intervals I, J such that I ⊆ J .

(B) For every interval I and f, fn ∈ F , if fn → f uniformly on I then ||f ||I ≤ lim sup ||fn||I .

(C) ||f ||I−c = ||f(· − c)||I for every interval I, f ∈ F , and c ∈ R.

(D) ||f(c ·)||I/c = cβ ||f ||I for every interval I, f ∈ F , and c > 0.
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(E) For every a0 < . . . < an ∈ R and f ∈ F















||f ||[a0,an] ≥
(

||f ||p[a0,a1] + · · · + ||f ||p[an−1,an]

)1/p

if p < +∞,

||f ||[a0,an] ≥ sup
(

||f ||[a0,a1], . . . , ||f ||[an−1,an]

)

if p = +∞.

(F) There exists Cp > 0 such that for every a0 < . . . < an ∈ R and f ∈ C `
K verifying

f(a0) = · · · = f(an) = 0,















||f ||[a0,an] ≤ Cp

(

||f ||p[a0,a1] + · · · + ||f ||p[an−1,an]

)1/p

if p < +∞,

||f ||[a0,an] ≤ C∞ sup
(

||f ||[a0,a1], . . . , ||f ||[an−1,an]

)

if p = +∞.

Notice that in this definition the compatibility properties (A-B) are quite innocuous and

always satisfied in practice. More is demanded in properties (C-F) which mean respectively

translation-invariance, β-self-similarity, p-subadditivity and p-superadditivity of the semi-

norm. In [17] it is observed that all classical semi-norms fall into N(β, p)’s scope, except

perhaps Solovietsky and Besov norms for which one needs the weaker notion of (β, p)-semi-

norm in the wide sense – i.e. with respect to some wavelet basis – see [17] for more details.

In that paper, it was also remarked that the inequality β+1/p ≥ 0 is verified by all classical

examples, an interesting fact for which no sensible explanation was given as yet.

The main result of [17] entails that if ||.|| is a (β, p)-semi-norm and X ≡ Rc+1/2 is defined

by (1.1) with α = 2 and f(x) = xc for c > β + 1/p− 1/2, there exists K ∈ (0,+∞) such

that

lim
ε↓0

εγ log P
[

||Rc+1/2|| ≤ ε
]

= −K (2.1)

with γ = (c + 1/2 − β − 1/p)−1. This formula for the rate synthezises all cases previously

studied for the small balls of RL processes. In this section, our purpose is to prove that the

result also holds for more general moving average Gaussian processes. In the following we

will denote by Ent(x) the integer part of a real number x and C i will stand for the set of

functions from [0, 1] to R with continuous derivative of i-th order.

Theorem 2.1. Let X be defined in (1.1) such that α = 2 and f(x) = xcg(x) for c > −1/2

and g : [0, 1] → R with g(0) = 1. Suppose that g belongs to C k+1 with k = Ent(c + 1). For

any seminorm || · || ∈ N(β, p) with c+ 1/2 > β + 1/p, we have

lim
ε↓0

εγ log P [||X|| ≤ ε] = −K

5



where γ = (c+ 1/2 − β − 1/p)−1 and K is given by (2.1).

Proof. Set H = c+ 1/2 > 0 and consider the difference process XH = X − RH . Integrating

by parts, we can write

XH
t = h(k)(0)Ak

t +

∫ t

0

h(k+1)(t− u)Ak
u du, t ≥ 0 (2.2)

with the notation of the introduction and where we set h(x) = xc(g(x) − 1) = O(xc+1) in

the neighbourhood of zero. By (2.1) and Theorem 1.2 in [11], it suffices to show that

lim
ε↓0

εγ log P
[

||XH || ≤ ε
]

= 0;

and we will actually prove a little more:

lim inf
ε↓0

εγ′

log P
[

||XH || ≤ ε
]

> −∞, (2.3)

with γ′ = (k+ 1/2− β− 1/p)−1 < γ since k = Ent(c+ 1) > c. This will be done in the same

way as Theorem 7 in [17] and we will also use the same notation. Suppose first that c is not

an integer and that p < +∞. Notice that h(k)(0) = 0 in (2.2). Setting ` = k+1 > k+1/2 = k′

and decomposing XH along the wavelet basis {ψjn, n ≤ 2j} defined in [17] p. 736, we get

||XH || ≤ C
∑

j≥0





∑

n≤2j

|rjn|
p||ψjn||

p





1/p

≤ C
∑

j≥0

2(1/2+β)j





∑

n≤2j

|rjn|
p





1/p

where C is some constant independent of j, n and

rjn = 2−j/2

∫ +∞

0

XH(2−js)ψ(s− n) ds

= 2−(k′+1/2)j

∫ +∞

0

2k′jXH(2−js)ψ(s− n) ds

= 2−(k′+1/2)j

∫ +∞

0

2k′j

(

∫ 2−js

0

h(k+1)(2−js− u)Ak
u du

)

ψ(s− n) ds

d
= 2−(k′+3/2)j

∫ +∞

0

(∫ s

0

h(k+1)(2−j(s− u))Ak
u du

)

ψ(s− n) ds

= 2−(k′+3/2)j

∫

R

ψ(s)

(∫ s+n

0

h(k+1)(2−j(s+ n− u))Ak
u du

)

ds,

the equality in law coming from the (k + 1/2)-self-similarity of Ak. This finally entails

||XH || ≤ C
∑

j≥0

2−(k′−β−1/p)j

(

sup
|n|≤M2j

|r′jn|

)
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with the notation

r′0n = r0n and r′jn
d
= 2−j

∫

R

ψ(s)

(∫ s+n

0

h(k+1)(2−j(s+ n− u))Ak
u du

)

ds if j ≥ 1.

We can rewrite the wavelet coefficients r′jn = τjnyjn with

τjn = 2−j

(

∫ n+D

0

∣

∣

∣

∣

∫ D

−D

ψ(t) dt

∫ t+n

0

h(k+1)(2−jv)(t+ n− v − s)k
+ dv

∣

∣

∣

∣

2

ds

)1/2

and {yjn, |n| ≤M2j, j ≥ 0} is an array of identically distributed jointly Gaussian random

variables. As in Theorem 7 of [17], it suffices to prove

sup
n,j

τ 2
jn < +∞. (2.4)

We have

τ 2
jn = 4−j

∫ n+D

0

∣

∣

∣

∣

∫ D

−D

ψ(t) dt

∫ t+n

0

h(k+1)(2−jv)(t+ n− v − s)k
+ dv

∣

∣

∣

∣

2

ds

and we transform
∫ D

−D

ψ(t) dt

∫ t+n

0

h(k+1)(2−jv)(t+ n− v − s)k
+ dv

through ` = k + 1 successive integrations by parts. The `-th derivative of

t 7→

∫ t+n

0

h(k+1)(2−jv)(t+ n− v − s)k
+ dv =

∫ t+n−s

0

h(k+1)(2−jv)(t+ n− v − s)k dv

is given by

t 7→ k!h(k+1)(2−j(t+ n− s)),

so that finally

τ 2
jn = C4−j

∫ n+D

0

∣

∣

∣

∣

∫ D

−D

I`ψ(t)h(k+1)(2−j(t+ n− s))1{s≤t+n} dt

∣

∣

∣

∣

2

ds.

We cut the domain of integration in s into [0, n−D− 1] and [n−D− 1, n+D]. On the first

interval it is easily seen by the smoothness of g that the integrated function is bounded, so

that after a change of variable we obtain

τ 2
jn ≤ C4−j

(

n+

∫ D

−D−1

∣

∣

∣

∣

∫ D

s

h(k+1)(2−j(t− s)) dt

∣

∣

∣

∣

2

ds

)

≤ C4−j



n+ 4j

∣

∣

∣

∣

∣

∫ 2−j(2D+1)

0

h(k+1)(u) du

∣

∣

∣

∣

∣

2




= C4−j
(

n+ C4j
)

≤ C
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independently of n, j, where the third inequality comes from the definition of h and the fact

that k ≤ c + 1. This proves (2.4) and completes the proof in the case when c is not an

integer and p < +∞. If c is an integer, then h(k)(0) = (k − 1)!g′(0) is not necessarily zero

and we have a slightly more complicated wavelet decomposition for XH . Using again the

(k + 1/2)-self-similarity of Ak and reasoning as above we obtain

||XH || ≤ C
∑

j≥0

2−(k′−β−1/p)j

(

sup
|n|≤M2j

|sjn|

)

with s′0n = r0n and

sjn
d
=

∫

R

ψ(s)

(

2−j

∫ s+n

0

h(k+1)(2−j(s+ n− u))Ak
u du + Ak

s+n

)

ds

if j ≥ 1. Analogously, we need an upper bound on

σ2
jn =

∫ n+D

0

∣

∣

∣

∣

∫ D

−D

ψ(t) dt

(

(t+ n− s)k
+ + 2−j

∫ t+n

0

h(k+1)(2−jv)(t+ n− v − s)k
+ dv

)∣

∣

∣

∣

2

ds

≤ 2

(

∫ n+D

0

∣

∣

∣

∣

∫ D

−D

ψ(t)(t+ n− s)k
+ dt

∣

∣

∣

∣

2

ds + τ 2
jn

)

≤ C

independent of j, n from the above computations and the proof of Theorem 7 in [17]. This

finishes the proof in the case p < +∞. Finally, the case p = +∞ can be handled exactly in

the same way in writing

||XH || ≤ C
∑

j≥0

(

sup
n∈Nj

|rjn|||ψjn||

)

,

and we leave the details to the reader.

2

3 The Non-Gaussian case

3.1 Preliminaries and statement of the main result

In this section, we investigate small deviations of processes defined by (1.1) such that 0 <

α < 2 and f(x) = xcg(x) for some c ≥ 0 and g analytic with g(0) = 1. Of course, one

should wish to obtain the same level of generality as above, and actually a stable extension
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of Theorem 2.1 would be readily obtained if one could prove the analogue of Theorem 1.2 in

[11] for stable measures. Unfortunately, the latter relies on the weak Gaussian decorrelation

inequality (1.3), for which no stable version is available because the subordination argument

does not apply to a product of probabilities. We do not know either whether it is possible

to prove a stable version of Theorem 1.2 in [11] without the decorrelation inequality (1.3).

Our assumptions on X will be more stringent than in the Gaussian case. Firstly, setting

H = c + 1/α, we will suppose that H ≥ 1/α. This assumption is natural because it is in

accordance with the sample path properties ofX: ifH < 1/α it is known - see Theorem 10.2.3

in [21] - that X is almost surely unbounded on [0, 1], which makes the small ball problem

irrelevant for all classical norms except possibly Lp-norms – see Section 6 in [17] for more

details and comments. Secondly, we suppose that g : R → R is analytic in the neighbourhood

of 0 with convergence radius ρ ≥ 1. This entails

g(s) =
∞
∑

n=0

g(n)(0)

n!
sn, s ∈ [0, 1]

and by Theorem 11.4.1 in [21] we can write

Xt =
∞
∑

n=0

anR
H+n
t (3.1)

pointwise for all t ∈ [0, 1], with

an =
g(n)(0)

n!
and RH+n

t =

∫ t

0

(t− s)H−1/α+n dZs.

Notice that the RL processes RH+n in (3.1) integrate the same process Z and hence are not

independent. From now on, we will only consider processes written in the form (3.1) with the

same underlying process Z and an absolutely converging series {an, n ≥ 0}. As mentioned

in the introduction, we will focus on two families of norms only:

(a) The Lp-norms, 1 ≤ p ≤ +∞, defined as usual by

‖f‖p =

(∫ 1

0

|f(s)|p ds

)1/p

for p < +∞ and ‖f‖∞ = sup
s∈[0,1]

|f(s)| for p = +∞.

(b) The η-Hölder norms, 0 < η < 1, defined by

‖f‖η = sup
0≤s<t≤1

|f(t) − f(s)|

|t− s|η

on functions f : [0, 1] → R starting from 0.
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Our main result is the following:

Theorem 3.1. Let X be defined by (1.2) with 0 < α < 2, H ≥ 1/α, and such that

∞
∑

n=1

|an|n
H−1/α+δ < +∞ (3.2)

for some δ > 0. Then for every 1 ≤ p ≤ +∞

log P

(

‖X‖p ≤ ε
)

≈ −ε−1/H , ε→ 0.

Besides, for every η ∈ (0, 1), then

log P

(

‖X‖η ≤ ε
)

= −ε−1/(H−η)+o(1), ε→ 0

as soon as H > 1/α + η.

Remarks 3.2. (a) For the Hölder norms, the term o(1) only appears in estimating the

upper bound for the small deviation probabilities and the lower bound provides the exact

rate under the exponential scale.

(b) The lower bound holds for both norms under the condition

∞
∑

n=0

|an|n
H−1/α < +∞, (3.3)

which is slightly weaker than (3.2). We believe that this latter condition is actually necessary

for the well-posedness of our small ball problem – see Remark 3.6 thereafter. Notice that

both conditions (3.3) and (3.2) are satisfied as soon as g has a convergence radius ρ > 1.

(c) For the Hölder norm, the additional assumption on H is natural, except possibly for

the relevant boundary case H = 1/α + η, since it is plausible, as in [22], that X has finite

Hölder norm if and only if H ≥ 1/α+ η. One probably needs an entirely different method to

tackle the situation H = 1/α + η, this even for RL processes, since the wavelet arguments

of [17] fail. Typically, one should expect some superexponential behaviour.

The proof of Theorem 3.1 will be given in two parts. First, the lower bound will be rather

easily established using a time-integration lemma. For the more involved upper bound, we

will need estimates for the entropy numbers of the underlying Riemann-Liouville operators,

in order to apply then Li-Linde’s upper criterion for general symmetric stable processes [14].
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3.2 Proof of the lower bound

We begin with an easy lemma which states roughly that Riemann-Liouville processes form

a semi-group w.r.t. time integration. Recall the notation

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
, p, q > 0

for Euler’s Beta function.

Lemma 3.3. For every H ≥ 1/α and β > 0, we have a.s.

B(β,H − 1/α + 1)RH+β
t =

∫ t

0

(t− s)β−1RH
s ds.

Proof: Notice first that the integration of the right-hand side makes sense since almost surely

RH ∈ L∞[0, 1] and s 7→ (t− s)β−11{s≤t} is in L1[0, 1]. We have a.s.

∫ t

0

(t− s)β−1RH
s ds =

∫ 1

0

1{s≤t}(t− s)β−1

∫ 1

0

1{u≤s}(s− u)H−1/α dZu ds

=

∫ t

0

(∫ t

u

(t− s)β−1(s− u)H−1/α ds

)

dZu,

where in the second line we applied Fubini’s Theorem. Making the substitution r = (s −

x)/(t− x), we obtain

∫ t

0

(∫ t

u

(t− s)β−1(s− u)H−1/α ds

)

dZu =

∫ t

0

∫ 1

0

(1 − r)β−1rH−1/α dr(t− u)β+H−1/α dZu

= B(β,H − 1/α + 1)

∫ t

0

(t− u)β+H−1/α dZu,

which completes the proof.

2

Let us now recall the definition of the Riemann-Liouville operator, which will also be

useful in proving the upper bound:

Definition 3.4. The Riemann-Liouville operator with parameter β > 0 is defined by

Rβy(t) =
1

Γ(β)

∫ t

0

(t− s)β−1y(s) ds,

as soon as the term on the right-hand side makes sense.
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This operator has been extensively studied over the years in many areas of analysis and

probability, see [7] and [19] for modern accounts. Our Lemma 3.3 entails that a.s.

RH+β =
Γ(H + β − 1/α + 1)

Γ(H − 1/α + 1)
Rβ(RH). (3.4)

Notice that Rβ is a fractional integration operator, which is hence regularizing. In particular,

given a function space F one should expect that RH+n ∈ F for all n ≥ 0 as soon as RH ∈ F ,

and it is natural to ask if the problem of comparing the small deviations of RH and X is

well-posed as soon as RH ∈ F holds, in other words if

∥

∥RH
∥

∥

F
< +∞ =⇒ ‖X‖

F
< +∞. (3.5)

In a slightly different direction, let us mention that the problem of continuity and bounded-

ness of convolution processes (1.1) with Z a semi-martingale and f(0) = 0 was addressed in

[10], under general conditions. The following lemma yields a criterion ensuring (3.5) for Lp

and Hölder norms, under condition (3.3):

Lemma 3.5. Let ‖.‖ be an Lp-norm for some 1 ≤ p ≤ +∞ or a η-Hölder norm for some

0 ≤ η < 1. There exists a constant C independent of n such that a.s.

∥

∥RH+n
∥

∥ ≤ C nH−1/α
∥

∥RH
∥

∥

for all n ≥ 1.

Proof: Suppose first that ‖.‖ is an Lp-norm for some 1 ≤ p < +∞. From Lemma 3.3 with

β = n and Stirling’s formula, we get

∥

∥RH+n
∥

∥

p
≤ C nH−1/α+1

(∫ 1

0

∣

∣

∣

∣

∫ t

0

(t− s)n−1RH
s ds

∣

∣

∣

∣

p

dt

)1/p

for some constant C independent of n. Then, Hölder’s inequality entails

∥

∥RH+n
∥

∥

p
≤ C

∥

∥RH
∥

∥

p
nH−1/α+1

(

∫ 1

0

∣

∣

∣

∣

∫ t

0

uq(n−1) ds

∣

∣

∣

∣

p/q

dt

)1/p

where q is such that 1/p + 1/q = 1. The desired estimate follows now easily, and the

considerations for p = +∞ are identical.
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Suppose now that ‖.‖ is an η-Hölder norm for some 0 < η < 1. Cutting the integral in

two, changing variables, and using again Lemma 3.3 together with Stirling’s formula, we get

for every 0 ≤ s < t ≤ 1

∣

∣RH+n
t −RH+n

s

∣

∣ ≤ C nH−1/α+1

∣

∣

∣

∣

∫ s

0

(s− u)n−1
(

RH
u+v −RH

u

)

du +

∫ v

0

(t− u)n−1RH
u du

∣

∣

∣

∣

with the notation v = t− s. This entails
∣

∣RH+n
t −RH+n

s

∣

∣

|t− s|η
≤ C nH−1/α+1

∥

∥RH
∥

∥

η

∣

∣

∣

∣

∫ s

0

(s− u)n−1 du +

∫ v

0

(t− u)n−1uη

vη
du

∣

∣

∣

∣

≤ C nH−1/α
∥

∥RH
∥

∥

η
(sn + tn)

≤ C nH−1/α
∥

∥RH
∥

∥

η

as desired.

2

Remark 3.6. It would be quite interesting to see if this lemma remains true in a general

Banach space F endowed, for example, with a (β, p)-semi-norm as defined in Section 2.

Notice from (3.4) that this would be a direct consequence of the following estimate

‖Rα : F → F‖ ≤
C

Γ(α+ 1)
(3.6)

for a constant C independent of α. The authors could not find a general result of this kind

in the literature, but it seems plausible that (3.6) holds for all (β, p)-lower semi-norms (i.e.

not necessarily p-subadditive). For example, it is folklore that (3.6) is true in Lp-spaces, and

we will give an argument for the sake of completeness: if f ∈ Lp, 1 ≤ p < +∞, and q is such

that 1/p+ 1/q = 1, then it follows from Hölder’s inequality that

(

Γ(α) ‖Rαf‖p

)p

=

∫ 1

0

∣

∣

∣

∣

∫ x

0

(x− t)
α−1

q (x− t)
α−1

p f(t) dt

∣

∣

∣

∣

p

dx

≤

∫ 1

0

(∫ x

0

(x− t)α−1 dt

)p/q ∫ x

0

(x− t)α−1|f(t)|p dt dx

≤ α−p/q

∫ 1

0

∫ 1

0

1{t≤x}(x− t)α−1|f(t)|p dx dt

= α−p/q

∫ 1

0

∫ 1

t

(x− t)α−1 dx|f(t)|p dt

= α−p/q

∫ 1

0

(1 − t)α

α
|f(t)|p dt ≤ α−p/q−1 ‖f‖p

p = α−p ‖f‖p
p ,
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so that

‖Rα : Lp → Lp‖ ≤
1

Γ(α+ 1)
. (3.7)

Besides, taking f ≡ 1 entails that (3.7) is indeed an equality. The same holds for p = +∞

as well, as can be seen in a straightforward way. Using the same argument as in Lemma 3.5,

we can also prove – details are left to the reader – that

‖Rα : H
η → H

η‖ =
1

Γ(α+ 1)
,

where H η stands for the set of η-Hölderian functions starting from zero. Notice finally that

if (3.6) held true as an equality, this would practically mean that the condition (3.3) is also

necessary to ensure (3.5).

We can now finish the proof of the lower bound in Theorem 3.1, under the sole assumption

(3.3):

Corollary 3.7. Let X be defined by (1.2) with 0 < α < 2, H ≥ 1/α, and such that (3.3)

holds. For all 1 ≤ p ≤ +∞, there exists C > 0 such that

log P

(

‖X‖p ≤ ε
)

≥ −C ε−1/H , ε→ 0.

Besides, for all 0 < η < 1,

log P

(

‖X‖η ≤ ε
)

≥ −C ε−1/(H−η), ε→ 0

for some constant C > 0, as soon as H > 1/α + η.

Proof: Consider first the Lp-norms. By Lemma 3.5 and the triangle inequality, one has

‖X‖p ≤

∞
∑

n=0

|an|
∥

∥RH+n
∥

∥

p
≤

(

1 + C

∞
∑

n=1

|an|n
H−1/α

)

∥

∥RH
∥

∥

p
≤ C

∥

∥RH
∥

∥

p
,

where the last inequality comes from condition (3.3). Hence,

log P

(

‖X‖p ≤ ε
)

≥ log P

(

∥

∥RH
∥

∥

p
≤ ε/C

)

≥ −C ε−1/H ,

where the last inequality comes form the results proved (in the continuous case H > 1/α)

or mentioned (in the discontinuous case H = 1/α) in [17]. The proof is exactly the same for

the η-Hölder norms, using Theorem 7 in [17].
2

Remark 3.8. It follows from the above proof and Theorem 7 in [17] that if (3.6) were true,

then Corollary 3.7 would also hold for all (β, p)-lower semi-norms, with the formula for the

rate given by Theorem 2.1.
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3.3 The upper bound for Lp-norms

Our arguments for the upper bound will be more involved than for the lower bound, be-

cause of the non-independence of the summands which makes the decomposition (1.2) less

tractable. In particular, it seems difficult to find a method relying on Anderson’s inequality,

as in [17]. Notice first that in the case of Lp-norms it will be sufficient to prove the upper

bound for L1 only, in view of the obvious inequality ‖.‖1 ≤ ‖.‖p.

As mentioned in the introduction, we will use the general relation between small devi-

ations for stable processes and entropy numbers for stable operators discovered by Li and

Linde [15]. Set E = L∞ and consider the dual Banach space E ′ of E. It is known that L1 is

continuously embedded in E ′ with ‖f‖1 = ‖f‖E′ , for all f ∈ L1. For every n ≥ 0, it is easily

seen that the operator RH
n : E → Lα defined by

R
H
n = Γ(H − 1/α + n+ 1)RH−1/α+n+1

where RH−1/α+n+1 is the Riemann-Liouville operator from Definition 3.4, is a linear operator

such that
∥

∥R
H
n : E → Lα

∥

∥ = 1.

Besides, RH
n generates the Riemann-Liouville process RH+n in the sense of [15] since, by

Theorem 11.4.1 in [21],

E

[

exp

(

i

∫ 1

0

RH+n
t x(t) dt

)]

= exp
(

−
∥

∥R
H
n x
∥

∥

α

α

)

for every x ∈ E.

Using (3.3), Stirling’s formula and Proposition 3.5.1 in [21], this entails that the operator

Rf : E → Lα defined by

Rf =
∑

n≥0

an R
H
n

is a bounded linear operator generating X in the sense of [15]. Recall now the definition of

the dyadic entropy numbers of an operator u : E → F , where F is some other quasi-Banach

space:

ek[u : E → F ] = inf







ε > 0 | ∃ y1 . . . y2k−1 ∈ F : u(BE(0, 1)) ⊆
2k−1

⋃

i=1

BF (yi, ε)







for every k ≥ 1, where BE(x, ε) denotes the ball in E with centre x and radius ε and with the

same notation for BF (yi, ε). From Theorem 4.5 in Li-Linde [15] – see also [1] for a general
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result, the first one to our knowledge, ensuring that E ′ satisfies property D in [15] – our

upper bound will be proved as soon as we can show that there exists a constant C > 0 such

that

ek[Rf : E → Lα] ≥ C k−(H−1/α−1), k → ∞. (3.8)

To find this estimate, we will need a lemma on the entropy numbers of RL operators:

Lemma 3.9. For all β > 1/2 and 0 < α ≤ 2, one has

ek[Rβ : E → Lα] ≈ k−β, k → ∞.

Proof: From the main result of [17], we know that for every H > 0

− log P
(∥

∥RH
∥

∥

E′
≤ ε
)

= − log P
(∥

∥RH
∥

∥

1
≤ ε
)

≈ ε−1/H , ε→ 0.

Suppose first that α = 2. It follows from the general Gaussian connection established in [9]

and [14] that for every β > 1/2

ek[Rβ : E → L2] ≈ k−β, k → ∞,

which completes the proof for α = 2, and yields the upper bound for all α ≤ 2 because

L2 ⊆ Lα. To obtain the lower bound we first make the obvious remark that

ek[Rβ : E → Lα] ≥ ek[Rβ : C → Lα]

where C ⊆ E stands for the set of continuous functions from [0, 1] to R. On the other hand,

from interpolation results for entropy numbers – see e.g. the Theorem p. 13 in [6] – there

exists C > 0 independent of k such that

ek[Rβ : C → C ]1−α/2ek[Rβ : C → Lα]α/2 ≥ C e2k[Rβ : C → L2].

But it follows from Proposition 6.1 in [14] that

ek[Rβ : C → L2] ≈ k−β and ek[Rβ : C → C ] ≈ k−β

as k → ∞. Putting these last two facts together yields the desired lower bound.

2

16



End of the proof. Define h(x) = f(x) − xH−1/α. With the above notation, we have

Rh =
∑

n≥1

an R
H
n = Rf − RH−1/α+1.

By Lemma 3.9 and the additivity property of entropy numbers, this entails

ek [Rf : E → Lα] + ek [Rh : E → Lα] ≥ e2k+1

[

RH−1/α+1 : E → Lα

]

≈ k−(H−1/α+1) (3.9)

as k → ∞. Fix 0 < δ < 1 such that (3.2) holds. By the triangle inequality and the semi-

group property of the Riemann-Liouville operator (Rβ ◦ Rγ = Rβ+γ for all β, γ > 0) we see

that for every x ∈ E

‖Rhx‖2 ≤
∞
∑

n=1

|an|Γ(H − 1/α + n+ 1) ‖Rn−δ : L2 → L2‖
∥

∥RH−1/α+1+δ x
∥

∥

2

≤
∥

∥RH−1/α+1+δ x
∥

∥

2

∞
∑

n=1

|an|
Γ(H − 1/α + n+ 1)

Γ(n+ 1 − δ)

≤ C
∥

∥RH−1/α+1+δ x
∥

∥

2

∞
∑

n=1

|an|n
H−1/α+δ

where the second line comes from (3.7). By assumption (3.2), we get

‖Rhx‖2 ≤ C
∥

∥RH−1/α+1+δx
∥

∥

2

for all x ∈ E, and it follows from Lemma 4.2 in [16] that

ek [Rh : E → L2] ≤ Cek

[

RH−1/α+1+δ : E → L2

]

≈ k−(H−1/α+1+δ),

the last approximation coming from Lemma 3.9. Recalling the obvious inequality

ek [Rh : E → Lα] ≤ ek [Rh : E → L2]

for every α ≤ 2 and putting this together with (3.9) yields

ek [Rf : E → Lα] ≥ C k−(H−1/α+1) − ek [Rh : E → Lα] ≥ C k−(H−1/α+1)

for large enough k, which completes the proof.

2
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Remark 3.10. Using additivity of entropy numbers, one can show that

ek [Rf : E → Lα] ≤ C k−(H−1/α+1)

for some C > 0 and large enough k, so that actually

ek [Rf : E → Lα] ≈ k−(H−1/α+1)

when k → ∞. See also [2] for a more general connection between lower estimates of the small

deviation probabilities and upper estimates of entropy numbers, completing the results of

[15].

3.4 The upper bound for η-Hölder norms.

This will be a rather easy consequence of the above upper bound for L∞-norms, and we

shall not use entropy numbers anymore. A direct approach using dual Hölder spaces [6] may

provide more precise results, but it promises to be much more involved as far as the entropy

numbers are concerned. Fix η ∈ (0, 1) and H > 1/α + η. Consider the process Y ν defined

by

Y ν
t =

∑

n≥0

an

(

Γ(H + n− 1/α + 1)

Γ(H − ν + n− 1/α + 1)

)

RH−ν+n
t . (3.10)

for some 0 < ν < η. Since H > 1/α + ν we know that RH−ν+n ∈ C a.s. Using assumption

(3.3) and reasoning exactly as in Lemma 3.5, we see that the sum (3.10) converges uniformly.

Hence Y ν ∈ C by Dini’s lemma, Lemma 3.3, and the uniform convergence in (3.10) that

X = RνY
ν .

The inverse of the Riemann-Liouville operator Rν is the so-called fractional differentiation

operator Dν defined by

Dν = D ◦ R1−ν

where D is the standard differentiation operator [7]. For every γ ∈ [0, 1) we set, as above,

H γ for the set of γ-Hölderian functions [0, 1] → R starting from 0, endowed with the norm

‖.‖γ. It follows from Theorem 14 in [7] that for any γ > 0 such that ν + γ < 1,

Rν : H
γ → H

ν+γ

is bounded and bijective. By the open mapping theorem, the same holds for

Dν : H
ν+γ → H

γ.
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Set γ = η − ν. The assumption H > 1/α + η ensures that X ∈ H η, so that a.s. Y ν ∈ H γ

and

‖Y ν‖∞ ≤ ‖Y ν‖γ ≤ ‖Dν : H
η → H

γ‖ ‖X‖η .

By (3.10), (3.2) and the upper bound for Lp-norms, we obtain

log P

[

‖X‖η < ε
]

≤ log P [‖Y ν‖∞ < Kε] ≤ −Cε−1/(H−ν), ε→ 0,

for some constant C,K > 0. This completes the proof in letting ν → η.

2

Remark 3.11. If the operator

Dν : H
ν → C

were continuous for the Hölder topology, then the above simple argument would readily yield

the exact upper bound

log P

[

‖X‖η < ε
]

≤ −Cε−1/(H−η), ε→ 0.

4 Two examples

4.1 Stable Ornstein-Uhlenbeck processes

These processes solve the Langevin equation

Xt = ξ − λ

∫ t

0

Xs ds + σZt (4.1)

where λ, ξ, σ ∈ R and Z is a symmetric α-stable Lévy process. The equation has a unique

explicit solution given by

Xt = e−λt

(

ξ + σ

∫ t

0

eλudZu

)

and since in this paper we focus on processes starting from zero, our stable OU process takes

here the simple form:

Xt = σ

∫ t

0

e−λ(t−u)dZu.
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In the Non-Gaussian case, the process X has jumps and we can consider Lp-norms only.

Since the kernel g(t) = σe−λt satisfies (3.2), Theorem 3.1 entails

log P

(

‖X‖p ≤ ε
)

≈ −ε−α, ε→ 0. (4.2)

In the Gaussian case the process X has the same regularity as the Brownian motion and

Theorem 2.1 entails that its small deviation probabilities are also exactly the same, up to the

normalization given by σ. We refer e.g. to Section 6 in [17] for a survey on small deviations

of Brownian motion under different norms. In particular, one has

ε2 log P (‖X‖∞ ≤ ε) → −
π2

8
σ2, ε→ 0.

This is actually a very particular case of a general result due to Berthet and Shi [3], who

studied small deviations under the sup norm for Gaussian Markov processes defined by the

generalised Lamperti transformation

Xt = h(t)Bg(t)

of a linear Brownian motion (in the OU case, one has g(t) = e2λt−1 and h(t) = σe−λt/
√

2 |λ|),

as a consequence of small ball results for the Brownian motion under a weighted sup-norm.

Notice that small deviations of Gaussian Markov processes under Lp norms were also thor-

oughly studied in [12]. However, there does not seem to exist any literature for this class of

processes under other norms.

It is natural to ask whether the constant exists in the asymptotic (4.2) in the Non-

Gaussian case. Unfortunately, the absence of self-similarity prevents us from using any

subadditivity argument as in [4] or [17]. Besides, notice that Non-Gaussian stable OU

processes cannot be recovered from a Lévy stable process by a Lamperti transformation.

4.2 Fractional Ornstein-Uhlenbeck processes

Let us consider the Gaussian case first. These processes were introduced in [5] as the solution

to the generalised Langevin equation

Xt = ξ − λ

∫ t

0

Xs ds + σBH
t (4.3)

driven by a fractional Brownian motion BH with Hurst parameter H. They can be written

similarly as

Xt = e−λt

(

ξ + σ

∫ t

0

eλudBH
u

)

20



(in [5] Proposition A.1 it is proved that the above integral with respect to BH exists as a

Riemann-Stieltjes integral). In [5], it is also remarked that except in the Brownian case, X

defined in (4.3) cannot be retrieved from a fBM by the Lamperti transformation. As above,

we will consider the case ξ = 0 viz.

Xt = σ

∫ t

0

e−λ(t−u)dBH
u , t ∈ [0, 1]. (4.4)

It is well-known that BH can be decomposed into

BH
t = cH

(

RH
t + MH

t

)

where cH is a normalization constant, RH the above (Gaussian) Riemann-Liouville process

and MH an independent smooth process. Using the same argument as in [17], Theorem 12,

and the independence argument relying on Anderson’s inequality detailed in [13], p. 1334, we

see that X defined in (4.4) has exactly the same small deviation probabilities as Y defined

by

Yt = σcH

∫ t

0

e−λ(t−u)dRH
u = σcH

∫ t

0

e−λ(t−u)(t− u)H−1/2dBu, t ∈ [0, 1].

From Theorem 2.1 we deduce that for any seminorm || · || ∈ N(β, p) such that H > β + 1/p,

we have

lim
ε↓0

εγ log P [||X|| ≤ ε] = −K (σcH)γ

where γ = (H − β − 1/p)−1 and K is given by (2.1).

In [18], a stable extension of (4.3) is proposed, replacing the driving fractional Brownian

motion by the so-called linear fractional stable motion ∆a,b
H,α (LFSM) which is defined by

∆a,b
H,α(t) =

∫

R

(

a
[

(t− s)
H−1/α
+ − (−s)

H−1/α
+

]

+ b
[

(t− s)
H−1/α
− − (−s)

H−1/α
−

])

dZs

for every t ≥ 0, where a, b are two real constants, 0 < α ≤ 2 and 0 < H < 1. A remarkable

feature of these LFSM’s is that they are all equal to fBM – up to some constant – in the case

α = 2. In the Non-Gaussian case however, different values of a, b yield different processes.

Taking a = 1 and b = 0 entails

∆1,0
H,α(t) =

∫

R

(

(t− s)
H−1/α
+ − (−s)

H−1/α
+

)

dZs

we can decompose

∆1,0
H,α(t)

d
= RH

t + MH
t
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where RH is the above (Non-Gaussian) Riemann-Liouville process and MH given by

MH
t =

∫ +∞

0

(

(t+ s)H−1/α − sH−1/α
)

dZs, t ≥ 0

is an independent smooth process. The solution to (4.3) starting from 0 can also be written

as

Xt = σ

∫ t

0

e−λ(t−u)d∆1,0
H,α(u), t ∈ [0, 1].

We refer to [23] for much more on these processes with a view towards applications. Rea-

soning as above, we see that their small deviations are the same as those of

Yt = σ

∫ t

0

e−λ(t−u)dRH
u = σ

∫ t

0

e−λ(t−u)(t− u)H−1/αdZu, t ∈ [0, 1].

As mentioned in [18] Proposition 3.3, the problem is only relevant for 1/α ≤ H < 1 and

1 < α < 2. The case H = 1/α was studied in the last paragraph. In the case H > 1/α

we can apply Theorem 3.1 as well, and an interesting feature is that we can include some

Hölder norms: one has

log P

(

‖X‖η ≤ ε
)

= −ε−1/(H−η)+o(1), ε→ 0

as soon as H > 1/α + η.
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