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We analyze the mean packet delay in an Ethernet passive optical network (EPON) with
gated service. For an EPON with a single ONU, we derive (i) a closed form delay expression
for reporting at the end of an upstream transmission, and (ii) a Markov chain based
approach requiring the numerical solution of a system of equations for reporting at the
beginning of an upstream transmission. Reporting at the beginning, which has not been
previously examined in detail, achieves significantly smaller delays than reporting at the
end of an upstream transmission for a small number of ONUs. Both of these analyses are
fundamentally different from existing polling system analyses in that they consider the
dependent switchover times of the EPON. We extend the analysis for reporting at the
beginning of an upstream transmission to approximate the mean packet delay in an EPON
with multiple ONUs and verify the accuracy of the analysis with simulations. Overall, our
numerical results indicate that for utilizations up to around 75%, the mean packet delay is
close to its minimum of four times the one-way propagation delay. c© 2007 Optical Society
of America

OCIS codes: 060.4250, 060.4259, 000.5490.

1. Introduction

Ethernet passive optical networks (EPONs) have received significant interest recently for providing cost-
effective high-speed Internet access, see for instance [1–15]. An EPON connects several optical network units
(ONUs) via a shared network, typically with a tree or bus topology, with the optical line terminal (OLT),
which in turn connects to metro and wide area networks. In order to avoid collisions of the upstream ONU-
to-OLT transmissions, the OLT arbitrates the access of the ONUs to the shared upstream network through
a dynamic bandwidth allocation (DBA) mechanism. In general, the OLT issues transmission grants to the
ONUs that are timed such that successive upstream transmissions arriving at the OLT are spaced by at least
a standard defined guard time. Akin to a polling mechanism, the DBA is cyclical in that each ONU includes
a REPORT message indicating the amount of newly generated upstream traffic in a granted upstream
transmission. Based on the received reports, the OLT then sizes and schedules the next transmission grants
to the ONUs generally in a round-robin manner and informs the ONUs with GATE messages about their
upstream transmission windows.

While significant progress in the study of the design and performance aspects of EPONs has been made in
recent years, a formal queuing theoretic analysis has proved elusive. Polling systems have been extensively
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studied with queueing theoretic methods, see e.g., [16, 17]. However, the analyzed polling models generally
assume random switchover times between serving successive stations, whereby the switchover times are inde-
pendent of the traffic generation and service. In contrast, in an EPON, the service (transmission grant) of an
ONU follows immediately (separated by a guard time) after the transmission of the preceding ONU to ensure
high utilization of the upstream transmission bandwidth. The switchover time is therefore generally highly
dependent on the roundtrip delays and the masking of the roundtrip delays through upstream transmissions,
significantly complicating formal analysis.

In this paper, we contribute an analysis of the mean packet delay in an EPON with gated service [18],
where each ONU is granted a transmission window equal to its reported amount of upstream traffic. Our
focus on gated service is motivated by recent results demonstrating that gated service provides the smallest
packet delays, particularly for high loads [19]. We note that an important drawback of gated service is that
an ONU with a high traffic volume can monopolize the upstream bandwidth resulting in unfair bandwidth
allocation.

We consider two reporting strategies with gated service: (i) sending the REPORT message at the beginning
of a granted upstream transmission, and (ii) sending the REPORT message at the end of the upstream trans-
mission. We consider Poissonian packet generation at the ONUs with an arbitrary packet size distribution.
We initially examine the special case of an EPON with a single ONU and provide an exact closed-form delay
expression when sending the REPORT at the end of the transmission window, and an exact Markov chain
model involving the numerical solution of a system of equations when sending the REPORT at the beginning
of the upstream transmission. We note that even the special case of one ONU can not be accommodated by
the existing polling models with independent switchover times since the delay between two successive up-
stream transmissions is (deterministically) equal to the ONU-OLT-ONU round trip propagation delay (plus
very small processing delays) when sending the REPORT at the end. When sending the REPORT at the
beginning, the delay between successive upstream transmissions depends on the duration of the preceding
transmission and the round trip propagation delay.

For reporting at the beginning of an upstream transmission, we conduct an approximate packet delay
analysis for an EPON with multiple ONUs. We verify the correctness of the exact delay analyses for a single
ONU and the accuracy of the approximate delay analysis for multiple ONUs through simulations. We also
identify the relative advantages of the two reporting strategies.

This paper is structured as follows. In the following subsection we review related work on the analysis of
EPONs and polling systems. In Section 2, we present our EPON model and the main notations. In Section 3,
we analyze the packet delay for reporting at the end of an upstream transmission, while we analyze the delay
for reporting at the beginning of an upstream transmission in Section 4. In Section 5, we derive a lower
bound on the packet delay for both reporting strategies. In Section 6, we validate our queueing theoretic
analysis with simulations. We summarize our contributions in Section 7.

1.A. Related work

EPONs have so far mainly been evaluated through simulations which provide valuable insights into their
characteristics, but need to be complemented with formal mathematical analysis for a deeper understanding.
Only few existing studies have attempted to formally analyze the various aspects of EPON operation. Bhatia
and Bartos [20] conduct an approximate analysis of the collision probability for the messages sent by the
ONUs to the OLT for registration, i.e., when establishing the first communication between new ONUs and
the OLT. The analysis provides contention window sizes for an efficient registration process. EPONs with
a fixed bandwidth allocation to the ONUs have been analyzed by Holmberg [21] for regulated (e.g., Leaky
Bucket shaped) input traffic and by Lannoo et al. [22] for Poisson packet traffic. These analyses show that
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the static bandwidth allocation can meet delay constraints only at the expense of low network utilization,
motivating the use of dynamic bandwidth allocation.

In [22], Lannoo et al. have made significant progress toward a formal delay analysis for an EPON with
dynamic bandwidth allocation using gated service. They have derived a Markov chain model for the cycle
length in a multi-ONU EPON with reporting at the end of the upstream transmission. By numerically solving
the system of equations corresponding to the Markov chain model, they obtain the mean cycle length, which is
then used to approximate the mean delay. Our analysis complements and advances this analysis as follows.
First, we derive an exact closed-form expression for the delay in a gated-service single-ONU EPON with
reporting at the end. We also consider gated-service EPONs with reporting at the beginning of the upstream
transmission, deriving a Markov chain model for the cycle length, the exact delay in a single-ONU EPON,
and an approximation of the delay in a multi-ONU EPON.

Luo and Ansari [23,24] propose and analyze a dynamic bandwidth allocation scheme with traffic prediction,
whereby the prediction error is assumed to be Gaussian. The average delay is expressed in terms of the
Gaussian prediction error distribution. Bhatia et al. [25] analyze the mean transmission grant size and cycle
time for reporting at the end of an upstream transmission for a single ONU and for low-load and high-load
regimes for multiple ONUs. The delay that a generated packet experiences until it is reported to the OLT and
the delay until the packet is transmitted in a granted transmission window, which contribute significantly to
the total packet delay, as we demonstrate in this paper, are not examined in [25].

Takagi [16,17] provides extensive overviews of the literature on the analysis of polling systems with inde-
pendent switchover times. Building directly on this polling system analysis literature, Park et al. [26] consider
an EPON model with random independent switchover times and derive a closed form delay expression for
multiple ONUs. The EPON model with independent switchover times holds only when successive upstream
transmissions are separated by a random time interval sufficiently large to “de-correlate” successive transmis-
sions, which would significantly reduce bandwidth utilization in practice. The literature on polling systems
with correlations is relatively sparse, see for instance [27–32], and considers correlations that are different
from the dependencies arising in EPONs.

2. General EPON model and notations

We let C denote the upstream transmission speed (in bit/sec) of the EPON. We let O denote the num-
ber of ONUs independently generating packets according to Poisson processes with rates λ1, λ2, . . . , λO

(packets/sec) and denote λ =
∑O

o=1 λo for the overall packet generation rate on the EPON. We consider
heterogeneous packet sizes L(n), n = 1, . . . , η, whereby a given generated packet has size L(n) (in bit) with
probability αn. We denote the mean packet size by L̄ =

∑η
n=1 αn · L(n), the variance of the packet sizes by

σ2
L, and the traffic intensity (load) by ρ = λL̄/C, which we require to satisfy ρ < 1 throughout.
We decompose the packet delay into three main random components plus the transmission and propagation

delay for the actual upstream transmission of the given packet. We denote

• D1 for the time from the instant a packet is generated at the ONU to the instant when the next
REPORT message is sent, notifying the OLT about the generated packet.

• D2 for the time between sending the REPORT message notifying the OLT about the packet and the
beginning of the corresponding upstream transmission at the ONU.

• D3 for the time between the beginning of the upstream transmission containing the considered packet
and the actual beginning of the transmission of the packet.

• τ for the upstream propagation delay of the considered packet.
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Fig. 1. Illustration of packet delay for EPON with a single ONU with reporting at the
end of an upstream transmission: The generated packet experiences a delay D1 before it is
reported to the OLT with the report appended to upstream transmission grant of length
Gn−1 in cycle n− 1. The corresponding grant for cycle n arrives at the ONU after a delay
of D2 = 2τ . The packet experiences an additional delay D3 within the grant of length Gn

until its upstream transmission commences. Finally, the packet experiences its transmission
delay (which has a mean of L̄/C) and propagation delay τ .

• L̄/C for the mean transmission delay of the considered packet.

With these definitions we obtain the total packet delay D as

D = D1 + D2 + D3 + τ +
L̄

C
. (1)

In order not to obstruct our main modelling approaches, we neglect the guard time, the transmission time
of the REPORT message, and the transmission time of the GATE message in our analysis. These times are
relatively small compared to the propagation delay and the durations of the upstream transmissions (which
typically contain several data packets) and could be incorporated into our models in a straightforward manner
following the same strategies as [25] uses for modelling these delays.

3. Delay analysis for sending REPORT at end of upstream transmission

In this section we analyze the mean packet delay in an EPON with reporting at the end of the upstream
transmission, as is common in the existing EPON studies, see e.g., [2, 7, 18, 22, 25]. We initially consider a
single ONU, i.e., O = 1, that generates packet traffic at the rate λ1 = λ. We discretize time and consider
the time instant after transmitting one bit upstream, which takes 1/C (seconds). For any such bit i, let Ni

be a random variable denoting the number of packets that are generated during the 1/C bit time period.
For the considered Poisson packet generation process arrival, Ni is Poisson distributed with mean λ/C. Let
l1, l2, . . . , lNi be random variables denoting the sizes of the generated packets. Let Xi be a random variable
denoting the amount (in bit) of generated traffic during the ith bit time period, i.e.,

Xi = l1 + · · ·+ lNi . (2)

Wald’s Equation [33, p. 170], states that for N independent and identically distributed random variables
Y1, Y2, . . . , YN that are independent of N , E[Y1 + Y2 + · · ·+ YN ] = EY1EN . With Wald’s Equation, EX1 =
L̄EN1 = L̄λ/C = ρ.

Let Gn be a random variable denoting the transmission time (in seconds) of the nth grant. As illustrated
in Fig. 1, the size of the nth grant is equal to the sum of the sizes of the packets newly generated during the
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preceding cycle, i.e., the (n − 1)th cycle. This preceding cycle lasts 2τ + Gn−1 seconds (i.e., (2τ + Gn−1)C
bit times). Hence,

Gn =
X1 + · · ·+ X(2τ+Gn−1)C

C
. (3)

3.A. Evaluation of mean grant size EG and mean cycle length EZ

Since in steady-state EGn = EGn−1 = EG, we derive from (3), by Wald’s Equation,

EG = EX1E(2τ + EGn−1) (4)

= ρ(2τ + EG), (5)

which gives the mean grant size of

EG =
2τρ

1− ρ
. (6)

From this we obtain the mean cycle length EZ in steady-state as

EZ = 2τ +
2τρ

1− ρ
=

2τ

1− ρ
. (7)

3.B. Evaluation of second moment of grant size EG2 and cycle length EZ2

Wald’s Equation for the variance [33, p. 170], states that for N independent and identically distributed
random variables Y1, Y2, . . . , YN that are independent of N , E(Y1 +Y2 + · · ·+YN −NEY1)2 = VY1EN , where
VY1 denotes the variance of Y1. With this Wald’s Equation for the variance and (3), we obtain

E
(

Gn − (2τ + Gn−1)CE
(

X1

C

))2

=
V(X1)

C
E(2τ + Gn−1). (8)

From this equation we obtain the second moment of the grant size as follows. We first calculate V(X1),
which is (using Wald’s Equation in the fourth step)

V(X1) = EX2
1 − ρ2 (9)

= E(X1 −N1L̄ + N1L̄)2 − ρ2 (10)

= E(X1 −N1L̄)2 + 2E(X1N1L̄)− E(N1L̄)2 − ρ2 (11)

= σ2
LEN1 + 2L̄2EN2

1 − L̄2EN2
1 − ρ2 (12)

= σ2
L

λ

C
+ L̄2 λ

C

(
λ

C
+ 1

)
− ρ2 (13)

= ρ

(
σ2

L

L̄
+ L̄

)
, (14)

where we used when passing from (11) to (12) that

E(X1N1) =
∞∑

k=0

P [N1 = k]E(X1k|N1 = k) (15)

=
∞∑

k=0

kP [N1 = k]E(l1 + . . . + lk) (16)

=
∞∑

k=0

kP [N1 = k] kL̄ (17)

= L̄EN2
1 . (18)
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The step from (12) to (13) follows by noting that a Poisson distributed random variable with mean EN1 = λ
C

has the second moment EN2
1 = λ

C

(
λ
C + 1

)
[34, p. 400]. Thus, the right-hand side of (8) equals:

(
σ2

L

L̄
+ L̄

)
2τρ

C(1− ρ)
. (19)

On the other hand, note that in steady-state EG2
n = EG2

n−1 = EG2. The left-hand side in (8) equals

EG2
n − 2EGn(2τ + Gn−1)ρ + ρ2E(2τ + Gn−1)2 (20)

= EG2 − 4τρEG− 2ρEGnGn−1 + ρ2(2τ)2 + 4τρ2EG + ρ2EG2. (21)

In order to solve (8) for EG2 we have to determine EGnGn−1, which is (using again Wald’s equation)

∞∑

k=0

P [Gn−1 = k]E(Gnk|Gn−1 = k) (22)

=
∞∑

k=0

P [Gn−1 = k] kE
(

X1 + . . . + X(2τ+k)C

C

)
(23)

=
∞∑

k=0

P [Gn−1 = k] kEX1(2τ + k) (24)

= ρ2τEG + ρEG2. (25)

Therefore, the left-hand side of (8) equals

EG2 − 4τρEG− 2ρ(ρ2τEG + ρEG2) + ρ2(2τ)2 + 4τρ2EG + ρ2EG2 (26)

= (1− ρ2)EG2 − 4τρ
2τρ

1− ρ
+ ρ2(2τ)2. (27)

Comparing this to (19) gives

EG2 =
1

1− ρ2

[
4τρ

2τρ

1− ρ
− ρ2(2τ)2 + ρ

(
σ2

L

L̄
+ L̄

)
2τ

C(1− ρ)

]
(28)

=
2τρ

(1− ρ)(1− ρ2)

[
2ρτ + 2τρ2 +

σ2
L

CL̄
+

L̄

C

]
. (29)

From this formula we also obtain an explicit formula for the second moment of the cycle length by

EZ2 = (2τ)2 + 2 · 2τEG + EG2 (30)

= (2τ)2 +
8τ2ρ

1− ρ
+ EG2 (31)

= (2τ)2 +
8τ2ρ

1− ρ
+

2τρ

(1− ρ)(1− ρ2)

[
2ρτ + 2τρ2 +

σ2
L

CL̄
+

L̄

C

]
(32)

=
2τ

(1− ρ)(1− ρ2)

[
2τ + 2τρ +

ρσ2
L

CL̄
+

ρL̄

C

]
. (33)

3.C. Evaluation of delay components D1 and D3

The mean of the first delay component D1 corresponds to the mean residual life time of the cycle [34, p.
173] and is hence:

ED1 =
EZ2

2EZ
(34)

=
τ

1− ρ
+

ρ

2(1− ρ2)

(
σ2

L

CL̄
+

L̄

C

)
. (35)
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We obtain the mean of component D3, i.e., the mean delay of the packet within the grant as follows.
Consider an arbitrary packet that is part of the upstream transmission of cycle n. The packet was generated
during cycle n − 1, as illustrated in Fig. 1. We noted in the analysis of D1 that the time period from the
generation of the packet to the reporting at the end of cycle n−1 corresponds to the residual life time of the
cycle. Now, we observe that the mean residual life time and the mean of the so-called backwards recurrence
time coincide, see [33, Ch. 5.5]. For the considered packet, this backwards recurrence time corresponds to
the time period from the beginning of cycle n − 1 to the instant when the packet is generated. This time
period has a mean of EZ2

2EZ . On average, λEZ2

2EZ messages (each requiring L̄/C upstream transmission time) are
generated during this time period. These messages are transmitted upstream before the considered message.
Hence

ED3 = λ
L̄

C

EZ2

2EZ
(36)

= ρED1. (37)

Inserting the components (35) and (37) into (1) we obtain for the mean packet delay

ED =
1 + ρ

1− ρ
τ +

ρ

2(1− ρ)

(
σ2

L

CL̄
+

L̄

C

)
+ 2τ +

L̄

C
+ τ (38)

= 2τ
2− ρ

1− ρ
+

ρ

2C(1− ρ)

(
σ2

L

L̄
+ L̄

)
+

L̄

C
. (39)

4. Delay analysis for sending REPORT at beginning of upstream transmission

In this section we analyze the mean packet delay in an EPON with reporting at the beginning of an upstream
transmission, as illustrated in Fig. 2. This reporting strategy is more complex to analyze than reporting at
the end of the upstream transmission, since the REPORT-GATE round trip delay may or may not be masked
by the upstream transmission. In the illustration in Fig. 2, the grant Gn−2 is too short to mask the roundtrip
delay; thus, the switchover time between serving the current grant Gn−2 and the next grant Gn−1 equals the
round trip delay 2τ minus the duration of the current grant Gn−2 plus the guard time. On the other hand,
grant Gn−1 is large enough to completely mask the roundtrip delay; thus the switchover time between serving
the current grant Gn−1 and the next grant Gn equals the guard time, which we neglect in our analysis.

The analysis of the reporting at the beginning is motivated by the shorter packet delay with this reporting
strategy compared to reporting at the end of the upstream transmission. The reduction in packet delay is
significant for EPONs with few ONUs, but diminishes for larger numbers of ONUs as illustrated in Section 6.

4.A. Evaluation of distribution and moments of cycle length Z

We evaluate the mean cycle length EZ using a Markov chain model. We let

P := (Pij)i,j≥2τ (40)

denote the matrix of transition probabilities for transitioning from a cycle of length i to a cycle of length
j, noting that the cycle length can be no smaller than the roundtrip propagation delay 2τ . Let Zn be a
random variable denoting the length (duration) of cycle n, i.e., Zn := max(Gn, 2τ). Note that Zn and Zn−1

are independent when considering a single ONU, and that Zn only depends on Zn−2. Thus, (Z2n)∞n=1 and
(Z2n−1)∞n=1, respectively, are Markov chains. The distribution of the even cycles Z2n, n = 1, 2, . . ., is the
same as the distribution of the odd cycles Z2n+1, n = 1, 2, . . .. So, we may consider either one of them.

We proceed to evaluate the transition probabilities Pi,j to pass from cycle n of length i (in units of seconds)
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Fig. 2. Illustration of packet delay for EPON with a single ONU with reporting at the
beginning of an upstream transmission: The generated packet experiences a delay D1 before
it is reported to the OLT with the report at the beginning of the upstream transmission
grant of length Gn−1 (in seconds) in cycle n−1. The corresponding grant for cycle n arrives
at the ONU after the roundtrip delay of 2τ . In the depicted example, Gn−1 > 2τ . Thus,
the length of grant n− 1 determines the length of cycle n− 1 and the delay component D2.
In addition, the packet experiences the delay D3 within the upstream transmission grant n,
the transmission delay (with mean L̄/C) and the propagation delay τ .

to a cycle n + 2 of length j (in units of seconds). We obtain for i ≥ 2τ and j = 2τ ,

Pi,2τ =
∞∑

m=0

(λi)m

m!
e−λi · qm,2τ (41)

with

qm,2τ = P (m generated messages have length ≤ 2τ ) (42)

=
η∑

n1=1

· · ·
η∑

nm=1

αn1 · · ·αnm 1l{L(n1)
C +···+ L(nm)

C ≤2τ}, m ≥ 0. (43)

Note that we do not need to sum up to m = ∞ in (41), since the qm,2τ = 0 for m > 2τ/(minn L(n)/C).
Note furthermore that (43), although mathematically explicit, is not suitable for numerical evaluation since
its computational complexity is of order 2m. For the special case of a single packet size L(1), (43) reduces to

qm,2τ =

{
1 for m ≤ 2τ

L(1)/C

0 for m > 2τ
L(1)/C

.
(44)

For the special case of a bimodal distribution, i.e., η = 2, we obtain:

qm,2τ = P (m generated messages have length ≤ 2τ ) (45)

=
m∑

m′=0

P
(
m gen. msgs. have length ≤ 2τ and exactly m′ have length L(1)

)
(46)

=
m∑

m′=0

1l{m′L(1)+(m−m′)L(2)≤2τC}P
(
exactly m′ gen. msgs. have length L(1)

)
(47)

=
m∑

m′=0

1l{m′L(1)+(m−m′)L(2)≤2τC}

(
m

m′

)
αm′

1 · αm−m′
2 , m ≥ 0. (48)

Similarly, we obtain for the special case of a trimodal distribution, i.e., η = 3, for m ≥ 0:

qm,2τ =
m∑

m1=0

m−m1∑
m2=0

1l{m1L(1)+m2L(2)+(m−m1−m2)L(3)≤2τC}

(
m

m1

)(
m−m1

m2

)
αm1

1 αm2
2 αm−m1−m2

3 . (49)
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Analogous formulas suitable for fast numerical evaluation can be obtained for other concrete length distribu-
tions.

We obtain similarly for i ≥ 2τ and j > 2τ ,

Pi,j =
∞∑

m=0

(λi)m

m!
e−λi · qm,j , i ≥ 2τ (50)

with

qm,j = P (m generated messages have length j ) (51)

=
η∑

n1=1

· · ·
η∑

nm=1

αn1 · · ·αnm
1l{L(n1)

C +···+ L(nm)
C =j}, m ≥ 0, j > 2τ. (52)

Note furthermore that qm,j = 0 for m > j/(minn L(n)/C), which makes the summation in (50) finite. Also,
qm,j = 0 for m < j/(maxn L(n)/C). For the special case of a single packet size L(1), (52) gives

qm,j =

{
1 for m = j

L(1)/C

0 for m 6= j
L(1)/C

m ≥ 0, j > 2τ. (53)

For the special case of a bimodal distribution,

qm,j = P (m generated messages have length j ) (54)

=
m∑

m′=0

P
(
m gen. msgs. have length j and exactly m′ have length L(1)

)
(55)

=
m∑

m′=0

1l{m′L(1)+(m−m′)L(2)=jC}P
(
exactly m′ gen. msgs. have length L(1)

)
(56)

=
m∑

m′=0

1l{m′L(1)+(m−m′)L(2)=jC}

(
m

m′

)
αm′

1 · αm−m′
2 , m ≥ 0, j > 2τ. (57)

For the special case of a trimodal distribution, for m ≥ 0, j > 2τ :

qm,j =
m∑

m1=0

m−m1∑
m2=0

1l{m1L(1)+m2L(2)+(m−m1−m2)L(3)=jC}

(
m

m1

)(
m−m1

m2

)
αm1

1 αm2
2 αm−m1−m2

3 . (58)

With these transition probabilities (Pi,j)i,j≥2τ we solve the system of equations



κ2τ

κ2τ+1

...
κK




=




P2τ,2τ · · · PK,2τ

P2τ,2τ+1 · · · PK,2τ+1

...
...

P2τ,K · · · PK,K



·




κ2τ

κ2τ+1

...
κK




, (59)

for a K as large as possible. Noting that the typical cycle length in steady-state for a single ONU when
sending the report at the end is longer than when sending the REPORT at the beginning, we obtain with
the Markov-Chebyshev Inequality,

P (Zsingle ONU, BEG > K) ≤ P (Zsingle ONU, END > K) ≤ EZ2
single ONU, END

K2
. (60)

Requiring that EZ2
single ONU, END

K2 < ε, for, say ε = 0.05, so as to capture 1 − ε percent of the possible cycle
lengths, we obtain

K ≥
√

1
ε
EZ2

single ONU, END (61)
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with EZ2
single ONU, END explicitly given in (30) as a guideline for setting K. Recall that the resulting sequence

(κn)K
n=2τ is required to be a probability distribution, i.e.

∑K
k=2τ κk = 1.

From the steady state probabilities of the cycle length (κk)K
k=2τ we obtain the mean cycle length as

EZ =
K∑

k=2τ

k · κk, (62)

and the second moment of the cycle length as

EZ2 =
K∑

k=2τ

k2 · κk. (63)

4.B. Evaluation of delay components for single ONU

The first delay component corresponds to the residual life of the cycle [34, p. 173] and its mean is hence
given by

ED1 =
EZ2

2EZ
. (64)

The second delay component corresponds to the cycle length and its mean is therefore ED2 = EZ. With
reasoning analogous to Section 3.C we obtain the mean of the third delay component

ED3 = ρED1 (65)

=
ρEZ2

2EZ
. (66)

Inserting in (1) and simplifying gives the mean packet delay

ED =
(1 + ρ)EZ2

2EZ
+ EZ +

L̄

C
+ τ. (67)

Let us briefly contrast our Markov chain analysis for reporting at the beginning of an upstream transmission
with the Markov chain analysis of Lannoo et al. [22] for reporting at the end. Our analysis captures the exact
dynamics for a single ONU. In contrast, [22] aggregates the traffic generated by all ONUs in a multi-ONU
EPON and captures the approximate dynamics for the aggregate traffic (distinguishing low and high traffic
regimes).

4.C. Extension to multiple ONUs

In this section we extend the analysis for one ONU generating packets at the rate λ (packets/second) and
corresponding traffic load ρ = λL̄/C to O ONUs at the same propagation distance from the OLT generating
packets at the rates λ1, . . . , λO, and corresponding traffic loads ρo = λoL̄/C, o = 1, . . . , O. We approximate
the cycle length distribution for the EPON with O ONUs by the cycle length distribution of an EPON with
a single ONU generating packets at the rate λ =

∑O
o=1 λo. Thus, D1 and D2 for O ONUs are approximated

by the respective quantities for a single ONU.
To approximate the third delay component D3, we consider the delay Do

3 experienced by a packet of
ONU o as it is waiting from the beginning of the upstream transmission containing the packet to the actual
beginning of the transmission of the packet at ONU o. Following (37), we obtain the approximation

EDo
3 = ρoED1. (68)
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We then obtain an approximation of the mean of the third delay component as a convex combination of the
delays of the O ONUs:

ED3 =
O∑

o=1

λo∑O
q=1 λq

EDo
3 (69)

=
ED1

ρ

O∑
o=1

ρ2
o. (70)

The motivation for this formula is as follows. Since on average a fraction of λo/
∑O

q=1 λq of the traffic is
generated by ONU o, the delay experienced in the third component for this fraction of traffic corresponds to
EDo

3. Thus, the third delay component is the weighted sum of the delays of the O ONUs.
We note that an analogous extension of the closed-form analysis for reporting at the end of an upstream

transmission from Section 3 to multiple ONUs does not give accurate results. This is mainly due to the delay
component D2, which is equal to 2τ when considering a single ONU reporting at the end. With multiple
ONUs reporting at the end, the delay component D2 may grow larger than 2τ depending on the upstream
traffic volume of the other ONUs, thus increasing the expected cycle length EZ, which in turn influences
the delay components D1 and D3. We leave the analysis of these dependencies for future research. We also
remark that verifying simulations in Section 6 demonstrate for EPONs with a moderate to large number
of ONUs that the above extension for reporting at the beginning quite accurately characterizes the mean
delays for reporting at the end, i.e., that both reporting strategies give the same mean delays for EPONs
with a moderate to large number of ONUs.

5. M/G/1 approximation for EPON with small propagation delay

In this section we consider an EPON with a propagation delay that tends to zero and derive a lower bound
on the expected packet delay that applies to both reporting strategies. Letting the propagation delay in an
EPON tend to zero, we observe that each generated packet could be instantaneously reported to the OLT,
which could in turn instantaneously give the grant for the upstream transmission of the packet. The delay
experienced by the packet from its generation to its complete delivery to the OLT would then consist of the
queueing delay at the ONU as well as the upstream transmission (and propagation) delay. With the considered
Poissonian packet generation with rate λ (packets/second) at the ONU in conjunction with the arbitrary
packet size distribution with mean L̄ (bit /packet) and variance σ2

L and the fixed upstream transmission
rate C (bit/second) and corresponding load ρ = λL̄/C, the queueing at the ONU would correspond to the
queuing in an M/G/1 model. According to the Pollaczek-Khinchine formula [34] the mean queueing delay
in the ONU would thus be given by:

EDM/G/1 =
λ(σ2

L

C2 + L̄2

C2 )
2(1− ρ)

, (71)

which simplifies for the case of a single packet size L(1) to

EDM/G/1 =
ρL(1)

2C(1− ρ)
. (72)

We obtain a lower bound on the expected packet delay in an EPON with propagation delay τ > 0 by
considering the following two points:

(A) In addition to the queueing delay, a packet experiences three times the propagation delay [(i) for
reporting to the OLT, (ii) for receiving the grant from the OLT, and (iii) for the upstream propagation
of the packet] and the upstream transmission delay.
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Table 1. Default parameters for numerical analysis.

Description Symbol Default value
Number of ONUs O 10
Fiber length ` 9.6 km
Data rate C 1 Gb/s
Packet size L 1500 byte
Signal propagation speed 2c0/3 200000 km/s
Max. considered cycle length K 128 packets

(B) The average packet delay is at least four times the propagation delay. To see this note that the cycle
duration is at least twice the propagation delay, thus resulting in an average delay of at least the
propagation delay until a packet is reported. In addition, three propagation delays are accrued for the
REPORT, GATE, and upstream transmission as outlined in (A).

Thus, we obtain the lower bound for the mean packet delay:

ED ≥ max
(

4τ, 3τ +
ρ

2C(1− ρ)

(
σ2

L

L̄
+ L̄

)
+

L̄

C

)
. (73)

It is interesting to compare this lower bound with the exact mean delay for reporting at the end of the
upstream transmission as derived in (38). Clearly, both this exact mean delay and the lower bound coincide
for small propagation delays τ , or for small loads ρ. In addition, we expect a fairly accurate characterization
of the packet delay through the lower bound when the queueing delay dominates the overall packet delay.
We remark that analyzing the EPON within the framework of multiaccess reservation systems [35, Section
4.5.1] gives approximations that are similar to the derived lower bound.

6. Numerical evaluation

In this section, we evaluate the delay performance of the EPON with gated service using our analytical models
and verifying discrete event simulations. We evaluate the mean packet delay ED as a function of the traffic
load ρ = λL̄/C. For convenience we express the mean packet delay in multiples of the propagation delay τ .
Each ONU generates the same amount of traffic according to a Poisson process with intensity λ = (ρC/L̄)/O.
The traffic load ρ, 0 ≤ ρ ≤ 1 is the total amount of traffic generated by all ONUs, normalized by the data
rate C. All buffers are assumed to be of infinite size. Therefore, the offered load ρ can also be interpreted as
the mean aggregate throughput of the EPON in steady state.

The different system parameters and their default values are summarized in Table 1. Note that with these
default parameter settings, the transmission delay of a packet corresponds to one quarter of the propagation
delay, i.e., L/C = `/[4(2co/3)] = τ/4. Simulation results are calculated from the performance results for
each individual packet according to the method of batch-means with a simulation duration of 106 packet
receptions where the first 105 receptions are used as warm-up phase and the remaining packets are divided
into 100 batches. Confidence intervals are shown for the mean delay for a confidence level of 95%.

6.A. Single ONU

Fig. 3 shows the throughput-delay performance for the special case of only a single ONU being attached to
the OLT. Results are shown for both reporting at the beginning and at the end of an upstream transmission.
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Fig. 3. Mean delay vs. mean aggregate throughput for a single ONU. The analytical delay
results for reporting at the beginning of an upstream transmission are plotted for different
maximally considered cycle lengths K.

In the former case it is important to determine an appropriate maximum considered cycle length K for the
numerical evaluation of the analytic formulae. For small K, the precision of the analytical model degrades.
On the other hand, for large K, the computational effort of the numerical evaluation increases. The results
for different values of K illustrate that a value of K = 128 is sufficiently large to match simulation and
analysis close enough that there is no visible deviation between analysis and simulation. Therefore, we use
K = 128 as default parameter for the following investigations. There is no deviation between the analytical
model and the simulation for reporting at the end of an upstream transmission. This is to be expected
because both analytical models are exact for the single ONU case. For low traffic loads the delay is slightly
larger than twice the roundtrip propagation delay, i.e., 4τ , which is the expected lower bound according to
the analysis. The delay is slightly larger than 4τ due to the time required to transmit the packet which is
L/C = τ/4.

Reporting at the end of an upstream transmission results in gaps between successive upstream trans-
missions when only a single ONU is active because the ONU has to remain idle after sending a REPORT
message until the corresponding GATE message arrives. As the load increases and the grants issued by the
OLT get longer, the bandwidth wasted due to these gaps gets smaller relative to the amount of data sent by
the ONU. However, the numerical results show that reporting at the beginning of an upstream transmission
results in a clear performance advantage. In this case the network can be utilized by up to 75% of its capacity
without significantly increasing the delay as opposed to a continuously increasing delay when reporting at
the end of an upstream transmission. We observe that this performance difference is very pronounced in the
single ONU case. As the number of ONUs increases, the idle gap of one ONU will more likely be used for
sending data by other ONUs.
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Fig. 4. Mean delay vs. mean aggregate throughput for different numbers of ONUs O and
reporting at the beginning of an upstream transmission.

6.B. Different numbers of ONUs

In Figs. 4 and 5 we examine the delay performance for different numbers O of ONUs attached to the
same OLT. (To be able to distinguish between the simulation results for different numbers of ONUs O, no
confidence intervals are shown in these plots and different point styles are used instead. For O = 1 and
O = 10 the confidence intervals are shown in Fig. 3 and 6.) For reporting at the beginning of an upstream
transmission, Fig. 4 shows that the delay decreases slightly with increasing number of ONUs. This is due to
the fact that the traffic load is distributed among more ONUs, resulting in shorter cycles and smaller grants
and thus less queuing at the ONUs. We note that with a larger number of ONUs, more guard times are
required to separate the different upstream transmissions, thus increasing the delay. As noted in Section 2,
our model ignores guard times, which could be accommodated in a straightforward manner.

In Fig. 5, simulation results are shown for different numbers of ONUs and reporting at the end of an
upstream transmission. Note, however, that the analytical results are shown for reporting at the beginning
of an upstream transmission (except for O = 1). In other words, the analytical curves for O = 10 and
O = 50 in Fig. 5 are the same as in Fig. 4. Comparing both figures illustrates that the throughput-delay
performance for reporting at the end of an upstream transmission converges towards that of reporting at the
beginning as the number of ONUs O increases. Overall, for systems with 10 or more ONUs, which should
be the majority of all practical systems, the delay is close to the theoretical lower bound of 4τ and does not
increase significantly up to a traffic load of 75% of the network capacity in both cases. We use O = 10 as
the default value in our investigations below.

6.C. Different fiber lengths

Fig. 6 shows the impact of the fiber length ` between the ONUs and the OLT for reporting at the beginning
of an upstream transmission. We do not consider reporting at the end of an upstream transmission separately
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Fig. 5. Mean delay vs. mean aggregate throughput for different numbers of ONUs O and
reporting at the end of an upstream transmission.

because the results would be almost the same for the reasons discussed in the previous section. The delay
depicted in Fig. 6 is given in multiples of propagation delay τ of the system with ` = 9.6 km fiber length
in all three cases. Simulation and analytical results match well. Note that the effect from changing the fiber
length is mostly limited to an up or down shift of the delay curve while the shape of the curve remains
largely the same. The M/G/1 model of Section 5, which is exact for the special case of ` = 0, provides a
relatively good approximation for ` = 4.8 km.

6.D. Packet size distribution

In [36] it has been observed that Internet packet sizes approximately follow a bimodal distribution. In Fig. 7
we investigate the impact of such a bimodal packet size distribution on the network performance compared
to the single, constant packet size of L = 1500 byte used before. We assume that 2/3 of all packets have a size
of 50 byte and 1/3 of all packets have a size of 1500 byte to approximate the distribution measured in [36].
(To model the new packet sizes we refine the granularity of the analytical model by a factor of 30 so that
one length unit in the analysis now corresponds to 50 byte as opposed to 1500 byte as before. Consequently,
a 1500 byte packet now has a transmission time of 30 time units and the propagation delay corresponding
to a fiber length of 9.6 km is now τ = 120 time units instead of τ = 4 time units. We increase the maximum
considered cycle length for the analysis by a factor of 10 to K = 1280.)

For a single ONU, the analytical results match the simulation results very well and there is no visible
deviation between the two. Note that for O = 1 the analytical models are not only exact for a single packet
size, as observed in Fig. 3, but also for an arbitrary packet size distribution. (However, the model for sending
the REPORT message at the beginning of the upstream transmission is only exact for K →∞.) For O = 10
ONUs the analysis still provides relatively good results.

The most important observation from this figure is that the more realistic bimodal packet size distribution
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Fig. 6. Mean delay vs. mean aggregate throughput for a different fiber lengths ` and reporting
at the beginning of an upstream transmission.

has only very little impact on the throughput-delay performance of the system. This is an indicator for
the system performance being relatively independent of the packet size distribution in general which is an
advantage for network operators since the traffic characteristics can change over time as new Internet services
and applications emerge.

7. Conclusion

We have conducted a queueing theoretic analysis of the mean packet delay in an Ethernet passive optical
network (EPON), a high-speed access network. We considered the basic service policy, where the granted
upstream transmissions are equal to the requested upstream transmission windows, which is commonly
referred to as gated service [19]. We provided exact analyses of the mean packet delay for the special case
of an EPON with a single ONU, and approximated the mean packet delay in an EPON with multiple
ONUs. Our extensive simulations verified the correctness of our exact analyses and the high level of accuracy
achieved by our approximate analysis.

Our investigations revealed that reporting at the beginning of an upstream transmission results in signifi-
cantly lower delays than appending the REPORT at the end of an upstream transmission for EPONs with a
very small numbers of ONUs. For a moderate to large number of (on the order of ten) ONUs, both reporting
strategies give the same mean delay. As a result, our approximate analysis for multiple ONUs reporting at
the beginning applies also to EPONs with a moderate to large number of ONUs reporting at the end of an
upstream transmission. From a practical perspective, our results show that the investigated EPON protocols
allow the network operator to utilize the network up to 75% without significantly increasing the delay ex-
perienced by the users above the minimum mean packet delay of four times the one-way propagation delay.
Also, our results indicate that the delay performance is relatively independent of the packet size distribution,
which contributes to the future-proofness of the system.
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Future research avenues include the exact delay analysis of other QoS supporting service policies such as
limited service. Limited service poses interesting analytical challenges, as it can be viewed as a mixture of
the gated service analyzed in this paper and the so-called fixed service discipline (analyzed in [21], though
from a different perspective). One the one hand, one would expect cycles similar to the gated service, but
one additionally would have to consider the data that is queued up in case it cannot be sent due to reaching
the transmission limit.
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