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Abstract

We investigate the behaviour of the logarithmic small deviation prob-
ability of a sequence (σnθn) in lp, 0 < p ≤ ∞, where (θn) are i.i.d. random
variables and (σn) is a decreasing sequence of positive numbers. In partic-
ular, the example σn ∼ n−µ(1 + log n)−ν is studied thoroughly. Contrary
to the existing results in the literature, the rate function and the small
deviation constant are expressed explicitly in the present treatment. The
restrictions on the distribution of θ1 are kept to an absolute minimum. In
particular, the usual variance assumption is removed. As an example, the
results are applied to stable and Gamma-distributed random variables.
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1 INTRODUCTION

Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, that are not concentrated
at a single point. Furthermore, let (σn) be a sequence of positive numbers that is
strictly decreasing and tends to zero. We consider vectors of the form (σnθn) =
(σ1θ1, σ2θ2, . . .) in lp, i.e.

‖(σnθn)‖p :=

{

supn≥1 |σnθn| p = ∞,
(
∑

n≥1 |σnθn|
p
)1/p

0 < p < ∞.

The question that is addressed in this article is the so-called small deviation
probability – or lower tail probability – of the vector (σnθn) ∈ lp, i.e. the behaviour
of the quantity

log P

(

‖(σnθn)‖p ≤ ε
)

, as ε → 0+.

We tacitly assume that ‖(σnθn)‖p < ∞ almost surely, since otherwise the
task is trivial. The question of the small deviation probability was studied by
many authors. In particular, for 0 < p < ∞, the problem of sums of independent
random variables was studied thoroughly, cf. Lifshits(9), Dunker et al.(3), and
Rozovsky(10). These works are based on the treatment in Lifshits(9). The results
are more precise than those in this paper. However, their approach has the great
disadvantage that only random variables possessing variance are covered. We
shall see that this is not necessary. In fact, the moment condition for θ depends
on the speed of decrease of the sequence (σn). This is a rather natural relation,
contrary to a general moment assumption.

Another advantage of the present treatment is the rather explicit nature of the
rate function and the small deviation constant contrasting the implicit results of
the above-mentioned papers. Additionally, we obtain yet greater generality since
we only require to know the order (in the sense of strong asymptotics) of the
sequence (σn) not the particular form. Furthermore, the considerations in this
article bring to light many similarities between the small deviation of sums of
independent random variables and the somewhat simpler case of the supremum.

This work started in the framework of stable distributions and was motivated
by the fact that the above-mentioned results cannot be applied to stable random
variables owing to the lack of variance for the non-Gaussian stable distributions.
No results seem to be known in the stable case as well as the case of general
Gamma-distributed random variables. The results of this paper fill these gaps.
The basis for this work is the author’s Ph.D. thesis (cf. Aurzada(1)).

Certainly, in the case of Gaussian (i.e. 2-stable) random variables, the results
mentioned above apply and lead to very precise bounds. However, the question
was investigated much earlier by other methods, cf. Hoffmann-Jørgensen et al.(6)

and Li(7), where the first-mentioned also consider the case p = ∞.
The organization of this article is as follows. In Section 2, the main idea is

presented. We prove general results in the cases p = ∞ and p < ∞. These results
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lead to general upper bounds in the case that an additional restriction is imposed
on the sequence (σn). This is investigated in Section 3.

In Section 4, we concentrate on the example of polynomical behaviour with
logarithmic correction, i.e. the example

σn ∼ n−µ(1 + log n)−ν , n = 1, 2, . . . ,

for some µ > 0 and ν ∈ R, where as usual σn ∼ σ̃n means that σn/σ̃n → 1.
It seems intuitively clear that the rate of the small deviation function and the

finiteness of the small deviation constant only depend on the behaviour of the
distribution at the origin and the tail behaviour. The main result of this paper
expresses exactly this fact. On the one hand, condition (O) (cf. Definition 4.1
below) represents the behaviour of the distribution of θ at the origin. This is
a very mild condition; it is surely satisfied if, for example, θ has a continuous,
non-vanishing density in a neighbourhood of the origin. On the other hand, we
have to make an assumption for the tail behaviour of θ. The result is as follows.

Theorem 1.1. Let σn ∼ n−µ(1 + log n)−ν, with µ > 0 and ν ∈ R, and let
θ, θ1, θ2, . . . be a sequence of i.i.d. random variables satisfying condition (O) with
r > µ. Then

lim
ε→0+

ε1/(µ−1/p) (− log ε)ν/(µ−1/p) log P

(

‖(σnθn)‖p ≤ ε
)

= −Cp,

with the constant Cp ∈]0,∞] given by

Cp :=







µν/µ
(

−
∫∞

0
log P (|θ| ≤ zµ) dz

)

p = ∞,
[

(µ−1/p)µ−1/p+ν

µµp1/p

(

−
∫∞

0
log Ee−|z−µθ|p dz

)µ]1/(µ−1/p)

p < ∞.
(1.1)

The constant Cp is finite if and only if E|θ|1/µ < ∞ and µ > 1/p.

The proof of this theorem will be given at the end of Section 4.5. As usual,
we use the notion 1/p = 0, for p = ∞. Note that Cp → C∞, as p → ∞. Finally,
in Section 4.6 and Section 4.7, the cases of stable and, respectively, Gamma-
distributed random variables are considered.

It seems worth to remark two rather surprising aspects of Theorem 1.1. On the
one hand, the condition for the small deviation constant Cp to be finite depends
on the (upper) tail of the distribution of θ. One might not expect this from the
beginning, since we are considering a lower tail problem.

On the other hand, the behaviour of the lower tail of the distribution of θ near
to the orgin does not matter at all as long as the (mild) condition (O) is satisfied.
Again, this must seem a surprise, since we assert a property of the lower tail.

To illustrate both facts, note that the rate of the small deviation probability is
the same for symmetric α-stable distributions (having a continous, non-vanishing
density everywhere) and for random variables with mass 1/2 concentrated at
zero and one. However, the small deviation constant is infinite for those α-stable
distributions with too heavy upper tails (α ≤ 1/µ).
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2 MAIN ARGUMENT

Let us look at the sequence (σn). The main idea is to interpolate this sequence
by a smooth function. Since (σn) is strictly decreasing and tends to zero, we can
find a function S : [1,∞[→ R>0 which interpolates the σn, i.e. S(n) = σn, for
all n = 1, 2, . . ., is twice continuously differentiable and strictly decreasing. From
the fact that (σn) tends to zero and the continuity of S it follows that S(x) → 0,
as x → ∞.

First, let us consider the case p = ∞.

Theorem 2.1. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, (σn) a
sequence of positive numbers that is strictly decreasing to zero, and S a function
as constructed above. Then, for all ε > 0,

log P

(

|θ| ≤
ε

σ1

)

−

∫ σ1/ε

0

log P

(

|θ| ≤
1

y

)

d

dy

[

S−1(εy)
]

dy

≤ log P

(

sup
n

|σnθn| ≤ ε

)

≤ −

∫ σ1/ε

0

log P

(

|θ| ≤
1

y

)

d

dy

[

S−1(εy)
]

dy.

Proof: Because of the independence of the (θn), we can write

log P

(

sup
n

|σnθn| ≤ ε

)

= log
∞
∏

n=1

P (|σnθn| ≤ ε) =
∞
∑

n=1

log P

(

|θ| ≤
ε

σn

)

.

Keeping in mind the last expression, let us define the function

Fε(x) := log P

(

|θ| ≤
ε

S(x)

)

, x ≥ 1.

Using the properties of S, note that the function Fε : [1,∞[→ R≤0 is non-positive,
increasing, and tends to zero as x → ∞. A simple comparison of sum and integral
shows that, for all ε > 0,

Fε(1) +

∫ ∞

1

Fε(x) dx ≤

∞
∑

n=1

Fε(n) ≤

∫ ∞

1

Fε(x) dx.

We transform the integral setting S(x) = εy in order to separate the distrib-
ution of θ from ε. This exactly leads to the asserted inequalities.

This is a rather general result. For a given sequence (σn) one can construct
an appropriate function S with the properties mentioned above and calculate
both – the integral and the remaining probability term on the left-hand side.
Since ε does not appear in connection with the distribution in the integrand,
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one can – at least asymptotically – separate ε from the integral. This will be
demonstrated later (Section 3) in the case that S can be chosen to be a regularly
varying function at infinity.

Now let us deal with the case p < ∞. Let us consider a smooth function
S that interpolates the sequence (σn), as above. Again, the decisive idea is to
express the desired term as a sum, replace that sum by an integral, and use an
integral transformation that separates the distribution of θ from ε. However, in
the case p < ∞, another approach is needed.

Recall that we are interested in the behaviour of the quantity

log P

(

∞
∑

n=1

|σnθn|
p ≤ εp

)

.

In order to study this, we are going to pass over to the logarithmic Laplace trans-
form of the random variable

∑∞
n=1 |σnθn|

p. This is suggested by the well-known
fact that question of small deviation probabilities can be formulated in terms
of the Laplace transform. Later on, we are going to use the so-called Exponen-
tial Tauberian Theorem of de Bruijn (cf. Theorem 4.12.9 in Bingham et al.(2) or
Theorem 3.5 in Li and Shao(8)).

The result is as follows.

Theorem 2.2. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, (σn) a
sequence of positive numbers that is strictly decreasing to zero, and S a function
as constructed above. Then, for all λ > 0,

log Ee−λ|σ1θ|p −

∫ σ1λ1/p

0

log Ee−|yθ|p d

dy

[

S−1(yλ−1/p)
]

dy

≤ log Ee−λ
�

n |σnθn|p ≤ −

∫ σ1λ1/p

0

log Ee−|yθ|p d

dy

[

S−1(yλ−1/p)
]

dy.

Proof: Let us consider

log Ee−λ
�

n |σnθn|p = log
∞
∏

n=1

Ee−λ|σnθn|p =
∞
∑

n=1

log Ee−λ|σnθ|p ,

as λ → ∞. Keeping this in mind, we define the function

Gλ(x) := log Ee−λ|S(x)θ|p , x ≥ 1.

Note that, using the properties of S, we see that the function Gλ : [1,∞[→
R≤0 is non-positive, increasing, and tends to zero, as x tends to infinity. The
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same argument as above – a comparison between integral and sum – shows that,
for all λ > 0,

Gλ(1) +

∫ ∞

1

Gλ(x) dx ≤
∞
∑

n=1

Gλ(n) ≤

∫ ∞

1

Gλ(x) dx.

Finally, we substitute λS(x)p = yp, which gives us the assertion.

Again this is a very general result, which enables us to obtain bounds for
log Ee−λ

�
n |σnθn|p for a given sequence (σn). By virtue of the above-mentioned

Tauberian theorem, this implies bounds for the small deviation probability of
∑

n |σnθn|
p and so finally of (

∑

n |σnθn|
p)1/p. This will be demonstrated in the

following section.
Note that Theorem 2.1 and Theorem 2.2 are identical if one replaces Ee−|.|p

by P (|.| ≤ 1) and λ−1/p by ε.

3 UPPER BOUNDS FOR REGULARLY VAR-

YING FUNCTIONS

In this section, we are going to investigate the question of the lower tail prob-
abilities in the case that the function S interpolating the sequence (σn) can be
chosen to be a regularly varying function. We refer to Bingham et al.(2) for a
detailed study of properties of these functions.

We shall see that the behaviour of the integrals in Theorems 2.1 and 2.2 can
be quantified in a very precise way if certain assumptions for S are made.

For the remaining part of Section 3, let us assume that S can be chosen
such that it is a regularly varying function with exponent −γ < 0 at infinity
and its derivative S ′ is continuous and increasing (i.e. S ′′ > 0) for large enough
arguments.

It follows from the theory of regularly varying functions that S−1 : ]0, σ1] →
R>0 is regularly varying at zero with exponent −1/γ (cf. Theorem 1.5.12 in
Bingham et al.(2)). Furthermore, note that S−1 is strictly decreasing.

Let us start with the case p = ∞.

Theorem 3.1. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, (σn)
a sequence of positive numbers that is decreasing to zero, and S a function as
constructed above. Then

lim
ε→0+

log P (supn |σnθn| ≤ ε)

S−1(ε)
≤

∫ ∞

0

log P (|θ| ≤ zγ) dz.
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Proof: Theorem 2.1 suggests to investigate the quantity

I∞(ε) :=

∫ σ1/ε

0

log P

(

|θ| ≤
1

y

)

d

dy

[

S−1(εy)
]

dy, as ε → 0+.

Note that I∞ is positive, since S−1 is decreasing. Let us consider

lim
ε→0+

I∞(ε)

S−1(ε)
= lim

ε→0+

∫ σ1/ε

0

log P

(

|θ| ≤
1

y

)

d

dy

[

S−1(εy)

S−1(ε)

]

dy. (3.1)

As ε → 0+, we have

d

dy

[

S−1(εy)

S−1(ε)

]

=
(S−1)′(εy)ε

S−1(ε)
=

1

y

(S−1)′(εy)(εy)

S−1(εy)

S−1(εy)

S−1(ε)
→

1

y

(

−
1

γ

)

y−1/γ ,

(3.2)
by the fact that S−1 is regularly varying and a result on regularly varying func-
tions (cf. problem 13 on page 59 in Bingham et al.(2) or reference therein), where
we need the assumption on S ′ for large enough arguments.

Therefore, by Fatou’s Lemma,

lim
ε→0+

I∞(ε)

S−1(ε)
≥

∫ ∞

0

log P

(

|θ| ≤
1

y

)

1

y

(

−
1

γ

)

y−1/γ dy.

Using Theorem 2.1 and transforming the integral gives the assertion.

Note that we have not put any restriction on the distribution of θ yet. This
is represented by the finiteness of expression on the right-hand side in the theo-
rem. We are going to investigate conditions for the finiteness of this integral in
Section 4.5.

The case of the sum of independent random variables is entirely similar.

Theorem 3.2. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, (σn)
a sequence of positive numbers that is decreasing to zero, and S a function as
constructed above. Then

lim
λ→∞

log E exp (−λ
∑

n |σnθn|
p)

S−1(λ−1/p)
≤

∫ ∞

0

log Ee−|z−γθ|p dz.

Proof: Theorem 2.2 suggests the investigation of the quantity

Ip(λ) :=

∫ σ1λ1/p

0

log Ee−|yθ|p d

dy

[

S−1(λ−1/py)
]

dy, as λ → ∞.

Note the correspondence to the case p = ∞, for ε = λ−1/p. Thus, as in (3.2),

d

dy

[

S−1(λ−1/py)

S−1(λ−1/p)

]

→
1

y

(

−
1

γ

)

y−1/γ =

(

−
1

γ

)

y−1/γ−1,
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as λ → ∞. Therefore, by Fatou’s Lemma,

lim
λ→∞

Ip(λ)

S−1(λ−1/p)
≥

∫ ∞

0

log Ee−|yθ|p
(

−
y−1/γ−1

γ

)

dy

= −

∫ ∞

0

log Ee−|z−γθ|p dz. (3.3)

Using Theorem 2.2 finishes the proof.

4 EXAMPLES

4.1 Assumption for the Distribution in a Neighbourhood
of the Origin

At this point, we make an assumption for the distribution of θ in the neigh-
bourhood of the origin. This condition limits the generality slightly. However,
we shall do so in order to avoid technical complications. Since the focus of this
paper is on proving small deviation results also for heavy-tailed distributions, we
do not seek full generality with respect to the distribution near the origin.

Roughly speaking, we assume that the distribution of θ does have some mass
near the origin. More precisely, we assume the following.

Definition 4.1. We are going to say that the distribution of θ satisfies condition
(O) with r > 0 if there exists a constant C1 > 0 such that

P (|θ| ≤ t) ≥ e−C1t−1/r

, for all 0 < t ≤ 1. (O)

With the help of the independence of the (θn) and the inequality ‖.‖lNp
≤

N1/p ‖.‖lN
∞

, for N ≥ 1, it is easy to see that if the distribution of θ satisfies
condition (O) with r > 0 we have, for all 0 < p ≤ ∞ and for all decreasing
sequences (σn),

P

(

∥

∥(σnθn)N
n=1

∥

∥

p
≤ t
)

≥ e−CN t−1/r

, for all 0 < t ≤ 1, (4.1)

with some constant CN > 0 depending on N and σ1 only.

4.2 Modification of the Sequence (σn)

Before we come to concrete examples of sequences, we have to look at what
happens if we modify the sequence (σn). On the one hand, this is necessary since
the inverse of a function S interpolating the sequence (σn) cannot be computed
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explicitly in many cases. On the other hand, it gives greater generality to our
results. Namely, we shall see that only the behaviour of the sequence at infinity
really matters if we calculate the probability on the log-level. Thus, we have to
know only the order of (σn) as n tends to infinity.

Lemma 4.1. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables, (σn) and
(σ̃n) be two decreasing sequences of positive numbers that tend to zero and that
satisfy σn ∼ σ̃n. Let C > 0 and T : ]0, 1] → R>0 be a regularly varying function
with exponent γ > 0; and let us furthermore assume that the distribution of θ
satisfies condition (O) with r > 1/γ.

Then
lim

ε→0+
T (ε) log P

(

‖(σnθn)‖p ≤ ε
)

= −C

if and only if

lim
ε→0+

T (ε) log P

(

‖(σ̃nθn)‖p ≤ ε
)

= −C.

Proof: The proof uses the standard arguments for log-level comparisions of small
deviations as they can be found e.g. in Gao et al.(4) and Gao and Li(5). However,
these arguments have to be modified slightly because we have no regularly varying
assumption for the lower tail of the distribution.

Let us consider the case p = ∞. Note that T can be written as T (x) = xγR(x),
with a slowly varying function R. Let 0 < δ < 1. Then there is an n0 such that,
for all n > n0, 1 − δ ≤ σn/σ̃n ≤ 1 + δ. This implies that

‖(σnθn)‖∞ ≤ max

(

sup
1≤n≤n0

|σnθn|, (1 + δ) sup
n>n0

|σ̃nθn|

)

.

Thus, by the independence of the (θn),

P (‖(σnθn)‖∞ ≤ ε) ≥ P (‖(σnθn)n0

n=1‖∞ ≤ ε) P (‖(σ̃nθn)‖∞ ≤ ε/(1 + δ)) .

Taking the logarithm of both sides, using (4.1), multiplying by εγR(ε), and letting
first ε and then δ tend to zero gives us one side of the assertion. Exchanging the
role of (σn) and (σ̃n) gives the other side.

The case p < ∞ contains exactly the same argument. We therefore omit this
part of the proof.

4.3 Purely Polynomical Decrease

Let us consider the case when σn ∼ n−µ, with µ > 0.
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Theorem 4.1. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables and let
us assume σn ∼ n−µ, with µ > 0. Then, if the distribution of θ satisfies condition
(O) with r > µ, we have

lim
ε→0+

ε1/µ log P

(

sup
n

|σnθn| ≤ ε

)

=

∫ ∞

0

log P (|θ| ≤ zµ) dz. (4.2)

Proof: By Lemma 4.1, it is sufficient to consider the case σn = n−µ. As an
interpolating function, we can choose S(x) = x−µ, x ≥ 1. If the distribution of
θ satisfies condition (O) with r > µ we can estimate the remaining probability
term in Theorem 2.1 as follows:

log P (|θ| ≤ ε/σ1) ≥ −C1(ε/σ1)
−1/r = −C ′

1ε
−1/r.

Thus, since r > µ,

lim
ε→0+

log P (|θ| ≤ ε/σ1)

S−1(ε)
≥ −C ′

1 lim
ε→0+

ε1/µ−1/r = 0.

On the other hand, for I∞(ε), we obtain precisely

I∞(ε) =

(

∫ 1/ε

0

log P

(

|θ| ≤
1

y

)(

−
1

µ

)

y−1/µ−1 dy

)

ε−1/µ.

This shows the assertion, by Theorem 2.1.

Fully analogous, we obtain the result for p < ∞.

Theorem 4.2. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables let σn ∼
n−µ, with µ > 1/p. Then, if the distribution of θ satisfies condition (O) with
r > µ, we have

lim
ε→0+

ε1/(µ−1/p) log P

(

∑

n

|σnθn|
p ≤ εp

)

= −(µ − 1/p)

[

Kµ

p1/pµµ

]1/(µ−1/p)

, (4.3)

where

K := −

∫ ∞

0

log Ee−|z−µθ|p dz. (4.4)

Proof: Again, by Lemma 4.1, it is sufficient to consider σn = n−µ; so we can
use S(x) = x−µ, for x ≥ 1. Condition (O) helps us to take care of the remaining
term in Theorem 2.2, since

log Ee−λ|σ1θ|p ≥ log Ee−λ|σ1θ|p
I{−λ|σ1θ|p≥−σp

1
} ≥ log

(

e−σp
1P
(

|θ| ≤ λ−1/p
)

)

, (4.5)

which is handled the same way as in the proof of Theorem 4.1. By Theorem 2.2,
this shows that the correct order of log E exp(−λ

∑

n |σnθn|
p) is S−1(λ−1/p) =

λ1/(µp); and the constant the quotient tends to is −K. Using Theorem 4.12.9 in
Bingham et al.(2), one obtains the small deviation rate and the small deviation
constant.

10



If we apply Theorem 4.1 and Theorem 4.2 we have to check the finiteness of
the small deviation constants in (4.2) and (4.4). This question is investigated in
Section 4.5. However, the equality in (4.2) and (4.3) is to be understood in the
sense that either both sides are finite and equal or both sides are −∞.

4.4 Polynomical Decrease with Logarithmic Correction

Let us finally consider the case σn ∼ n−µ(1 + log n)−ν , with µ > 0 and ν ∈ R,
ν 6= 0. In the case p = ∞, we obtain the following result.

Theorem 4.3. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables and let
σn ∼ n−µ(1 + log n)−ν, with µ > 0 and ν ∈ R, ν 6= 0. Let us assume that the
distribution of θ satisfies condition (O) with r > µ. Furthermore, if ν < 0 let

∫ 1

0

− log P

(

|θ| ≤
1

y

)

y−1/µ−1(1 − log y)−ν/µ dy < ∞. (4.6)

Then we have

lim
ε→0+

ε1/µ (− log ε)ν/µ log P

(

sup
n

|σnθn| ≤ ε

)

= µν/µ

∫ ∞

0

log P (|θ| ≤ zµ) dz.

(4.7)

Again, the formulation of the result for p < ∞ is slightly more complicated.
However, the proof is essentially the same.

Theorem 4.4. Let θ, θ1, θ2, . . . be a sequence of i.i.d. random variables and let
σn ∼ n−µ(1 + log n)−ν, with µ > 0 and ν ∈ R, ν 6= 0. Let us assume that the
distribution of θ satisfies condition (O) with r > µ. Furthermore, if ν < 0 let

∫ 1

0

− log Ee−|yθ|py−1/µ−1(1 − log y)−ν/µ dy < ∞. (4.8)

Then we have

lim
ε→0+

ε1/(µ−1/p) (− log ε)ν/(µ−1/p) log P

(

∑

n

|σnθn|
p ≤ εp

)

= −

[

(µ − 1/p)µ−1/p+ν

µµp1/p

(

−

∫ ∞

0

log Ee−|z−µθ|p dz

)µ]1/(µ−1/p)

, (4.9)

Proof of Theorem 4.3 and Theorem 4.4: By Lemma 4.1, it is sufficient to
deal with the sequence σ̃n = n−µ(1+ log n)−ν , with µ > 0 and ν ∈ R, ν 6= 0. The
logical choice for the interpolation function is

S̃(y) = y−µ(1 + log y)−ν , y ≥ 1.
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However, since we cannot compute the inverse of S̃ explicitly, we pass over to the
sequence (σn) given by σn := S(n), where S is the inverse of

S−1(x) := µν/µx−1/µ (1 − log x)−ν/µ , x ≤ 1.

According to Lemma 4.1, we have to check whether limn→∞ σn/σ̃n → 1, which
can be verified easily in our concrete example.

Theorem 3.1 and Theorem 3.2 already give the correct upper bounds for the
desired small deviation probabilities. However, since we would like to have lower
bounds as well, we have to prove that the upper limits in (3.1) and (3.3) tend to
the same constants.

For simplicity, let us define

P (y) :=







(

− 1
µ

y−1/µ−1
)

log P

(

|θ| ≤ 1
y

)

p = ∞,
(

− 1
µ

y−1/µ−1
)

log Ee−|yθ|p p < ∞.

Note that the function P is non-negative. It is easy to calculate that in our
concrete example

(S−1)′(x) = µν/µ

(

−
1

µ

)

x−1/µ−1(− log(x/e))−ν/µ

(

1 +
ν

log(x/e)

)

.

Therefore,

d

dy

[

S−1(εy)

S−1(ε)

]

=
(S−1)′(εy)ε

S−1(ε)
=

(

y−1/µ−1

−µ

) (

1 +
log y

log(ε/e)

)−ν/µ(

1 +
ν

log(yε/e)

)

.

Thus, we have to prove that

lim
ε→0+

∫ 1/ε

0

P (y)

(

1 +
log y

log(ε/e)

)−ν/µ(

1 +
ν

log(yε/e)

)

dy ≤

∫ ∞

0

P (y) dy,

(4.10)
provided the right-hand side is finite. If it is not finite, already Theorem 3.1 and
Theorem 3.2 give the assertion. We prove (4.10) for the integrals from 0 to 1,
and from 1 to ∞ separately.

Integral from 0 to 1, case ν > 0. Note that, if 0 ≤ y ≤ 1 and ν > 0, we have,
for ε < e, 1 + log y/(log(ε/e)) ≥ 1 and 1 + ν/(log(εy/e)) ≤ 1. Thus,

lim
ε→0+

∫ 1

0

P (y)

(

1 +
log y

log(ε/e)

)−ν/µ(

1 +
ν

log(yε/e)

)

dy ≤

∫ 1

0

P (y) dy

which implies the respective part of (4.10).
Integral from 0 to 1, case ν < 0. In this case, for ε ≤ min(1, e1−2ν), we have

(

1 +
log y

log(ε/e)

)−ν/µ

≤

(

1 +
log y

log(1/e)

)−ν/µ

= (1 − log y)−ν/µ

12



and 1 + ν/ log(yε/e) ≤ 1 + ν/ log e−2ν = 1/2. Since we assume that P (y)(1 −
log y)−ν/µ is integrable over [0, 1], by Lebesgue’s Theorem, we have proved the
existence of the respective part of (4.10).

The estimates for the integrals from 1 to infinity are similar. We therefore
omit them.

In order to apply Theorems 2.1 and 2.2, we have to take care of the remaining
terms on the left-hand side in those theorems. This is handled the same way as
in the case ν = 0 with the help of condition (O).

Making the assumption (O) not only disposes of the remaining probability
terms, it also allows us to return from the sequence σn generated by the inverse
of S−1 to the original sequence σ̃n = n−µ(1 + log n)−ν using Lemma 4.1.

For p = ∞, we are finished, whereas, for p < ∞, we have to use the mentioned
Tauberian theorem (cf. Theorem 4.12.9 in Bingham et al.(2)) in order to return
from the logarithmic Laplace transform to the small deviation rate.

Similarly to the last section, it is necessary to check the finiteness of the
small deviation constants in (4.7) and (4.9). This question is investigated in the
following section. However, independent of their finiteness, the equalities in (4.7)
and (4.9) are to be understood in the sense that either both sides are finite and
equal or both sides are −∞.

4.5 The Small Deviation Constant

In many cases (Theorems 4.1, 4.2, 3.1, 3.2, 4.3, and 4.4) we have to check the
finiteness of the small deviation constant. The crucial part of this is represented
by

K :=

{

−
∫∞

0
log P (|θ| ≤ zµ) dz p = ∞,

−
∫∞

0
log Ee−|z−µθ|p dz p < ∞.

Of course, this only depends on the distribution of θ. However, it is not transpar-
ent when this expression is finite. Nevertheless, it is intuitively clear that only
the behaviour of the distribution near zero and infinity matters. First of all, we
shall see that the finiteness of the integral from zero to one is always ensured
under condition (O).

Lemma 4.2. Let µ > 0 and assume that the distribution of θ satisfies condi-
tion (O) with r > µ. Then K1 < ∞, where

K1 :=

{

−
∫ 1

0
log P (|θ| ≤ zµ) dz p = ∞,

−
∫ 1

0
log Ee−|z−µθ|p dz p < ∞.

Proof: This is trivial if p = ∞. In the case p < ∞ it follows from the argumen-
tation (4.5).
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Thus, as long as condition (O) is satisfied with sufficiently large r, no addi-
tional restriction to ensure the convergence of the integral defining K at zero is
needed. For the remaining integral, we have to distinguish the cases p = ∞ and
p < ∞. For p < ∞, the following simple necessary and sufficient condition holds.

Lemma 4.3. We have

−

∫ ∞

1

log Ee−|z−µθ|p dz < ∞ (4.11)

if and only if E|θ|1/µ < ∞ and µ > 1/p.

Proof: For z ≥ 1, Ee−|z−µθ|p ≥ Ee−|θ|p > 0. Therefore, for some C > 0,
∫ ∞

1

log Ee−|z−µθ|p dz ≥

∫ ∞

1

C
(

Ee−|z−µθ|p − 1
)

dz.

On the other hand, the reverse inequality is true with C = 1. Thus, (4.11) holds
if and only if

∫ ∞

1

E

(

1 − e−|z−µθ|p
)

dz < ∞. (4.12)

It is clear that 0 ≤
∫ 1

0
E

(

1 − e−|z−µθ|p
)

dz ≤ 1. Thus, (4.12) is true if and only if

∫ ∞

0

E

(

1 − e−|z−µθ|p
)

dz < ∞.

To finish the proof we observe that
∫ ∞

0

E

(

1 − e−|z−µθ|p
)

dz = E

∫ ∞

0

1 − e−|z−µθ|p dz = E|θ|1/µ

∫ ∞

0

1 − e−y−pµ

dy.

The last result shows that the range of eligible µ > 0 is also strongly deter-
mined by the upper tail behaviour of the distribution of θ, a fact one might not
expect when dealing with lower tails. The same is true in the case p = ∞.

Lemma 4.4. We have

−

∫ ∞

1

log P (|θ| ≤ zµ) dz < ∞

if and only if E|θ|1/µ < ∞.

The proof is similar to the one of Lemma 4.3; and we omit it. Now we are in
the position to proof the main result mentioned in Section 1.

Proof of Theorem 1.1: The same considerations as in Lemma 4.4 and Lem-
ma 4.2 can be applied to the conditions (4.6) and (4.8). We combine Lemma 4.3,
Lemma 4.4, and Lemma 4.2 with Theorem 4.3 and Theorem 4.4, respectively.
This leads to the main result, Theorem 1.1.
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4.6 Stable Random Variables

First, let us consider the example of i.i.d. non-Gaussian, α-stable random vari-
ables θ, θ1, θ2, . . . with parameters 0 < α < 2, σ > 0, β ∈ [−1, 1], and µ ∈ R (cf.
Samorodnitsky and Taqqu(11), Chapter 1, for the description of the parameters
and the properties). If |β| = 1 and 0 < α < 1, we say that θ is totally skewed.

Corollary 4.1. Let θ, θ1, θ2, . . . be a sequence of i.i.d. non-trivial α-stable random
variables that are not totally skewed and let σn ∼ n−µ(1 + log n)−ν with µ >
max(1/α, 1/p) and ν ∈ R. Then

lim
ε→0+

ε1/(µ−1/p) (− log ε)ν/(µ−1/p) log P

(

‖(σnθn)‖p ≤ ε
)

= −Cp,

where Cp is the finite, positive constant given in (1.1). For µ ≤ max(1/p, 1/α),
we have Cp = ∞.

Proof: It is well-known that θ has a continuous non-vanishing density on the
whole R if θ is not totally skewed. Therefore, the distribution satisfies condition
(O) for all r > 0.

Furthermore, it is well-known (cf. Chapter 1 in Samorodnitsky and Taqqu(11))
that E|θ|1/µ < ∞ if and only if 1/µ < α (i.e. µ > 1/α). Applying Theorem 1.1
gives the assertion.

Open cases: The last statement clarifies the small deviation rate for most of
the cases where the sequence (σnθn) is in lp a.s. Indeed, by Theorem 11.3.2 in
Samorodnitsky and Taqqu(11) (in the case α = 1, we have to assume that θ is
symmetric), (σnθn) ∈ lp a.s. if and only if











∑

n σp
n < ∞ p < α

∑

n σα
n log σ−1

n < ∞ p = α
∑

n σα
n < ∞ p > α or p = ∞.

In our case, σn ∼ n−µ(1 + log n)−ν , Corollary 4.1 solves most of the cases. How-
ever, the following cases remain open:

(a) µ = max(1/p, 1/α) and ν > max(1/p, 1/α) if p 6= α,

(b) µ = 1/α and ν > 2/α for p = α,

(c) the case of totally skewed stable random variables: |β| = 1 and 0 < α < 1.

In the first two cases, the order from Corollary 4.1 is not the correct one appar-
ently, as the second part of that corollary shows. Let us illustrate this with the
help of an example.
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Example: If p = ∞, µ = 1/α, ν = b/α, with some b > 1, then (σnθn) ∈ l∞
almost surely, by the result above. Using Theorem 2.1, it can be seen that

−C1 ≤ εα(− log ε)b−1 log P

(

sup
n

|n−1/α(1 + log n)−b/αθn| ≤ ε

)

≤ −C2,

for some positive constants C1, C2 and all 0 < ε < 1. Thus, in this case, an ad-
ditional logarithmic term appears in the order. Presumably, a similar behaviour
will show in the other remaining cases of (a) and (b).

A more detailed investigation was carried out in the author’s Ph.D. thesis (cf.
Aurzada(1)).

On the other hand, for Gaussian (i.e. 2-stable) random variables the result
is much easier.

Corollary 4.2. Let θ, θ1, θ2, . . . be a sequence of i.i.d. Gaussian random variables
and let σn ∼ n−µ(1 + log n)−ν with µ > 1/p and ν ∈ R. Then

lim
ε→0+

ε1/(µ−1/p) (− log ε)ν/(µ−1/p) log P

(

‖(σnθn)‖p ≤ ε
)

= −Cp,

where Cp is the finite, positive constant in (1.1). For µ ≤ 1/p, we have Cp = ∞.

Proof: It is well-known that E|θ|p < ∞, for all p > 0, and that θ satisfies
condition (O) for all r > 0. Theorem 1.1 shows the assertion.

For p = 2 and any µ > 1/2, the constant can be calculated explicitly. The
result is

C2 =

(

2µ − 1

2

)1+2ν/(2µ−1)
(

π

2µ sin π
2µ

)2µ/(2µ−1)

.

Note that – on the logarithmic level – Corollary 4.3 in Dunker et al.(3) is a
special case of the last statement if one sets ν = 0 and p = 2 and substitutes
A = 2µ and a = 2µ/(2µ − 1).

4.7 Gamma Distributions

Let θ, θ1, θ2, . . . be a sequence of i.i.d. Gamma-distributed random variables, i.e.

P (θ ≤ t) =

∫ t

0

xb−1e−x/a

Γ(b)ab
dx,

for some fixed parameters a, b > 0. This particularly includes exponential distri-
butions, so-called Erlang distributions, and χ2-distributions.
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Corollary 4.3. Let θ, θ1, θ2, . . . be a sequence of i.i.d. Gamma-distributed random
variables and let σn ∼ n−µ(1 + log n)−ν with µ > 1/p and ν ∈ R. Then

lim
ε→0+

ε1/(µ−1/p) (− log ε)ν/(µ−1/p) log P

(

‖(σnθn)‖p ≤ ε
)

= −Cp,

where Cp is the finite, positive constant in (1.1). For µ ≤ 1/p, we have Cp = ∞.

Proof: It is elementary to check that E|θ|p < ∞, for all p > 0, and that θ satisfies
condition (O) for all r > 0. Theorem 1.1 shows the assertion.

If p = 1 it is possible to calculate the constant explicitly. The result is

C1 = (µ − 1)1+ν/(µ−1)a1/(µ−1)bµ/(µ−1)

(

π/µ

sin(π/µ)

)µ/(µ−1)

.

Note that also this recovers the logarithmic level of the result in Corollary 4.3 in
Dunker et al.(3) if one sets a = 2, b = 1/2, ν = 0, and µ = A, a = A/(A − 1).
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