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Abstract—The connection establishment in Long-Term Evolu-
tion Advanced (LTE-A) is often executed for distributed user
equipment (UE) nodes with frequent small data sets for trans-
mission to the central enhanced Node B. LTE-A connection es-
tablishment consists mainly of an access barring check (ABC)
followed by preamble transmission (contention). Previous studies
of connection establishment have often assumed Poisson charac-
teristics (without verifying the Poisson assumption). In this paper,
we introduce a simple equilibrium analysis framework for com-
prehensively evaluating the LTE-A connection establishment, in-
cluding both access barring and preamble contention. We conduct
a detailed analysis of the backlog arising from the uniform backoff
over up to Tmax

o slots by UE requests that failed the barring
check or collided in the preamble contention. We verify that
the process representing the numbers of backlogged UE requests
rejoining the connection establishment tends to Poisson process
characteristics for high barring probability and long maximum
timeout Tmax

o . We present numerical comparisons of our equilib-
rium model with simulations for practical parameter settings. The
comparisons illustrate the effects of the parameter settings on the
convergence of the LTE-A connection establishment dynamics to
Poisson characteristics for nonsynchronized and synchronized re-
quest arrivals.

Index Terms—Access barring check (ABC), backlog model,
Long-Term Evolution Advanced (LTE-A), Markov modulated
poisson process, Poisson process, preamble contention, uniform
backoff.

I. INTRODUCTION

THE Long-Term Evolution (LTE) and LTE-Advanced
(LTE-A) standards developed by the Third-Generation

Partnership Project (3GPP) are popular worldwide among cel-
lular networks and hold promise to support a wide range of
applications [1], [2]. For instance, LTE and LTE-A are con-
sidered viable for supporting emerging machine-to-machine
(M2M) communications [3]–[5], which is also referred to as
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machine-type communications (MTC) [6], [7]. As an enabler
for the futuristic Internet of Things (IoT), the performance and
efficiency of MTC applications in LTE/LTE-A networks is an
important research area.

MTC differs from conventional human-to-human communi-
cation in that MTC has small data sets (payloads) and high
frequency of calls. Typically, an MTC client repeatedly ac-
cesses the server to send current status information or to query
the server for status updates. In the context of LTE/LTE-A,
the distributed UE nodes in a given cell gain access to the
network through a central eNB. Due to relatively long idle times
between successive UE transmissions, it is prudent that the UEs
disconnect from the server and eNB until the next data set needs
to be sent. This allows for significant statistical multiplexing,
enabling support for a large number of UEs.

Since most UEs have to access the network for a very
short duration, the success in gaining admission to the chan-
nel becomes a bottleneck. In the case of LTE/LTE-A, this
bottleneck exists at accessing the eNB through the random
access channel (RACH). The radio resource control (RRC)
connection establishment (in brief “connection establishment”)
procedure in LTE/LTE-A RACH consists mainly of an access
barring check (ABC), and the UEs clearing the ABC proceed to
random preamble contention that is akin to single- or multiple-
channel slotted Aloha random access (RA) [8]. In this paper,
we comprehensively consider both the ABC and the preamble
contention that together form the LTE/LTE-A connection estab-
lishment procedure.

Most prior analytical studies of LTE/LTE-A connection es-
tablishment assume Poisson characteristics for the random sys-
tem quantities, such as the number of UE requests participating
in the connection establishment procedure (ABC, followed by
preamble contention for UEs clearing ABC) but do not validate
the Poisson modeling. In contrast, in this paper, we closely
examine the impact of the uniform backoff in LTE-A on the
random system quantities. We show that the numbers of UE
requests coming out of backoff and the numbers of UE requests
participating in the connection establishment in the successive
slots tend to Poisson processes for high barring probability and
long maximum timeout Tmax

o .
In this paper, we make three main original contributions

to the analysis of connection establishment in LTE/LTE-A
networks.

1) We introduce a simple equilibrium analysis framework
for evaluating the performance characteristics, such as
success and drop probabilities of UE requests and
throughput and delay, in RA systems operating with a
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single (O = 1) or multiple (O > 1) preambles. This an-
alytical framework unifies the analysis of single-channel
and multiple-channel multiple-access systems based on
slotted Aloha principles.

2) We show that the uniform random backoff of barred or
collided UE requests leads to Poisson characteristics of
the numbers of UE requests in the connection estab-
lishment system. For a connection establishment system
with high barring probability and long maximum timeout
Tmax
o , we prove that the stochastic process representing

the numbers of previously barred or collided requests
(i.e., backlogged requests) that rejoin the connection es-
tablishment in successive slots tends to a Poisson process
with a prescribed rate. Similarly, the numbers of UE
requests that participate in the connection establishment
procedures (ABC and, if not barred, preamble transmis-
sion) in successive slots approach a Poisson process.

3) Through numerical and simulation evaluations for a va-
riety of request generation processes, including two-state
Markov-modulated Poisson process arrivals, we demon-
strate how ranges of parameter settings contribute to the
simulated connection establishment dynamics approach-
ing the analytical Poisson process model.

II. BACKGROUND AND RELATED WORK

The preamble contention in LTE-A is built on slotted Aloha
principles but has a finite limit W on the number of permitted
transmission attempts. The dynamics of slotted Aloha with
a limited number of transmission attempts, which are funda-
mentally different from the classical slotted Aloha [9], [10]
with an unlimited number of transmission attempts, have been
examined in [11]–[14]. It has been found that, up to a limit of
eight transmission attempts, slotted Aloha systems have a single
equilibrium operating point. Several studies have examined
slotted-Aloha-based preamble contention in conjunction with
mechanisms that resemble access barring. Seo and Leung [15]
(and the closely related model by Yang et al. [16]) considered a
persistence probability in their Markov-process-based analysis
of backoff algorithms. However, in [15], barred UE requests
retry the ABC in each subsequent slot. Sarker [17] considered a
packet rejection probability, which is similar to ABC. However,
the packet rejection in [17] is terminal, i.e., without retrial,
whereas the LTE-A standard permits repetitive retrials of ABC.

A few studies have focused on access barring in LTE. For
instance, cooperation among several cells to improve access
barring performance has been examined in [18] and [19].
Within a given cell, a feedback control mechanism that se-
lectively bars UE requests according to the congestion level
has been proposed in [20], whereas load prediction to control
barring has been examined in [21].

Some recent studies have specifically examined the interplay
between access barring and preamble contention. For a single-
preamble system, Wu et al. [22] developed a fast-adaptive
slotted Aloha approach that estimates the number of UEs with
active requests (a related estimation approach is presented in
[23]). Similar to this paper, a multiple-preamble system is
considered by Duan et al. [24]. Duan et al. examined the

total activation time, i.e., the time to complete connection
establishment for a given set of UEs, for an unlimited number
of transmission attempts. In contrast to the analysis based
on complex Markov and combinatorial models in [24], we
employ simple elementary steady-state analysis techniques and
justify the suitability of these simple analysis techniques for the
LTE connection establishment system. An iterative evaluation
approach for a detailed, albeit complex Markov queueing model
of MTC in LTE RA has been presented by Niyato et al. [25].

Generally, analytical modeling of the LTE connection es-
tablishment system has so far either focused on rather simple
models that capture some of the key mechanisms or quite com-
plex models of relatively high fidelity, albeit at the expense of
high complexity. A simple approximate model of the preamble
contention was developed in [26]; in contrast to our model,
the approximate model [26] does not explicitly consider the
backoff nor the limited number of transmission attempts. A
simplified model of LTE connection establishment was repre-
sented through a G/G/1 queue in [27]. A high-fidelity Markov
chain model encompassing physical and medium access control
mechanisms of 3GPP Universal Terrestrial Access, which is
closely related to LTE, has been developed by Yun [28]. Osti
et al. [29] developed a Markov model for the queue of the
contention resolution messages sent by the eNB to the UEs
over the downlink control channel and investigated the impact
of control channel limitations. The queueing model assumed
a Poisson distribution for the total number of (new and back-
logged) UE requests, and Osti et al. verified the applicability
of the Poisson distribution through simulations with a Poisson
process for the generation of new requests. In contrast, we
analytically examine the Poisson process characteristics of the
number of UE requests participating in the LTE connection
establishment and conduct verifying simulations for a range of
request generation processes, including non-Poisson processes.
Overall, our system model in this paper strives to strike a bal-
ance between capturing the key mechanisms of LTE connection
establishment with high fidelity, while employing elementary
modeling techniques that readily reveal fundamental system
dynamics.

III. CONNECTION ESTABLISHMENT MODEL

Here, we briefly review the RRC connection establishment,
which we refer to in short as “connection establishment,” in
LTE/LTE-A systems and introduce our model notation. For the
distributed user equipment (UE) nodes, we consider two modes
of operation, namely idle mode and connected mode. When a
UE attached to the home public land mobile network (HPLMN)
that does not have some data traffic to send or receive, it
normally stays in idle mode. However, if this UE has some data
traffic to send to the network or to receive from the network,
the mode of operation for this UE needs to transition from idle
mode to connected mode. This transition requires two phases
of operations, which are the main focus of this paper: Access
control [30, Sec. 4.3] (except when Rel-12 UEs are initiating
mobile-originating short message service) and RA [8].

We refer to the UEs that need to make this transition as
“having a request.” Specifically, in our system model, time is
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Fig. 1. Model of connection establishment system with a 1BO system. In

slot n+ 1, o
(1)
n backlogged requests plus an+1 new requests give a total

of Xn+1 UE request candidates. PBXn+1 requests fail the ABC and are
uniformly distributed over the next Tmax

o + 1 slots for rejoining the set of
UE candidate requests. Similarly, tn+1 − sn+1 − dn+1 requests fail the
preamble contention (and remain for retransmission in a future slot) and are
uniformly distributed over the next Tmax

o + 1 slots.

slotted, and the (deterministic) integer variable n indexes the
successive fixed-duration time slots. As shown in Fig. 1, we
denote an+1 for the number of newly generated UE requests
(i.e., the number of UEs that initiate the idle to connected mode
transition) in a given slot n+ 1. (We mainly consider slot n+ 1
in this initial description as it reduces clutter in the description
of the backlog model in Section V-A.) The model notation is
summarized in Table I. The an+1 new requests together with
o
(1)
n old requests that were previously barred or collided in the

preamble contention and rescheduled for slot n+ 1 form the set
of “candidate UE requests” for slot n+ 1 in our model. We note
that the LTE-A standard specifies separate backoff procedures
after failing the ABC or the preamble contention, whereby UE
requests that failed the preamble contention do not repeat the
ABC for retransmissions. For ease of exposition of the backoff
process dynamics, we initially consider a simplified model with
a single backoff (1BO) system for UE requests failing the
ABC or preamble contention, whereby UE requests that failed
the preamble contention repeat the ABC for each preamble
retransmission. In Section V-C, we present the extension to
separate backoff systems for ABC and preamble contention.

Access control in LTE-A has various forms [30, Sec. 4.3].
Up to 3GPP Release-12, all types of UEs are subject to one
of the forms of access control, called access class barring
[30, Sec 4.3], also known as ABC. Specifically, UEs must go
through the ABC when they need to transfer from idle mode to
connected mode.

A UE attached to the HPLMN is required to monitor the
system information messages broadcast by the central eNB,
such as the master information block and system information
block (SIB) [31]. SIB2 carries parameters that a UE needs to
know in preparation for the ABC and RA. In our model, we con-
sider a static set of parameters and leave the study of dynamic
parameter adaptation for future research. The SIB2 contains the

TABLE I
SUMMARY OF MAIN MODEL NOTATIONS

parameters ac-BarringFactor and ac-BarringTime,
which control the ABC. Specifically, each of the

Xn+1 = an+1 + o(1)n (1)

candidate UE requests independently undergoes the ABC,
which we model as follows. With probability PB , the candidate
request is barred and has to wait for the access barring time.
With the complementary probability 1− PB , the UE request
proceeds to the RA, i.e., the preamble transmission contention
in slot n+ 1.

The access barring time is a uniformly randomly distributed
time between prescribed minimum and maximum values. The
access barring times in the LTE/LTE-A standard (except for the
zero access barring time option) are longer than the backoff
times after a preamble collision. However, to avoid unnecessary
clutter in our analysis, we consider the same random waiting
times for the access barring and the backoff after a preamble
collision in our model.

After clearing the ABC, a UE moves on to the contention-
based RA procedure, which we model as follows. The UE
uniformly randomly selects a preamble from a set of O pream-
bles available for RA and transmits the request using the
chosen preamble. If a given UE request is the only one being
transmitted using a given preamble in a given slot n+ 1, then
this UE request is considered successful and contributes to the
number sn+1 of successful UE requests in slot n+ 1. On the
other hand, if more than one UE request is transmitted using
the same preamble in a given slot, then we consider a collision
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to have occurred on that preamble. Although, it may be possible
to retrieve some request information in this case, we model
a worst-case scenario and consider all requests that used the
particular preamble as irrecoverable.

If a UE request conducted its W th preamble transmission
attempt in a given slot n+ 1 and suffered a collision in this W th
attempt, then the request drops from the connection establish-
ment model and contributes to the number dn+1 of dropped UE
requests in slot n+ 1. If a collided UE request has undergone
less than W preamble transmission attempts, then the UE backs
off according to a backoff interval parameter received from the
eNB via a medium-access-control protocol data unit message.
Specifically, the UE backs off by uniformly randomly selecting
a timeout from the backoff interval [0, Tmax

o ] slots, as examined
in detail in Section V-A. After the timeout expires, a backlogged
UE request rejoins the set of candidate UE requests in our 1BO
model and again undergoes the ABC and, if clearing ABC,
retransmits the request using another independently randomly
chosen preamble.

IV. CONNECTION ESTABLISHMENT ANALYSIS

We initially consider a single-preamble (O = 1) system in
Section IV-A and subsequently map the multiple-preamble
(O > 1) system to O single-preamble systems in Section IV-B.
Our analytical strategy here is to consider steady-state Poisson
distributions for key random variables characterizing the con-
nection establishment system. In Section V we will justify the
steady-state Poisson distributions through a detailed analysis of
the uniform backoff over a maximum of Tmax

o slots.

A. Single-Preamble O = 1 Contention

1) Equilibrium Condition: The connection establishment
system modeled in Fig. 1 is neither a source nor a sink for UE
requests. That is, the arrivals of newly generated UE requests
and departures of (either successful or dropped) UE requests
must balance. More specifically, the long-run expected number
Ean+1 of UEs with newly generated requests in a slot must be
in equilibrium with the sum of the long-run expected number
Esn+1 of successful UE requests in a slot and the long-run
expected number Edn+1 of UE requests dropped at the end of
the slot, i.e.,

Ean+1 = Esn+1 + Edn+1. (2)

2) Expected Number Ean+1 of new UE Requests: We ini-
tially consider a Poisson arrival process with rate λ (re-
quests/slot) for the newly generated UE requests. For this
Poisson request arrival model, there are an expected number
of λ new requests per slot, i.e.,

Ean+1 = λ. (3)

3) Expected Number Esn+1 of Successful UE Requests: We
proceed to derive expressions for the expected number Esn+1

of successful preamble transmissions in a slot here (and the
expected number Edn+1 of dropped requests at the end of a
slot in Section IV-A4). We derive the expressions for Esn+1

and Edn+1 in terms of the expected number EXn+1 of UE
request candidates in slot n+ 1. Both newly generated requests
and old requests that have previously been barred or collided in
the preamble contention (and have not yet exhausted their W
transmission attempts) contribute to EXn+1.

A key step in our derivation is to model the stochastic process
formed by the sequence of random variables Xn+1 representing
the number of UE request candidates in the successive slots
n, n+ 1, n+ 2, . . ., to have the characteristics of a Poisson
process. In Section V-B, we will examine the stochastic pro-
cess Xn+1 and demonstrate that the Poisson process model is
appropriate for the process Xn+1. For now, we denote x for the
steady-state expectation of Xn+1, i.e.,

x = EXn+1 (4)

and proceed to derive the expectations Esn+1 and Edn+1.
With Xn+1 UE request candidates and a barring probability

of PB , there are

tn+1 = Xn+1(1− PB) (5)

UE requests that clear barring and are actually transmitted in
slot n+ 1. Thus, the expected number of actually transmitted
UE requests on the considered single preamble (O = 1) in a
slot is

Etn+1 = x(1− PB) =: θ. (6)

For contention with O = 1 preamble, a given slot n+ 1 has
one successful UE request transmission if exactly one request
is transmitted in the slot. For a Poisson process model of Xn+1,
the number tn+1 of actually transmitted UE requests in the slot
has a Poisson distribution with parameter (mean) θ [see (6)].
A Poisson distributed random variable with mean θ attains the
value one with probability θe−θ [32]. Thus,

Esn+1 = θe−θ (7)

gives the expected number successful UE request transmissions
per slot. Normalizing the expected number of successful UE
request transmissions Esn+1 = θe−θ by the expected number
of actual UE transmissions Etn+1 = θ in a slot gives the
steady-state probability of a given actual UE transmission being
successful in a given slot as

ς = e−θ. (8)

4) Expected Number Edn+1 of Dropped UE Requests: If a
UE request is unsuccessful (collides) in its W th transmission
attempt, it is dropped at the end of the slot of the W th attempt.
We model subsequent transmission attempts to have negligi-
ble correlation, i.e., to be approximately independent. For the
model of independent transmission attempts, the steady-state
drop probability of a given UE request failing (colliding) in all
of its W attempts is

δ = (1− ς)W . (9)

In steady state, an expected number of Ean+1 = λ new
requests enter the connection establishment system per slot.
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Each of these new requests fails in steady state with probability
δ in all of its W transmission attempts. Thus, the expected
number of UE requests dropping per slot from the connection
establishment system in steady state is

Edn = λδ. (10)

5) Equilibrium Condition: Substituting the results from
Sections IV-A2 through IV-A4 into (2) gives the equilibrium
condition in terms of the expected number θ of transmitted UE
requests in a given slot, i.e.,

θ

λ
=

1−
(
1− e−θ

)W
e−θ

(11)

which can be readily solved numerically for θ. From (6) we
obtain the corresponding expected number of UE request can-
didates x = θ/(1− PB).

B. Multipreamble O > 1 Contention

We now extend the model for single-preamble O = 1
contention to the multipreamble O > 1 case. Our multiple-
preamble model critically relies on the Poisson process model
for the number an+1 of newly generated UE requests per
slot (see Section IV-A2) and the Poisson process model for
the number Xn+1 of UE request candidates in a slot (see
Section IV-A3). Poisson processes satisfy the “Poisson split-
ting” property [32], i.e., independently randomly splitting off
events from a Poisson process results in a new Poisson process.
In the multipreamble contention, each actually transmitted UE
request independently and uniformly and randomly selects one
of the O preambles with probability 1/O for transmission.

We split the overall model for the RA system with O,O >
1, preambles into O independent “per-preamble” models, one
model for each of the O preambles. Each of the O indepen-
dent “per-preamble” models has identical distributions for the
respective random variables. Each per-preamble model pertains
primarily to the participation of an independently and randomly
selected subset of 1/O of the total number of UE candidate
requests in the preamble contention on a given preamble out
of the O,O > 1, orthogonal preambles. Collided preamble
transmissions join the overall backoff model, i.e., there is one
backoff model for the entire connection establishment system
with O,O > 1, preambles, as presented in Section V-A.

We proceed to examine one of the O “per-preamble” models
in detail and identify its differences with respect to the O = 1
model presented in Section IV-A. New UE requests are overall
generated at rate λ (requests/slot). Each request will eventually
be transmitted on one of the O,O > 1, preambles. Thus, the
arrival rate of new UE requests to a given per-preamble model
is effectively as follows:

Ean+1 =
λ

O
=: ρ. (12)

Similarly, each of the actual UE request transmissions selects
one of the O preambles, resulting in an expected number of

Etn+1 =
x(1− PB)

O
=: θ (13)

transmitted UE requests per preamble per slot. (Notice that
for O = 1, (13) simplifies to (6) of the single-preamble con-
tention). The “per-preamble” expected number θ of transmitted
UE requests defined in (13) can be analogously employed as
the single-preamble θ defined in (6) for the evaluation of the
expected numbers of successful and dropped UE request in
Sections IV-A3 and IV-A4.

Similar to the analysis in Section IV-A5, we obtain thus an
equilibrium condition analogous to (11), but with λ in (11)
replaced by the per-preamble load ρ (12) and with θ = x(1−
PB)/O as defined in (13). This new form of the equilibrium
condition can readily be numerically solved to obtain the ex-
pected total number x of candidate UE requests in the overall
RA system with O,O > 1, preambles.

C. Delay and Throughput

From the solution θ to the equilibrium condition (11), we ob-
tain the success probability ς of a given preamble transmission
attempt through (8) and the drop probability δ of a given UE
request through (9). The steady-state throughput of successful
UE requests completing the connection establishment proce-
dure per slot is then

TH = λ(1− δ). (14)

There are two main components for evaluating the mean
delay D in slots for the completion of the connection estab-
lishment procedure by a successful request. First, the delay
component Dc accounts for the delays incurred due to the
possible number of c, c = 0, 1, . . . ,W − 1, collisions in the
preamble contention. Each collision in the preamble contention
is preceded by an expected number of PB/(1− PB) failures
in the access barring (following the properties of the geometric
distribution with success probability PB [32]). Each failure
in access barring requires a backoff with a mean delay of
1 + Tmax

o /2 slots. The preamble collision necessitates one
additional backoff with mean delay 1 + Tmax

o /2 slots. Thus,
the UE experiences an expected total number of 1/(1− PB)
backoffs for each experienced collision. The expected number
of collisions is

Ec =
W−1∑
c=0

c · (1− ς)cς∑W−1
k=0 (1− ς)kς

(15)

=
(1− ς) [1 + (W − 1)δ]−Wδ

ς(1− δ)
(16)

whereby (16) follows through algebraic simplifications from
(15). Thus, Dc = (1 + Tmax

o /2)Ec/(1− PB).
Second, after suffering a mean number Ec of collisions, a

successful UE request undergoes once more an expected num-
ber of PB/(1− PB) failures in the access barring, followed by
a successful preamble transmission, i.e.,

Ds =

(
1 +

Tmax
o

2

)
PB

1− PB
. (17)
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The overall expected delay in slots is thus

D =

(
1 +

Tmax
o

2

)
PB + Ec

1− PB
. (18)

V. UNIFORM BACKOFF OVER A MAXIMUM OF Tmax
o SLOTS

Here, we examine the impact of backoff of barred or collided
UE requests over the backoff interval of [0, Tmax

o ] slots, i.e.,
the barred/collided requests are rescheduled for one of the
subsequent Tmax

o + 1 slots. We examine the random variable
representing the number of candidate UE requests Xn+1. We
will demonstrate that, for connection establishment systems
with high barring probability PB and long maximum timeout
Tmax
o , the stochastic process Xn+1 tends to a Poisson process.

A. Backlog Model

As shown in Fig. 1, the PBXn+1 barred UE requests and the
tn+1 − sn+1 − dn+1 UE requests that collided in the preamble
contention in slot n+ 1 and have not yet exhausted their W
transmission attempts (i.e., are remaining for retransmission(s)
after transmission in slot n+ 1) enter the backoff. With uniform
backoff, they are uniformly randomly scheduled for rejoining
the set of candidate UE requests in one of the subsequent
Tmax
o + 1 slots.
We model the backlogged (old) UE requests through backlog

registers o
(1)
n+1, o

(2)
n+1, . . . , o

(Tmax
o +1)

n+1 (see Fig. 1). We define

o
(r)
n+1 to be a random variable denoting the number of UE

requests that, by the end of slot n+ 1, have been scheduled
for rejoining the candidate UE request set in slot n+ 1 + r,
i.e., r slots ahead of the present slot index n+ 1. Specifically,
o
(Tmax

o +1)
n+1 (in the bottom left corner of Fig. 1) denotes the

number of UE requests that, at the end of slot n+ 1, have
been scheduled for rejoining in slot n+ Tmax

o + 2. Note that,
at the end of slot n+ 1 only UE requests that were barred
or collided in slot n+ 1 contribute toward o

(Tmax
o +1)

n+1 , as slot
n+ Tmax

o + 2 corresponds to the maximum possible backoff
duration Tmax

o + 1, i.e.,

o
(Tmax

o +1)
n+1 =

PBXn+1 + (1− PB)Xn+1 − sn+1 − dn+1

Tmax
o + 1

(19)

=
an+1 + o

(1)
n − sn+1 − dn+1

Tmax
o + 1

. (20)

The other backlog registers for slot n+ 1, i.e., the registers
o
(r)
n+1, r = 1, . . . , Tmax

o , receive contributions from the backlog
registers at the end of the preceding slot n and from the
barred/collided requests in slot n+ 1. For example, the back-
logged UE requests in o

(Tmax
o +1)

n (in the top left corner of Fig. 1)
are copied over to o

(Tmax
o )

n+1 . In addition, the barred/collided UE
requests from slot n+ 1 that are scheduled for rejoining in
slot n+ 1 + Tmax

o contribute to the backlog register o
(Tmax

o )
n+1

at the end of slot n+ 1. That is, with each new slot, the
backlogged UE requests move effectively one slot closer to

their retransmission slot and may receive a contribution from
the barred/collided UEs in the new slot. Formally, for r =
1, 2, . . . , Tmax

o

o
(r)
n+1 = o(r+1)

n +
an+1 + o

(1)
n − sn+1 − dn+1

Tmax
o + 1

. (21)

The introduced backlog register model applies to both sys-
tems with O = 1 preamble and systems with O, O > 1, pream-
bles. In either case, the UE requests that collided in slot
n+ 1 on the O = 1 preamble or on the O, O > 1, pream-
bles are collected in one common set of backlog registers
o
(1)
n+1, o

(2)
n+1, . . . , o

(Tmax
o +1)

n+1 . When UE requests from a given
backlog register rejoin the set of candidate UE requests in
a system with O, O > 1, preambles, they are independently,
uniformly randomly assigned to one of the O per-preamble
models introduced in Section IV-B. That is, a given UE request
joins a given per-preamble model only for a given transmission
attempt, and may join any of the O, O > 1, per-preamble
models for the next transmission attempt. The O, O > 1, per-
preamble models are thus stochastically independent across
multiple transmission attempts.

B. Poisson Model Approximation for o(1)n and Xn+1

We now examine the backlog model from Section V-A more
closely and develop an approximation for the distribution of the
random variable o

(1)
n representing the number of backlogged

UE requests rejoining the set of UE candidate requests in slot
n+ 1 and the random variable Xn+1 representing the number
of UE candidate requests in slot n+ 1. The key approximation
modeling step is to consider a limiting case of the connection
establishment system in which no UE requests enter or leave
the system but rather repeatedly circulate through the system.
We formally show in this section that, for this circulatory
system, the processes o(1)n and Xn+1 tend to Poisson processes
for long timeouts Tmax

o → ∞. In Section VI, we numerically
examine how closely the equilibrium analysis from Section IV,
which was based on Poisson processes, characterizes practical
connection establishment systems.

Definition 1: We define the “circulatory connection estab-
lishment system” as a connection establishment system with
some initial numbers of UE requests in the backlog registers
o
(r)
n , r = 1, . . . , Tmax

o + 1, but without new UE request arrivals
and without UE request departures.

In the illustration in Fig. 1, the circulatory connection estab-
lishment system corresponds to a system with the arrows for
arrivals an+1 and departures sn+1 + dn+1 removed.

For the circulatory connection establishment system, the
model from Section V-A simplifies as follows. The number
an+1 + o

(1)
n − sn+1 − dn+1 of barred or collided UE requests

in (21) becomes equal to the number o
(1)
n of backlogged re-

quests rejoining the set of UE candidate requests in slot n+ 1.
Each of the o

(1)
n requests contributes to the backlog register

o
(r)
n+1 with probability 1/(1 + Tmax

o ), which we model through

a family (Un(k)), k = 0, 1, . . . , o
(1)
n of independent and
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identically distributed uniform random variables on {1, . . . ,
Tmax
o + 1}. Thus, (21) and (20) simplify to

o
(r)
n+1 = o(r+1)

n +

o
(1)
n∑

k=1

1{Un(k)=r}, r = 1, . . . , Tmax
o

(22)

o
(Tmax

o +1)
n+1 =

o
(1)
n∑

k=1

1{Un(k)=Tmax
o +1}. (23)

We define the total number of UE requests circulating as

N :=

Tmax
o +1∑
r=1

o(r)n (24)

which is a constant with respect to the slot index n.
The random variables (o(r)n )r=1,...,Tmax

o +1 in the defined cir-
culatory RA system are not independent, neither for finite Tmax

o

nor for Tmax
o → ∞. Nevertheless, we show in Appendix A for

the random variables o(r)n :
Proposition 1: For a given maximum timeout Tmax

o , the
distribution of the number o

(r)
n of UE requests in backlog

register r, r = 1, . . . , Tmax
o + 1, in the circulatory connection

establishment system converges over a long time horizon (n →
∞) to the stationary binomial distribution with parameters
(2(Tmax

o − r + 2))/((Tmax
o + 1)(Tmax

o + 2)) and N , i.e.,

o(r)n ∼ BIN

(
2(Tmax

o − r + 2)

(Tmax
o + 1)(Tmax

o + 2)
, N

)
. (25)

Intuitively, the backlog registers “fill up linearly” according
to the distribution (25) as the number of slots r until rejoining
the set of UE candidate requests decrements from Tmax

o to 1.
For instance, the backlog register at the mid-point r = Tmax

o /2
holds on average roughly N/Tmax

o UE requests, i.e., it is “half
as full” as the backlog register r = 1 that feeds its UE requests
into the set of candidate UE requests.

We proceed to examine the random variable o(1)n representing
the number of UE requests rejoining in slot n+ 1. For long
maximum timeout (Tmax

o → ∞) with

N

Tmax
o

→ ω (26)

the stationary binomial distribution (25) converges to a limiting
Poisson distribution with the following parameter:

lim
Tmax
o →∞

2N(Tmax
o + 1)

(Tmax
o + 1)(Tmax

o + 2)
= 2ω (27)

i.e.,

o(1)n ∼ POI(2ω). (28)

Moreover, the random variables o
(1)
n in successive slots

n, n+ 1, . . . are asymptotically independent, as examined in
Appendix B.

In the circulatory connection establishment system, the num-
ber Xn+1 of UE candidate requests is equal to the number

Fig. 2. Two backoff (2BO) system: New UE requests pass through the ABC
system and then proceed to the RA system for preamble contention.

o
(1)
n of backlogged UE requests rejoining the connection estab-

lishment. We have thus established that the random variables
o
(1)
n and Xn+1 in the circulatory connection establishment sys-

tem with large timeout (Tmax
o → ∞) become independent and

identically distributed random variables, specifically Poisson
random variables with mean 2ω.

Theorem 1: For the circulatory LTE/LTE-A connection es-
tablishment system with large timeout (Tmax

o → ∞), the pro-
cess of the number Xn+1 of candidate UE requests in a slot
tends to become equivalent to a Poisson process with rate 2ω
(requests/slot).

For the circulatory connection establishment system, the
mean number 2ω = 2N/Tmax

o of UE candidate requests is
equivalent to the mean number x of candidate requests in
the more general system considered in Section IV. For the
more general system in Section IV, we obtained x through the
solution of the equilibrium condition (11). Practical connection
establishment systems can approximate the circulatory system
with Tmax

o → ∞, e.g., through setting a high barring probabil-
ity PB that repeatedly recirculates a high portion of the UE
request through the backoff and setting a long Tmax

o . For such
settings, Theorem 1 justifies the approximate modeling of the
number of UE request candidates in a slot with a stationary
Poisson random variable in Section IV-A3.

C. Extension to Separate Backoff Systems

We now extend the model from Section III with a 1BO
system accommodating both UEs that failed the ABC and the
RA preamble contention (RA) to the model with two separate
backoff (2BO) systems for ABC and RA, as shown in Fig. 2.
In the steady state, E[an] = λ new UE requests enter the
ABC system per slot, whereas the same expected number of
PB

E[bn] = λ UE requests (some new, some previously back-
logged in the ABC system) exit the ABC system to enter the
RA system. Modeling the number of UE requests transmitted
in a slot tn as a Poisson random variable with mean E[tn] = θ,
the equilibrium of the RA system (and overall 2BO system) is
characterized with exactly the condition given by (11). Hence,
the 2BO system results in exactly the same expected number θ
of UE requests transmitted (pre preamble) per slot as the 1BO
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system, as well as the same success probability as per (8) and
drop probability (9) and throughput (14). The mean delay in the
ABC system is DABC = [PB/(1− PB)](1 + Tmax

o /2), and
the mean delay in the RA system is DRA = Ec(1 + Tmax

o /2),
with Ec from (16), giving the total mean delay for the 2BO
model as D = DABC +DRA. The analysis of the uniform
backoff in Section V-B applies analogously to the ABC system,
i.e., the UE request process entering the RA system becomes
equivalent to a Poisson process for a circulatory ABC system
with long Tmax

o .

VI. NUMERICAL ANALYSIS

In this section, we examine the connection establishment
procedure through numerical evaluation based on the equilib-
rium analysis in Section IV and simulations. We use simulation
models developed with C++. For each simulation scenario,
we conduct multiple independent replications to achieve 95%
confidence intervals with less than 5% relative error or com-
plete at least one million simulated slots. We compare key
performance metrics of the connection establishment, namely
success probability ς , drop probability δ, mean throughput TH ,
and mean delay D obtained from the equilibrium analytical
model in Section IV with corresponding simulations. We plot
these metrics as a function of normalized load, i.e., the mean
number of new UE requests per preamble per slot, ρ = λ/O.
In the plots, we denote “Ana” for the curves obtained from the
analysis model, whereas simulation points for various parame-
ters are marked by the parameter values. We set the number of
preambles to O = 54 and the number of transmission attempts
to W = 4 throughout this section.

LTE-A systems with MTC devices may receive nonsynchro-
nized (uncorrelated) requests or requests that are highly syn-
chronized (correlated), e.g., when a large number of machines
try to simultaneously connect in a burst, e.g., after a power
outage, or when many sensors respond to a common event
[33]–[36]. We have conducted evaluations for a Poisson arrival
process modeling uncorrelated requests and Bernoulli pro-
cess and Markov-modulated Poisson process (MMPP) arrivals
modeling correlated arrivals. For the Poisson arrival process,
the number an+1 of newly generated UE requests follows a
stationary independent Poisson distribution with mean (and
variance) λ (requests/slot). For the Bernoulli arrival process, the
successive numbers an+1 of new UE requests are independent
Bernoulli distributed random variables taking on the values 0
and 2λ with probability 0.5, which results in the maximum
variance λ2 of a Bernoulli random variable [37], [38]. The
Bernoulli arrivals model request synchronization in that either
zero or 2λ new request are generated in a given slot. For the
MMPP arrival process, we consider a low-request-rate state
with λ/h (requests/slot) and a high-request-rate state with hλ
(requests/slot) with mean sojourn times of 100 slots and 100/h
slots, respectively. The parameter h represents the ratio of the
high request rate to the mean request rate λ and is initially set to
h = 5. The MMPP is a highly challenging request generation
process since, in contrast to Poisson or Bernoulli arrivals, the
distribution of the numbers an+1 of new UE requests is not
unimodal. The MMPP models request synchronization in that

Fig. 3. Connection establishment performance for MMPP arrivals for dif-
ferent combinations of backoff system (1BO or 2BO), timeout Tmax

o , and
barring probability PB (e.g., “1S, 500, 0.9” means “1BO system simulation,
Tmax
o = 500, PB = 0.9”) as a function of normalized load ρ = λ/O.

(a) Success probability ς , (b) Drop probability δ, (c) Throughput.

the rate of new requests either persist at a low Poisson rate or a
high Poisson rate for the sojourn times in the respective states.
Due to space constraints, we focus in the following mainly on
the challenging MMPP model with persistently low or high
request arrival rates and summarize the main results for Poisson
and Bernoulli arrivals.

A. Impact of Timeout Tmax
o

Focusing initially on the 1BO system, we observe from
Fig. 3 that for the two-state MMPP arrivals, the discrepan-
cies between analysis and simulations are quite pronounced
for short timeout Tmax

o = 50 in conjunction with low barring
probability PB = 0.1. Long timeouts with Tmax

o = 500 reduce
the discrepancies in the mid-range of Fig. 3(c) to roughly a third
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of the discrepancy for Tmax
o = 50. These results indicate that

long maximum timeouts Tmax
o are quite effective in uniformly

redistributing arrivals from a two-state MMPP so that the
system dynamics approach those of a Poisson system model.
Effectively, the independent uniform random distribution of the
barred/collided UE requests over Tmax

o + 1 future slots acts to
reduce the correlation among the numbers of UEs participating
in the connection establishment procedure in the subsequent
slots. For sufficiently large Tmax

o , the numbers of participating
UE requests in the successive slots become independent and
identically distributed Poisson random variables, i.e., constitute
a Poisson process. In other words, uniform backoff over long
timeouts sufficiently redistributes (spreads out) the barred or
collided UE requests so that the resulting simulated (real)
system performance is closely approximated by the analytical
model based on the limiting (Tmax

o → ∞) Poisson process in
Theorem 1.

This redistribution effect of the timeout is further corrobo-
rated for the Bernoulli arrivals considered in Fig. 5. Specifically,
we observe from Fig. 5(a) for the 2BO system with PB =
0.1 that the simulated throughput with Tmax

o = 10 (2S, 10,
0.1 curve) is much closer to the analytical Poisson model
than the corresponding simulated throughput with Tmax

o = 0
(2S, 0, 0.1 curve). With Tmax

o = 0, barred or collided requests
immediately rejoin in the next slot. Comparing Figs. 3 and 5,
we observe that the curves for the simulated Bernoulli arrivals
approach the analytical Poisson model curve for much shorter
timeouts Tmax

o compared with the curves for the simulated
MMPP arrivals. This is mainly because the unimodal Bernoulli
arrival model does not have the persistent phases of low or high
requests of the MMPP model; instead, Bernoulli requests are
only synchronized for a given slot, i.e., either 0 or 2λ new UE
requests arrive in a slot. In additional evaluations, we found that
for simulated Poisson request arrivals, very short timeouts of
Tmax
o = 1 are sufficient to very closely approximate (so that

the curves essentially overlap) the analytical Poisson model for
small barring probability PB = 0.1.

B. Impact of Barring Probability PB

We observe from Fig. 3 that, for the 1BO system, with
MMPP arrivals, the high barring probability PB = 0.9 leads al-
ready for short timeout Tmax

o = 50 to a relatively close approxi-
mation of the simulation results to the Poisson process analysis;
whereas for a long timeout Tmax

o = 500, there is very close
agreement between the simulated system performance for two-
state MMPP arrivals and the analytical model based on Poisson
random variables. Fig. 5 indicates that Bernoulli arrivals, with
PB = 0.9 and a timeout of Tmax

o = 0, i.e., immediate rejoining
of barred or collided requests in the next slot, result in close
approximation of the analytical model. The PB = 0.9 barring
probability circulates UE requests on average PB(1− PB)
times through the backoff before letting a UE request proceed
to the preamble transmission. With each circulation through
the backoff, a request is uniformly randomly distributed over
Tmax
o + 1 slots. This repetitive random redistribution effec-

tively smoothes the two-state MMPP and Bernoulli arrivals
so that the success and drop probabilities and the throughput

Fig. 4. Mean delay for MMPP arrivals for combinations of backoff system
(1BO or 2BO), timeout Tmax

o , and barring probability PB . (a) Mean Delay
for Tmax

o = 500 (b) Mean Delay, Tmax
o = 50, 200.

of successful connection establishments closely approximate
the corresponding metrics with Poisson request arrivals. For a
per-preamble MMPP traffic load of ρ = 0.3 and Tmax

o = 50,
for instance, the drop probability in Fig. 3(c) is reduced from
approximately δ = 0.36 for the low barring probability PB =
0.1 to around 0.05 for PB = 0.9. As observed in Fig. 4(b),
these improvements come at the expense of roughly tenfold
increased delay due to the repetitive recirculation.

We observe from Figs. 3 and 5 that simulation results for
the 2BO system for both MMPP and Bernoulli arrivals exhibit
slightly larger discrepancies from the analytical Poisson model
than the 1BO system. However, Figs. 4 and 5 indicate that the
2BO system has substantially lower delays. In the 1BO system,
a UE request undergoes ABC for each preamble transmission
attempt; whereas, in the 2BO system, a UE request undergoes
ABC only once. Thus, in the 2BO system, the UE request
traffic is smoothed only once by the (on average PB(1− PB))
circulations through the ABC backoff system and experiences
then one additional circulation through the RA backoff system
for each failed preamble transmission attempt. In contrast, in
the 1BO system, a UE request undergoes the (on average
PB(1− PB)) circulations through the backoff system for each
preamble transmission attempt.

We conclude by observing from Figs. 3 and 4 that a moder-
ately high access barring probability, e.g., PB = 0.5, in con-
junction with a moderately long timeout, e.g., Tmax

o = 200,
results for the challenging two-state MMPP arrivals in through-
put levels reasonably close to the levels for Poisson arrivals.
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Fig. 5. Throughput and mean delay for Bernoulli arrivals for combinations
of backoff system (1BO or 2BO), timeout Tmax

o , and barring probability PB .
(a) Throughput (b) Mean Delay.

This relatively good throughput for the challenging 2MMPP
arrival process is achieved at the expense of moderate delays
below 500 slots.

C. Impact of Request Traffic Characteristics

For the moderately high barring probability PB = 0.5 and
timeout Tmax

o = 200, we proceed to examine the impact of the
high-to-mean request rate ratio h of the MMPP request traffic.
So far, we had considered a high-to-mean request rate ratio of
h = 5, which corresponds to a high-to-low request rate ratio of
h2 = 25. A higher high-to-mean request rate ratio h models a
higher level of request synchronization, i.e., the phases (bursts)
of high request rates are more intense and shorter. We observe
from Fig. 6 that highly bursty requests with a high request rate
h = 10 times above the mean rate result in larger discrepancies
than the high-to-mean request rate ratio of h = 5 considered
so far. For the highly bursty requests with h = 10, the high
request rate is h2 = 100 times the low request rate, i.e., the
high-to-low request rate ratio for h = 10 is four times the high-
to-low request rate ratio with h = 5. Nevertheless, the devia-
tions between the simulated throughput and delay and the
analytical throughput and delay for h = 10 are less than about
1.75 times the corresponding deviations for h = 5. We also
observe from Fig. 6 that, for a low degree of request syn-
chronization (burstiness) with a high-to-mean request rate ratio
of h = 2, the simulated curves quite closely approach the
analytical model.

Fig. 6. Throughput and mean delay for MMPP arrivals for combinations of
backoff system (1BO or 2BO) and ratio of high to mean arrival rates (h = 2, 5,
or 10). Fixed parameters: timeout Tmax

o = 200 and barring probability PB =
0.5. (a) Throughput (b) Mean Delay.

VII. CONCLUSION

We have derived equilibrium models for the connection
establishment system in LTE/LTE-A networks. Our equilibrium
approach models both the ABC and RA preamble contention
through Poisson random variables. Our analysis is applicable
to both network operation with a single preamble and multiple
preambles. We have formally shown that the uniform backoff
in LTE/LTE-A connection establishment results in stationary
Poisson distributions for key system variables.

We have verified that, for two-state Markov Modulated
Poisson Process UE request arrivals the uniform backoff in
LTE/LTE-A connection establishment can lead to system dy-
namics that closely approximate a system with Poisson process
characteristics for the number of UE requests participating
in the connections establishment procedure in a slot. Specif-
ically, a moderate to high access barring probability PB in
conjunction with a moderately long maximum timeout Tmax

o :
1) shape the dynamics of the (overall) UE requests (from
backoff and new arrivals) entering the connection establishment
procedures such that Poisson model dynamics are closely ap-
proximated; and 2) increase the throughput of successful UE
requests at the expense of increased mean delay for the connec-
tion establishment.

The formal result that the LTE/LTE-A uniform random back-
off system can be controlled to give rise to Poisson process
model dynamics can serve as basis for a wide range of future
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research. For instance, traffic parameter estimation can be build
on this result.

APPENDIX A
STATIONARY DISTRIBUTION OF BACKLOG o

(r)
n IN

CIRCULATORY MODEL

In the circulatory model, arbitrary initial values o
(r)
1 , r =

1, . . . , T , induce a total number N (24) of UE that are circu-
lating through the backlog registers. With each increment of
the time slot index n, the register number r = 1 is emptied,
the registers are relabeled such that register number r, r =
2, . . . , Tmax

o + 1, (see top row of registers in Fig. 1) becomes
register number r − 1 (see bottom row of registers in Fig. 1),
and register number 1 becomes register number Tmax

o + 1. The
UEs from register number 1 (see rightmost register in top row
in Fig. 1) are now uniformly randomly distributed over all
registers, independently for each UE.

Clearly, this circulatory RA system has a unique stationary
distribution as it corresponds to an irreducible, aperiodic finite-
state-space Markov chain. Thus, over long time horizons n →
∞, the distribution of the number o(r)n of UEs in register r, r =
1, . . . , Tmax

o + 1 converges to some stationary distribution. Im-
portantly, the movement of the UEs is independent. Thus, the
content of register r is

N∑
i=1

1{UE i is in register r}, r = 1, . . . , Tmax
o + 1. (29)

Note that, for a given fixed register r, the terms in this sum are
independent. The probability of UE i to be in register r is thus
given by a stationary distribution.

We analyze the stationary distribution of a UE to be in
register r. We denote αn,s(r) for the probability of a given UE
that started in register s to be in register number r at time n.
The system equations (22) and (23) imply the recurrence

αn,s(r) =αn−1,s(r + 1) +
αn−1,s(1)

Tmax
o + 1

,

r =1, . . . , Tmax
o (30)

αn,s(T
max
o + 1) =

αn−1,s(1)

Tmax
o + 1

. (31)

These recurrence relationships follow by noting that a UE that
is in register r at time n has to come either from register r + 1
(where it was with probability αn−1,s(r + 1) and has no other
chance than moving to register r) or it comes from register 1
(where it was probability αn−1,s(1)) and was randomly (with
probability 1/(Tmax

o + 1)) assigned to register r. The argu-
ment for r = T is analogous. We know a priori that αn,s(r)
converges for n → ∞ to some number α∞(r), which is the
invariant distribution of the Markov chain. Taking limits in (30)
and (31) shows that

α∞(r) = α∞(r + 1) +
α∞(1)

Tmax
o + 1

, r = 1, . . . , Tmax
o (32)

α∞(Tmax
o + 1) =

α∞(1)

Tmax
o + 1

. (33)

Further, for any s and n,
∑Tmax

o +1
r=1 αn,s(r) = 1 because the UE

has to be in some register. Taking the n → ∞ limit gives

Tmax
o +1∑
r=1

α∞(r) = 1. (34)

The only solution to (32)– (34) is

α∞(r) =
2(Tmax

o − r + 2)

(Tmax
o + 1)(Tmax

o + 2)
, r = 1, . . . , Tmax

o + 1.

(35)

APPENDIX B
CORRELATION OF BACKLOG o

(r)
n AND o

(r)
n+1

In this appendix, we evaluate the correlation between the
number o

(1)
n of backlogged UE rejoining the connection es-

tablishment procedures in slot n+ 1 with the number o
(1)
n+1

rejoining in the next slot n+ 2 in the circulatory model. We
evaluate the correlation corr(o(1)n , o

(1)
n+1) = cov(o

(1)
n , o

(1)
n+1)/√

Vo
(1)
n Vo

(1)
n+1. We note from (29) that

o(1)n =

N∑
i=1

1{UE i is in register 1 in slot n} =:

N∑
i=1

1{UE i,1,n}.

(36)

We first evaluate the covariance

cov(o(1)n , o
(1)
n+1) = N

(
α∞(1)

Tmax
o + 1

− [α∞(1)]2
)
. (37)

We analogously find the same covariance for random variables
o
(1)
n and o

(1)
n+η that are spaced η, η ≥ 1, slots apart. Moreover

Vo
(1)
n+1 = Vo(1)n = Nα∞(1)[1− α∞(1)]. (38)

Thus, we obtain the correlation

corr(o(1)n , o
(1)
n+1) =

−1

Tmax
o + 1

(39)

which converges to zero for large maximum timeout (Tmax
o →

∞). From this vanishing negative correlation of the sequence of
stationary random variables o(1)n , o

(1)
n+1, . . . follows asymptotic

independence [39].
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