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Towards a Fundamental Understanding of the
Stability and Delay of Offline WDM EPONs

Frank Aurzada, Michael Scheutzow, Martin Reisslein, and Martin Maier

Abstract

The fundamental stability limit and packet delay characteristics of offline scheduling, an elementary
scheduling mechanisms in recently proposed dynamic bandwidth allocation mechanisms for Ethernet
Passive Optical Networks (EPONs) with wavelength division multiplexing (WDM), are unknown. In this
paper, we develop an analytical framework for characterizing the stability limit and packet delay of offline
scheduling in WDM EPONs. We consider two reporting strategies: immediate reporting, whereby the
report is immediately attached with an upstream data transmission, and synchronized reporting, where all
reports are sent at the end of a polling cycle. We find that our analytical framework correctly characterizes
the stability limit and approximates the delay of (i) synchronized reporting with arbitrary traffic loading,
and (ii) immediate reporting with symmetric traffic loading. For immediate reporting with asymmetric
traffic loading, we discover and analytically characterize multi-cycle upstream transmission patterns that
may increase or decrease the stability limit from the limit for synchronized reporting. For immediate
reporting in EPONs where the number of Optical Network Units (ONUs) is significantly larger than the
number of upstream wavelength channels, our analytical framework gives fairly accurate stability and
delay characterizations even for asymmetric traffic loading.

Keywords: Delay analysis, Ethernet Passive Optical Network (EPON), offline scheduling, stability limit,
Wavelength Division Multiplexing (WDM).

I. INTRODUCTION

Ethernet Passive Optical Networks (EPONs) have recently been emerging as an attractive approach for

high-speed Internet access. Initial EPON designs considered a single wavelength channel for downstream

transmission from the Optical Line Terminal (OLT) to the Optical Network Units (ONUs) and a single

channel for the upstream ONU-to-OLT transmissions, see e.g., [1]–[12], but growing bandwidth demands

are increasingly leading to designs with multiple wavelength channels in each direction using Wavelength

Division Multiplexing (WDM), see for instance [13]–[19]. Offline scheduling is an elementary scheduling

technique employed in a number of recently proposed dynamic bandwidth allocation mechanisms for

EPONs and WDM EPONs. For instance, most excess bandwidth allocation schemes employ offline
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scheduling, see for instance [1], [16], [20], [21]. Furthermore, a fundamental understanding of the stability

and delay characteristics of offline scheduling is important since offline scheduling lies at one of the

extreme ends of the online-offline scheduling continuum [22] and is therefore a key benchmark.

WDM EPONs with offline scheduling have similarities with polling systems, see e.g., [23], [24], in that

the OLT arbitrates the access of the ONUs to the shared upstream wavelength channels. More specifically,

the WDM EPON operates in cycles. In a given cycle, the ONUs report their bandwidth demands to the

OLT. According to these reports, the OLT grants the ONUs upstream transmission windows in the next

cycle. With offline scheduling, the OLT waits to receive all reports from a given cycle before assigning

grants for the next cycle. Hence, there is an unused time period equal to the round-trip delay between

receiving the end of the last upstream transmission of a cycle at the OLT and receiving the beginning of

the first upstream transmission of the next cycle. As a result, the so-called switchover time between serving

successive stations is highly dependent on the round trip time and the traffic generations at the individual

ONUs. In contrast, the existing polling models, see e.g., [23], [24], consider switchover times that are

independent of the traffic generation and service. The existing polling system analyses are therefore not

applicable to WDM EPONs and despite the elementary nature of offline scheduling in WDM EPONs, the

fundamental characteristics of its stability limit and packet delay are unknown.

In this paper we contribute toward a formal analysis of the fundamental stability and packet delay

characteristics of WDM EPONs with offline scheduling. For a synchronized reporting strategy where all

ONUs report their bandwidth requirements at the end of a cycle, we develop an analytical framework

for the maximum traffic load that still permits stable operation and for the mean packet delay. From

comparisons with verifying simulations, we find that:

• for symmetric traffic loading the analysis correctly predicts the stability limit and approximates the

delay for both synchronized reporting and immediate reporting, where the reports are immediately

attached to the upstream transmission;

• for small numbers of ONUs relative to the number of upstream channels in conjunction with asymmet-

ric traffic, the analysis correctly characterizes synchronized reporting; whereas, immediate reporting

gives rise to multi-cycle transmission patterns that may result in a higher or lower stability limit

compared to synchronized reporting;

• for large numbers of ONUs relative to the number of upstream transmission channels in conjunction
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with only mild asymmetries in the traffic, the analysis approximates the stability limit and delay very

well.

This paper is structured as follows. In the following subsection, we review related work. In Section II,

we introduce our network model and describe the considered WDM EPON reporting, grant sizing, and

grant scheduling. In Section III, we develop our analytical framework for the stability limit and packet

delay characterization. In Section IV, we present numerical results obtained from our analysis and compare

with simulation results for symmetric traffic loads. In Section V, we consider asymmetric traffic, whereby

we first analyze an illustrative multi-cycle scenario for immediate reporting and then present numerical

and simulation results, both for small and large numbers of ONUs. We summarize our conclusions in

Section VI.

A. Related Work

Generally, EPON research has to date mainly employed simulations, which have provided useful

insights, but need to be complemented with formal mathematical analysis for a deeper, fundamental

understanding. Only few existing studies have attempted to formally analyze the various aspects of EPONs.

In particular, Bhatia and Bartos [25] have analyzed the collision probability for the registration messages

sent by the ONUs to the OLT and dimensioned the contention window sizes for an efficient registration

process. Holmberg [26] and Lannoo et al. [27] have analyzed EPONs with a static bandwidth allocation to

the ONUs and shown that the static bandwidth allocation can meet delay constraints only at the expense

of low network utilization. Bhatia et al. [28], Lannoo et al. [27], and Aurzada et al. [29] have pursued a

packet delay analysis in single-channel EPONs with dynamic bandwidth allocation.

Specific aspects of single-channel EPONs with dynamic bandwidth allocation are furthermore considered

by Luo and Ansari [30], [31] who have proposed and analyzed a dynamic bandwidth allocation scheme

with traffic prediction assuming a Gaussian prediction error distribution. Zhu and Ma [32] have proposed a

grant estimation scheme and analyzed its delay savings. Tanaka et al. [33] have conducted a measurement

study with a real physical single-channel EPON, while Hajduczenia et al. [34] have compared the overhead

of different passive optical network standards through simulations.

In contrast to the works reviewed so far, we analyze WDM EPONs with multiple upstream wavelength

channels in this paper. To the best of our knowledge an analysis of WDM EPONs has so far only been

attempted by Chang [35, Section 2.4] who analyzed an offline WDM EPON with the help of a two stage
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queue. The the first queue models QoS distinction at the ONU and the second queue models the access

of the ONU to the WDM channels. Only the second queue is of interest when comparing to the present

analysis. The second queue appears to be analyzed only in terms of the average polling cycle length.

However, in order to obtain good delay approximations, it is necessary to incorporate second moments of

the involved quantities, as we do below. The model in [35, Section 2.4] is furthermore distinct from ours

in that we allow a true gated service discipline [36], rather than putting a small limit on the maximum

transmission window of each ONU, which practically leads to a service discipline comparable to fixed

service.

Building directly on the extensive literature on polling systems, see e.g., [23], [24], Park et al. [37] derive

a closed form delay expression for a single-channel EPON model with random independent switchover

times. The EPON model with independent switchover times holds only when successive upstream transmis-

sions are separated by a random time interval sufficiently large to “de-correlate” successive transmissions,

which would significantly reduce bandwidth utilization in practice. The literature on polling systems with

correlations is relatively sparse, see for instance [38]–[43], and considers correlations that are different

from the dependencies arising in EPONs.

II. NETWORK MODEL

In this section we introduce the notation of our network model and describe the considered EPON

protocol mechanisms for reporting, grant sizing, and grant scheduling.

A. Notation

Let N be a constant denoting the number of ONUs, and M be a constant denoting the number of

upstream wavelength channels, whereby N > M ; otherwise a delay analysis for single-channel EPONs

with a single ONU applies [27]–[29]. Throughout, we consider ONU architectures capable of transmitting

on all upstream wavelengths, i.e., there are no restrictions when assigning upstream transmissions to

wavelengths. Let τ [in seconds] denote the one-way propagation delay (OLT to ONU, or ONU to OLT).

Let λi, i = 1, . . . , N , denote the Poissonian traffic generation rate [in packets/second] of ONU i. Let L̄

and σL denote the mean and standard deviation of the packet size [in bits]. Let C denote the transmission

rate [in bits/second] of an upstream transmission channel. We define the normalized traffic intensities
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(loads)

ρi :=
λiL̄

C
(1)

and note that λiL̄ is the average bit rate of the traffic generated at ONU i. We define the total normalized

traffic load as

ρT :=
N∑

i=1

ρi. (2)

Clearly, a necessary condition for stability is that the total normalized traffic load is less than the number

of upstream wavelength channels, i.e., that

ρT < M. (3)

B. Offline Scheduling Framework with Gated Grant Sizing and LPT Grant Scheduling

We focus in this study on a WDM EPON with offline operation, also referred to as the offline scheduling

framework [44]. In the offline scheduling framework with immediate reporting, each ONU i, i = 1, . . . , N ,

appends its report of the currently queued amount of upstream traffic to the current upstream transmission.

Specifically, let Rn−1
i be a random variable denoting the duration (in seconds) of the upstream transmission

window requested (reported) by ONU i in cycle n− 1, whereby Rn−1
i is equal to the amount of queued

traffic divided by the upstream transmission bit rate. The OLT collects the reports from all ONUs before

making grant sizing and grant scheduling decisions. We consider gated grant sizing which sets the size

of the grant for cycle n equal to the request received during the preceding cycle. Formally, let Gn
i be a

random variable denoting the grant duration (in seconds) of ONU i in cycle n. For gated grant sizing,

Gn
i = Rn−1

i [36]. With a grant duration (length of the granted upstream transmission window) of Gn
i ,

ONU i can send CGn
i bits upstream in cycle n. These CGn

i bits of upstream traffic were generated and

reported during the preceding cycle n− 1.

Next we turn to the scheduling of the grants (upstream transmission windows) Gn
i , i = 1, . . . , N , on

the M upstream wavelength channels. In general, the problem of scheduling jobs without assignment

restrictions to machines so as to minimize the total length of the schedule, i.e., the so-called makespan,

is NP hard. However, Largest Processing Time first (LPT), which orders the jobs from largest to smallest

and one by one schedules them on the next available machine, gives good performance [45]. The LPT

competitive ratio, defined as the worst case upper bound on the makespan compared to optimal scheduling,
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for scheduling on M machines is (4/3−1/(3M)) [45]. This means that for M = 1 machine, LPT achieves

the optimal (shortest possible) schedule makespan, whereas for M = 2 machines the LPT makespan is at

most 7/6 times the optimal makespan. In the context of EPONs, the upstream wavelengths represent the

machines, and the upstream transmission grants of given duration represent the jobs.

To formally model the scheduling, we decompose the set of grants {Gn
1 , . . . , Gn

N} into M (disjoint) sets

I1, . . . , IM according to the LPT policy. Note that the length of the upstream transmission schedule (in

seconds) on wavelength channel m for cycle n is given by Sm(Gn
1 , . . . , Gn

N ) =
∑

i∈Im
Gn

i . The maximum

over all channels m, m = 1, . . . , M , gives the total length (makespan) of the schedule as

Smax(Gn
1 , . . . , Gn

N ) := max
m=1,...,M

Sm(Gn
1 , . . . , Gn

N ). (4)

C. Synchronized Reporting

Toward developing an analytical framework for offline EPON analysis, we introduce the following

modification to the reporting of the queued upstream traffic. The ONUs sending upstream data in a

given cycle in their granted upstream transmission windows do not append a report of their current

queue occupancies at the end of their upstream transmissions. Instead, only the ONU whose upstream

transmission last reaches the OLT in the cycle, appends its report to the upstream transmission. The report

transmission of the other ONUs are timed such that they arrive right after the report of the last ONU,

separated by guard times. With this modification, the OLT receives synchronized reports that reflect the

queue occupancies at all ONUs from about the one-way propagation delay ago. Note that this reporting

strategy slightly increases the cycle length due to the additional guard times. However, this added time is

typically negligible compared to the round trip propagation delay 2τ .

III. DELAY AND STABILITY ANALYSIS FRAMEWORK

We consider the EPON in steady state. Recall that the grants Gn
i , i = 1, . . . , N , allow the ONUs to

send CGn
i , i = 1, . . . , N , bits upstream in cycle n. These CGn

i bits of upstream traffic were generated

during the preceding cycle n − 1. The length of this preceding cycle in turn was governed by the grant

durations Gn−1
i , i = 1, . . . , N , in the preceding cycle, as well as the round-trip propagation delay 2τ .

More specifically, the length of the preceding cycle was 2τ + Smax(Gn−1
1 , . . . , Gn−1

N ). Throughout this

preceding cycle, packets of mean size L̄ [bits] were generated at rate λ [packet/second]. With synchronized
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reporting, these generated packets were reported at the end of cycle n− 1, and are now served in cycle

n with transmission rate C. Hence, given Gn−1
i , i = 1, . . . , N , the mean of Gn

i is

EGn
i =

(
2τ + ESmax(Gn−1

1 , . . . , Gn−1
N )

)
λiL̄

C
. (5)

We note that, given Gn−1
1 , . . . , Gn−1

N , the Gn
i concentrate strongly around their mean, since they are a

mixture of Poisson variables. Therefore, we can approximate as follows:

ESmax(Gn
1 , . . . , Gn

N ) = EE(Smax(Gn
1 , . . . , Gn

N )|Gn−1
1 , . . . , Gn−1

N ) (6)

≈ Smax(EGn
1 , . . . ,EGn

N ) (7)

= Smax

[((
2τ + ESmax(Gn−1

1 , . . . , Gn−1
N )

) λiL̄

C

)

i=1,...,N

]
(8)

=
(
2τ + ESmax(Gn−1

1 , . . . , Gn−1
N )

)
Smax(ρ1, . . . , ρN ). (9)

We define the maximum normalized channel load

ρ∗ := Smax(ρ1, . . . , ρN ), (10)

whereby the functional Smax(·) is defined according to (4), and note that ρ∗ can be calculated from the

ρi, i = 1, . . . , N .

Noting that in steady state ESmax(Gn
1 , . . . , Gn

N ) = ESmax(Gn−1
1 , . . . , Gn−1

N ), we obtain

ESmax(Gn
1 , . . . , Gn

N ) ≈ 2τρ∗

(1− ρ∗)
. (11)

Hence, the system is stable if

ρ∗ < 1. (12)

Similar arguments for the second moment and the calculations in [29] show that the mean packet delay

is approximately:

ED(ρ∗) = 2τ
2− ρ∗

1− ρ∗
+

ρ∗

2C(1− ρ∗)

(
σ2

L

L̄
+ L̄

)
+

L̄

C
. (13)

The approximation is exact for synchronized reporting for M = 1 and N ≥ 1. To see this, note that the

synchronized-reporting EPON with M = 1, N ≥ 1 is equivalent to an immediate-reporting EPON with

M = 1, N = 1 in which the load of the one ONU is equal to the sum of the loads of the N ONUs in

the synchronized-reporting EPON. In particular, when neglecting the guard times and report transmission

times, all N reports are sent at essentially the same time with synchronized reporting. Equivalently, a single
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report can be sent in the immediate-reporting EPON. Furthermore, in the single-channel synchronized-

reporting EPON the ONUs send their data one after the other on the single channel. Equivalently, the

data could be sent by a single ONU. Hence, the exact mean packet delay analysis for a single-channel,

single-ONU, immediate-reporting EPON from [29] gives an exact mean packet delay analysis for the

single-channel, multiple-ONU, synchronized-reporting EPON.

In addition to the delay approximation obtained by inserting ρ∗ in (13), we note that the following

modification of (13) gives a lower bound of the delay. The delay would be lower if it were possible to

distribute the grants perfectly equally over the M channels, such that the upstream transmission window

is 1
M

∑N
i=1 Gn

i on each channel. In this model, we need to replace ρ∗ by the smaller average normalized

channel load ρT /M . Using this quantity and the above arguments based on [29], we obtain the lower

bound by inserting ρT /M in (13), i.e., by evaluating ED(ρT /M). Again, this bound returns the exact

mean packet delay for M = 1, since then ρ∗ = ρT =
∑N

i=1 ρi.

We furthermore define equal channel loading to occur when

S1(ρ1, . . . , ρN ) = S2(ρ1, . . . , ρN ) = · · · = SM (ρ1, . . . , ρN ). (14)

Note that for equal channel loading, ρ∗ = ρT /M , which reduces the stability condition (12) to the

necessary condition (3).

We conclude this section on the analytical framework by noting that the reasoning leading to (5)

considered synchronized reporting, resulting in a relatively good analytical characterization of synchro-

nized reporting, as demonstrated with numerical and simulation results in Sections IV and V-C. We

also demonstrate in Section IV that the analysis characterizes immediate reporting quite accurately for

symmetric traffic loads. For asymmetric traffic, we show in Section V how immediate reporting gives rise

to multi-cycle transmission patterns that lead to different stability limits than for synchronized reporting.

IV. NUMERICAL AND SIMULATION RESULTS FOR SYMMETRIC TRAFFIC

In this section, we consider the symmetric traffic loading cases where the number of ONUs N is an

integer multiple of the number of upstream wavelengths M , i.e., N = kM for some integer k, and all

ONUs contribute equally to the total traffic load, i.e., ρ1 = · · · = ρN . For these cases, ρ∗ = kρ1 = ρT /M ;

inserting this load value in (13) gives the approximate mean packet delay.

We verify the accuracy of the analysis by comparing with simulation results. We consider an EPON

with upstream transmission bit rate C = 1 Gbps operated with offline scheduling. We consider a dis-
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Fig. 1. Mean packet delay as a function of total load ρT for an EPON with M channels and N ONUs with equal traffic load.

tance of 9.6 km between OLT and ONUs, corresponding to a one-way propagation delay of τ =

9.6 km/(200, 000 km/s) = 48 µs. Each ONU i, i = 1, . . . ,M , has an independent Poisson packet

generation process with rate λi [packets/s] and infinite buffer for generated packets, which have a fixed

size of L̄ = 1500 Bytes. We neglect all packet upstream transmission overheads, i.e., inter packet gap,

preamble, guard time, as well as Report and Gate message transmission times are all set to zero. We

present results for the mean packet delay, defined as the delay from packet generation at an ONU until

the complete reception at the OLT, as a function of the total load ρT defined in (2).

In Fig. 1, we present analysis results as well as simulation results for immediate and synchronized

reporting for M = 1 and 4 wavelengths. We observe from Fig. 1(a) that the analytical approximation

results essentially coincide with the simulation results for synchronized reporting, confirming the accuracy

of the delay analysis for M = 1 for this reporting type. We also observe that for large N , immediate

reporting gives slightly higher delays than synchronized reporting. This is primarily because with imme-

diate reporting only ONU i packets generated up to the end of the upstream transmission of ONU i are

included in the report. Packets generated by ONU i between the end of its upstream transmission and the

end of the last transmission by an ONU in the cycle, are reported in the next cycle. With synchronized

reporting, these packets are still included in the reporting for this cycle. So, these packets “save” one

cycle of delay.

Similar observations hold for the scenario with M = 4 channels considered in Fig. 1(b). The analysis

correctly predicts the stability limit and quite accurately characterizes the mean packet delay of these
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WDM EPON scenarios with symmetric traffic loads.

V. STABILITY LIMITS AND DELAYS FOR ASYMMETRIC TRAFFIC

In this section, we examine the cases with asymmetric traffic, e.g., when the number of (equally loaded)

ONUs N is not an integer multiple of the number of upstream channels M , i.e., N 6= kM , or when

N = kM ONUs are non-equally loaded. We first analyze the illustrative case N = 3, M = 2 (with equal

ONU traffic loads) and present a summary of stability results for a range of scenarios with N 6= kM

equally loaded ONUs in Section V-B. We then present numerical and simulation results for asymmetric

traffic in Section V-C, both for scenarios where the number of ONUs N is small relative to the number

of channels M and for scenarios with N À M .

A. Case Study for N = 3, M = 2: Stability Analysis

Consider an EPON with N = 3 ONUs and M = 2 upstream channels and equal ONU traffic loads

ρ1 = ρ2 = ρ3. From the analysis in Section III, one would expect that ρ1 < 0.5 is the stability condition

for this system. While this is the correct stability limit for synchronized reporting, as demonstrated in

Section V-C; for immediate reporting, a multi-cycle transmission pattern with unequal transmission grants

arises, as illustrated in Fig. 2. This multi-cycle transmission pattern raises the stability limit to ρ1 <

√
3/3 = 1/

√
3. Let g1, g2, and g3 denote the three steady state expected values of the grant durations of

the transmission pattern sorted in decreasing order. (In this section, we analyze the transmission patterns in

terms of their long-run expected values in order to examine their impact on the capacity; a more detailed

analysis incorporating second moments is conducted in the Appendix in order to examine the packet

delay.) In cycle n− 2, ONU 1 has the large upstream transmission grant of expected duration g1, while

ONU 3 has the small grant of duration g3. In cycle n− 1, these roles are reversed with ONU 3 receiving

the large grant of duration g1 and ONU 1 receiving the small grant of duration g3. ONU 2 receives the

medium duration grant of expected duration g2 throughout. This two-cycle pattern then repeats over a

large time span, before random fluctuations eventually lead to a reversal of roles within the same pattern.

For instance, ONUs 2 and 1 may exchange roles such that ONUs 2 and 3 alternate in having the large

and small grant while ONU 1 always has the medium duration grant.

We analyze the stability of this two-cycle pattern by noting that the cycles n− 2 and n− 1 determine

how much data is to be sent in cycle n. Specifically, the time between the report of ONU 1 in cycle n−2
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2τ g1
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Fig. 2. Transmission pattern for N = 3, M = 2 over cycles n− 2, n− 1, and n: ONUs 1 and 3 take turns transmitting larger
(smaller) upstream transmissions resulting in a stability limit of ρ1 < 1/

√
3.

and the report of ONU 1 in cycle n− 1, is g2 + g3 − g1 + 2τ + g2 + g3; whereby, g2 + g3 − g1 accounts

for the remaining vacant period on channel 1 in cycle n − 2, 2τ is the vacant period on both channels,

and g2 + g3 accounts for the time until the ONU 1 report is sent out in cycle n − 1. Thus, on average

(near the stability limit), ONU 1 accumulates λ1L̄(g2 + g3 − g1 + 2τ + g2 + g3) bits of upstream traffic

between sending its report in cycle n − 2 and sending its report in cycle n − 1. Equivalently, ONU 1

accumulates on average a traffic amount that requires a grant duration of ρ1(g2 + g3− g1 + 2τ + g2 + g3)

to be requested (reported) in cycle n− 1 and then used for upstream transmission in cycle n. Analyzing

ONUs 2 and 3 analogously, we obtain for the upstream grant durations of ONUs 1, 2, and 3, respectively,

in cycle n:

g1 = ρ1(g2 + g3 − g1 + 2τ + g2 + g3) (15)

g2 = ρ1(g3 + 2τ + g2) (16)

g3 = ρ1(2τ + g1). (17)

For ρ1 <
√

3/3 this system of equations has the solution

g1 =
2τρ1(1 + 3ρ1)

1− 3ρ2
1

, g2 =
2τρ1(1 + 2ρ1)

1− 3ρ2
1

, g3 =
2τρ1(1 + ρ1)

1− 3ρ2
1

. (18)

Intuitively, the multi-cycle upstream transmission patterns are due to the unequal lengths of the periods

between successive reports (bandwidth requests) with immediate reporting. With synchronized reporting,

the reports from all ONUs cover the same time period, namely the full length of a cycle. Hence, multi-cycle

upstream transmission patterns do not arise with synchronized reporting.
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TABLE I
STABILITY LIMITS AND CORRESPONDING TRANSMISSION PATTERNS FOR SELECTED COMBINATIONS OF NUMBER OF
CHANNELS M AND NUMBER OF ONUS N WITH EQUAL ONU LOADS. ALL PATTERNS HAVE A PERIOD OF d = 2 AND
π1 =

(
1 2 ... N
1 2 ... N

)
. THE STABILITY LIMITS WITH SYNCHRONIZED REPORTING AS OBTAINED FROM (12) ARE GIVEN FOR

REFERENCE.

M N syn. rep. ρ1 < imm. rep. ρ1 < π2

2 3 1/2 1/
√

3
(
1 2 3
3 2 1

)

2 5 1/3 1
18

(
(361− 18

√
354)1/3

(
1 2 3 4 5
5 4 3 2 1

)

+(361 + 18
√

354)1/3 − 5
)

= 0.371872

2 7 1/4 0.27573
(
1 2 3 4 5 6 7
7 6 5 4 3 2 1

)
3 4 1/2 1/

√
3

(
1 2 3 4
4 2 3 1

)
4 5 1/2 1/

√
3

(
1 2 3 4 5
5 2 3 4 1

)
4 6 1/2 1/

√
3

(
1 2 3 4 5 6
6 5 3 4 2 1

)
10 15 1/2 1/

√
3

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11 12 13 14 15 6 7 8 9 10 1 2 3 4 5

)

B. Stability Limits for Immediate Reporting for Selected Scenarios with N 6= kM and Equal ONU Loads

In this section we report stability limits for a range of scenarios where the number of equally loaded

ONUs N is not an integer multiple of the number of upstream channels M . We obtained these stability

results by applying the analytical strategy presented for the case study in Section V-A analogously to the

individual scenarios. Formally, we represent the multi-cycle upstream transmission patterns as permutations

of N points (ONUs). Suppose that the stability limit is attained for an upstream transmission pattern with

a period of d, d ≥ 1 cycles. Denote

πj =
(

1 2 · · · N
πj(1) πj(2) · · · πj(N)

)
, j = 1, . . . , d, (19)

for permutations of N points with the interpretation that πj(i) = i′ means that ONU i has the i′th longest

upstream transmission grant in the jth step of the pattern. For instance, the 2-cycle pattern in the case

study in Section V-A is represented by

π1 =
(

1 2 3
1 2 3

)
, π2 =

(
1 2 3
3 2 1

)
. (20)

We observe from Table I that for the considered scenarios, immediate reporting results in higher stability

limits than synchronized reporting, which is not always the case as demonstrated in Section V-C. We also

observe from Table I that for the considered scenarios with N/M = 3/2 with equal ONU load, the

stability limit is ρ1 < 1/
√

3. A general proof of such stability limits for immediate reporting is an

interesting direction for future research.
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Fig. 3. Mean packet delay as a function of total load ρT for M = 2 channels and N = 3 ONUs for equal [uniform (U)] ONU
loads with ρ1 = ρ2 = ρ3 and non-equal [weighted (W)] loads with ρ1 = 2ρ2 = 2ρ3

C. Numerical and Simulation Results

Figure 3 gives analytical and simulation delay results for M = 2 channels and N = 3 ONUs, both for

equal (uniform) ONU loads, i.e., ρ1 = ρ2 = ρ3, and non-equal (weighted) ONUs loads with ρ1 = 2ρ2 =

2ρ3 (which constitute equal channel loading, cf. (14)). We present analytical results obtained with the

analytical framework of Section III, which considers synchronized reporting, and with the delay analysis

for immediate reporting for the case N = 3,M = 2 with equal ONU loads given in the Appendix. We

observe from Figure 3 that the simulation results for synchronized reporting confirm the stability limit

given by (12), which for the considered equal ONU load scenario is ρ∗ = 2ρ1 < 1, i.e., ρT < 3/2, and

for the considered weighted load scenario is ρ∗ = ρ1 < 1, i.e., ρT < 2. For immediate reporting, the

results in Fig. 3 confirm the stability limit ρ1 < 1/
√

3, i.e., ρT <
√

3 ≈ 1.732 for equal ONU loads.

For the considered weighted scenario, we observe from Fig. 3 a stability limit of ρT < 2 for immediate

reporting, which we have confirmed by analysis analogous to Section V-A. In fact for the considered

weighted scenario, immediate reporting does not lead to a multi-cycle transmission pattern.

Regarding the mean packet delay, we observe from Fig. 3 that for these scenarios with N of the same

order of magnitude as M , the approximation obtained with ρ∗ in (13) is rather coarse. On the other hand,
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Fig. 4. Packet delay as a function of total load ρT for M = 2 channels and N = 4 ONUs with loads ρ1 = 2ρ2 = 2ρ3 = 2ρ4

and N = 5 ONUs with loads ρ1 = ρ2 = ρ3 = 2ρ4 = 2ρ5

the detailed delay analysis of the Appendix correctly characterizes the delay for immediate reporting. We

further note that the lower bound obtained by inserting ρT /M = 3ρ1/2 in (13) corresponds to the delay

approximation curve for the considered weighted load case plotted in Fig. 3, which indeed provides a

lower bound for the delays with equal ONU load.

Figure 4 presents delay results for M = 2 channels and N = 4 ONUs with loads ρ1 = 2ρ2 = 2ρ3 = 2ρ4

and N = 5 ONUs with loads ρ1 = ρ2 = ρ3 = 2ρ4 = 2ρ5 for both immediate and synchronized reporting

(the analytical results are obtained with the framework from Section III). For the considered N = 4

scenario, the stability condition (12) can be expressed as ρ∗ = 3ρ2 < 1, i.e., ρT < 5/3. We observe from

Fig. 4 that the simulation results for synchronized reporting confirm this stability limit. For immediate

reporting, an analysis analogous to Section V-A gives a stability limit of ρT < 5
8

(√
17− 1

) ≈ 1.95194

(in conjunction with the multi-cycle upstream transmission pattern π2 =
(
1 2 3 4
1 4 3 2

)
) which is confirmed by

the simulation results.

For the considered N = 5 scenario, which achieves equal channel loading, the simulation results confirm

the ρT < M stability limit for synchronized reporting. With immediate reporting an analysis following

Section V-A shows that the multi-cycle transmission pattern π2 =
(
1 2 3 4 5
3 2 1 5 4

)
arises with the stability limit
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32 have half-load ρ/2, 8 have double-load 2ρ, and 4 have quadruple-load 4ρ.

ρT < 2( (116−6
√

78)1/3

6 + (58+3
√

78)1/3

322/3 − 2
3) ≈ 1.836, as confirmed by simulations. Note that for this N = 5

scenario, immediate reporting results in a lower stability limit than synchronized reporting.

The numbers of ONUs considered in the preceding Figs. 3 and 4 were relatively small to highlight the

effects possible with asymmetric loads and the transmission patterns arising with immediate reporting. We

next consider in Fig. 5 a practically more relevant scenario with M = 4 channels and a moderately large

number of N = 60 ONUs with unequal loads. We observe from this figure that for this typical scenario

with N À M , which achieves equal channel loading, immediate and synchronized reporting give rather

similar delay performance. The analytical framework from Section III correctly predicts the stability limit

and provides an accurate delay approximation.

We next consider a scenario with slightly smaller number of ONUs and unequal channel loading in Fig 6.

We observe from Fig. 6 that for synchronized reporting, the stability condition ρ∗ = 16ρ = 16ρT /61 < 1,

i.e., ρT < 61/16 = 3.8125 closely matches the observed simulation results, and the delay approximation

obtained by inserting ρ∗ in (13) reasonably closely characterizes the actual mean packet delays. We further

observe from Fig. 6 that immediate and synchronized reporting perform quite similarly, with immediate

reporting achieving a slightly higher stability limit.
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TABLE II
SUMMARY OF STABILITY AND DELAY RESULTS FOR DIFFERENT REPORTING STRATEGIES AND TRAFFIC LOAD SCENARIOS.
ρT IS THE TOTAL TRAFFIC LOAD DEFINED IN (2) AND ρ∗ IS THE MAXIMUM NORMALIZED CHANNEL LOAD AS DEFINED IN
(10). THE MULTI-CYCLE TRANSMISSION PATTERNS WITH IMMEDIATE REPORTING CAN RESULT IN A LOWER OR HIGHER

STABILITY LIMIT THAN FOR SYNCHRONIZED REPORTING. MEAN PACKET DELAY APPROXIMATIONS ARE GIVEN BY
INSERTING THE LEFT-HAND SIDES OF THE STABILITY LIMITS IN (13).

Symmetric load (i.e., N = kM Equal General
Reporting and equal ONU loads) or N À M channel loads asymmetric load
Synchronized ρ∗ = ρT /M < 1 ρ∗ = ρT /M < 1 ρ∗ < 1
Immediate ρ∗ = ρT /M < 1 patterns patterns

Generally, when the ONU loads are relatively similar and the ratio of number of ONUs to number of

upstream channels N/M grows large, then we approach the symmetric traffic loading case of Section IV.

As we approach symmetric traffic loading, the analytical framework of Section III provides a good

stability and delay characterization of synchronized reporting. Furthermore, immediate and synchronized

reporting perform very similarly as we approach symmetric traffic loading; hence, the analytical framework

characterizes also immediate reporting quite accurately.

VI. CONCLUSION

In this study we have examined the stability limit and packet delay in offline WDM EPONs through

probabilistic analysis and simulations. We summarize the stability limits in Table II. In particular, for

synchronized reporting where all ONUs report their bandwidth requirements at the end of a cycle, the
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total normalized load must be less than the number of channels M when the channels are equally loaded.

This equal channel loading is achieved when the decomposition of the normalized loads ρi, i = 1, . . . , N ,

over the upstream channels results in makespans of equal length. Symmetric traffic loading, which we

define to occur when the number of ONUs N is an integer k multiple of M , and all N ONUs have equal

load is a special case of equal channel loading. For general asymmetric traffic, the longest makespan

of the decomposition of the normalized loads into M sets according to the scheduling policy, i.e., the

maximum normalized channel load (10), governs the stability limit for synchronized reporting.

For immediate reporting, where the bandwidth requests are immediately attached to the end of each

upstream transmission, we discovered a more complex stability behavior. Only for symmetric traffic, or

for traffic that is a reasonably close approximation of symmetric traffic, which is likely to occur typically

in practice when the number of ONUs N is significantly larger than the number of upstream channels

M and the normalized traffic loads of the ONUs are similar, does the EPON obey the ρT < M stability

limit. When the number of ONUs is relatively small, i.e., is on the same order as the number of channels,

and the traffic loads are asymmetric (even if they still achieve equal channel loading), then multi-cycle

upstream transmission patterns arise. These multi-cycle transmission patterns can be formally analyzed

following the approaches demonstrated in Section V-A and the Appendix, and can lead to either a lower

or higher stability limit compared to the corresponding limit for synchronized reporting.

We found that inserting the normalized load parameters on the left-hand sides of the stability limits

summarized in Table II in the delay expression (12) obtained from our analytical framework gives

approximations of the mean packet delay. The approximations are quite accurate for the symmetric

traffic loading and scenarios with N À M , corresponding to the leftmost column of Table II. For the

synchronized reporting cases in the middle and rightmost column of Table II the approximation becomes

coarse.

More accurate delay approximations for these synchronized reporting scenarios as well as delay anal-

yses for the immediate reporting scenarios with upstream transmission patterns are important directions

for future research. Another important avenue for future research appears to examine novel grant siz-

ing strategies that eliminate unused periods on the wavelength channels due to the different lengths

Sm(Gn
1 , . . . , Gn

N ), m = 1, . . . , M , of the upstream transmission schedules. Scaling the transmission grants

for wavelength m by [minm=1,...,M Sm(Gn
1 , . . . , Gn

N )]/Sm(Gn
1 , . . . , Gn

N ) would equalize the upstream
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transmission schedules on the wavelengths.
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APPENDIX

CASE STUDY FOR N = 3, M = 2: DELAY ANALYSIS FOR IMMEDIATE REPORTING

A. Recurrence equations and first moments Let Gn
(i), i = 1, 2, 3, be random variables denoting the

grant durations [in seconds] in cycle n sorted in decreasing order. We consider a Poissonian packet

generation process with rate λ [packets/second] at each node and denote Poi [ω] for a random variable

with Poisson distribution with parameter ω. Retracing the analysis in Section V-A leading to the system

of equations (15)–(17) we obtain

Gn
(1) =

L̄

C
Poi

[
λ(Gn−2

(2) + Gn−2
(3) −Gn−2

(1) + 2τ + Gn−1
(2) + Gn−1

(3) )
]

(21)

G(2)
n =

L̄

C
Poi

[
λ(Gn−2

(3) + 2τ + Gn−1
(2) )

]
(22)

G(3)
n =

L̄

C
Poi

[
λ(2τ + Gn−1

(1) )
]

(23)

Consider the system in steady state. Then, gi := EGn−1
(i) = EGn

(i) and si := E(Gn−1
(i) )2 = E(Gn

(i))
2,

i = 1, 2, 3. Taking expectations gives equations (15)–(17).

A. Second moments

Now we take second moments of (21)–(23). Noting that for a Poisson random variable X with parameter

ω, we have EX = ω and EX2 = ω + ω2, we obtain

s1 =
L̄

C
g1 + ρ2E(Gn−2

(2) + Gn−2
(3) −Gn−2

(1) + 2τ + Gn−1
(2) + Gn−1

(3) )2 (24)

s2 =
L̄

C
g2 + ρ2E(Gn−2

(3) + 2τ + Gn−1
(2) )2 (25)

s3 =
L̄

C
g3 + ρ2E(2τ + Gn−1

(1) )2 (26)

We proceed to rewrite the right-hand sides such that only the known variables gi and the unknowns si

appear. For this purpose, we need to introduce some more notation. We use the following abbreviations

g0
i,j := E[Gn

(i)G
n
(j)] and g1

i,j := E[Gn−1
(i) Gn

(j)]
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Note that si = g0
i,i and g0

i,j = g0
j,i. Thus, there are 15 unknowns.

For example, equation (26) can be rewritten as follows:

s3 =
L̄

C
g3 + ρ2((2τ)2 + 2 · 2τg1 + s1) (27)

On the other hand, the crucial term in equation (25) is

E(Gn−2
(3) + 2τ + Gn−1

(2) )2

= s3 + 2E[Gn−2
(3) (2τ + Gn−1

(2) )] + E(2τ + Gn−1
(2) )2

= s3 + 2 · 2τg3 + 2E[Gn−2
(3) Gn−1

(2) ] + (2τ)2 + 2 · 2τg2 + s2.

Thus, (25) becomes

s2 =
L̄

C
g2 + ρ2(s3 + 2 · 2τg3 + 2g1

3,2 + (2τ)2 + 2 · 2τg2 + s2) (28)

Similarly, (24) becomes

s1 =
L̄

C
g1 + ρ2(g0

2,2 + g0
2,3 − g0

2,1 + 2τg2 + g1
2,2 + g1

2,3 + g0
3,3 − g0

1,3 + 2τg3 + g1
3,2 +

+g1
3,3 − g0

1,1 − 2τg1 − g1
1,2 − g1

1,3 + (2τ)2 + 2τg2 + 2τg3 + g0
2,2 + g0

2,3 + g0
3,3) (29)

Now, let Fn be the information given the data from the n-th cycle. We can obtain relations between the

cycles in the following way:

g1
1,1 = E[Gn−1

(1) Gn
(1)] = E[Gn−1

(1) E[Gn
(1)|Fn−1]]

= E[Gn−1
(1) ρ(Gn−2

(2) + Gn−2
(3) −Gn−2

(1) + 2τ + Gn−1
(2) + Gn−1

(3) )]

= ρ(g1
2,1 + g1

3,1 − g1
1,1 + 2τg1 + g0

1,2 + g0
1,3) (30)

The same way we get e.g.,

g1
3,2 = E[Gn−2

(3) Gn−1
(2) ] = E[Gn−2

(3) E[Gn−1
(2) |Fn−2]] = E[Gn−2

(3) ρ(Gn−3
(3) + 2τ + Gn−2

(2) )]

= ρE[Gn−2
(3) Gn−3

(3) ] + 2τρg3 + ρE[Gn−2
(3) Gn−2

(2) ]

= ρ(g1
3,3 + 2τg3 + g0

2,3) (31)
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Analogously, the following relations can be derived:

g1
1,2 = ρ(g1

3,1 + 2τg1 + g0
1,2) (32)

g1
1,3 = ρ(g12τ + g0

1,1) (33)

g1
2,1 = ρ(g1

2,2 + g1
3,2 − g1

1,2 + 2τg2 + g0
2,2 + g0

2,3) (34)

g1
2,2 = ρ(g1

3,2 + 2τg2 + g0
2,2) (35)

g1
2,3 = ρ(2τg2 + g0

1,2) (36)

g1
3,1 = ρ(g1

2,3 + g1
3,3 − g1

1,3 + 2τg3 + g0
2,3 + g0

3,3) (37)

g1
3,3 = ρ(2τg3 + g0

1,3) (38)

Given Fn−1, Gn
(i) and Gn

(j) are independent for i 6= j; thus, we further obtain

g0
1,2 = ρ2(g0

2,3 + 2τg2 + g1
2,2 + g0

3,3 + 2τg3 + g1
3,2 − g0

1,3 − 2τg1 − g1
1,2

+2τg3 + (2τ)2 + 2τg2 + g1
3,2 + g22τ + g0

2,2 + g1
3,3 + 2τg3 + g0

2,3) (39)

g0
1,3 = ρ2(2τ(g2 + g3 − g1 + 2τ + g2 + g3) + g1

2,1 + g1
3,1 − g1

1,1 + 2τg1 + g0
2,1 + g0

3,1) (40)

g0
2,3 = ρ2(2τ(g3 + 2τ + g2) + g1

3,1 + 2τg1 + g0
1,2) (41)

Equations (27)–(41) are 15 linear equations for 15 unknowns and can thus be solved for all gk
i,j . Doing

so we obtain s1, s2, and s3.

B. Delay evaluation

We consider case by case the delay of a packet generated by ONU i with respect to the timing of

the packet generation. From the illustration in Fig 2 we observe six different cases for the timing of the

packet generation, which we index by j, j = 1, . . . , 6, as detailed in the following listing. For a given

combination of ONU i and timing case j, we denote Di,j for the corresponding packet delay, and pi,j for

the probability of occurrence of the combination i, j. We obtain the overall mean packet delay as

D =
1
3

∑

i=1,...,3,j=1,...,6

Di,jpi,j .

In the delay expressions, we denote ERes(G) for the mean residual life time of the distribution of G:

ERes(G(i)) =
E(G(i))2

2EG(i)
=

si

2gi
.
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We also need:

ERes(G(2) + G(3) −G(1)) =
E(G(2) + G(3) −G(1))2

2E(G(2) + G(3) −G(1))
=

s2 + g0
2,3 − g0

2,1 + s3 − g0
3,1 + s1

2(g2 + g3 − g1)
.

1,1 Packet is generated at ONU 1 during the 2τ time period before a cycle in which ONU 1 has the longest

grant: D1,1 = τ +g2+g3+2τ +g2+ρ×ERes(G(3))+τ + L̄
C , p1,1 = 2τ/(2τ +g2+g3+2τ +g2+g3).

1,2 Packet is generated at ONU 1 while ONU 1 is sending the longest grant: D1,2 = ERes(G(1))+ g2 +

g3 − g1 + 2τ + g2 + ρ× ERes(G(3)) + τ + L̄
C , p1,2 = g1/(2τ + g2 + g3 + 2τ + g2 + g3).

1,3 Packet is generated at ONU 1 during a cycle in which ONU 1 has the longest grant but ONU 1 has

finished sending: D1,3 = ERes(G(2) + G(3)−G(1)) + 2τ + g2 + g3 + 2τ + ρ×ERes(G(1)) + τ + L̄
C ,

p1,3 = (g2 + g3 − g1)/(2τ + g2 + g3 + 2τ + g2 + g3).

1,4 Packet is generated at ONU 1 during a 2τ period before ONU 1 has the shortest grant: D1,4 =

τ + g2 + g3 + 2τ + ρ× ERes(G(1)) + τ + L̄
C , p1,4 = 2τ/(2τ + g2 + g3 + 2τ + g2 + g3).

1,5 Packet is generated at ONU 1 during a cycle when ONU 1 has the shortest grant and ONU 2 is

sending: D1,5 = ERes(G(2))+g3+2τ+ρ×ERes(G(1))+τ+ L̄
C , p1,5 = g2/(2τ+g2+g3+2τ+g2+g3).

1,6 Packet is generated at ONU 1 during a cycle when ONU 1 has the shortest grant and is sending:

D1,6 = ERes(G(3)) + 2τ + ρ× ERes(G(1)) + τ + L̄
C , p1,6 = g3/(2τ + g2 + g3 + 2τ + g2 + g3).

3,1 Packet is generated at ONU 3 during the 2τ period before a cycle when ONU 1 has the longest

grant: D3,1 = τ + g2 + g3 + 2τ + ρ×ERes(G(1)) + τ + L̄
C , p3,1 = 2τ/(2τ + g2 + g3 + 2τ + g2 + g3).

3,2 Packet is generated at ONU 3 when ONU 1 has the longest grant and ONU 2 is sending: D3,2 =

ERes(G(2)) + g3 + 2τ + ρ× ERes(G(1)) + τ + L̄
C , p3,2 = g2/(2τ + g2 + g3 + 2τ + g2 + g3).

3,3 Packet is generated at ONU 3 during a cycle when ONU 1 has the longest grant and ONU 3 is

sending: D3,3 = ERes(G(3))+2τ +ρ×ERes(G(1))+τ + L̄
C , p3,3 = g3/(2τ +g2 +g3 +2τ +g2 +g3).

3,4 Packet is generated at ONU 3 during the 2τ period before ONU 1 has the shortest grant: D3,4 =

τ + g2 + g3 + 2τ + g2 + ρ× ERes(G(3)) + τ + L̄
C , p3,4 = 2τ/(2τ + g2 + g3 + 2τ + g2 + g3).

3,5 Packet is generated at ONU 3 during a cycle when ONU 1 has the shortest grant and ONU 3

is sending: D3,5 = ERes(G(3)) + g2 + g3 − g1 + 2τ + g2 + ρ × ERes(G(3)) + τ + L̄
C , p3,5 =

g1/(2τ + g2 + g3 + 2τ + g2 + g3).

3,6 Packet is generated at ONU 3 during a cycle when ONU 1 has the shortest grant, after ONU 3 has

finished sending: D3,6 = ERes(G(2) + G(3)−G(1)) + 2τ + g2 + g3 + 2τ + ρ×ERes(G(1)) + τ + L̄
C ,

p3,6 = (g2 + g3 − g1)/(2τ + g2 + g3 + 2τ + g2 + g3).
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2,1 Packet is generated at ONU 2 during the 2τ time before a cycle when ONU 1 has the longest grant:

D2,1 = τ + g2 + g3 + 2τ + ρ× ERes(G(2)) + τ + L̄
C , p2,1 = 2τ/(2τ + g2 + g3 + 2τ + g2 + g3).

2,2 Packet is generated at ONU 2 when ONU 1 has the longest grant and ONU 2 is sending: D2,2 =

ERes(G(2)) + g3 + 2τ + ρ× ERes(G(2)) + τ + L̄
C , p2,2 = g2/(2τ + g2 + g3 + 2τ + g2 + g3).

2,3 Packet is generated at ONU 2 during a cycle when ONU 1 has the longest grant and ONU 3 is sending:

D2,3 = ERes(G(3))+2τ+g2+g3+2τ+ρ×ERes(G(2))+τ+ L̄
C , p2,3 = g3/(2τ+g2+g3+2τ+g2+g3).

2,4 Packet is generated at ONU 2 during the 2τ period before ONU 1 has the shortest grant: D2,4 =

τ + g2 + g3 + 2τ + ρ× ERes(G(2)) + τ + L̄
C , p2,4 = 2τ/(2τ + g2 + g3 + 2τ + g2 + g3).

2,5 Packet is generated at ONU 2 during a cycle when ONU 1 has the shortest grant and ONU 2 is

sending: D2,5 = ERes(G(2))+g3+2τ+ρ×ERes(G(2))+τ+ L̄
C , p2,5 = g2/(2τ+g2+g3+2τ+g2+g3).

2,6 Packet is generated at ONU 2 during a cycle when ONU 1 has the shortest grant and ONU 2 is

sending: D2,6 = ERes(G(3)) + 2τ + g2 + g3 + 2τ + ρ× ERes(G(2)) + τ + L̄
C , p2,6 = g3/(2τ + g2 +

g3 + 2τ + g2 + g3).
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