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Abstract

We study a Gibbs measure over Brownian motion with a pair potential which
depends only on the increments. Assuming a particular form of this pair potential,
we establish that in the infinite volume limit the Gibbs measure can be viewed as
Brownian motion moving in a dynamic random environment. Thereby we are in
a position to use the technique of Kipnis and Varadhan and to prove a functional
central limit theorem.

1 Introduction

We consider standard Brownian motion in Rd, starting at zero, weighted à la Gibbs as

NT,r =
1

ZT,r
exp

(
−
∫ T

0

∫ T

0
W (qt − qs , t− s) dt ds

)
W0

r . (1)

Here t → qt is a Brownian path, q0 = 0, W0
r is the path measure of Brownian motion,

and, in the time window [0, T ], the partition function ZT,r normalizes the weighted path
measure to one. The precise assumptions on the pair potential W will be given below, but
in essence |W (x, t)| ≤ γ(t) with γ bounded and decaying faster than |t|−3 at infinity.

Since in (1) W depends only on the increments qt − qs, one would expect that under
rescaling the weighted path measure NT,r looks like Brownian motion with some effective
diffusion matrix D. To be more precise, one first has to establish the existence of the limit
measure

Nr = lim
T→∞

NT,r .

Let then qt be distributed according to Nr. We expect the validity of the invariance
principle

lim
ε→0

√
εqt/ε =

√
Db(t) (2)

with b(t) standard Brownian motion.
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The conventional approach for a proof of (2) is to try to establish good mixing proper-
ties for the process of increments. For this purpose one maps (1) to a one-dimensional spin
system over N. The single “spin” is a continuous path σj(t), 0 ≤ t ≤ 1, with σj(0) = 0.
Under the a priori measure the spins are independent and distributed according to stan-
dard Brownian motion W0 over the time span [0, 1]. Setting T = N , the interaction from
(1) is then rewritten as

N−1∑
i,j=0

∫ 1

0

∫ 1

0
W (σi(t)− σj(s) + ∆(i, j) , i + t− j − s) dt ds , (3)

where ∆(i, i) = 0, ∆(i, j) =
∑i−1

`=j σ`(1) for i > j, and ∆(i, j) =
∑j−1

`=i σ`(1) for i < j.
Clearly, the path is reconstructed from the increments as

qt = σ0(t) for 0 ≤ t ≤ 1 , qt =
`−1∑
j=0

σj(1) + σ`(t− `) for ` ≤ t < ` + 1 ,

` = 1, · · · , N − 1. Mixing for one-dimensional spin systems, at the level of generality
needed here, is investigated by Dobrushin [5, 6]. Note that the interaction in (3) is many-
body. Also in the applications we have in mind, W (x, t) only decays like a power in the
t-variable. Therefore it is not so obvious whether a central limit theorem for qt can be
deduced with the techniques of [5, 6].

In our contribution we will prove the invariance principle by using the Kipnis-Varadhan
theorem [10], originally developed to deal with random motion in a random environment.
This technique, at least in its present form, requires an underlying Markov structure. In
our context it can be achieved provided W has the particular form

W (x, t) = −1
2

∫
|ρ̂(k)|2eik·xe−ω(k)|t| 1

2ω(k)
dk (4)

with

ω(k) ≥ 0, ω(k) = ω(−k), ρ̂(k) = ρ̂(−k)∗ and (5)∫
|ρ̂(k)|2(ω−1 + ω−2 + ω−3)dk < ∞. (6)

The trick is to “linearize” the interaction in (1) by introducing the auxiliary stationary
Ornstein-Uhlenbeck process φt(x) with covariance

EG(φt(x)φt′(x′)) =
∫

1
2ω(k)

eik·(x−x′)e−ω(k)|t−t′|dk .

Denoting its path measure by G, (1) can be rewritten as

NT,r =
1

ZT,r
EG
(

exp
(
−
∫ T

0

∫
ρ(x− qt)φt(x) dx dt

))
W0

r .
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According to Kipnis and Varadhan the central object is the environment as seen from
the particle, i.e. the random field

ηt(x) = φt(x + qt) .

In the standard applications ηt is Markov with an explicitly given stationary measure. In
our case, however, we have to first take the limit T → ∞ for the joint process qt, φt(x).
Thereby the stationary measure appears only indirectly and is defined as the solution of
an eigenvalue problem. In Section 2, we will prove that, in the limit T → ∞, ηt(x) is
indeed a stationary, reversible Markov process and will identify its generator. qt can be
written as an additive functional over ηt(x) plus a martingale with stationary increments.
Following Kipnis and Varadhan, in essence, one can thus rely on the martingale central
limit theorem, with one proviso. It must be ensured that the effective diffusion matrix
D is strictly positive, see Section 4. Usually this step requires extra considerations and
is based on lower bound estimates to the variational formula. We did not make much
progress along these lines. Instead we will rely on an idea of Brascamp, Lebowitz and
Lieb [4], which in the present context has been employed before [13].

We state our main theorem.

Theorem 1.1 Define NT,r as in (1) with W given by (4).

(i): NT,r converges locally to a measure Nr as T →∞.

(ii): The stochastic process qt induced by Nr satisfies a central limit theorem

lim
ε→0

√
εqt/ε =

√
Db(t)

in distribution, where 0 ≤ D ≤ 1 as a d × d matrix and b(t) is standard Brownian
motion.

(iii): In addition to (5),(6) assume∫
|%̂(k)|2|k|2

(
ω−2 + ω−4

)
dk < ∞.

Then D > 0.

To make the environment process ηt stationary, one has to choose the symmetric time
window [−T, T ] and to replace in (1) W0

r by the two-sided Brownian motion W0 pinned
at 0. This leads to the Gibbs measure

NT =
1

ZT
exp

(
−
∫ T

−T

∫ T

−T
W (qt − qs, t− s) dt ds

)
W0 . (7)

Let NT,` be NT,r reflected at the time origin and let NT,`r = NT,`⊗NT,r. By our assump-
tions on W , clearly,

1
c
≤ |

dNT,`r

dNT
| ≤ c

uniformly in T for some c > 0. Therefore a central limit theorem for N is equivalent to
central limit theorem for Nr. In the sequel we will prove the invariance principle for (7).
For the convenience of the reader we restate Theorem (1.1) as
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Theorem 1.2 Define NT as in (7) with W given by (4).

(i): NT converges locally to a measure N as T →∞.

(ii): The stochastic process qt, t ≥ 0, induced by N satisfies a central limit theorem

lim
ε→0

√
εqt/ε =

√
Db(t)

in distribution, where 0 ≤ D ≤ 1 as a d × d matrix, and b(t) is standard Brownian
motion.

(iii): In addition to (5),(6) assume∫
|%̂(k)|2|k|2

(
ω−2 + ω−4

)
dk < ∞. (8)

Then D > 0.

Remark: Our work is motivated by the massless Nelson model [11, 2]. In this case
d = 3, ω(k) = |k|, and ρ̂ has a fast decay at infinity. The most stringent condition then is∫
|ρ̂|2ω−3d3k < ∞, which requires a decay of W as

|W (x, t)| ≤ c(1 + |t|3+δ)−1.

for some δ > 0. Thus we cannot allow for ρ̂(0) > 0 and need a mild infrared cutoff.
Physically D−1 is the effective mass of the quantum particle when coupled to the scalar
Bose field.

2 Diffusion driven by a stationary field

For our particular choice of W , N can be written as the path measure of a diffusion
driven by a stationary random field. The aim of the present section is to establish this
representation. We will be brief on the general theories of Gaussian measures and infinite
dimensional Ornstein-Uhlenbeck processes, cf. [3, 9]. A more detailed account is given in
Sections 1.4 and 1.5 of [1].

Let K0 be the real Hilbert space obtained by completing the subspace of L2(Rd) on
which

〈a, b〉K0
=
∫

â(k)
1

2ω(k)
b̂(k)∗ dk. (9)

is finite with respect to the inner product given by (9). Here â denotes the Fourier
transform of a, and b̂(k)∗ denotes complex conjugation of b̂(k).

Let G be the Gaussian measure indexed by K0. It will be convenient consider G on
a probability space consisting of distributions. Let A be a strictly positive operator with
Hilbert-Schmidt inverse in K0, and let K be the completion of K0 with respect to the
Hilbert norm

‖φ‖K =
∥∥A−1φ

∥∥
K0

∀φ ∈ K0.
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Then G is supported on K, and

EG(φ(a)φ(b)) = 〈a, b〉K0
. (a, b ∈ D(A)),

where φ is considered as a linear functional defined through the limit

φ(b) = lim
n→∞

〈
Ab, A−1φn

〉
K0

for any sequence (φn) converging to φ in K. K is a space of distributions, depending on
the choice of A. For our purposes, however, the special form of A does not matter.

For a ∈ K0, φ 7→ φ(a) is an element of L2(G). Let G be the path measure of the infinite
dimensional (K-valued) Ornstein-Uhlenbeck process with mean 0 and covariance

EG(φs(a)φt(b)) =
∫

â(k)
1

2ω(k)
e−|t−s|ω(k)b̂(k)∗ dk (a, b ∈ K0).

G is a reversible Gaussian Markov process with reversible measure G, and t 7→ φt(a) is
continuous for a ∈ K0.

For q ∈ Rd, let τq be the shift by q on K, i.e. (τqφ)(a) = φ(a(. − q)). More generally,
for f ∈ L2(G), we define (τqf)(φ) = f(τqφ). τq is unitary on L2(G) for each q, and q 7→ τq

is a strongly continuous group on L2(G). For T > 0 define

PT =
1

ZT
exp

(
−
∫ T

−T
τqsφs(%) ds

)
W0 ⊗ G. (10)

Let Gφ denote G conditioned on φ0 = φ, and similarly let Wq be two-sided Brownian
motion conditioned on q0 = q. Eq,φ

W⊗G denotes expectation with respect to the measure
Wq ⊗ Gφ. In a similar fashion, we will use subscripts to denote the path measures and
superscripts to denote conditioning throughout the paper. (10) is related to the semigroup
Pt given by

(Ptf)(q, φ) = Eq,φ
W⊗G

(
exp

(
−
∫ t

0
τqsφs(%) ds

)
f(qt, φt)

)
(11)

for suitable functions f : Rd × K → C, as described below. The generator −H of Pt is
defined through

−Hf(q, φ) = lim
t→0

1
t

(Ptf(q, φ)− f(q, φ)) =
d

dt
Ptf(q, φ)

∣∣∣∣
t=0

whenever the limit exists. Formally it is easy to calculate −H. Let us write V%(q, φ) =
τqφ(%). Then differentiation of (11) and the product rule yield

−Hf(q, φ) = −V%(q, φ)f(q, φ) + lim
t→0

1
t
Eq,φ
W⊗G(f(qt, φt)− f(q, φ))). (12)

The second term of (12) is the generator 1
2∆ − Hf of the process W ⊗ G applied to f ,

where ∆ is the Laplacian on Rd, i.e. the generator of Brownian motion, and −Hf is the
generator of the Ornstein-Uhlenbeck process. Thus

Hf(q, φ) = −1
2
∆f(q, φ) + Hff(q, φ) + V%(q, φ)f(q, φ). (13)
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A rigorous proof of (13) in the appropriate function spaces is part of the content of Theorem
2.1.

Let C(Rd, L2(G)) be the space of functions f : Rd × K → C such that q 7→ f(q, .)
is continuous from Rd into L2(G), and let Cb(Rd, L2(G)) be the subspace of functions
f ∈ C(Rd, L2(G)) such that

‖f‖L∞(Rd,L2(G)) = sup
q∈Rd

‖f(q, .)‖L2(G) (14)

is finite. We will need to study Pt on two closed subspaces of Cb(Rd, L2(G)). The first one
is

C0(Rd, L2(G)) = {f ∈ Cb(Rd, L2(G)) : lim
|q|→∞

‖f(q, .)‖L2(G) = 0}.

The second subspace T is the image of L2(G) under the operator

U : L2(G) → C(R, L2(G)), Uf(q, φ) = τqf(φ).

Since τq is an isometry on L2(G) for each q, T equipped with the scalar product

〈f, g〉T = EG((U−1f)(U−1g)∗) =
〈
U−1f, U−1g

〉
L2(G)

. (15)

is a Hilbert space, ‖f‖T = ‖f‖L∞(Rd,L2(G), and U is an isometry from L2(G) onto T .

Theorem 2.1 Pt is a strongly continuous semigroup of bounded operators on T and on
C0(Rd, L2(G)). The generator of Pt on both spaces is given by −H, with H as in (13).
On T , H is a self-adjoint operator.

The proof is deferred to the appendix.

We use Pt to establish the infinite volume limits of the measures PT and NT . To begin
with, note that for a function f that depends on {qt : −T ≤ t ≤ T} only, ENT

(f) = EPT
(f).

This can bee seen by explicitly integrating the exponential of a linear functional appearing
in EPT

(f) with respect to the Gaussian measure G for fixed path q. Let I ⊂ R be an
interval, and let us write

SI(q) = −
∫

I

∫
I
W (qs − qt, |s− t|) ds dt (q ∈ C(R, Rd))

in the following. We then have

〈1, PT 1〉T = E0
W
(
eS[0,T ]

)
,

and

‖PT 1‖2
T = EG

((
E0,φ
W⊗G

(
e−

R T
0 τqsφs(%)

))2
)

.

Reversing time in one of the factors inside the EG expectation, using the Markov property
of G together with the fact that G is the stationary measure of G and integrating out the
Gaussian field we obtain

‖PT 1‖2
T = E0

W(eS[−T,T ]). (16)

These formulas are the key to
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Theorem 2.2 The infimum of the spectrum of H acting in T is an eigenvalue of multi-
plicity one. The corresponding eigenfunction Ψ ∈ T can be chosen strictly positive.

Proof: By assumption (6) there exists C% > 0 such that

S[−T,T ](q) ≤ S[−T,0](q) + S[0,T ](q) + C%

uniformly in the path q. We use this in (16), apply the Markov property of Brownian
motion in the resulting term and reverse time in one of the factors to get

‖PT 1‖2
T ≤ eC%

(
E0
W(eS[0,T ])

)2
= eC% 〈1, PT 1〉2T ,

and thus 〈
1,

PT 1
‖PT 1‖T

〉
T
≥ e−C%/2. (17)

The family (PT 1/ ‖PT 1‖T )T>0 is bounded and thus relatively compact in the weak topol-
ogy of T . Let Ψ be the weak limit along a subsequence (Tn) with Tn →∞ as n →∞. By
(17), Ψ 6= 0. We want to establish that Ψ is an eigenvalue of Pt. Let µ be the spectral
measure of H with respect to the vector 1 ∈ D(H) (domain in T ). Then the infimum of
the support of µ is

E0 = inf supp(µ) = − lim
T→∞

1
T

ln
(∫ ∞

−∞
e−Tx dµ(x)

)
.

E0 is also the infimum of the spectrum of H. This follows from the fact that Pt preserves
positivity: for f ∈ L∞ ∩D(H) we have

〈f, Ptf〉T ≤ 〈|f |, Pt|f |〉T ≤ ‖f‖2
L∞ 〈1, Pt1〉T

for all t > 0, and consequently the infimum of the support of the spectral measure associ-
ated to f is greater than E0. Since L∞ ∩D(H) is dense, E0 must be the infimum of the
spectrum of H. Again by using the spectral measure, we find

lim
T→∞

‖PT 1‖T
‖PT+s1‖T

= eE0s,

and thus 〈Ψ, PtΨ〉T = e−E0t = ‖Pt‖. This implies that Ψ is an eigenfunction of Pt, and
thus of H. Since Pt is positivity improving, Ψ is unique and can be chosen strictly positive
by the Perron-Frobenius theorem (cf. [12], section XIII.12, vol. 4). �

Having existence and uniqueness of Ψ under control, the spectral theorem yields

ΨT = eTE0(PT 1) → 〈1,Ψ〉T Ψ as T →∞ (18)

in T and thus in L∞(Rd, L2(G)).
In the following, Ψ will be chosen strictly positive and normalized. In the context of

the Nelson model, Ψ is the ground state of the dressed electron for total momentum zero.
Its existence (also for small nonzero momentum) was first proven by Fröhlich [8] using a
completely different method.
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It is now easy to identify the infinite volume limit of the families PT and NT . For
an interval I ⊂ R let us denote by FI the σ-field generated by the point evaluations
{(qt, φt) : t ∈ I}. Let P be the probability measure on paths (qt, φt)t∈R determined by

EP(f) = e2TE0EW⊗G

(
Ψ(q−T , φ−T )e−

R T
−T τqsφs(%) dsΨ(qT , φT )f

∣∣∣ q0 = 0
)

(19)

for each bounded, F[−T,T ]-measurable function f . From Theorems 2.1 and 2.2 we conclude
that P is the measure of a Markov process with generator L acting as

Lf = − 1
Ψ

(H − E0)(Ψf). (20)

This is in complete analogy with the ground state transform known from Schrödinger
semigroups.

Proposition 2.3 PT → P as T →∞ in the topology of local convergence, i.e. EPT
(f) →

EP(f) for each bounded, F[−t,t]-measurable function f and each t > 0.

Proof: Defining ΨT as in (18), we have for f ∈ Ft and t < T

EPT
(f) =

e2tE0

‖ΨT ‖2
T

EW⊗G

(
Ψ(T−t)(q−t, φ−t)e−

R t
−t τqsφs(%) dsfΨ(T−t)(qt, φt)

∣∣∣ q0 = 0
)

By (18) and 〈1,Ψ〉T > 0, Ψ(T−t)/ ‖ΨT ‖T → Ψ in T . Moreover, for bounded f ∈ F[0,T ],
the map Q on L∞(Rd, L2(G)) with

(Qg)(q, φ) = Eq,φ
W⊗G

(
exp

(
−
∫ t

0
τqsφs(%) ds

)
f(q, φ)g(qt, φt)

)
is a bounded linear operator on L∞(Rd, L2(G)); this follows from |Qg| ≤ ‖f‖∞ Pt|g| and
the boundedness of Pt. Thus

Q(Ψ(T−t)/ ‖ΨT ‖T ) T→∞→ QΨ

in L∞(Rd, L2(G)), and the claim follows. �

Theorem 2.4 The family (NT )T>0 converges to a probability measure N in the topology
of local convergence. Moreover, if f ∈ F[−t,t] depends only on {qs : −t ≤ s ≤ t} and
satisfies E0

W(|f |) < ∞, then also EN (|f |) < ∞, and ENT
(f) → EN (f) for such f .

Proof: The first statement follows from Proposition 2.3 when considering functions of
q only. All the other statements will be proved once we show that there exists C > 0 such
that

sup
T>0

ENT
(|f |) ≤ CE0

W(|f |) (21)

for all f ∈ F[−t,t]. To see (21), first note that

ENT
(|f |) ≤ e2C%

ZT
E0
W
(
eS[−T,−t]eS[−t,t]eS[t,T ] |f |

)
.

8



Using the Markov property, stationarity of increments and time reversal invariance of
two-sided Brownian motion, the latter term above is equal to

e2C%E0
W

(
RT (q−t)eS[−t,t](q)f(q)RT (qt)

)
,

where

RT (q) =
1√
ZT

Eq
W(eS[0,T−t]) =

〈1, PT−t1〉T
‖PT 1‖T

.

RT (q) is therefore independent of q and convergent as T → ∞. Since the pair potential
W is bounded, also S[−t,t] is uniformly bounded, and (21) follows. �

N describes the evolution of a particle driven by a stationary field. This field is given
by the K-valued process

ηt = τqtφt.

ηt is the configuration of the field φt as seen from the location qt of the particle.

Proposition 2.5 The process (ηt)t∈R is a reversible Markov process under P. The re-
versible measure is given by (U−1Ψ)2G.

Proof: Let f, g ∈ L2(G). Then (19) implies

EP(f(ηs)g(ηt)) = e|t−s|E0
〈
ΨUf, P|t−s|(ΨUg)

〉
T .

Thus the generator of the ηt-process is unitarily equivalent to the operator L (cf. (20)) on
the Hilbert space (T , ‖.‖Ψ), where ‖f‖Ψ = ‖Ψf‖T . L is self-adjoint on this Hilbert space,
L1 = 0, and ‖1‖Ψ = 1. This proves reversibility. �

The significance of the process (ηt)t∈R is that it governs the infinitesimal increments of
the process (qt)t∈R under N . More explicitly, let γ ∈ Rd be fixed, and hγ(q) = γ · q. From
Proposition 3.2 it will follow that Lhγ(q, φ) = (γ · ∇q ln(Ψ))(q, φ), and thus Lhγ ∈ T .
With

j = U−1(γ · ∇q lnΨ) ∈ L2(G), (22)

we have L(γ · q) = j(η). This fact is paraphrased by saying that qt is driven by ηt.

3 The central limit theorem

In this section we prove a functional central limit theorem for the process (qt)t≥0 under
the measure P. The results of the previous section make it possible to apply the Kipnis-
Varadhan method. The first ingredient is

Theorem 3.1 [10] Let (yt) be a Markov process with respect to a filtration Ft. Assume
that (yt) is reversible with respect to a probability measure µ0, and that the reversible
stationary process µ with invariant measure µ0 is ergodic. Let V be a µ0 square integrable
function on the state space with

∫
V dµ0 = 0. Suppose in addition that V is in the domain

of L−1/2, where L is the generator of the process yt. Let

Xt =
∫ t

0
V (ys) ds.
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Then there exists a square integrable martingale (Nt,Ft) such that

lim
t→∞

1√
t

sup
0≤s≤t

|Xs −Ns| = 0

in probability with respect to µ, where X0 = N0 = 0. Moreover,

lim
t→∞

1
t
Eµ(|Xt −Nt|2) = 0.

In [10] the theorem is stated for the case that Ft is the filtration generated by the
process (yt). From the proof given there, it is obvious that the above modification of the
theorem is also valid.

Let again L be the generator of the P-process, cf. (20), and let hγ(q) = γ · q with
γ ∈ Rd fixed. We write

γ · qt =
(

γ · qt −
∫ t

0
Lhγ(qs, φs) ds

)
+
∫ t

0
Lhγ(qs, φs)) ds. (23)

The term in brackets will turn out to be an Ft-martingale, and Theorem 3.1 will be
applicable to the remaining term on the right hand side. This gives γ ·qt as the sum of two
martingales, and the martingale central limit theorem may be applied. We now elaborate
this program and start with a result that allows us to calculate L(γ · q).

Proposition 3.2 If g ∈ C2(Rd), then ΨLg ∈ C(Rd, L2(G)). Moreover,

Lg(q, φ) =
1
2
∆g(q) +∇qg(q) · ∇q lnΨ(q, φ).

Proof: For α ∈ {1, . . . , d}, ∂α = ∂
∂qα

is the generator of the unitary group f 7→ τtqαf
on T , and is thus anti-selfadjoint on T . By Proposition 5.1, Hf + V% is bounded below on
T by −a ∈ R, say. Thus

E0 = 〈Ψ,HΨ〉T = −1
2

d∑
α=1

〈
Ψ, ∂2

αΨ
〉
T + 〈Ψ, (Hf + V%)Ψ〉T ≥

≥ 1
2

d∑
α=1

‖∂αΨ‖2
T − a.

This shows ∂αΨ ∈ T . Now by (H − E0)Ψ = 0 and (Hf + V%)gΨ = g(Hf + V%)Ψ, we find

(H − E0)gΨ = −1
2
Ψ∆g −∇qg · ∇qΨ,

and the proof is complete. �

Proposition 3.3 Let j be defined as in (22). Then

Mt = γ · qt −
∫ t

0
j(ηs) ds (24)

is an Ft-martingale with stationary increments under P. The quadratic variation of Mt

is |γ|2t.
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Proof: Let f ∈ C(Rd, R) such that EP(|f(qt)|2) < ∞ for all t ≥ 0, and suppose that Lf
and L(f2) are in all the L2-spaces induced by the images of P under (q, φ) 7→ (qt, φt), t ≥ 0.
Then

Πtf − f =
∫ t

0
ΠsLf ds

in all the L2-spaces introduced above. In the terminology of [7], (f, Lf) is in the full
generator of the transition semigroup Πt = etE0 1

ΨPtΨ of the P-process. It follows that
Mt = f(qt) −

∫ t
0 Lf(qs, φs) ds is a square integrable martingale, and a direct calculation

gives

EP((Mt)2) = EP(M2
0 ) +

∫ t

0
EP
(
L(f2)(qs, φs)− 2f(qs)Lf(qs, φs)

)
ds.

Using this general theory and the fact that L(γ · q) = j(η), we just have to check that
f(q) = γ · q fulfills the integrability conditions required at the beginning of the proof.
Using Proposition 3.2 and Theorem 2.4, this is immediate. �

Proposition 3.4 As t →∞,

lim
t→∞

1
t
EP((γ · qt)2) = |γ|2 − 2

〈
γ · ∇qΨ, (H − E0)−1γ · ∇qΨ

〉
T . (25)

Proof: By (24),

EP((γ · qt)2) = EP(M2
t )− EP

((∫ t

0
j(ηs) ds

)2
)

+ 2EP
(

(γ · qt)
∫ t

0
j(ηs) ds

)
. (26)

The third term in (26) is zero. This can be seen as follows: We have

EP
(

(γ · qt)
∫ t

0
j(ηs) ds

)
= E0

W((γ · qt)I(q)),

where

I(q) = EG
(

Ψ(η0)e−
R t
0 ηs(%) ds

(∫ t

0
j(ηs) ds

)
Ψ(ηt)

)
and q denotes a path (qt)t∈R. Put q̃s = qt−s − qt. Then by the reversibility of G and the
fact that G is invariant under the constant shift by τqt , we have I(q̃) = I(q). Moreover
q̃t = −qt, W0-almost surely, and W0 is invariant under the transformation q 7→ q̃. Thus

E0
W((γ · qt)I(q)) = −E0

W((γ · qt)I(q)) = 0.

From Proposition 3.3 we know that EP(M2
t ) = |γ|2t. Let Πt denote again the transition

semigroup of P. Then

1
t
EP

((∫ t

0
j(ηs) ds

)2
)

=
1
t

∫ t

0
ds

∫ t

0
dr
〈
γ · ∇q lnΨ,Π|r−s|γ · ∇q lnΨ

〉
Ψ0

t→∞→ −2
〈
γ · ∇q lnΨ, L−1γ · ∇q lnΨ

〉
Ψ0

=

= 2
〈
γ · ∇qΨ, (H − E0)−1γ · ∇qΨ

〉
T .
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Note that the last quantity is automatically finite; this follows from (26) and the positivity
of Pt. The proof is completed. �

Theorem 3.5 For the process qt under P, a functional central limit theorem holds, i.e.
as ε → 0, the process t 7→

√
εqt/ε, t ≥ 0, converges in distribution to Brownian motion with

diffusion matrix D given by

Dαβ = δαβ − 2
〈
∂αΨ, (H − E0)−1∂βΨ

〉
T , (α, β = 1, . . . , d).

Proof: We have to check that the process ηs and the functional j fulfill the assumptions
of Theorem 3.1. If so, (23) shows that qt is the sum of two martingales with stationary
increments and one negligible process, and the martingale functional central limit theorem
can be applied. The diffusion matrix can then be obtained from (25) by choosing the
canonical basis vectors eα in place of γ and polarization. For checking conditions of
Theorem 3.1, note that EP(j(ηt)2) < ∞ was shown in the proof of Proposition 3.2, and
(25) implies j ∈ D(L−1/2). Moreover, EP(ηt) =

∑
γα 〈Ψ, ∂αΨ〉T = 0 since ∂α is anti-

selfadjoint on T and Ψ is real-valued. Finally, ηs is a reversible Markov process with
respect to Ft by Proposition 2.5, and is ergodic, since Pt is positivity improving. �

4 Lower bound for the diffusion matrix

To complete the proof of Theorem 1.2 we still have to show that D > 0. For this purpose
we follow ideas from Brascamp et al. [4], who study fluctuations for anharmonic lattices,
one particular case of which is the path measure NT when discretized. Our main effort is
to show that the desired lower bound survives in the limits of zero discretization and of
T →∞.

Let us discretize [−T, T ] with step-size ε, Nε = T , and approximate (7) through

1
ZN

exp[−Hε(x)]
N∏

j=−N
j 6=0

dxj = µN

as a probability measure on R2Nd with

Hε(x) =
1
2ε

N−1∑
j=−N

(xj+1 − xj)2 +
1
2
κε

N∑
j=−N

x2
j +

1
2
ε2

N∑
i,j=−N

W (xi − xj , ε(i− j)) ,

κ > 0. Here x = (x−N , . . . , xN ), x0 = 0. Clearly, µN → NT weakly in the limits κ → 0,
ε → 0. Expectations with respect to µN are denoted by EN .

We define the 2Nd× 2Nd matrix Mκ through

Mκ
iα,jβ = EN (∂iαH∂jβH) = EN (∂iα∂jβH) , (27)

i, j = −N, · · · , N , i, j 6= 0, α, β = 1, · · · , d, ∂iα = ∂/∂xiα. Let
∑∗

i,α denote the sum
i = −N, · · · , N , i 6= 0, α = 1, · · · , d. Then for real coefficients fiα, giα one has, by partial

12



integration and Schwarz inequality,(∑
i,α

∗
fiαgiα

)2
= EN

((∑
i,α

∗
fiαxiα

)(∑
j,β

∗
gjβ∂jβH

))2

≤ EN

((∑
i,α

∗
fiαxiα

)2)
EN

((∑
j,β

∗
gjβ∂jβH

)2)
.

Since Mκ ≥ κ > 0, we can set g = (Mκ)−1f to obtain

EN

((
(
∑
i,α

∗
fiαxiα

)2)
≥
∑
iα,jβ

∗ (
(Mκ)−1

)
iα,jβ

fiαfjβ . (28)

From (27) one obtains Mκ
iα,jβ = Miα,jβ + κεδijδαβ with

Miα,jβ = −ε−1∆0
ijδαβ + ε2

(
KT

ε (iα, jβ)− δij

N∑
n=−N

n6=0

KT
ε (iα, nβ)

)
,

where ∆0 is the lattice Laplacian with Dirichlet boundary condition at j = 0, Neumann
boundary condition at j = ±N , and

KT
ε (iα, jβ) = EN (∂α∂βW (xi − xj , ε(i− j)) ,

∂α = ∂/∂xα. In (28) we further decrease on the right by substituting (Mκ + λ)−1 for
(Mκ)−1, λ > 0. We now take the limit ε → 0, κ → 0. Then, for f ∈ C([−T, T ], Rd), we
conclude that

ENT

((∫ T

−T
f(t) · qt dt

)2
)
≥
〈
f, (A0

T + λ)−1f
〉

(29)

for all λ > 0. Here 〈·, ·〉 denotes the inner product for L2([−T, T ], dt)⊗Cd, A0
T is the linear

operator
A0

T = −∆0,T ⊗ 1 + BT ,

−∆0,T = −d2/dt2 with Dirichlet boundary condition at 0 and Neumann boundary condi-
tion at ±T , and BT is the integral operator

BT fα(t) =
d∑

β=1

∫ T

−T
KT

αβ(t, s)(fα(t)− fβ(s))ds

with kernel
KT

αβ(t, s) = ENT
(∂α∂βW (qt − qs, t− s)) .

We take the limit T → ∞ in (29). For compactly supported f , the left hand side
converges to EN ((

∫
dtf(t) ·qt)2) by Theorem 2.4. For the right hand side we use a theorem

by Kurtz ([7], Thm. 1.6.1). We consider L2([−T, T ]) ⊗ Cd as a subspace on L2(R) ⊗ Cd.

13



Let A0 = −∆0 ⊗ 1 + B where −∆0 is the Laplacian on L2(R) with Dirichlet boundary
conditions at t = 0 and where

Bfα(t) =
d∑

β=1

∫
Kαβ(t, s)(fα(t)− fβ(s))ds

with kernel
Kαβ(t, s) = EN (∂α∂βW (qt − qs, t− s)) .

Putting Kαβ = K∞
αβ , we find for all T ≤ ∞∣∣∣∣∫ KT

αβ(t, s) ds

∣∣∣∣ ≤ ∫ %̂(k)2

2ω(k)2
|k|2 dk

and ∣∣∣∣∫ KT
αβ(t, s)fβ(s) ds

∣∣∣∣ ≤ ∫ ∫ %̂(k)2

2ω(k)
|k|2e−ω(k)|t−s||fβ(s)| dk ds.

By the Schwarz inequality, the L2(R)-norm of the right hand side above is bounded
by ‖f‖L2(R)

∫ b%(k)2

2ω(k)2
|k|2 dk, and thus BT and B are bounded operators on L2(R) ⊗ Cd.

Since clearly limT→∞ |Bfα(t) − BT fα(t)| = 0 pointwise, dominated convergence yields
limT→∞BT f = Bf in L2(Rd)⊗ C for all f ∈ L2(Rd)⊗ C. Now let

D = {g ∈ L2(R)⊗ C3|gα(0) = 0, g′′α ∈ L2; gα has compact support, α = 1, · · · , d}.

D is a core for A0, and limT→∞
∥∥((−∆0,T + ∆0)⊗ 1)g

∥∥ = 0. Thus also limT→∞A0
T g =

A0g, and from (29) and [7], Thm. 1.6.1 we conclude

EN
((∫

f(t) · qt dt
)2)

≥ 〈f, (A0 + λ)−1f〉 (30)

for λ > 0 and f ∈ L2(R)⊗ Cd.
It remains to estimate the right hand side of (30). Let K̂αβ be the Fourier transform

of K. K only depends on t− s, since N has stationary increments, thus in Fourier space
B is multiplication by K̂(0) − K̂(ω). Since by assumption (8)

∫
t2|Kαβ(t)|dt < ∞, there

exists a constant D0 such that

K̂(0)− K̂(ω) ≤ 1
1 + ω2

D0ω
2 (31)

as d× d matrices. Let B̄ be the operator corresponding to the right hand side of (31) and
−∆0 + B̄ = Ā0. By operator monotonicity and taking fα → γδt one achieves

EN
(
(γ · qt)2

)
≥ |γ|2(Ā0 + λ)−1(t, t) . (32)

Let A = −∆ + B̄ on L2(R). Then, as can be checked directly,

(Ā0 + λ)−1(t, s) = (A + λ)−1(t, s)−
[
(A + λ)−1)(0, 0)

]−1 (A + λ)−1(0, s)(A + λ)−1(t, 0) .
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A is multiplication by ω2+(1+ω2)−1D0ω
2 in Fourier space. Thus by explicit computation

lim
λ→0

(Ā0 + λ)(t, t) = (1 + D0)−1|t| . (33)

Combining (32) and (33) means that there is a constant c0 such that c0 > 0 and

EN
(
(γ · qt)2

)
≥ c0|γ|2|t|

for all γ ∈ Rd. Hence D ≥ c0 > 0.

5 Appendix: Proof of Theorem 2.1

We will prove Theorem 2.1 and start with collecting some facts that will be useful later
on.

Proposition 5.1 Let Hf and V% be as in (13). For each ε > 0 there exists a constant C
independent of q such that

‖V%f‖2
L2(G) ≤ ε ‖Hff‖2

L2(G) + C ‖f‖2
L2(G) (34)

for all f ∈ D(Hf). Hf + V%(q) is self-adjoint on D(Hf) and bounded below uniformly in q.

(34) means that the potential V% is infinitesimally small with respect to Hf . The proof
is given in [11] and uses the Fock space representation. Chapter 1 of [1] describes the link
between Fock space and Gaussian space. From (34), the remaining assertions follow by
the Kato-Rellich theorem [12].

Apart from the spaces introduced in the paragraph above Theorem 2.1, we will need

L∞(Rd, L2(G)) = {f : Rd ×K → C : ess sup
q∈Rd

‖f(q, .)‖L2(G) < ∞},

L∞(Rd ×K) = {f : Rd ×K → C : ess sup
q∈Rd,φ∈K

f(q, φ) < ∞}, and

L2(Rd, L2(G)) = {f : Rd ×K → C :
∫
|f(q, φ)|2 dq dG(φ) < ∞}.

Obviously, L∞(Rd ×K) ⊂ L∞(Rd, L2(G)).
We now give two identities connected with the semigroup Pt given in (11). By the

Markov property and time reversibility of W and G we find

‖Ptf‖2
L2(G) (q) = EW⊗G

(
f(q−t, φ−t)e

R t
−t τqsφs(%) dsf(qt, φt)

∣∣∣ q0 = q
)

(35)

for f ∈ L∞(Rd×K). As a semigroup of operators on L2(Rd, L2(G)), Pt is self-adjoint and
strongly continuous, and

Ptf(q, φ) = e−tHf(q, φ) in L2(Rd, L2(G)), (36)

where H is given by (13). In other words, −H is the generator of Pt in L2(Rd, L2(G)).
(36) is the Feynman-Kac-Nelson formula, and a proof can be given e.g. via the Trotter
product formula, cf. [1]. Note that the content of Theorem 2.1 is to extend (36) to the
spaces C0(Rd, L2(G)) and T carrying the sup-norm given in (14).
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Proposition 5.2 a) Pt is a semigroup of bounded operators on L∞(Rd, L2(G)).

b) If f ∈ L∞(Rd ×K) ∩ C(Rd, L2(G)), then Ptf ∈ Cb(Rd, L2(G)).

c) If f ∈ L∞(Rd ×K) ∩ C(Rd, L2(G)),then

‖Ptf − f‖L2(G)
t→0→ 0

uniformly on compact subsets of Rd.

Proof: a) We only have to show boundedness of Pt, the semigroup property then follows
from the Markov property of G and W. Since |Ptf | ≤ Pt|f | pointwise, it is sufficient to
consider positive functions. At first let f ∈ L∞(Rd ×K).

Let us fix a path q : [−t, t] → Rd, not necessarily continuous, and define the bilinear
form

〈f, g〉q =
∫

f(q−t, φ−t)e−
R t
−t τqsφs(%) dsg(qt, φt) dG(φ).

For two paths q, q̃,

| 〈f, g〉q − 〈f, g〉q̃ | ≤ ‖f‖∞ ‖g‖∞ EG
((

e−
R t
−t τqsφs(%) ds − e−

R t
−t τq̃sφs(%) ds

)2
)

, (37)

and an explicit Gaussian integration shows that q 7→ 〈f, g〉q is continuous from L∞([−t, t], R)
to R. Now let q be continuous, and define

q(n)
s =

n−1∑
j=−n

qtj/n1[tj/n,t(j+1)/n[(s).

Then

〈f, g〉q(n) =

〈
f,

n−1∏
j=−n

S
qtj/n

t/n g

〉
L2(G)

(38)

with
Sq

t g(φ) = Eφ
G

(
e−

R t
0 τqφs(%) dsg(φt)

)
By Proposition 5.1, e−t(Hf+V%(q)) is a bounded operator on L2(G) with

∥∥e−t(Hf+V%(q))
∥∥ ≤

etα for some α ∈ R. On the other hand,

Sq
t g(φ) = e−t(Hf+V%(q))g(φ)

in L2(G). This is a variant of (36), and can be proven in the same way. Now by the
Schwarz inequality and repeated use of the operator norm inequality, (38) yields

| 〈f, g〉q(n) | ≤ e2tα ‖f‖L2(G) (q−t) ‖g‖L2(G) (qt)

for bounded f and g. Since q(n) → q uniformly on [−t, t] as n → ∞, this remains valid
when we replace q(n) by q. An application of monotone convergence now gives

| 〈f, g〉q | ≤ e2tα ‖f‖L2(G) (q−t) ‖g‖L2(G) (qt) (39)
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for all q ∈ C(R, Rd), f, g ∈ L2(G). We use this in (35) and have established our first claim.
b) Let q, r ∈ Rd and f, g ∈ L∞(Rd ×K), and write fr(q, φ) = f(q + r, φ). Then

‖Ptf(q, .)− Ptf(q + r, .)‖2
L2(G) =

= EG

((
Eq,φ
W⊗G

(
e−

R t
0 τqsφs(%) dsf(qt, φt)− e−

R t
0 τ(qs+r)φs(%) dsfr(qt, φt)

))2
)

=

= Eq
W

(
〈f, f〉q + 〈fr, fr〉q+r − 2 〈f, fr〉q+1{t≥0}r

)
.

For each path q, each of the terms in the last line above converges to 〈f, f〉q as r → 0
by (37), (39) and the continuity of q 7→ f(q, .). Thus the integrand converges to zero
pathwise, and the second claim follows by dominated convergence.
c) Let

Qtf(q, φ) = Eq,φ
W⊗G(f(qt, φt)).

Then for bounded f ,
‖Qtf − Ptf‖L∞(Rd,L2(G))

t→0→ 0,

as a calculation similar to the one in (37) shows. Therefore we must only show that
‖Qtf − f‖L2(G) vanishes uniformly on compact sets as t → 0. Let us write ft(q, φ) =
f(q, φt). By reversibility of W and G and the Cauchy-Schwarz inequality,

‖Qtf(q, .)− f(q, .)‖2
L2(G) ≤ Eq

W

(
‖ft(qt, .)− f0(q0, .)‖2

L2(G)

)
.

Moreover,

‖ft(qt, .)− f0(q0, .)‖L2(G) ≤ ‖ft(qt, .)− ft(q0, .)‖L2(G) + ‖ft(q0, .)− f0(q0, .)‖L2(G) =
= ‖f(qt, .)− f(q0, .)‖L2(G) + ‖ft(q0, .)− f0(q0, .)‖L2(G) .

Thus it is enough to show that

‖ft(q, .)− f0(q, .)‖L2(G)
t→0→ 0 uniformly on compacts, (40)

and
Eq
W

(
‖f(qt, .)− f(q0, .)‖i

L2(G)

)
t→0→ 0, uniformly on compacts, i = 1, 2. (41)

In order to prove (40), suppose there exist bounded sequences (qn) ⊂ Rd, (tn) ⊂ R+ with
tn → 0, and ‖ftn(qn, .)− f0(qn, .)‖L2(G) > δ for all n. We may assume that qn converges
to q ∈ Rd. Then, with the notation introduced above,

δ < ‖ftn(qn, .)− f0(qn, .)‖L2(G) ≤ ‖ftn(qn, .)− ftn(q, .)‖L2(G) +
+ ‖ftn(q, .)− f0(q, .)‖L2(G) + ‖f0(q, .)− f0(qn, .)‖L2(G) =

= ‖ftn(q, .)− f0(q, .)‖L2(G) + 2 ‖f(qn, .)− f(q, .)‖L2(G) .

By choosing n0 so large that ‖f(qn, .)− f(q, .)‖L2(G) < δ/3 for all n > n0, we find that
‖ftn(q, .)− f0(q, .)‖L2(G) > δ/3 for all these n. However, ‖ftn(q, .)− f0(q, .)‖L2(G) must
converge to zero by the strong continuity of the semigroup corresponding to G, thus we
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have a contradiction. To prove (41), note that q 7→ f(q, .) is uniformly continuous on
compact sets. Thus for ε > 0 we may choose δ > 0 such that ‖f(q, .)− f(q̃, .)‖L2(G) < ε/2
for |q − q̃| < δ. Now by the properties of Brownian motion, there exists t0 > 0 such that
for 0 ≤ t < t0, Wq(|qt − q| > δ) < ε/(2i+1 ‖f‖i

L∞). Then Eq
W(‖f(qt, .)− f(q0, .)‖i

L2(G)) < ε
for such t and uniformly in q, proving (41). �

Proposition 5.3 Pt is a strongly continuous semigroup of bounded operators on C0 =
C0(R, L2(G)).

Proof: We want to use Proposition 5.2 b) and c) for approximation and therefore must
first show that L∞(Rd × K) is dense in C0. Let f ∈ C0 and take fR = (f ∧ −R) ∨ R for
R ≥ 0. Since L∞(K) is dense in L2(G), for each q ∈ Rd and each ε > 0,

Rq(ε) = inf{R ≥ 0 :
∥∥f(q, .)− fR(q, .)

∥∥
L2(G)

≤ ε} < ∞. (42)

Rq(ε) is bounded on compact subsets of Rd, for otherwise we would find (qn) ⊂ Rd with
qn → q and Rn = Rqn(ε) > n for all n. Choosing n0 so large that ‖f(qn, .)− f(q, .)‖L2(G) <
ε/3 for all n > n0, we would have

ε =
∥∥f(qn, .)− fRn(qn, .)

∥∥
L2(G)

≤

≤ ‖f(qn, .)− f(q, .)‖L2(G) +
∥∥f(q, .)− fRn(q, .)

∥∥
L2(G)

+
∥∥fRn(q, .)− fRn(qn., )

∥∥
L2(G)

≤

≤
∥∥f(q, .)− fRn(q, .)

∥∥
L2(G)

+ 2ε/3 ≤ ‖f(q, .)− fn(q, .)‖L2(G) + 2ε/3

for each n > n0. This implies Rq(ε/3) = ∞, in contradiction to (42). Thus Rq(ε) is
bounded on compacts. However, since f ∈ C0, Rq(ε) = 0 for |q| large enough, and thus
Rq(ε) is bounded on all Rd. Thus bounded functions are dense in C0.

Let us now show that Pt leaves C0 invariant. From (35) and (39) we see that

‖Ptf(q, .)‖L2(G) ≤ eCtEq
W

(
‖f(q−t, .)‖L2(G) ‖f(qt, .)‖L2(G)

)
.

W0(|qt| ≥ R) decays exponentially in R for all t, and so does ‖Ptf(q, .)‖L2(G). From
Proposition 5.2 b) it follows that Ptf ∈ Cb(Rd, L2(G)), and thus Ptf ∈ C0 for f ∈ C0 ∩
L∞(Rd×K). By Proposition 5.2 a) and approximation, we obtain PtC0 ⊂ C0. In a similar
way, we obtain strong continuity from Proposition 5.2 c). �

Proposition 5.4 Pt is a strongly continuous semigroup of bounded operators on T .

Proof: Let f ∈ T . By the invariance of G under the map φ 7→ τqφ for each q ∈ Rd and the
translation invariance of Wiener measure,

(Ptf)(q, φ) = E0,τqφ
W⊗G

(
e−

R t
0 τqsφs(%) dsτqtU

−1f(φt)
)

=

= U
(
E0,φ
W⊗G

(
e−

R t
0 τqsφs(%) dsτqtU

−1f(φt)
))
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and thus Ptf ∈ T . It is easy to see that L∞ ∩ T is dense in T . Strong continuity then
follows from Proposition 5.2 c) and (15). �

It remains to show that the generator of Pt is given by −H, with H from (13). Write
−HC0 for the generator in C0 and −HT for the generator in T . If f ∈ D(HT ) or f ∈
D(HC0), then fg ∈ D(HC0) for each g ∈ C2(Rd, C) with compact support, and fg ∈
D(HL2), where HL2 is the generator of Pt as a semigroup on L2(Rd, L2(G)). By the
Feynman-Kac-Nelson formula (36), we have HL2fg = Hfg almost everywhere, and thus
also HC0fg = −Hfg in L∞(Rd, L2(G)). Since HT , HC0 and H are local in q, we may now
use a smooth partition of unity to conclude HT f = HC0f = Hf . H is obviously symmetric
in T , and is thus self-adjoint as the generator of a strongly continuous semigroup. The
proof of Theorem 2.1 is completed. �
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