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Abstract. We assume that the transition matrix of a Markov chain depends on a
parameter ε, and converges as ε → 0. The chain is irreducible for ε > 0 but may have
several essential communicating classes when ε = 0. This leads to metastable behavior,
possibly on multiple time scales. For each of the relevant time scales, we derive two
effective chains. The first one describes the (possibly irreversible) metastable dynamics,
while the second one is reversible and describes metastable escape probabilities. Closed
probabilistic expressions are given for the asymptotic transition probabilities of these
chains. As a consequence, we obtain efficient algorithms for computing the committor
function and the limiting stationary distribution.
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1. Introduction

In this paper we give a detailed analysis of the asymptotic dynamics and stationary dis-
tribution for a special class of metastable Markov chains. Loosely speaking, a metastable
Markov chain is one that, on short time scales, looks like a stationary Markov chain ex-
ploring only a small subset of its state space; on longer time scales, however, it performs
fast and rare transitions between different such subsets.

The topic of metastability is an old one. Its origins can be traced back at least to the
works of Eyring [10] and Kramers [13], who studied it in the context of chemical reaction
rates. In the context of perturbed dynamical systems, Freidlin and Wentzell [11] developed
a systematic approach based on large deviation theory. This approach was extended by
Berglund and Gentz [3] to cover stochastic bifurcation and stochastic resonance, and by
Olivieri and Scoppola [20, 21] to study dynamics of Markov chains with exponentially
small transition probabilities. Bovier, Eckhoff, Gayrard and Klein [5, 6, 7] developed a
systematic approach based on capacities, and gave a precise mathematical definition for
metastability. The transition path theory [25, 26] investigates the most probable paths
that the Markov chain uses when travelling between different metastable states. Recent
books on various aspects of metastability include the monograph [19], and the lecture
notes [4]. As we will discuss in Section 4, the chains treated in the present paper are
metastable in the sense of Bovier at al. In the case of reversible Markov chains, many of
our results can be deduced from the theory of [5, 6, 7], although our proofs are different
and do not rely on the variational methods used there. For the non-reversible case, our
results are new. Our main new tool in this context is Proposition 2.1, which, while being
quite elementary, is surprisingly useful for the situation at hand.

A different type of metastable Markov chains, called nearly decomposable chains, is well
known in the computer science community. For these, reversibility is not assumed, but
instead the asymptotic essential classes need to be directly accessible from each other, and
transient states are not allowed. The seminal paper in this context is by Simon and Ando
[22], where they derive the metastable behavior and some information on the asymptotic
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stationary measure for such chains. Subsequently, the method was clarified and extended,
and Meyer [17] realized that many of the extensions have a common foundation that he
called the theory of the stochastic complement. Many further extensions and refinements
of the method have been given since. We refer to the recent papers [24, 18, 23] and
the references therein. Our contribution in this context is to show that the assumption
of almost decomposability is not necessary for extracting the asymptotic information on
both the metastable behavior and the stationary measure. We comment more on this at
the end of Section 5.

A third, apparently independent, effort to treat metastable Markov chains took place
in the context of game theory and mathematical economy. Here the start was made by
HP Young [29]. He basically advocated using the Markov chain tree theorem, as given in
[1] or [11]. Up to normalization, it gives the stationary measure µ(x) as the sum of terms
w(t) indexed by the directed spanning trees of S rooted in x, where the weight w(t) of a
tree t is the product of all transition probabilities along its edges; for details see [1]. As
has been pointed out in [9], the problem with this formula is that while it is in principle
not numerically unstable, it involves computing all spanning trees, which is exponentially
expensive and thus becomes non tractable for large state spaces. Moreover, all of the w(t)
are usually tiny, and so we are trying to add an astronomical number of tiny terms, which
is not a good idea.

A different approach was taken by Wicks and Greenwald [27, 28] who offer a solution
that is closer to the one described in [17], but differs in some important details. At the
center of their method is what they call the quotient construction on stochastic matrices,
which allows them to recursively simplify the state space and, by keeping track of the
various simplifications, to compute limε→0 µε in the end.

In Section 5, we give a new algorithm for computing the stationary distribution of
metastable Markov chains, and comment on the similarities and differences to the algo-
rithms given in [27, 28].

Let us describe our setup and results in some more detail. Consider a family of discrete

time Markov chains X(ε) = (X
(ε)
n )n∈N0 with finite state space S and transition matrices

Pε = (pε(x, y))x,y∈S . We assume that the map ε 7→ pε(x, y) is continuous at ε = 0 for all

x, y ∈ S, and that the Markov chain X(ε) is irreducible when ε > 0. For ε = 0 however, the
chain may have several essential communicating classes. Such a family of Markov chains
is called an irreducible perturbation of X(0), or simply an irreducibly perturbed Markov
chain.

The first main result of the paper is a description of the multi-scale metastable behavior
of the chain. Let E1, . . . , En be the essential classes of the chain at parameter ε = 0. We
pick xi ∈ Ei for all i 6 n and define an effective chain X̂(ε) with state space {x1, . . . , xn}.
We prove that this chain captures the effective dynamics of the original chain on the
shortest metastable time scale, in the sense that its escape probabilities and stationary
distribution are asymptotically independent of the choice of the representatives x1, . . . , xn,
and asymptotically equal to those of the original chain. For the stationary distribution,
this means that limε→0 µ̂ε(xi)/µε(Ei) = 1, where µ̂ε and µε are the stationary distributions
of the respective chains. A central tool is a natural, reversible chain that has the same
stationary distribution as X̂(ε) and is interesting in its own right.

In order to explore longer metastable time scales, we renormalize the effective chain: for
X̂(ε), all transitions between different states will vanish in the limit ε → 0. By rescaling
time under suitable conditions, we obtain a new perturbed Markov chain, where at least
one transition probability between distinct states is of order one as ε → 0. We can now
iterate the procedure described above, yielding effective chains on smaller and smaller state
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spaces and encoding the dynamics of the original chain on longer and longer metastable
time scales.

A similar program has been carried out before by Olivieri and Scoppola [20, 21]. The
difference to our approach is that [20, 21] relies on (and extends) the theory of Freidlin and
Wentzell, while our approach is closer to the potential theoretic methods of Bovier et. al.
[4]. This allows us to avoid many of the technical complications found in [20, 21]. Also,
Olivieri and Scoppola only consider Markov chains with exponentially small transition
probabilities, and study asymptotics on a logarithmic scale. In contrast, our methods allow
for much more general families of transition matrices, and our results are asymptotically
sharp in the sense that we identify the correct prefactors for all our asymptotic identities.
The last fact is particularly useful in practice, since it allows us to devise numerically
stable algorithms for computing the asymptotic stationary distribution limε→0 µε(x) for
all states x ∈ S. Alternatively, we can compute the ratio of the stationary distributions for
two given states x, y without computing the full stationary distribution, thus potentially
decreasing the computational cost considerably. These algorithms are the second main
result of our work.

The paper is organized as follows: in Section 2, we collect some results on escape times
for irreducible Markov chains that seem hard to find in the literature. In Section 3, we
introduce perturbed Markov chains and show how the results from Section 2 can be used
to obtain asymptotic expressions of various important quantities. These will be used in
Section 4 to describe the multi-scale effective dynamics of the chain. Finally, in Section 5,
we present our numerical algorithms and compare them to those present in the computer
science and economics literature.

2. Stationary measures, escape probabilities and hitting distributions

Here we collect the main tools that we will use. In this section, X is a general discrete
time Markov chain. In contrast to the remainder of the paper, we do not assume the state
space S to be finite, but we will assume that X is irreducible and recurrent unless stated
otherwise.

All of the results below are more ore less direct consequences of the strong Markov
property, and thus likely to be known. However, we did not find direct references for
them, so we also give the short proofs.

For a Markov chain X on a state space S, the hitting time of a set A ⊂ S is denoted
by τA(X) = inf{n > 0 : Xn ∈ A}, and the return time by τ+

A (X) = inf{n > 0 : Xn ∈ A}.
As usual, we will write τx instead of τ{x} for x ∈ S, and similarly for τ+

x .

Proposition 2.1. Assume that X is irreducible and positive recurrent, and write µ for
the unique stationary distribution. Then for all x, y ∈ S,

(2.1) µ(x)Px(τ+
y < τ+

x ) = µ(y)Py(τ+
x < τ+

y ).

Proposition 2.1 looks rather fundamental. Note in particular its formal similarity to
the detailed balance equation. We were surprised that we could not find a reference where
it is stated explicitly. When the Markov chain X itself is reversible, Proposition 2.1 is
a direct consequence of the well established theory of electrical networks, see e.g. [16].
For the non-reversible case, we have not found Proposition 2.1 explicitly anywhere in the
literature, but it follows from Corollary 8 of Chapter 2 in the unfinished, but brilliant,
monograph by Aldous and Fill [1]. We give a different, short proof for the convenience of
the reader, based on the following result:
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Lemma 2.2. Let X be irreducible and positive recurrent. For all states x, y, z ∈ S,

Ez(τ+
x ) = Ez(min(τ+

x , τ
+
y )) + Pz(τ+

y < τ+
x )Ey(τ+

x ).

Proof. By our assumptions, τ+
y <∞ almost surely. Thus

Ez(τ+
x ) = Ez(τ+

x , τ
+
x 6 τ

+
y ) + Ez(τ+

y , τ
+
y < τ+

x ) + Ez(τ+
x − τ+

y , τ
+
y < τ+

x ),

The first two terms of the last line above sum up to Ez(min(τ+
x , τ

+
y )), and the last term

is equal to Pz(τ+
y < τ+

x )Ey(τ+
x ) by the strong Markov property. �

Proof of Proposition 2.1. If x = y, the claim boils down to 0 = 0, so let us assume that
x 6= y. By using Lemma 2.2 in two different ways we obtain

Ey(τ+
y ) = Ey(min(τ+

y , τ
+
x )) + Py(τ+

x < τ+
y )Ex(τ+

y ),

Ey(τ+
x ) = Ey(min(τ+

x , τ
+
y )) + Py(τ+

y < τ+
x )Ey(τ+

x ).
(2.2)

Rearranging gives Ey(min(τ+
x , τ

+
y )) = Ey(τ+

x )Py(τ+
x < τ+

y ), and using µ(y) = Ey(τ+
y )−1

leads to

(2.3) µ(y)Py(τ+
x < τ+

y ) =
1

Ex(τ+
y ) + Ey(τ+

x )
,

which is essentially Corollary 8 of Chapter 2 of [1]. For our purposes, we note that the
right-hand side of (2.3) is invariant under swapping x and y. �

Remark: In the continuous time setting, the whole proof of Lemma 2.2 and almost all
of the proof of Proposition 2.1 goes through unchanged if we define τ+

x = inf{t > 0 : Xt =
x,Xs 6= X0 for some 0 6 s 6 t}. The only difference is that the formula for the stationary
measure in that case is given by µ(y) = Ey(τ+

y )−1λ(y)−1, where λ(y) is the exponential
rate with which the process jumps away from y. This gives the formula

µ(x)λ(x)Px(τ+
y < τ+

x ) = µ(y)λ(y)Py(τ+
x < τ+

y ),

which is a special case of the symmetry result on capacities for non-reversible continuous
time Markov chains derived by Gaudilliére and Landim [12], and applied to investigate
metastability by Beltrán and Landim [2]. Their proof is much less elementary than the
one presented here.

A direct consequence of Proposition 2.1 is

Corollary 2.3. The stationary distribution µ of X fulfills the set of equations

(2.4)
1

µ(x)
=
∑
y∈S

Px(τ+
y 6 τ

+
x )

Py(τ+
x 6 τ

+
y )
.

To use Corollary 2.3, we need find a way to compute the escape probabilities appearing
in (2.4). We will now collect some tools that will help us to do this, asymptotically, in the
context of perturbed Markov chains.

Proposition 2.4. Let X be an irreducible, recurrent Markov chain. For A ⊂ S, x ∈ S
and y ∈ A, we have

(2.5) Px(Xτ+A
= y) = p(x, y) +

∑
z∈S\A

Px(τ+
z < τ+

A )

Pz(τ+
A < τ+

z )
p(z, y).

When x ∈ S \A, (2.5) simplifies to

(2.6) Px(Xτ+A
= y) =

∑
z∈S\A

Px(τz < τ+
A )

Pz(τ+
A < τ+

z )
p(z, y).
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Proof. Put τ+
z,0 := 0, and for k > 1 let

τ+
z,k := min{n ∈ N : |{0 < j 6 n : Xj = z}| = k},

be the k-the hitting time of z. With

Ωy,k,z := {τ+
z,k < τ+

A , Xτ+z,k+1 = y},

we have
⋃
k > 1

⋃
z∈S\A Ωy,k,z = {1 < τ+

A < ∞, Xτ+A
= y}, and the sets Ωy,k,z are disjoint.

As the chain is irreducible and recurrent, P(τ+
A =∞) = 0 holds, and thus

(2.7) Px(Xτ+A
= y) = p(x, y) +

∑
z∈S\A

∑
k > 1

Px(Ωy,k,z).

For k > 1, the strong Markov property and induction gives

Px(Ωy,k,z) = Px(τ+
z < τ+

A )Pz(Ωy,k−1,z) = Px(τ+
z < τ+

A )Pz(τ+
z < τ+

A )k−1Pz(Ωy,0,z).

Summing up the geometric series in k and using Pz(Ωy,0,z) = p(z, y) proves (2.5).
To deduce (2.6) from (2.5), note that when x /∈ A, we have Px(τ+

z < τ+
A ) = Px(τz < τ+

A ).

Furthermore, when z = x, Px(τ+
x < τ+

A ) + Px(τ+
A < τ+

x ) = 1 = Px(τx < τ+
A ), and (2.6)

follows by rearranging. �

A variant of Proposition 2.4 is well known and is the basis of many algorithms for
computing stationary distributions of large Markov chains. It is called the quotient con-
struction by [27, 28], and the stochastic complement by Meyer [17]. While in all those
references, it is written in matrix language, we give here the probabilistic formulation,
which also has the benefit that we can give a short and transparent proof.

Proposition 2.5. ([17, 28]) Assume that the state space S is finite, A ⊂ S, x ∈ S and
y ∈ A. Then

(2.8) Px(Xτ+A
= y) = p(x, y) +

∑
z,w∈Ac

p(x,w)(1− P |Ac)−1(w, z)p(z, y),

where P |Ac = (p(x, y))x,y∈Ac is the restriction of the transition matrix P to Ac.

Proof. Clearly, Px(Xτ+A
= y) = p(x, y) +

∑
w∈Ac p(x,w)Pw(XτA = y). Now, standard

results [16] state that hy(w) := Pw(XτA = y) is the unique harmonic extension of the
function 1{y} from A to S. In other words, hy is the unique function so that Phy(w) =
hy(w) for all w ∈ Ac, and hy(w) = 1{y}(w) on A. This can be rewritten as (P |Ac −
1)hy(w) = −P1{y}(w) = −p(w, y) for all w ∈ Ac. Since X is irreducible, there exists
n ∈ N with ‖(P |Ac)n‖ < 1, where ‖.‖ is the operator norm of a matrix. Thus (1 − P |Ac)
is invertible. The claim follows. �

For the following result, we do not assume irreducibility of the chain.

Lemma 2.6. Let (Xn) be an arbitrary Markov chain, A,B ⊂ S. Assume x /∈ A ∪B and
Px(τ+

B <∞) > 0. Then

Px(τ+
B < τ+

A ) =
Px(τ+

B < τ+
A∪{x})

Px(τ+
B < τ+

x )
.

Proof. The strong Markov property gives

Px(τ+
B < τ+

A ) = Px(τ+
B < τ+

A∪{x}) + Px(τ+
x < τ+

B )Px(τB < τA).
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As x /∈ A ∪B, we have Px(τB < τA) = Px(τ+
B < τ+

A ). Since we assumed Px(τ+
B <∞) > 0,

we must have 1 − Px(τ+
x < τ+

B ) = Px(τ+
B < τ+

x ) > 0. Thus we can rearrange and obtain
the result. �

For our next statement, fix a proper subset C(S, and define for all x, y ∈ S
(2.9) p̃(x, y) := p(x, y) if x /∈ C, p̃(x, y) := Px(XτCc = y) if x ∈ C.

Proposition 2.7. Let X be an irreducible, recurrent Markov chain. Then P̃ = (p̃(x, y))x,y∈S
is the transition matrix of a Markov chain X̃. Denoting its path measure by P̃, we have

(2.10) P̃x(τB < τA) = Px(τB < τA).

for all A,B ⊂ S with (A ∪B) ∩ C = ∅, and all x ∈ S.

Proof. Since (Xn) is irreducible and recurrent and Cc 6= ∅, Px(τCc <∞) = 1 for all x ∈ C.

Thus it is obvious that P̃ is a stochastic matrix. The statement (2.10) is also intuitively
obvious, since all we do is replace the motion inside C with the effective motion from C
to its exterior. We nevertheless give the short formal proof.

We write σm for the m-th time that the chain (Xn) travels between two states that are
not both in C, i.e.

σ0 := 0, σm := min{n > σm−1 : Xn /∈ C or Xn−1 /∈ C}.
On Ω0 = {σm < ∞ ∀m ∈ N}, we define X̃m = Xσm . Then Px(Ω0) = 1 for all x ∈ S

by recurrence and irreducibility of X, and X̃ is a Markov chain by the strong Markov
property of X. Since Px(X̃1 = y) = Px(Xσ1 = y) = p̃(x, y), the transition probabilities of

X̃ are given by (2.9). Since C is disjoint from A and B, we have

{τA(X) < τB(X)} ∩ Ω0 = {τA(X̃) = τB(X̃)} ∩ Ω0,

and (2.10) follows by taking expectations. �

For our final general statement, we introduce the notion of a direct path which will be
useful in several places below. Let J , A and B be subsets of S. A tuple γ = (x1, . . . , xn) ∈
Sn is called a direct J-path of length n from A to B if x1 ∈ A, xn ∈ B, and for all
1 6 i < j 6 n, if xi = xj then i = 1 and j = n. Note that we allow x1, xn /∈ J . The
set of all direct J-paths from A to B will be denoted by ΓJ(A,B), and the components of
γ ∈ ΓJ(A,B) will be written γi, i = 1, . . . , n. |γ| will denote the length of γ. For A = {x}
or B = {y} we will use the notations Γ(A, y) instead of Γ(A, {y}) etc, and speak of direct
J-paths from A to y, from x to y or from x to B. The probability of a direct J-path is

defined by P(γ) :=
∏|γ|−1
j=1 p(γj , γj+1).

Proposition 2.8. Let J be a finite subset of S. Then for all x ∈ J and y ∈ S \ J ,

(2.11) Px(XτS\J = y) =
∑

γ∈ΓJ (x,y)

|γ|−1∏
i=1

p(γi, γi+1)

1− Pγi(Xτ+
(S\J)∪{γ1,...,γi}

= γi)

Proof. The idea of the proof is to start at state x and run the Markov chain until it either
hits S \ J or returns to x. In the first case we have reduced the problem to computing
Pz(Xτ(S\J)∪{x} = y) and we iterate the argument for the smaller set J \ {x}; in the second
case we use the strong Markov property to restart the process.

We proceed by induction on |J |. The claim trivially holds for J = ∅; so now let x ∈ J .
The strong Markov property then gives

Px(XτS\J = y) = Px(Xτ+
(S\J)∪{x}

= y) + Px(Xτ+
(S\J)∪{x}

= x)Px(XτS\J = y)
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By recurrence and irreducibility, we have Px(Xτ+
(S\J)∪{x}

= x) < 1, and we rearrange to

Px(XτS\J = y) =
Px(Xτ+

(S\J)∪{x}
= y)

1− Px(Xτ+
(S\J)∪{x}

= x)

where the numerator may be decomposed as p(x, y)+
∑

z∈J\{x} p(x, z)Pz(Xτ(S\J)∪{x} = y).

Finally, we use the induction hypothesis for the set J \{x} to rewrite Pz(Xτ(S\J)∪{x} = y)

for all z ∈ J \ {x}, and obtain

Px(XτS\J = y) =
p(x, y)

1− Px(Xτ+
(S\J)∪{x}

= x)

+
∑

z∈J\{x}

∑
γ∈ΓJ\{x}(z,y)

p(x, z)

1− Px(Xτ+
(S\J)∪{x}

= x)

|γ|−1∏
i=1

p(γi, γi+1)

1− Pγi(Xτ+
(S\J)∪{x,γ1,...,γi}

= γi)

Re-indexing yields the claim. �

3. Perturbed Markov chains: escape probabilities

Let X(0) = (X
(0)
n )n∈N be a Markov chain on a finite state space S. A family X(ε) =

(X
(ε)
n )n∈N of Markov chains on S indexed by ε > 0 is called a perturbation of X(0) if

limε→0 pε(x, y) = p0(x, y) for all x, y ∈ S, where pε(x, y) denotes the elements of the

transition matrix Pε of the chain X(ε), ε > 0. We will speak of an irreducible perturbation
of X(0) (or, alternatively, call the family X(ε) an irreducibly perturbed Markov chain) if

the chain X(ε) is irreducible for all ε > 0.
Note that in the definition of irreducibly perturbed Markov chains, we do not require

that X(0) be irreducible, and indeed the case where X(0) has several ergodic components
is the interesting one. Recall that x ∈ S is called accessible from y ∈ S under X(ε) if
Pyε(Xn = x) > 0 for some n > 0. We write x → y if y is accessible from x, and say that
two states x and y communicate if x→ y and y → x. The property to communicate forms
an equivalence relation, and the respective equivalence classes are called communicating
classes. A state x is called essential if y → x for all y ∈ S such that x → y, otherwise
transient. It is easy to see that either all members of a communicating class E are essential,
or all are transient. In the first case, E is called an essential (communicating) class, or
ergodic component.
S can thus be decomposed into finitely many disjoint essential classes E1, . . . En and

the set F = S \
⋃n
i=1Ei of transient states. To emphasize that a nontrivial ergodic

decomposition only exists for ε = 0, we will always speak of P0-essential classes and
P0-transient states. E will denote the set of all P0-essential classes.

The sets Ei and F can be conveniently described in terms direct paths. The following
statement could be taken as a definition of P0-essential classes and P0-transient states; the
proof of equivalence to the traditional definition of essential classes (see e.g. [16]) is very
easy, and omitted here. Here and below, we will say that a direct path γ is P0-relevant if
P0(γ) = limε→0 Pε(γ) > 0, otherwise P0-irrelevant.

Lemma 3.1. Let X(ε) be an irreducibly perturbed Markov chain.
a) x, y ∈ S are in the same P0-essential class E if and only if there exists a P0-relevant
direct E-path from x to y, and a P0-relevant direct E-path from y to x.
b) x ∈ S is in the transient set F if and only if all direct S-paths from

⋃n
j=1Ej to x are

P0-irrelevant.
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In much of what follows, we will use the following concept of asymptotic equivalence.
Two functions ε 7→ aε and ε 7→ bε from R+

0 to R+
0 are asymptotically equivalent, if either aε

and bε are identically zero, or bε > 0 for all ε ∈ (0, ε0) with some ε0 > 0 and limε→0 aε/bε =
1. Note that in the latter case, we do not assume convergence of aε or bε. We write
aε ' bε if aε is asymptotically equivalent to bε. It is easy to see that ' is indeed an
equivalence relation, and in particular this implies 1/aε ' 1/bε whenever aε ' bε and aε
is not identically zero. We will also need to know that ' is stable under addition and
multiplication in the following sense: if aε ' bε and cε ' dε, then aε + cε ' bε + dε, and
aεcε ' bεdε. Stability under multiplication is trivial, and stability under addition follows
from

|aε+cεbε+cε
− 1| = |aε/bε−1

1+cε/bε
| 6 |aεbε − 1|

and transitivity of '. Note that we did not assume that aε ' cε in either case.
Let E ∈ E be a P0-essential class. The restriction of X(0) to E is the Markov chain

with state space E and transition matrix (p0(x, y))x,y∈E . It is irreducible, and thus has a
unique strictly positive stationary distribution νE . The trivial extension of νE to S (by
putting νE(x) := 0 for x /∈ E) will be denoted by the same symbol, and is an extremal
point of the convex set of stationary distributions for P0. The following lemma shows that
when we focus our attention on a single P0-essential class, the unperturbed chain gives a
faithful asymptotic description of both the dynamics and the stationary distribution. Here
and below we will write µε for the unique stationary distribution of X(ε), when 0 < ε.

Lemma 3.2. Let E ∈ E be a P0-essential class. Then for all x, y ∈ E and all z ∈ S,

(3.1) lim
ε→0

Pxε (τ+
y < τ+

z ) = Px0(τ+
y < τ+

z ), and lim
ε→0

Pxε (τy < τz) = Px0(τy < τz),

and

(3.2) lim
ε→0

µε(x)

µε(y)
=
νE(x)

νE(y)
.

In particular, µε(x)/µε(y) ' νE(x)/νE(y).

Proof. We only prove the first equality from (3.1), the proof for the second one is identical.
We decompose

(3.3) Pxε (τ+
y < τ+

z ) = Pxε (τ+
y < τ+

{z}∪Ec) +
∑
w∈Ec

Pxε (Xτ+
Ec∪{y}

= w)Pwε (τ+
y < τ+

z ).

By Proposition 2.4, for w ∈ Ec we have

Pxε (Xτ+
Ec∪{y}

= w) = pε(x,w) +
∑

u∈E\{y}

Pxε (τ+
u < τEc∪{y})

Puε (τ+
Ec∪{y} < τ+

u )
pε(u,w),

and for each u ∈ E, there is a P0-relevant direct E-path γ from u to y. Thus we have
lim infε→0 Puε (τ+

Ec∪{y} < τ+
u ) > 0, therefore limε→0 Pxε (Xτ+

Ec∪{y}
= w) = 0, and the second

term on the right-hand side of (3.3) vanishes as ε→ 0.
For the first term of (3.3), x and y being in the same P0-essential class implies that for

each small enough ε0 > 0 and each δ > 0, we can find n ∈ N such that for all ε < ε0

Pxε (τ+
y < τ+

{z}∪Ec , τ
+
y < n) 6 Pxε (τ+

y < τ+
{z}∪Ec) 6 Pxε (τ+

y < τ+
{z}∪Ec , τ

+
y < n) + δ.

Since the elements of the transition matrix converge, we have

lim
ε→0

Pxε (τ+
y < τ{z}∪Ec , τ

+
y < n) = Px0(τ+

y < τ{z}∪Ec , τ
+
y < n) = Px0(τ+

y < τ+
z , τ

+
y < n).

As δ was arbitrary, (3.1) follows. For (3.2), we apply (2.1). �
8



As an immediate corollary, we obtain some information on the structure of the stationary
distribution in the limit ε → 0. Recall that E = {E1, . . . , En} is the collection of P0-
essential classes, and F is the set of transient states.

Corollary 3.3. Let z ∈ S.
a) If z ∈ F , then limε→0 µε(z) = 0.
b) If z ∈ E for some E ∈ E, then µε(z) ' µε(E)νE(z).
c) In particular if limε→0 µε(E) exists for all E ∈ E, then limε→0 µε(x) exists for all x ∈ S,
and

lim
ε→0

µε(x) =
∑
E∈E

lim
ε→0

µε(E)νE(x).

The practical usefulness of Corollary 3.3 depends on our ability to compute asymptotic
expressions for the µε(E). We now give two statements that help us achieve this. The first
says that hitting probabilities are asymptotically equivalent when the transition matrices
are. The second describes how a perturbed Markov chain leaves a P0-essential class, with
or without the additional condition that it cannot return to its starting point.

Theorem 3.4. Let X(ε) and X̃(ε) be perturbed Markov chains with finite state space S,
but not necessarily irreducible. Let us assume that pε(x, y) ' p̃ε(x, y) for the elements of
the respective transition matrices. Then for all A,B ⊂ S and all x ∈ S, we have

Pxε (τB < τA) ' P̃xε (τB < τA).

Proof. We will first show that the statement holds in the case where Pε and P̃ε only differ
in one row, i.e. where

(3.4) pε(z, y) ' p̃ε(z, y) for some z ∈ S, and pε(x, y) = p̃ε(x, y) for all other x ∈ S.

The claim is then proved by induction. For the case where (3.4) holds, first note (e.g.
using a coupling argument) that for all x ∈ S,

Pxε (τB < τA, τB 6 τz) = P̃xε (τB < τA, τB 6 τz).

Thus,

Pxε (τB < τA) = P̃xε (τB < τA, τB 6 τz) + Pxε (τB < τA, τz < τB).

Since {τz < τB, τz =∞} = ∅, we can now use the strong Markov property to find

Pxε (τB < τA, τz < τB) = Pxε (τz < τB)Pzε(τB < τA).

Again Pxε (τz < τB) = P̃xε (τz < τB), and it remains to show that Pzε(τB < τA) ' P̃zε(τB <
τA). If z ∈ A ∪ B, this is trivial. For z /∈ A ∪ B, Pzε(τB < τA) = Pzε(τ+

B < τ+
A ), and

P̃zε(τB < τA) = P̃zε(τ+
B < τ+

A ). We are aiming to use Lemma 2.6, and thus need to deal

with the possibility that Pzε(τ+
B <∞) = 0.

We assumed p(x, y) ' p̃(x, y) for all x, y ∈ S, and so we also have Pxε (γ) ' P̃xε (γ)
for each direct path from x to B. By the definition of ', a direct path γ from x to B
fulfills Pxε (γ) > 0 for all ε > 0 in a neighborhood of ε = 0 if and only if P̃xε (γ) > 0 in a

neighborhood of 0. Let us first assume that no such direct path exists. Then Pzε(X
(ε)
n ∈

B) = P̃zε(X
(ε)
n ∈ B) = 0 for all n ∈ N, and thus Pz(τB < τA) = P̃zε(τB < τA) = 0. Now let

us assume that such direct paths do exist. Since Pxε (τB <∞) > Pxε (γ), we can use Lemma
2.6 to get

Pzε(τ+
B < τ+

A ) =
Pzε(τ+

B < τ+
A∪{z})

Pzε(τ+
B < τ+

z )
.

9



Now,

Pzε(τ+
B < τ+

A∪{z}) =
∑
w∈S

pε(z, w)Pwε (τB < τA∪{z})

'
∑
w∈S

p̃ε(z, w)Pwε (τB < τA∪{z}) =
∑
w∈S

p̃ε(z, w)P̃wε (τB < τA∪{z}) = P̃zε(τ+
B < τ+

A∪{z}),

and the same argument shows Pzε(τ+
B < τ+

z ) ' P̃zε(τ+
B < τ+

z ). The claim follows. �

The statement of Theorem 3.4 is less obvious than it might appear. The reason is that
even though in each step that the chain takes from x on its way to B, the probabilities for
the chains X and X̃ differ only by a factor that becomes negligibly close to one as ε→ 0,
in the same limit the number of steps needed to reach B can diverge. So one could fear
that the errors committed by changing each transition probability to an asymptotically
equivalent one will pile up. Theorem 3.4 shows that this is not the case.

Theorem 3.5. Let E be a P0-essential class, x ∈ E and z /∈ E. Then

(3.5) Pxε (τ+
Ec < τ+

x , XτEc = z) ' 1

νE(x)

∑
y∈E

νE(y)pε(y, z),

and

(3.6) Pxε (XτEc = z) ' 1

Zε(E)

∑
y∈E

νE(y)pε(y, z),

with normalizing constant

Zε(E) =
∑
z̃∈Ec

∑
ỹ∈E

νE(ỹ)pε(ỹ, z̃).

Remark: (3.6) is intuitively clear: for small ε, the Markov chain spends a long time
in E before exiting, and thus is essentially stationary when it does. Formula (3.5) is less
obvious, since a return to x happens in a time of order one.

Proof of Theorem 3.5. To prove (3.5), choose A = Ec ∪ {x} in Proposition 2.4. Then

Pxε (τ+
Ec < τ+

x , XτEc = z) = Pxε (Xτ+A
= z) = pε(x, z) +

∑
y∈E\{x}

Pxε (τ+
y < τ+

Ec∪{x})

Pyε(τ+
Ec∪{x} < τ+

y )
pε(y, z).

We decompose

(3.7) Pxε (τ+
y < τ+

Ec∪{x}) = Pxε (τ+
y < τ+

Ec∪{x}, τ
+
Ec > τ+

x ) + Pxε (τ+
y < τ+

Ec∪{x}, τ
+
Ec < τ+

x ).

An application of Lemma 3.2 yields

lim
ε→0

Pxε (τ+
y < τ+

Ec∪{x}) = Px0(τ+
y < τ+

x )

and, for y ∈ E,

lim
ε→0

Pyε(τ+
Ec∪{x} < τ+

y ) = lim
ε→0

Pyε(τ+
x < τ+

y ) = Py0(τ+
x < τ+

y ).

By Proposition 2.1, we conclude

lim
ε→0

Pxε (τ+
y < τ+

Ec∪{x})

Pyε(τ+
Ec∪{x} < τ+

y )
=

Px0(τ+
y < τ+

x )

Py0(τ+
x < τ+

y )
=
νE(y)

νE(x)
,

and (3.5) is shown.
10



To see (3.6), we use Proposition 2.4 with A = Ec. Since now x /∈ A, we can use (2.6)
and obtain

(3.8) Pxε (Xτ+Ec
= z) =

∑
y∈E

Px(τy < τ+
Ec)

Pyε(τ+
Ec < τ+

y )
pε(y, z).

As before, Px(τy < τ+
Ec) ' 1 for all y ∈ E. By summing (3.5) over all z̃ /∈ E, we get

Pyε(τ+
Ec < τ+

y ) ' 1

νE(y)

∑
ỹ∈E,z̃ /∈E

νE(ỹ)pε(ỹ, z̃).

Plugging these into (3.8), we obtain (3.6). �

4. Perturbed Markov chains: metastable dynamics

Here we describe the metastable dynamics of a perturbed Markov chain. As in the
previous section, we will restrict our attention to a finite state space S throughout.

We follow the theory of Bovier et al [5, 6, 7]. In the case of perturbed Markov chains
on a finite state space, Definition 2.1 from [5] (see also [4]) is as follows: a set M ⊂ S is
called a set of metastable points if for all x ∈M and y /∈M ,

(4.1) lim
ε→0

Pε(τ+
M\{x} < τ+

x )

Pyε(τ+
M < τ+

y )
= 0.

In words, this means that reaching M from the outside of M is much easier than traveling
between different points of M , in both cases with the restriction not to return to one’s
starting point first.

Using Lemma 3.1 and Lemma 3.2, it is easy to see that if we choose precisely one point
from each of the P0-essential classes E1, . . . , En, then the set S0 = {x1, . . . , xn} is a set
of metastable points. Also, S0 is maximal in the sense that adding a further point to S0

will result in a set no longer fulfilling (4.1). On the other hand, removing points from S0

or replacing them with points from F may in certain cases still result in a metastable set,
depending on the structure of the Markov chain and the points in question. We will not
pursue this further since S0 is the most natural choice. Of course, when some of the Ei
contain more than one point, the choice of S0 is not unique. One of our main results is
that when defining the effective chain by the transition matrix

p̂ε(xi, xj) := νEi(xi)P
xi
ε (Xτ+S0

= xj) for i 6= j,

p̂ε(xi, xi) := νEi(xi)P
xi
ε (Xτ+S0

= xi) + 1− νEi(xi),
(4.2)

then the relevant dynamical quantities will be asymptotically independent of the choice
of the representatives xi.

The occurrence of the expression Pxiε (Xτ+S0
= xj) in (4.2) is intuitively obvious, since

it means that we just monitor the chain when it hits one of our reference points xj . The
factor νEi(xi) may be less obvious. To motivate it, note that by (3.5),

Pxiε (Xτ+S0
= xj) =

∑
z∈S\Ei

Pxε (τEc < τ+
xi , XτEc = z)Pzε(XτS0

= xj)

' 1

νEi(xi)

∑
w∈Ei,z /∈Ei

νEi(w)pε(w, z)Pzε(XτS0
= xj).

(4.3)

11



This shows that the factor νEi(xi) in (4.2) cancels one of the dependencies of Pxiε (Xτ+S0
=

xj) on the choice of our set S0. While the terms Pzε(Xτ+S0
= xj) still do depend on the

choice of S0, we will see below that including the factor νEi(xi) in the definition is enough
to obtain the asymptotically correct stationary distribution and escape probabilities. This
justifies the following definition:

Definition 1. Let X(ε) be an irreducibly perturbed Markov chain on a finite state space.
The Markov chain X̂(ε) with state space S0 and transition matrix (4.2) is called the ef-

fective metastable representation of X(ε) corresponding to S0.

In order to show the properties of the chain X̂(ε) announced above, we define a second
effective Markov chain, this time without reference to a set of representatives. For E,E′ ∈
E with E 6= E′ we put

(4.4) q̂ε(E,E
′) :=

∑
x∈E

νE(x)2 Pxε (τ+
E′ < τ+

x ),

and q̂ε(E,E) := 1 −
∑

E′∈E\{E} q̂ε(E,E
′). The q̂ε are the elements of a transition matrix

when ε is sufficiently small. As the following Proposition shows, this chain is reversible
and the reversible measure of E ∈ E is µ(E):

Proposition 4.1. The quantities q̂ε satisfy the asymptotic detailed balance equation

µε(E)q̂ε(E,E
′) ' µε(E′)q̂ε(E′, E).

The proof of Proposition 4.1 rests on the following simple lemma:

Lemma 4.2. Let E,E′ be P0-essential classes, E 6= E′, x ∈ E, y ∈ E′, and z ∈ S. Then

(4.5) Pzε(τ+
y < τ+

x ) ' Pzε(τ+
E′ < τ+

x ).

Proof. From Lemma 3.2, we have Pỹ(τy < τx) ' 1 for all ỹ ∈ E′. Since {τ+
y < τ+

x } ⊂
{τ+
E′ < τ+

x } for all x ∈ E, the strong Markov property gives

Pzε(τ+
y < τ+

x ) =
∑
ỹ∈E′

Pzε(τ+
E′ < τ+

x , Xτ+
E′

= ỹ)Pỹε(τy < τx)

'
∑
ỹ∈E′

Pzε(τ+
E′ < τ+

x , Xτ+
E′

= ỹ) = Pzε(τ+
E′ < τ+

x )

�

Proof of Proposition 4.1. When E = E′, the claim holds trivially. For E 6= E′, pick x ∈ E
and y ∈ E′. We use Corollary 3.3 b), Proposition 2.1, and (4.5) to find

(4.6) µε(E)νE(x)Pxε (τ+
E′ < τ+

x ) ' µε(E′)νE′(y)Pyε(τ+
E < τ+

y ),

for all x ∈ E. Since the right-hand side is independent of x, and the left-hand side is
independent of y, we find

(4.7) νE(x)Pxε (τ+
E′ < τ+

x ) ' νE(x̃)Px̃ε (τ+
E′ < τ+

x̃ )

for all x, x̃ ∈ E, and similarly for E′. Thus when we multiply (4.6) with νE(x)νE′(y) and
sum over x ∈ E and y ∈ E′, we obtain the claim. �

The next result shows that the effective metastable representation X̂(ε) indeed describes
the metastable dynamics of X(ε) correctly, in the sense that asymptotically it has the right
escape probabilities and thus the right stationary distribution. Let us write µ̂ε for the
stationary distribution and P̂ε for the path measure of X̂(ε).

12



Theorem 4.3. For i 6= j, we have P̂xiε (τ+
xj < τ+

xi) ' q̂ε(Ei, Ej). In particular µ̂ε(xi) '
µε(Ei).

Proof. From (4.7) and Lemma 4.2, we see that

q̂ε(Ei, Ej) ' νEi(xi)Pxiε (τ+
Ej
< τ+

xi) ' νEi(xi)P
xi
ε (τ+

xj < τ+
xi).

The Markov property and the definition of P̂ε then gives

q̂ε(Ei, Ej) ' p̂ε(xi, xj) +
∑
k 6=i,j

p̂ε(xi, xk)Pxkε (τ+
xj < τ+

xi).

We will show below that for k 6= i, j,

(4.8) Pxkε (τ+
xj < τ+

xi) = P̂xkε (τ+
xj < τ+

xi).

Once this is done, the Markov property for P̂ε shows the first claim, and from Proposition
4.1 we get

µε(Ei)P̂xi(τxj < τxi) ' µε(Ei)q̂(Ei, Ej) ' µε(Ej)q̂(Ej , Ei) ' µε(Ej)P̂xj (τxj < τxi).

Since µ̂ε(xi)P̂xi(τxj < τxi) = µ̂ε(xj)P̂xj (τxi < τxj ) by Proposition 2.1, we get

µ̂ε(xi)

µ̂ε(xj)
' µε(Ei)

µε(Ej)
.

Since
∑

j µε(Ej) ' 1 by Corollary 3.3 a), we can sum over i and obtain 1/µ̂ε(xi) '
1/µε(Ei), and thus µ̂ε(xi) ' µε(Ei).

To show (4.8), we introduce the shorthand

νk = νEk(xk), p(k, l) = Pxk(Xτ+S0
= xl), p̂(k, l) = p̂ε(xk, xl) = P̂xk(X̂τ+S0

= xl).

From (4.2), we get p̂(k, l) = νkp(k, l) + (1 − νk)δk,l. Now a standard application of the

Markov property with the stopping time τ+
S0

shows that for k 6= i, j, k 7→ h(k) = Pxkε (τ+
xj <

τ+
xi) is the unique solution of the harmonic equation

∑n
l=1 p(k, l)h(l) = h(k) for all k 6= i, j

with boundary conditions h(i) = 0, h(j) = 1. Likewise, k 7→ ĥ(k) = P̂xkε (τ+
xj < τ+

xi) is

the unique solution of the harmonic equation
∑n

l=1 p̂(k, l)ĥ(l) = ĥ(k) for all k 6= i, j with

boundary conditions ĥ(i) = 0, ĥ(j) = 1. But since
n∑
l=1

p̂(k, l)h(l) = νk

n∑
l=1

p(k, l)h(l) + (1− νk)h(k) = νkh(k) + (1− νk)h(k) = h(k),

we must have ĥ(k) = h(k), and the claim follows. �

The advantage of the chain X̂(ε) is that its transition matrix is almost diagonal in the
sense that limε→0 p̂ε(xi, xj) = δi,j . In particular, X̂(ε) is an irreducible perturbation of the
trivial (identity) Markov chain. It is now natural to rescale time so that the most likely
transition between two different states becomes of order one. More precisely, we set

(4.9) p̌ε(xi, xj) :=
p̂ε(xi, xj)∑

k,l:k 6=l p̂ε(xk, xl)
, p̌ε(xi, xi) := 1−

∑
j:j 6=i

p̌ε(xi, xj).

Since
∑

k,l:k 6=l p̌ε(xk, xl) = 1, for each ε > 0 at least one of the terms in the finite sum
must be large. The problem is that at this point we cannot guarantee that the quantities
p̌ε(xi, xj) converge. To see what could happen, consider the example S = {x, y}, pε(x, y) =

ε(2 + sin(1/ε)), pε(y, x) = ε. Then P̂ = P , but p̌ε(y, x) = 1
3+sin(1/ε) does not converge. Of

course, this also implies that limε→0 µε does not exist.
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So far, we did not have to pay attention to that type of problem - all of our results above
are valid as asymptotic equivalences, whether or not the quantities in question converge.
Now however, we need proper convergence to carry on, and will give a sufficient criterion.
Let ε 7→ aε, ε 7→ bε be two functions of ε > 0. We say that aε and bε are asymptotically
comparable, and write aε ∼ bε, if either both of them are strictly positive and limε→0 aε/bε
exists in [0,∞], or if one or both of them are identically zero. Note that we allow 0 and∞
as possible limits. We caution the reader that unlike asymptotic equivalence, asymptotic
comparability is not transitive, and is not stable under multiplications. On the other hand,
it is obviously symmetric, and we have the following summability property: If aε, bε, and
cε are mutually asymptotically comparable, and if αε, βε and γε have strictly positive,
finite limits as ε→ 0, then

(4.10) αεaε + βεbε ∼ γεcε.

We say that an irreducibly perturbed Markov chain X(ε) is regular if for all m,n ∈ N and
all sequences of pairs (xi, yi)i 6 n, (zi, wi)i 6 m with xi, yi, zi, wi ∈ S, we have

(4.11)

n∏
i=1

pε(xi, yi) ∼
m∏
i=1

pε(zi, wi).

We will call a transition matrix P regular if the generated Markov chain is regular.
Examples of regular perturbed Markov chains include those treated in [28], where the

transition elements are of the form cε(x, y)εk(x,y) with cε either converging to a strictly
positive limit or identically zero, and k(x, y) independent of ε. They also include those
with property P introduced in [21].

Theorem 4.4. For a regular perturbed Markov chain with transition matrix Pε, define
P̂ε as in (4.2), and P̌ε as in (4.9). Then P̂ε and P̌ε are transition matrices of regular
perturbed Markov chains.

Proof. By (4.3), for i 6= j

(4.12) p̂ε(xi, xj) '
∑

w∈Ei,z /∈Ei

νEi(w)pε(w, z)Pzε(XτS0
= xj),

and Proposition 2.8 gives

(4.13) Pzε(XτS0
= xj) =

∑
γ∈ΓSc0

(z,xj)

|γ|−1∏
i=1

pε(γi, γi+1)

1− Pγiε (Xτ+
S0∪{γ1,...,γi}

= γi)

In Lemma 4.5 below we will show that if S0 contains one representative of each P0-
essential class then limε→0 Pγiε (Xτ+

S0∪{γ1,...,γi}
= γi) exists and is strictly smaller than one

for all γ. Thus each limε→0 1/(1 − Pγiε (Xτ+
S0∪{γ1,...,γi}

= γi)) > 1 exists. In other words,

Pzε(XτS0
= xj) is given as a sum of terms of the form cε(z1, . . . , zn+1)

∏n
i=1 pε(zi, zi+1)

with zi ∈ Sc0 ∪ {z, xj}, where limε→0 cε(z1, . . . , zn1) > 1 exists for all (z1, . . . , zn). When
plugging this into (4.12), we can apply the extension of (4.10) to finite sums to show that

P̂ε is the transition matrix of a regular Markov chain. By (4.9), this immediately implies
convergence of the transition probabilities p̌ε(xi, xj). Rewriting the second equation in
(4.9) in the form

p̌ε(xi, xi) =
∑
k,l:k/∈{l,i} p̂ε(xk,xl)∑
k,l:k 6=l p̂ε(xk,xl)

,

we see in addition that the chain X̂(ε) is a regular perturbed Markov chain. �
14



It remains to prove the claim used in the proof above.

Lemma 4.5. Let X(ε) be a perturbed Markov chain. Assume that a set S0 contains one
element of each P0-essential class. Let A ⊂ S with S0 ⊂ A. Then for all x ∈ A \ S0,
limε→0 Pxε (Xτ+A

= x) exists and is strictly smaller than 1.

Proof. As S0 contains a representative of each P0-essential class, there must be a P0-
relevant direct path γ from x to some y ∈ S0. So, lim supε→0 Pxε (Xτ+A

= x) < 1 −
limε→0 Pε(γ) < 1.

For the existence of the limit, let first A := S. For x /∈ S0, we have Pε(Xτ+A
= x) =

pε(x, x)→ p0(x, x) as ε→ 0. Let us now assume that the claim holds for all Ā such that
|Ā| > |S| − k + 1 with some k ∈ N. Let A be such that |A| = |S| − k. Then,

Pxε (Xτ+A
= x) = pε(x, x) +

∑
y/∈A

pε(x, y)Pyε(XτA = x)

= pε(x, x) +
∑
y/∈A

pε(x, y)
∑

γ∈ΓS\A(y,x)

|γ|−1∏
i=1

pε(γi, γi+1)

1− Pγiε (XτA∪{γ1,...,γi}
= γi)

.

By the induction hypothesis, limε→0 Pγiε (XτA∪{γ1,...,γi}
= γi) exists and is strictly smaller

than 1. Thus also limε→0 Pxε (Xτ+A
= x) exists and is strictly smaller than 1. The claim

follows by induction. �

We have thus found a way to successively describe the multi-scale metastable dynam-
ics of regular perturbed Markov chains: starting with the original chain X(ε), we de-
rive X̂(ε) and then X̌(ε). By Theorem 4.4, X̂(ε) and X̌(ε) are again regular perturbed
Markov chains. Moreover, all of the P̂0-essential classes consist of exactly one element,
and limε→0 p̂ε(xi, xj) = 0 whenever i 6= j. So, P̂ε describes the effective metastable dy-
namics, but still in the original time scale.

The transformation from P̂ε to P̌ε means that we go to a time scale where the most
likely transitions between different states become of order one. In other words, there exist
i 6= j with limε→0 p̌(xi, xj) > 0. By Lemma 3.1, this implies that {xi} will no longer be a

P̌0-essential class on its own: it will either form a larger P̌0-essential class together with
some {xj}, j 6= i, or it will have become P̌0-transient. In any case, the number of P̌0-
essential classes will be smaller than the number of P0-essential classes. Thus by applying
the transformations Pε → P̂ε → P̌ε to the matrix P̌ε, and iterating the procedure, we can
recursively explore longer and longer time scales of the dynamics.

On a purely theoretical level, our theory of multi-scale metastable dynamics for regular
perturbed Markov chains is thus complete. However, if one attempts to (numerically)
compute the transition probabilities at the different time scales, the problem arises that
all relevant expressions in our theory still contain terms of the form Pzε(XτS0

= xj). In the
next section, we will show why naive attempts to compute this quantity numerically are
likely to fail, and present a numerically stable algorithm for computing them. A byproduct
of our algorithm is a numerically stable method to compute the matrix elements of the
transition matrix Q̂ε, and thus the stationary weights µε(E) for all P0-essential classes E.

5. Computing hitting probabilities and the asymptotic stationary
distribution

This section deals with aspects of the numerical computation of the transition probabili-
ties p̂ε and q̂ε given in (4.2) and (4.4), respectively. The starting point of our considerations
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are the formulae

(5.1) p̂ε(xi, xj) = νEi(xi)
(∑
j 6=i

pε(xi, xj) +
∑
z /∈S0

pε(xi, z)Pzε(XτS0
= xj)

)
,

and

(5.2) q̂ε(E,E
′) =

∑
x∈E

νE(x)2
( ∑
y∈E′

pε(x, y) +
∑

z /∈{x}∪E′
pε(x, z)Pzε(τ+

E′ < τ+
x )
)
,

both of which are obtained from the definition of the respective quantities using the strong
Markov property. In both cases, the task is to compute a hitting probability of the form

(5.3) hA,B(z) := Pzε(XτA∪B ∈ A),

where A,B ⊂ S and z ∈ S \ (A∪B). In the case of q̂ε(E,E
′), A = E′ and B = {x}. Such

hitting probabilities are well understood: hA,B is called the committor function in [25, 26]
and the equilibrium potential of the capacitator (B,A) in [4], and is the unique harmonic
continuation from C := A ∪ B to S of the indicator function 1A of A. This means that
hA,B is the unique solution of the linear system

(5.4)
∑
z∈S\C

(Pε(x, z)− δx,z)hA,B(z) = −r(x), x ∈ Cc = S \ C,

where r(x) := Pε1A(x). Let us write P̄ε = (pε(x, y))x,y∈Cc for the restriction of Pε to Cc.
If C 6= ∅ and Pε is irreducible, we have seen in the proof of Proposition 2.5 that 1− P̄ε is
invertible. We thus find the committor function by matrix inversion:

(5.5) hA,B(x) = [(1− P̄ε)−1r](x), x ∈ Cc.
The problem with this formula is that as ε → 0, the matrix (1 − P̄ε) may converge to

a non-invertible matrix. In that case, some matrix elements of (1 − P̄ε)−1 will diverge,
and even though the quantities hA,B(z) themselves are bounded by 1 for all ε, computing
them numerically becomes unreliable as ε → 0. Our first result will identify situations
where this cannot happen.

We call a state y ∈ S an asymptotic dynamical trap (or simply a trap) with respect to
C if

lim inf
ε→0

Pyε(τC < M) = 0 for all M ∈ N.

A necessary condition for y to be a trap is that there exists no direct P0-relevant path
from y into C. On the other hand, for all z ∈ S there is at least one P0-relevant path
from y to some P0-essential class. Thus if C intersects all P0-essential classes, no traps
will exist.

Recall that for a matrix P , the condition number is given by κ(P ) = ‖P‖‖P−1‖, where
‖.‖ is the operator norm with respect to any norm on the underlying vector space. In our
case, it is convenient to use the supremum norm on the vector space.

Proposition 5.1. Assume that C ⊂ S is such that there are no asymptotic dynamical
traps with respect to C. Then lim supε→0 κ(1− P̄ε) <∞.

Proof. Since P̄ε is substochastic, clearly ‖P̄ε‖ 6 1. On the other hand, the absence of
traps with respect to C allows us to find k0 ∈ N and c < 1, both of them independent
of ε, and so that Pxε (τC > k0) 6 c for all x ∈ S. The strong Markov property then

implies Pxε (τC > k) 6 cbk/k0c for all k ∈ N and all x ∈ S. Thus for x ∈ Cc and bounded
f : Cc → R, we find∣∣(P̄ε)kf(x)

∣∣ =
∣∣Exε (f(Xk)1{τC>k})

∣∣ 6 ‖f‖∞Pxε (τC > k) 6 ‖f‖∞cbk/k0c.
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Consequently, the left-hand side above is absolutely summable, and∣∣(1− P̄ε)−1f(x)
∣∣ =

∣∣ ∞∑
k=0

(P̄ε)
kf(x)

∣∣ 6 ‖f‖∞(c− c(1+k−1
0 ))−1

for all x ∈ Cc. Taking the supremum over x, the claim follows. �

By construction, S0 contains precisely one point of each P0-essential class, and thus
there are no asymptotic dynamical traps with respect to S0. By Proposition 5.1 and (5.1)
we can thus compute p̂ε(xi, xj) in a numerically stable way. In fact, the perturbative
nature of the problem makes the following Newton scheme particularly useful.

Let P̄ε = (pε(x, y))x,y∈S0 denote the restriction of Pε to Sc0, and set Aε = 1 − P̄ε. By

(5.5), we need to find A−1
ε . We use B0 = A−1

0 as a seed for the Newton iteration, and

employ the usual recursion Bk+1 = 2Bk − BkAεBk. By putting B̃k = BkA0, we find

B̃0 = 1 and B̃k+1 = 2B̃k− B̃kA−1
0 AεB̃k. So, B̃k is a polynomial in A−1

0 Aε, and we can use
the resulting commutativity to obtain

(5.6) Bk+1 −A−1
ε = −A−1

0 Aε(Bk −A−1
ε )A0(Bk −A−1

ε )

for all k. In the special case k = 0, this can be transformed to

(5.7) B1 −A−1
ε = A−1

0 (Aε −A0)(A−1
ε −A−1

0 ) = A−1
0 (P̄0 − P̄ε)(A−1

ε −A−1
0 ).

Thus

‖Bk+1 −A−1
ε ‖ 6 2κ(A0)‖‖Bk −A−1

ε ‖2

and

‖B1 −A−1
ε ‖ 6 ‖A−1

0 ‖(‖A
−1
0 ‖+ ‖A−1

ε ‖)‖P̄ε − P̄0‖.
Proposition 5.1 guarantees that we can choose ε sufficiently small so that Bk converges
to A−1

ε very quickly. To illustrate this, we restrict ourselves to the special case where
Pε = P0 + εRε with the matrix Rε bounded uniformly in ε > 0. Then, ‖B1 − A−1

ε ‖ 6 cε
for some c > 0, and

‖Bk+1 −A−1
ε ‖ 6 (2κ(A0))2k−1+1(cε)2k .

This means that when we are interested only in transitions of size εn or bigger, we only
have to calculate logarithmically (in n) many Bk. Therefore, it might seem that all is well,
but this is not entirely so.

The reason is that a subtle problem arises from the multi-scale structure of the dynamics:
at a given metastable time scale, it is in general not obvious what computational accuracy
we need to achieve in order to obtain the asymptotically correct dynamics on longer
metastable time scales. This phenomenon can best be explained by an example.

Figure 1 shows a graphical representation of a couple of metastable Markov chains.
For both of them, S = {x, y, z, w}, and both of them have transition probabilities corre-
sponding to the solid arrows: pε(x,w) = pε(w, z) = pε(y, x) = ε, pε(w, y) = 1 − ε, and
pε(z, w) = ε2. Only one of them has the dashed arrows, i.e. p(z, y) = p(y, z) = ε. All
other transition probabilities are zero except those mapping a point to itself, which are
adjusted to give a stochastic matrix. With or without the dashed arrows, {x}, {y} and
{z} are the P0-essential classes, while w is P0-transient. Also in both cases, p̂ε(x, z) = ε2,
while p̂ε(x, y) = ε. So on the first metastable time scale, transitions from x to z play no
role. But whether or not we can stop our computation of p̂ε(x, z) after reaching order ε
depends on the presence of the dashed arrows.

If the dashed arrows are present, we can stop the computation of p̂ε after reaching order
ε: on the next (and final) metastable time scale, we will have p̌ε(x, y) = p̌ε(z, y) = 1 and
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Figure 1. Schematic drawing of a perturbed Markov chain. Leading order
transition probabilities are written on the arrows.

p̌ε(y, x) = p̌ε(y, z) = 1/2. z will be connected to x via y, by transition probabilities of
order one.

However, if the dashed arrows are absent, stopping the calculation at order ε leads to
an effective Markov chain where z cannot be reached from x, and thus to wrong results on
the next metastable time scale. In the correct dynamics on that time scale x and y form
a new effective metastable state, and transitions between it and z are (after rescaling) of
order ε. For this to be resolved correctly, the transition from x to z of order ε2 needs to
be present already in the effective dynamics on the first metastable time scale.

In the simple example at hand it is easy to directly figure out what is going on, but
to decide when a given approximation of p̂ε is good enough to give correct dynamical
results on all further metastable time scales for general chains on large state spaces is
a subtle problem. Here we only give a necessary condition, about which we conjecture
that it is also sufficient, and which is accessible to numerical validation. Let us write
P̂ε,a for path measure of a given approximation to the chain X̂(ε). By Theorem 4.3,

q̂ε(Ei, Ej) ' P̂xiε (τxj < τxi) when xi is the representative from Ei and xj the representative
from Ej , and thus µ̂(xi) ' µ(Ei) for all i. So in order to obtain the correct asymptotic
stationary distribution for our approximate chain, we have to increase the accuracy at
least until

(5.8) q̂ε(Ei, Ej) ' P̂xiε,a(τxj < τxi).

It would not be surprising if this were already sufficient for some sort of agreement of the
metastable dynamics on all further metastable time scales. Since in general the escape
probabilities do not characterize the transition probabilities of a Markov chain, a proof of
this conjecture is not immediate, and we do not pursue this any further here. Instead, we
discuss how to check (5.8) numerically.

By (5.2), the numerically tricky part in computing q̂ε(Ei, Ej) is Pxε (τ+
E′ < τ+

x ). Since
{x} ∪ E′ will not intersect all P0-essential classes unless there are only two of them, we
cannot use Proposition 5.1 this time, and indeed in most situations a direct calculation
of (5.5) will be numerically unreliable. However, for the very same reason, namely since
C intersects only two P0-essential classes, we can successively lift these traps and arrive
at a simplified chain without traps for which the probability of hitting E′ before x is
asymptotically equivalent to the original one.

The basic step in this procedure is the following. Assume that E is a P0-essential class
of a perturbed Markov chain X(ε), and that E 6= S. We define a new Markov chain
X̃(ε) on the state space S̃ = (S \ E) ∪ {E} by its transition probabilities p̃ε(x, y), where
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p̃ε(x, y) = pε(x, y) whenever x, y ∈ S \ E, and

(5.9) p̃ε(x,E) :=
∑
z∈E

pε(x, z), p̃ε(E, x) :=
1

Zε(E)

∑
z∈E

νE(z)pε(z, x), p̃(E,E) := 0

for all x ∈ S \E. Here, Zε(E) =
∑

z∈E,y/∈E νE(z)pε(z, y) is the normalization that ensures

that P̃ is a stochastic matrix. We say that the traps in E (with respect to ∪(E \ {E}))
have been lifted in X̃(ε). This terminology is justified by

Theorem 5.2. Let X(ε) be a perturbed Markov chain, E a P0-essential class of X(ε), and
X̃(ε) the Markov chain where E has been lifted.
a) Let A,B ⊂ S \E. Then for all z ∈ S \E, Pzε(τB < τA) ' P̃zε(τB < τA), while for z ∈ E,

Pzε(τB < τA) ' P̃Eε (τB < τA).

b) If X(ε) is regular, then X̃(ε) is a regular perturbed Markov chain.

c) If X(ε) is regular, then either E is a P̃0-transient state, or E is an element of a P̃0-
essential class that contains at least one further element z ∈ F . In the latter case, the
number of P̃0-transient states is strictly smaller than the number of P0-transient states.

Proof. Consider the chain Y (ε) with state space S and transition matrixRε, where rε(x, y) =
pε(x, y) when x /∈ E and rε(x, y) = Px(τEc = y) when x ∈ E. Denoting its path measure

by PY,ε, Proposition 2.7 gives PzY,ε(τB < τA) = P̃zε(τB < τA) for all z ∈ S. We now define Ỹ

by replacing rε(x, y) with 1
Zε(E)

∑
x∈E νE(x)pε(x, y) for x ∈ E, and keeping them the same

if x /∈ E. Then (3.6) implies that rε(x, y) ' r̃ε(x, y) for all x, y ∈ S, and thus Theorem 3.4
gives Pz

Ỹ ,ε
(τB < τA) ' PzY,ε(τB < τA). Finally, noting that r̃ε(z, w) does not depend on z

whenever z ∈ E, we can replace all z ∈ E by a single state {E}, and claim a) follows.
For b), note that by regularity of the chain, Zε(E) ∼

∑
z∈E νE(z)pε(z, x) for all x /∈ E.

So the quotient in (5.9) either converges or diverges to infinity as ε → 0. Since it is
bounded by 1 by construction, the latter is not an option, and the p̃ε converge. So the
Markov chain defined by them is a perturbed Markov chain. Finally, this Markov chain is
again regular, since products of its elements can be written as weighted sums of products
of the pε with nonnegative weights. We have shown b).

For c), note that by b) limε→0 P̃ε exists, and since
∑

y/∈E p̃ε(E, y) = 1, there must be

at least one state y ∈ S \ E with limε→0 p̃ε(E, y) > 0. Lemma 3.1 implies that if E′ is a
P0-essential class with E 6= E′, then all direct paths from E′ to E are P0-irrelevant. So
if one of the elements y with limε→0 p̃ε(E, y) > 0 is connected to a different P0-essential

class via a P0-relevant direct path, then E is P̃0-transient. On the other hand, if no y is
connected to any E′ 6= E by such a direct path, then each such y must be an element of
F , and must be connected to E by a P0-relevant direct path. It follows that y is in the
same P̃0-essential class as E, and thus not a P̃0-transient state. The claim follows. �

Using Theorem 5.2, we can now give a general recursive algorithm for numerically
computing expressions hB,A(z) of the form given in (5.3) simultaneously for all z ∈ S, up
to asymptotic equivalence:

(1) Determine the set E0 of all P0-essential classes not intersecting A ∪B.
(2) If E0 = ∅, compute hA,B by solving the well-conditioned linear system (5.4). Finish

the algorithm.
(3) Compute the P0-stationary measures νE for each E ∈ E0.
(4) Lift all the traps in E ∈ E0 by (5.9). This results in a new state space, where all

elements of E are replaced by a single state E. Keep track of the elements of the
original state space that become lumped into E.

19



(5) Return to (1) with the new state space.

We note that steps (3) and (4) are trivial to parallelize. By Theorem 5.2 c), each step
either decreases the number of P0-essential classes in the chain, or leaves it unchanged
and decreases the number of transient states. We thus see that the algorithm terminates.
Once it does (in step 2), we know hA,B(z̃) for all z̃ in the final state space S̃. Theorem 5.2
a) now guarantees that hA,B(z) ' hA,B(z̃) for all states z of the chain from the previous
step that were collapsed into z̃. Thus we can recursively go backwards until we reach the
original state space, where we now know all hA,B(z) up to asymptotic equivalence. In
particular, this gives a stable algorithm for the asymptotic numerical approximation of
the coefficients q̂ε. Since the expressions P̂xiε,a(τxj < τxi) are also escape probabilities (for a
different Markov chain), we can compute them by the same algorithm. If they agree with
q̂ε(Ei, Ej) to leading order in ε, our necessary criterion is met and the approximate chain
has the same asymptotic stationary measure as the true one.

Another useful aspect of our algorithm is that the q̂ε determine the limiting stationary
distribution of the chain through the formula

1

µε(E)
'
∑
E′∈E

q̂ε(E,E
′)

q̂ε(E′, E)
,

which is derived in analogy to (2.4), using Proposition 4.1. Computing the stationary
distribution of a large Markov chain with many metastable sets is a very important problem
in practice. For example, it is how internet search engines compute page importance ranks.
As a consequence, there has been tremendous activity in the computer science community
on the topic. Most of the developments seem to be based on a seminal paper by Simon
and Ando [22]. Seemingly independently, the problem has been treated by a much smaller
group of people in mathematical economy, starting with [29] and with significant recent
progress by Wicks and Greenwald [27, 28].

Both approaches are based on formula (2.8), which itself is closely related to (5.4). In
the literature following [22] and [17], this leads to what is known as the method of the
stochastic complement. For a finite Markov chain X on a state space S, the first step of
the method is to decompose S into disjoint sets S1, . . . , Sn. Equation (2.8) with A = Sj
then allows to compute

(5.10) p̂(x, y) := Px(Xτ+Sj
= y)

for x, y ∈ S by using matrix multiplications and by computing the inverse of the matrix
(1 − P |Scj ). The p̂(x, y) are the transition probabilities of an effective Markov chain only

running inside Sj . Writing νj for the stationary distribution of the effective chain, and µ
for the full stationary distribution, it can be shown that

(5.11) µ(x) = ξjνj(x)

for all x ∈ Sj , where (ξj)j 6 n is the stationary distribution of the Markov chain with state
space {S1, . . . , Sn} and transition probabilities

(5.12) q(Si, Sj) =
∑

x∈Si,y∈Sj

νi(x)p(x, y).

Equation (5.11) is similar to the statements of our Corollary 3.3, with the ξj taking the role
of µε(E), and the νj(x) the role of νE(x). Equation (5.12) is in analogy to the expression

(5.13) p̂ε(xi, xj) '
∑

w∈Ei,z /∈Ei

νEi(w)pε(w, z)Pzε(XτS0
= xj)
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that we get for p̂ε(xi, xj) when combining (4.2) and (4.3). The drawback of the method is
that a priori, we have no control over the numerical difficulty of computing (1− P |Scj )

−1.

For example, let S1 consist of two elements x, y. Then p̂(x, y) = Px(τ+
y < τ+

x ), and thus
the computation of p̂(x, y) is no easier than the problem we have treated in the present
paper; in particular, if X is a perturbed Markov chain and x and y are in different P0-
essential classes, the matrix (1− P |Scj ) will become singular as ε→ 0. Therefore without

any further assumptions, the theory of Simon and Ando as it stands gives no numerically
feasible way of computing µ.

A suitable such further assumption is to choose the decomposition in a way that makes
all transitions between different Sj small. The situation where this is possible has been
treated already in [22], and is nowadays known as a the theory of nearly reducible (or nearly
decomposable) Markov chains. In the framework of the present paper, a perturbed Markov
chain is nearly reducible if for each y ∈ S there exists a unique P0-essential class E(y) so
that all P0-relevant paths from y to S\F end in E(y). In the terminology of [5], this means
that the local valleys corresponding to the maximal metastable set S0 = {x1, . . . , xn} from
Section 4 do not intersect. When a Markov chain is nearly reducible, it is known (and
follows from (3.2) in our case) that we can ignore transitions between different Sj for the
approximate computation of the νj ; in the case of perturbed Markov chains and when each
Sj contains exactly one P0-essential class Ej , this means νj ≈ νEj . The reduced chain

(5.12) is then similar to our X̂ε, and by a recursive algorithm similar to the one given in
the present section, the stationary measure µ can be computed.

So in the context of nearly reducible Markov chains, the contribution of our work is on
the one hand a systematic, rigorous asymptotic theory, and on the other hand an extension
to the case where the Markov chain no longer needs to be nearly reducible: in the latter
case, the Ej take the role of the Sj , and the presence of the transient set is accounted for
by replacing (5.12) by (5.13), together with a recipe to compute the escape probabilities
contained in the latter equation.

The second approach that we are aware of which uses (2.8) is the recent work by Wicks
and Greenwald [27, 28], who call their approach the method of the stochastic quotient.
They work in the situation where Pε = P0 + εRε with bounded corrector matrix Rε, and
they do not need to assume almost decomposability. As we do, they pick a representative
x from each P0-essential class E. Then they apply (2.8) with A = {x} ∪ S \ E, i.e. they
compute the probabilities to either leave E at a given y /∈ E, or to return to x. The
leading order of this quantity can be computed efficiently by a matrix calculation, since
the matrices (1− Pε|Ac)−1 remain bounded as ε→ 0 thanks to the absence of x from Ac.
Indeed, as Wicks and Greenwald note, it suffices to invert (1− P0|Ac). This construction
leads to an effective chain where the class E is replaced by a P0-essential class containing
just the one element x. They do this construction for all P0-essential classes, and indeed
also for transient communicating classes. After that, they rescale transition probabilities
out of each of the (now trivial) P0-essential classes much like we do in (5.9), keeping track
of the factors by which they speed up each individual trap. This results in a Markov
chain with fewer P0-essential states, or fewer transient states. Recursively iterating the
procedure while always keeping track of the rescaling factors, they arrive at a stable
algorithm for computing the stationary distribution.

It is obvious that the algorithm of Wicks and Greenwald and ours share quite similar
ideas. The difference is that while our algorithm lifts metastable traps completely, the
Wicks-Greenwald algorithm keeps one point in each trap. The advantage of the Wicks-
Greenwald algorithm is that the whole stationary distribution can be computed at once,
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while in our algorithm one has to compute q̂(E,E′) separately for each pair E,E′. The
advantage of our approach is that it is local: if we are only interested in the relative
importance of two given states x ∈ E and y ∈ E′, we need only compute the ratio
q̂(E,E′)/q̂(E′, E). Depending on the structure of the chain, this can be done by lifting
only a tiny fraction of the traps present in the state space. An additional advantage of
our approach is of course that we also obtain information about the metastable dynamics,
information which is not contained in the stationary distribution alone.
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