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Abstract. We study the distribution of cycle lengths in models of nonuniform random permu-
tations with cycle weights. We identify several regimes. Depending on the weights, the length

of typical cycles grows like the total number n of elements, or a fraction of n, or a logarithmic

power of n.

Keywords: Random permutations, cycle weights, cycle lengths, Ewens distribution.

2000 Math. Subj. Class.: 60K35.

1. Introduction

We study the cycle distributions in models of weighted random permutations. The probability
of a permutation π of n elements is defined by

P (π) =
1

hnn!

∏
j > 1

θ
rj(π)
j , (1.1)

where (θ1, θ2, . . . ) ≡ θ are real nonnegative numbers, rj(π) denotes the number of j-cycles in π
(we always have

∑
j jrj(π) = n), and hn is the normalization. We are mainly interested in the

distribution of cycle lengths in the limit n → ∞, and in how these lengths depend on the set of
parameters θ.

This model was introduced in [4] but variants of it have been studied previously. The case of
constant θj ≡ θ is known as the Ewens distribution. It appears in the study of population dynamics
in mathematical biology [5]; detailed results about the number of cycles were obtained by Hansen
[9] and by Feng and Hoppe [6]. The distribution of cycle lengths was considered by Lugo [10].
Another variant of this model involves parameters θj ∈ {0, 1}, with finitely many 1’s [11, 2], or
with parity dependence [10]. Notice that the probability P is really a probability on sequences
r = (r1, r2, . . . ) that satisfy

∑
j jrj = n. It is well-known that r are the “occupation numbers”

of a partition λ of n. That is, if λ denotes the partition λ1 > λ2 > . . . with
∑
i λi = n, then

rj is the number of λi that satisfy λi = j. Thus we are really dealing with random partitions,
which is also the original context of the Ewens distribution. The number of permutations that are
compatible with occupation numbers r is equal to

n!∏
j > 1 j

rjrj !
.

It follows that the marginal of (1.1) on partitions is given by

P (λ) =
1
hn

∏
j > 1

1
rj !
(

1
j θj
)rj
. (1.2)

The formulæ look simpler and more elegant for permutations rather than partitions; that is why
we consider the former.

The most studied distribution for random partitions is the Plancherel measure, where the prob-
ability of λ is proportional to 1

n! (dimλ)2; the “dimension” dimλ of a partition is defined as the
number of Young tableaux in Young diagrams and it does not seem to have an easy expression in
terms of r. We do not know of any direct relation between weighted random permutations and
the Plancherel measure.
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Weighted random permutations also appear in the study of large systems of quantum bosonic
particles [3], where the parameters θ depend on such quantities as the temperature, the density,
and the particle interactions. The θj ’s are thus forced upon us and they do not necessarily take a
nice form. This motivates the present setting, where we only fix the asymptotic behavior of θj as
j →∞.

The relevant random variables in our analysis are the lengths `i = `i(π) of the cycle containing
the index i = 1, . . . , n. These random variables are always identically distributed, and obviously
not independent. Another relevant random variable is the number of indices belonging to cycles
of length between a and b, Na,b(π) = #{i = 1, . . . , n : a 6 `i(π) 6 b}. Thanks to the relation

1
n
E(Na,b) = P (`1 ∈ [a, b]), (1.3)

the properties of the distribution of `1 that we derive below can be translated into properties of
the expectation of Na,b.

From a statistical mechanics point of view, it is natural to introduce the sequenceα = (α1, α2, . . . )
of parameters such that e−αj = θj . The model has an important symmetry, which is also a source
of confusion. Namely, the probability of the permutation π is left invariant under the transforma-
tion

αj 7→ αj + cj, hn 7→ e−cn hn, (1.4)

for any constant c ∈ R. In particular, the case αj = cj is identical to αj ≡ 0, the case of uniform
random permutations.

The general results which we prove in this article rely on various technical assumptions. To
keep this introduction simple, we only describe the results in the particular but interesting case
αj = jγ .

• The case γ < 0 is a special case of the model studied in [4], which is close to the uniform
distribution.

• In the case γ = 0, i.e. when θj → θ (the Ewens case, asymptotically), we find that
P (`1 > sn)→ (1− s)θ. Thus, almost all indices belong to cycles whose length is a fraction
of n. Precise statements and proofs can be found in Section 2.

• The case 0 < γ < 1 is surprising. At first glance we might expect smaller cycles than in
the uniform case αj ≡ 0. However, we find that almost all indices belong to a single giant
cycle! The symmetry (1.4) is playing tricks upon us indeed. We also prove two additional
results: (i) there is a uniformly positive probability that all indices belong to a single cycle
of lenth n; (ii) in some cases, finite cycles exist with uniformly positive probability. This
is explained in details in Section 3.

• The case γ = 1 corresponds to uniform permutations because of the symmetry (1.4).
• When γ > 1 the cycles become shorter, and `1 behaves asymptotically as ( 1

1−γ log n)1/γ ;
see Section 4.

Weighted random permutations clearly show a rich behavior and only a little part has been
uncovered so far. The case of negative parameters, αj � −jγ remains to be explored, and the
future will hopefully bring more results regarding concentration properties.

In the case of uniform permutations, it is known that the random variables rk converge to
independent Poisson random variables with parameter 1/k in the limit n → ∞ [8, 1]. An open
problem is to understand how this generalizes to weighted random permutations.

2. Asymptotic Ewens distribution

In the case of the uniform distribution, it is an easy exercise to show that P (`1 = a) = 1/n
for any a = 1, . . . , n. It follows that P (`1 > sn) → 1 − s for any 0 6 s 6 1. This result was
extended to the case of small weights in [4]. We consider here parameters that are close to Ewens
weights. A result similar to (a) below has been recently derived by Lugo [10].
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Theorem 2.1. Let θ ∈ R+. We suppose that
∑∞
j=1

1
j |θj−θ| <∞ if θ > 1, or that

∑∞
j=1 |θj−θ| <

∞ if θ < 1.
(a) The distribution of `1 satisfies, for 0 6 s 6 1,

lim
n→∞

P (`1 > sn) = (1− s)θ. (2.1)

(b) The joint distribution of `1 and `2 satisfies, for 0 6 s, t 6 1,

lim
n→∞

P (`1 > sn, `2 > tn) =
θ

1 + θ
(1− s− t)θ+1

+ +
1 + θ(s ∨ t)

1 + θ
(1− s ∨ t)θ, (2.2)

where f+ denotes the positive part of a function f .

Let us recall a few properties that are satisfied by the normalization factors hn; we omit the
proofs since they are essentially elementary, but more details can be found in [4]. First,

P (`1 ∈ [a, b]) =
1
n

b∑
j=a

θj
hn−j
hn

. (2.3)

Choosing [a, b] = [1, n], we get

hn =
1
n

n∑
j=1

θjhn−j , h0 = 1. (2.4)

Next, let Gh(s) =
∑
n > 0 hns

n be the generating function of the sequence (hn). Then Gh(s) =
exp

∑
j > 1

1
j θjs

j . The first step in the proof of Theorem 2.1 is to control the normalization hn.
Here, (θ)n = θ(θ + 1) . . . (θ + n− 1) denotes the ascending factorial.

Proposition 2.2. Under the assumptions of Theorem 2.1, we have

hn = C(θ)
(θ)n
n!

(1 + o(1)) with C(θ) = exp
∑
j > 1

1
j (θj − θ).

Proof. We have

Gh(s) = exp
{
θ
∑
j

1
j s
j +

∑
j

1
j (θj − θ)sj

}
= (1− s)−θ eu(s) , (2.5)

with
u(s) =

∑
j > 1

1
j (θj − θ)sj . (2.6)

Notice that u(1) = lims↗1 u(s) exists. Let cj be the Taylor coefficients of eu(s) , i.e. eu(s) =
∑
cjs

j .
Then, by Leibniz’ rule,

hn =
1
n!

dn

dsn
Gh(s)

∣∣∣
z=0

=
(θ)n
n!

∑
k > 0

dn,kck, (2.7)

with

dn,k =

{
n(n−1)...(n−k+1)

(θ+n−1)...(θ+n−k) if k 6 n,

0 otherwise.
(2.8)

It is not hard to check that

dn,k 6

{
1 if θ > 1,
θ−1k + 1 if θ > 0.

(2.9)

Let U(s) =
∑

1
j |θj − θ|s

j and Cj the Taylor coefficients of eU(s) . It is clear that |cj | 6 Cj for all
j. When θ > 1, the first bound of (2.9) and the dominated convergence theorem imply

lim
n→∞

∑
k > 0

dn,kck =
∑
k > 0

ck = eu(1) = C(θ). (2.10)
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When θ < 1, the second bound of (2.9) gives dn,k|ck| 6 (θ−1k + 1)Ck. The sequence (kCk) is
absolutely convergent:∑

kCk =
d
ds

eU(s)
∣∣∣
s=1

= eU(1) U ′(1) = e
P 1

j |θj−θ|
∑
|θj − θ| <∞. (2.11)

We again obtain (2.10) by the dominated convergence theorem. �

Proof of Theorem 2.1. We show that, for any 0 < s < t < 1, we have

lim
n→∞

P (`1 ∈ [sn, tn]) = (1− s)θ − (1− t)θ. (2.12)

Using Proposition 2.2, we have

P (`1 ∈ [sn, tn]) =
1
n

tn∑
j=sn

θj
hn−j
hn

=
θ

n

tn∑
j=sn

(θ)n−j
(n− j)!

n!
(θ)n

(1 + o(1)). (2.13)

Here and throughout this article, when a and b are not integer we use the convention
b∑

j=a

f(j) =
∑

j∈[a,b]∩N

f(j) =
bbc∑

j=dae

f(j). (2.14)

We now use the identity

(θ)n =
Γ(n+ θ)

Γ(θ)
(2.15)

and the asymptotic
Γ(n+ θ)

n!
= nθ−1(1 + o(1)). (2.16)

We get

P (`1 ∈ [sn, tn]) =
θ

n

tn∑
j=sn

(1− j
n )θ−1(1 + o(1)). (2.17)

As n → ∞, the right side converges to the Riemann integral θ
∫ t
s
(1− ξ)θ−1dξ, and we obtain the

first claim of Theorem 2.1. Let us now turn to the second claim. Let 1 6 a 6 b 6 n and
1 6 c 6 d 6 n. Splitting the last term according to whether 1 and 2 belong to the same cycle
or to different cycles, we get

P
(
`1 ∈ [a, b], `2 ∈ [c, d]

)
=

1
n(n− 1)

∑
j∈[a,b]
k∈[c,d]
j+k 6 n

θjθk
hn−j−k
hn

+
1

n(n− 1)

∑
j∈[a,b]∩[c,d]

(j − 1)θj
hn−j
hn

.

(2.18)
Let ε > 0 and set a = sn, c = tn and b = d = n. We assume, without loss of generality, that
1 > s > t > 0. Using the above expression, Proposition 2.2 and Eqs (2.15)–(2.16), we deduce
that, for n large,

P
(
`1 > sn, `2 > tn

)
=
θ2

n2

∑
j > sn,k > tn
j+k 6 (1−ε)n

(
1− j + k

n

)θ−1

(1 + oε(1))

+
θ

n2

∑
sn 6 j 6 (1−ε)n

(j − 1)
(

1− j

n

)θ−1

(1 + oε(1)) +O(ε). (2.19)

Taking first the limit n → ∞ and then the limit ε → 0, the right side of the latter expression is
seen to converge to

1{s+t 6 1}θ
2

∫ 1

s+t

(ξ − s− t)(1− ξ)θ−1dξ + θ

∫ 1

s

ξ(1− ξ)θ−1dξ, (2.20)

and the second claim of Theorem 2.1 follows. �
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3. Slowly diverging parameters

This section is devoted to parameters αj that grow slowly to +∞. The typical case is αj = jγ

with 0 < γ < 1, but our conditions allow more general sequences. As mentioned in the introduction,
the system displays a surprising behavior: almost all indices belong to a single giant cycle.

Theorem 3.1. We assume that θn−jθj
θn

6 cj for all n and for j = 1, . . . , n2 , with constants cj
that satisfy

∑
j > 1

cj
j <∞. Then

lim
m→∞

lim
n→∞

P (`1 > n−m) = 1.

It may be worth recalling that n always denote the number of elements in this article, and that
P depends on n. The proof of this theorem can be found later in this section. In the case αj = jγ ,
we have

θn−jθj
θn

= e−n
γ [(1− j

n )γ+( jn )γ−1] ≈

{
e−j

γ

if j � n,

e−cn
γ

if j = sn,
(3.1)

where the constant in the last equation is c = (1− s)γ + sγ − 1. It is positive for 0 < γ < 1, and
the condition of the theorem is fulfilled.

Let us understand why parameters αj = jγ favor longer and longer cycles. The heuristics is
actually provided by statistical mechanics. Namely, we can write the probability P (π) as a Gibbs
distribution 1

Z e−H(π) with “Hamiltonian” H(π) =
∑n
i=1

α`i(π)

`i(π) . Thus, to each index i that belongs
to a cycle of length j is associated an “energy” αj

j = jγ−1. Indices in longer cycles have lower
energy, so they are favored. This discussion also provides an illustration for the symmetry (1.4); it
amounts to shifting the Hamiltonian by a constant and this does not affect the Gibbs distribution.

A natural question in view of Theorem 3.1 is whether finite cycles occur at all, or whether there
is exactly one cycle of length n. The next theorem provides a partial answer to this question by
giving a sufficient condition for the occurrence of cycles of length 1.

Theorem 3.2. Suppose the assumptions of Theorem 3.1 hold.
(a) There exists c > 0 such that P (`1 = n) = P (rn = 1) > c.
(b) Suppose in addition that θ1θn−1/θn is uniformly bounded away from 0, and consider the

weights λθj where λ is a parameter. There exist λ0 = λ0(θ) and c > 0 such that

P (r1 > 1) > c

for all n and for all 0 < λ < λ0.

This theorem is proved at the end of the section. We first obtain estimates for hn.

Proposition 3.3. Under the assumptions of Theorem 3.1 there exists a constant B such that, for
all n,

1 6
nhn
θn

6 B.

The constant B depends on {cj}, but it does not explicitly depend on θ.

Proof. Let an = nhn
θn

. The relation (2.4) can be written as

an = 1 +
n−1∑
j=1

1
j

θn−jθj
θn

aj . (3.2)

The lower bound of the lemma is trivial, contrary to the upper bound. Let us rewrite the relation
above as

an =

1 +
∑n−1

2
j=1

θn−jθj
θn

(
aj
j + an−j

n−j

)
if n is odd,

1 +
∑n

2−1
j=1

θn−jθj
θn

(
aj
j + an−j

n−j

)
+

2θ2n/2
nθn

an/2 if n is even.
(3.3)
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We define the sequence (bn) by the recursion equation

bn = 1 +
n/2∑
j=1

cj

(bj
j

+
bn−j
n− j

)
. (3.4)

It is clear that an 6 bn for all n. Next, let m be a number such that

2
n

n/2∑
j=1

cj +
∑

j>m/2

cj
j
6

1
2

(3.5)

for all n > m. Such an m exists because (cj/j) is summable. We set

B = 2 max
1 6 j 6 m

bj . (3.6)

Notice that B depends on the cj ’s but not on the θj ’s. Finally, we introduce another sequence (b′n)
defined by

b′n =

{
bn if n 6 m,

1 +
∑n/2
j=1 cj

(
b′j
j + 2B

n

)
if n > m.

(3.7)

It is clear that b′n 6
1
2B for n 6 m; we now show by induction that b′n 6 B for all n. We have

b′n − b′m =
2B
n

n/2∑
j=1

cj −
m/2∑
j=1

cj
b′m−j
m− j

+
n/2∑

j=m
2 +1

cj
b′j
j

6
( 2
n

n/2∑
j=1

cj +
∑

j>m/2

cj
j

)
B.

(3.8)

This is less than 1
2B by the definition (3.5) of m. Since b′m 6 1

2B, we find that b′n 6 B for all
n. The final step is to see that bn 6 b′n. This is clear when n 6 m, and we get it by induction
when n > m:

bn+1 = 1 +
n/2∑
j=1

cj

(bj
j

+
bn−j+1

n− j + 1

)
6 1 +

n/2∑
j=1

cj

(b′j
j

+
2B
n+ 1

)
= b′n+1. (3.9)

We have shown that an 6 bn 6 b′n 6 B for all n. �

Proof of Theorem 3.1. Using Proposition 3.3, we get

P (`1 6 n−m) =
1
n

n−1∑
j=m

θn−j
hj
hn
6 B

n−1∑
j=m

1
j

θn−jθj
θn

6 B

n/2∑
j=m

cj
j

+B

n−1∑
j=n/2

cn−j
j

. (3.10)

The last term goes to zero as n→∞. The first term goes to zero as n→∞ and m→∞. �

Proof of Theorem 3.2. For the first claim, we note that

P (`1 = n) =
θn
nhn

. (3.11)

This is larger than 1/B by Proposition 3.3.
We prove now the second claim. Let Ai be the event where i belongs to a cycle of length 1, i.e.

Ai = {π ∈ Sn : π(i) = i}. Then ∪ni=1Ai is the event where `i = 1 for at least an index i, and we
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have the lower bound

P (r1 > 1) = P (∪ni=1Ai) >
n∑
i=1

P (Ai)−
∑
i<j

P (Ai ∩Aj)

= nP (A1)− 1
2n(n− 1)P (A1 ∩A2)

=
λθ1

hn

[
hn−1 − 1

2λθ1hn−2

]
.

(3.12)

Using Proposition 3.3, we get

P (r1 > 1) >
λθ1θn−1

θn

[ n

B(n− 1)
− nλθ1θn−2

2(n− 2)θn−1

]
. (3.13)

Notice that θ1θn−2/θn−1 6 c1. The lower bound is strictly positive when λ < 2(n−2)
Bc1(n−1) . �

4. Quickly diverging parameters

Here we treat parameters θj = e−αj with αj diverging quickly, or equivalently θj decaying
quickly. More precisely, we shall make the following two assumptions: for some M > 0, all k > 1,
and two coprime numbers j1, j2 > 4,

0 6 θk 6
eMk

k!
,

θj1 > 0, θj2 > 0.
(4.1)

It is necessary to suppose some kind of aperiodicity condition on the set of indices corresponding
to nonvanishing coefficients θj . This prevents us from prescribing e.g. permutations with only
even lengths of cycles. In this case, we have hn = 0 for all odd n, as can be easily seen from the
recursion (2.4); Proposition 4.5 below would fail.

Our assumptions allow to get the asymptotics of hn using the saddle point method. We write
down the steps explicitly in order to keep the article self-contained. A slightly shorter path would
be to prove that our assumptions imply that ef , with f(z) =

∑∞
j=0 θjz

j , is “Hayman admissible”,
and to use standard results [7]. That Hayman admissibility holds is implicit in our proof.

We describe general results in Subsection 4.1, relegating proofs to Subsection 4.2. The general
results turn out to be somewhat abstract, so we use them to study the particularly interesting
class αj = jγ , γ > 1, in Subsection 4.3.

4.1. Main properties. We now describe three general theorems about cycle lengths. They all
assume the conditions (4.1), although we do not recall it explicitly.

The first statement concerns the absence of macroscopic cycles.

Theorem 4.1. For arbitrarily small δ > 0 and arbitrarily large k > 0, there exists n0 = n0(δ, k)
such that

P
(

max
1 6 i 6 n

`i > δn
)
6 n−k,

for all n > n0.

More precise information about typical cycle lengths can be extracted from the following result.
Let rn be defined by the equation ∑

j > 1

θjr
j
n = n. (4.2)

Theorem 4.2. Let a(n), b(n) be such that

lim
n→∞

1
n

a(n)∑
j=1

θjr
j+1/2
n = 0, lim

n→∞

1
n

n∑
j=b(n)

θjr
j+1/2
n = 0.
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Then
lim
n→∞

P (`1 ∈ [a(n), b(n)]) = 1.

When the information about the coefficients θj is sufficiently detailed, some control on rn is
possible and Theorem 4.2 can be used to obtain sharp results. This is exemplified in Subsection 4.3
for the special case αj = α(j) = jγ with γ > 1. In such cases, the sum

∑∞
j=1 θjr

j+1/2
n (whose

value is r1/2
n n) is dominated by the terms corresponding to indices j close to the solution jmax of

the equation α′(j) = log rn.
Finally, it is also possible to extract from Theorem 4.2 a general result proving absence of small

cycles.

Theorem 4.3.
lim
n→∞

P
(
`1 6

log n
log rn

− 3
4

)
= 0.

We shall see below that the proof of Theorem 4.3 is straightforward; nonetheless, the result is
quite strong. In the case where only finitely many θj are nonzero, we find rn ∼ n1/j0 , where j0 is
the last index with nonzero θj . Thus log n/ log rn ≈ j0, and we obtain that the probability that
`1 6 j0 − 1 is zero. It follows that almost all cycles have length j0, a fact already observed in
[11, 2]. On the other hand, if infinitely many θj are nonzero, it is easy to see that log n/ log rn
diverges. Thus the probability of `1 being finite goes to zero. To summarize, the only way to force
a positive density of indices to lie in finite cycles is to forbid infinite cycles altogether, in which
case typical cycles have the maximal length that is allowed.

4.2. Proofs of the main properties. We now prove Theorems 4.1 – 4.3. We use the following
elementary result, which is a consequence of the first assumption in (4.1).

Lemma 4.4. Let f(x) =
∑∞
k=0 ckx

k with Taylor coefficients that satisfy 0 6 ck 6 eMk k−k for
some M > 0 and all k > 1. Then for all δ > 0 and all x > 0, we have

f ′(x) 6 (1 + δ) eM f(x) + eM /δ.

Proof. Let k0 = k0(x) = b(1 + δ) eM xc. We decompose

f ′(x) =
∞∑
k=1

ckkx
k−1 =

k0∑
k=1

ckkx
k−1 +R(x).

By our assumptions,

R(x) =
∞∑

k=k0+1

ckkx
k−1 6 eM

∞∑
k=k0+1

(
x eM

k

)k−1

6 eM
∞∑

k=k0+1

(
1

1 + δ

)k
6 eM /δ.

On the other hand, for the terms up to k0 we have k 6 k0 6 (1 + δ)x eM , and thus
k0∑
k=1

ckkx
k−1 6 (1 + δ) eM

k0∑
k=0

ckx
k 6 (1 + δ) eM f(x).

This completes the proof. �

Let us define the functions

Iβ(z) =
∞∑
j=1

jβθjz
j

for β ∈ R. φ(z) := I−1(z) plays a special role, since the generating function of (hn) is given by
Gh(z) = exp(φ(z)). All Iβ are analytic by the first assumption in (4.1), monotone increasing and
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positive on {z > 0} together with all their derivatives, and Iβ+1(z) = zI ′β(z). Lemma 4.2 implies
that for each β > 0, there exists C such that for all z > 0, we have

I ′β(z) 6 CIβ(z). (4.3)

Recall that rn = I−1
0 (n), where I−1

0 denote the inverse function.

Proposition 4.5. We have

hn =
r−nn√

2πI1(rn)
eφ(rn) (1 + o(1)).

Proof. The condition (4.1) on Taylor coefficients implies that I0(z) < D̃ exp(Cz). Then

rn > c log n (4.4)

for some c > 0. On the other hand, rn diverges more slowly than n1/4 since I0(x) diverges faster
than x4 by (4.1).

For the saddle point method, we use Cauchy’s formula and we obtain

hn =
1

2πrn

∫ π

−π
eφ(r eiγ )−niγ dγ

=
eφ(r)

2πrn
[∫ γ0

−γ0
eφ(r eiγ )−φ(r)−niγ dγ + 2

∫ π

γ0

eφ(r eiγ )−φ(r)−niγ dγ
]
,

(4.5)

for any r > 0 and any 0 < γ0 < π. We choose r = rn as given by Eq. (4.2), and γ0 = γ0(n) =
r
−(1+δ)
n , for some 0 < δ < 1/2. The leading order of the first term above can be found by expanding
φ(z)− n log z around γ = 0. We have

φ(rn eiγ )− φ(rn)− niγ =
∑
j > 1

θj
j
rjn
(

eijγ − 1− ijγ
)
. (4.6)

Expanding eijγ − 1− ijγ = − 1
2j

2γ2 +R(jγ) with |R(jγ)| 6 1
3! (jγ)3, we get

φ(rn eiγ )− φ(rn)− niγ = − 1
2γ

2
∑
j > 1

jθjr
j
n +A(γ) = − 1

2γ
2I1(rn) +A(γ), (4.7)

with

|A(γ)| 6 γ3
0

3!

∑
j > 1

j2θjr
j
n =

γ2

r1+δ
n 3!

I2(rn) (4.8)

for all γ 6 γ0. Now by (4.3), we have I2(rn) 6 CrnI1(rn). Thus, as n → ∞, the term A(γ) is
negligible compared to γ2I1(rn) in the first integral, which is therefore given by∫ γ0

−γ0
e−

1
2γ

2I1(rn)(1+o(1)) dγ =
1√
I1(rn)

∫ γ0
√
I1(rn)

−γ0
√
I1(rn)

e−
1
2 ξ

2(1+o(1)) dξ =

√
2π

I1(rn)
(1 + o(1)). (4.9)

The last equality is justified by the fact that γ0(n)I1(rn) > r−1−δ
n I0(rn) > r−2

n n, which diverges
as n→∞.

We now turn to the second term in (4.5). We want to show that it is negligible, and we estimate
it by replacing the integral by π times the maximum of the integrand. In view of (4.9) it is enough
to show that

lim
n→∞

1
2 log I1(rn)− Re(φ(rn)− φ(rn eiγ )) = −∞ (4.10)

for all γ ∈ [γ0, π]. For the first term, we have log I1(rn) 6 log(CrnI0(rn)) 6 C̃ log n. For the
second term, we have

Re(φ(rn)− φ(rn eiγ )) =
∑
j > 1

1
j
θjr

j
n(1− cos(γj))

>
θj1
j1
rj1n (1− cos(γj1)) +

θj2
j2
rj2n (1− cos(γj2)),

(4.11)
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where j1 and j2 are picked according to (4.1). The right side is zero at γ = 0, and it is strictly
positive when γ ∈ (0, π] (j1 and j2 are coprime); so its minimum is taken at γ0 when n is sufficiently
large (recall that γ0 → 0 when n→∞). Expanding the cosine, we get

Re(φ(rn)− φ(rn eiγ )) > c′r4
nγ

2
0 = c′r2−2δ

n > cc′(log n)2−2δ. (4.12)

This dominates the first term of (4.10) since δ < 1/2, and this completes the proof. �

Proof of Theorem 4.1. Clearly,

P (max
i
`i > δn) 6 nP (`1 > δn). (4.13)

We have I1(rn) 6 C2r2
nφ(rn) by (4.3), and thus Proposition 4.5 gives hn > C ′r−n−1

n for n large
enough. Since all the hn−j ’s are clearly bounded by some D > 0, we have by (2.3)

nP (`1 > δn) 6 Drn+1
n

n∑
j=δn

( eM

j

)j
6 Drn+1

n n
( eM

δn

)δn
6 Dn

( eM r
2/δ
n

δn

)δn
. (4.14)

The statement is trivial (and seen directly from (2.3)) if only finitely many θj are nonzero; thus
we may assume there are infinitely many nonzero θj . Then I0(z) grows faster at infinity than any
power of z, and rn diverges more slowly than any power of n. The last bracket is less than 1 for n
large enough, so that the right side vanishes in the limit n→∞. �

In order to make more precise statements about the length of typical cycles, we need a better
control over the terms appearing in (2.3). By the previous result it suffices to consider the case
where j is not too close to n.

Proposition 4.6. For each δ > 0 there exists Cδ such that, for all n ∈ N and all j < (1− δ)n, we
have

hn−j
hn

6 Cδr
j+1/2
n .

Proof. By Proposition 4.5 we have

hn−j
hn

≈ rjn
(

rn
rn−j

)n−j (
I1(rn)
I1(rn−j)

)1/2

eφ(rn−j)−φ(rn)

= rjn exp
(
−
(
φ(rn)− φ(rn−j)− (n− j)(ln(rn)− ln(rn−j))

))( I1(rn)
I1(rn−j)

)1/2

=

= rjn exp
(
−
(
φ(rn)− φ(rn−j)− φ′(rn−j)rn−j ln( rn

rn−j
)
))( I1(rn)

I1(rn−j)

)1/2

,

(4.15)

when both n and n − j are large. Put rn−j = x and rn = x + u. Since n 7→ rn is increasing, we
have u > 0. The exponent above then has the form

φ(x+ u)− φ(x)− xφ′(x) ln(x+u
x ) = (φ(x+ u)− φ(x)− φ′(x)u) + φ′(x)(u− x ln(x+u

x )). (4.16)

The first bracket in the right side is greater than 1
2u

2φ′′(x), since all derivatives of φ are positive
on R+. The second bracket is always positive. Thus for all n ∈ N and all j 6 (1 − δ)n, there
exists C ′δ > 0 such that

hn−j
hn

6 C ′δr
j
n e−

1
2 (rn−rn−j)2φ′′(rn−j)

(
I1(rn)
I1(rn−j)

)1/2

(4.17)

By (4.3), I1(x) = xI ′0(x) 6 CxI0(x). We also have I0(x) 6 I1(x). Since I0(rn) = n, we get

I1(rn)
I1(rn−j)

6 Crn
n

n− j
6

C

δ
rn. (4.18)

This proves the claim. �

Proof of Theorem 4.2. The claims follows immediately from (2.3) and Proposition 4.6. �
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Proof of Theorem 4.3. Let m = log n/ log rn− 3
4 . We use Eq. (2.3), bounding θj by a constant and

using Proposition 4.6 for the ratio of normalization factors. Since rn diverges, we have

P (`1 6 m) 6 C
n

m∑
j=1

rj+1/2
n = C

n r
3/2
n

rmn − 1
rn − 1

6 C′

n r
m+1/2
n , (4.19)

if n is large enough. The right side is equal to C ′r−1/4
n and it vanishes in the limit n→∞. �

4.3. An explicit example. In this subsection, we treat explicitly the case αj = α(j) = jγ with
γ > 1, as an example of application of the previous general results. We first observe that the
assumptions (4.1) are trivially satisfied, so that the general results in this section apply.

The main result of this subsection is that typical cycles are of size ( 1
γ−1 log n)1/γ , to leading

order.

Theorem 4.7. Let αj = jγ , with γ > 1. Then

`1

( 1
γ−1 logn)1/γ

→ 1 in probability. (4.20)

Let us define
∆(j) = α(j)− α(jmax)− (j − jmax) log rn. (4.21)

The proof of Theorem 4.7 follows from two simple technical estimates.

Lemma 4.8. Let jmax ∈ R be such that α′(jmax) = log rn.
(a) Assume that γ > 2. Then, for all j > 1, there exists c = c(γ) > 0 such that

∆(j) > cα′′(jmax)(j − jmax)2. (4.22)

(When j > jmax, one can choose c = 1
2 .)

(b) Assume that γ ∈ (1, 2). Then, for all 1 6 j 6 2jmax, there exists c = c(γ) > 0 such that

∆(j) > cα′′(jmax)(j − jmax)2. (4.23)

(When j 6 jmax, one can choose c = 1
2 .) Moreover, for all j > 2jmax, there exists

c = c(γ) > 0 such that
∆(j) > cjγ . (4.24)

Proof. We start with the case γ > 2. First of all, since jmax = (α′)−1(log rn), we have, for any
j > jmax,

∆(j) = α(j)− α(jmax)− (j − jmax) log rn = α(j)− α(jmax)− (j − jmax)α′(jmax)

=
∫ j

jmax

ds
∫ s

jmax

α′′(t)dt > 1
2α
′′(jmax)(j − jmax)2,

(4.25)

since α′′ is an increasing function. Similarly, we have, for any 1
2jmax 6 j < jmax,

∆(j) =
∫ jmax

j

ds
∫ jmax

s

α′′(t)dt > 1
2α
′′( 1

2jmax)(j − jmax)2 = 21−γα′′(jmax)(j − jmax)2. (4.26)

Finally, for 0 6 j < 1
2jmax, we use

∆(j) =
∫ jmax

j

ds
∫ jmax

s

α′′(t)dt >
∫ jmax

jmax/2

ds
∫ jmax

s

α′′(t)dt

> 1
2α
′′( 1

2jmax) 1
4j

2
max > 2−γ−1α′′(jmax)(j − jmax)2.

(4.27)

Let us now turn to the case γ ∈ (1, 2). The proof is completely similar. When j 6 jmax, we
use (observe that α′′ is a decreasing function now)

∆(j) =
∫ jmax

j

ds
∫ jmax

s

α′′(t)dt > 1
2α
′′(jmax)(j − jmax)2. (4.28)
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When jmax < j 6 2jmax, we use

∆(j) =
∫ j

jmax

ds
∫ s

jmax

α′′(t)dt > 1
2α
′′(2jmax)(j − jmax)2 = 2γ−3α′′(jmax)(j − jmax)2. (4.29)

Finally, when j > 2jmax, we have

∆(j) =
∫ j

jmax

ds
∫ s

jmax

α′′(t)dt > 1
2α
′′(j)(j − jmax)2 > 1

8α
′′(j)j2 = 1

8γ(γ − 1)jγ . (4.30)

�

Corollary 4.9. For any γ > 1, we have, as n→∞,

jmax = (
1

γ − 1
log n)1/γ (1 + o(1)), (4.31)

log rn = α′(jmax) = γ(
1

γ − 1
log n)(γ−1)/γ (1 + o(1)), (4.32)

e−α(jmax) rjmax
n = n1+o(1). (4.33)

Proof. We start with the case γ > 2. Using the previous lemma, it immediately follows that

I0(rn) =
∑
j > 1

e−α(j)rjn 6 e−α(jmax)rjmax
n

∑
j > 1

e−cα
′′(jmax)(j−jmax)2 6 C1 e

−α(jmax)rjmax
n (4.34)

Since, for j < jmax, ∆(j) 6 1
2α
′′(jmax)(j − jmax)2, we also have

I0(rn) > e−α(bjmaxc)rbjmaxc
n > e−

1
2α
′′(jmax) e−α(jmax)rjmax

n . (4.35)

Using the relation I0(rn) = n, (4.34) and (4.35) immediately imply the claimed asymptotics.
Let us now turn to the case γ ∈ (1, 2). The lemma implies that

I0(rn) = e−α(jmax)rjmax
n

∑
j > 1

e−∆(j) 6 C2 e
−α(jmax)rjmax

n

{
α′′(jmax)−1/2 +

∑
j>2jmax

e−cj
γ}
. (4.36)

Since jmax ↗∞ as n→∞, we see that
∑
j>2jmax

e−cj
γ � α′′(jmax)−1/2 and thus that, for large n,

I0(rn) 6 C3 α
′′(jmax)−1/2 e−α(jmax)rjmax

n . (4.37)

As above, we also have

I0(rn) > e−α(djmaxe)rdjmaxe
n > e−

1
2α
′′(jmax) e−α(jmax)rjmax

n > C4 e
−α(jmax)rjmax

n . (4.38)

The claimed asymptotics follow as before. �

Proof of Theorem 4.7. Let ε > 0. It is sufficient to check that Theorem 4.2 applies with a(n) =
(1− ε)jmax and b(n) = (1 + ε)jmax. It follows from Lemma 4.8 and Corollary 4.9 that

1
n

∞∑
j=b(n)

e−α(j)rj+1/2
n 6 no(1)

∞∑
j=b(n)

e−cα
′′(jmax)(j−jmax)2 , (4.39)

which goes to 0 as n→∞, since

e−cα
′′(jmax)(b(n)−jmax)2 = n−cε

2γ(1+o(1)). (4.40)

Similarly,

1
n

a(n)∑
j=1

e−α(j)rj+1/2
n 6 no(1)

a(n)∑
j=1

e−cα
′′(jmax)(j−jmax)2 6 no(1)e−cα

′′(jmax)j2maxε
2
, (4.41)

which again goes to 0 as n→∞. �



RANDOM PERMUTATIONS WITH CYCLE WEIGHTS 13

Acknowledgments: D.U. is grateful to Nick Ercolani and several members of the University of Arizona for

many discussions about the Plancherel measure. D.U. also acknowledges the hospitality of the University of Geneva,
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