
MA4A7 Quantum Mechanics: Basic Principles and Probabilistic Methods
Problem Sheet 1

Volker Betz February, 2010.

1. Orders of magnitude: harmonic oscillator
We rescaled the Schrödinger equation for the harmonic oscillator, given by

i∂tψ(x, t) =

(
− ~2

2m
∂2x +

κx2

2

)
ψ(x, t),

to the standard form

i∂tψ̃(x̃, t̃) =

(
−1

2
∂2x̃ +

x̃2

2

)
ψ̃(x̃, t̃).

For this we used the transformation t̃ = ωt with ω =
√
κ/m, x̃ =

√
mω/~x, and ψ̃(x̃, t̃) = ψ(x, t).

Determine what a time and length interval of length one means in the rescaled variables, in the case of
an electron in a quadratic force field. Use

m = electron mass = 0.91× 10−30 kg, ~ = 1.05× 10−34 J× sec, κ = 1.

2. The hydrogen atom
The Hamiltonian for the hydrogen atom in atomic units is

H = −1

2
∆− 1

|x|
in L2(R3).

a) Check that ψ(x) = e−α|x| /
√
π is an eigenfunction to H for some α (which α? and what is the

eigenvalue?). It is indeed the eigenfunction with lowest energy, called the ground state. We will
learn how to prove this later in the lecture.

b) Calculate the position and momentum uncertainty, and their product, for the hydrogen ground state.
For the latter, use that the Fourier transform of ψ(x) is given by

ψ̂(p) =
8πα

(α2 + |p|2)2
.

For the integrals, use polar coordinates:∫
R3

f(|x|)dx =

∫ ∞
0

dr

∫ π

0

dθ

∫ 2π

0

dφ sin(θ)r2f(r).

For the radial integrals, integration by parts is useful.

c) Calculate the expected distance form the nucleus, 〈ψ, |x|ψ〉, and the expected speed 1
(2π)3 〈ψ̂, |p|ψ̂〉.

d) Convert these results back into physical units. One unit of length in atomic units is equal to
~2/(me2) ≈ 0.5 × 10−10 metres, and one unit of velocity is equal to e2/~ ≈ 2200km/s. Is the
electron fast or slow compared to macroscopic speeds, the speed of sound, or the speed of light?

3. Symmetric operators
Let H be a symmetric operator on a complex Hilbert space.

a) Show that all eigenvalues of H are real.

b) Show that eigenvectors ψ1, ψ2 to different eigenvalues E1, E2 are orthogonal.

c) Let ψ1, ψ2 be two normalized eigenvectors to eigenvalues E1, E2. Define the superposition ψ1,2 =
1√
2
(ψ1 + ψ2). First guess and then compute the mean 〈H〉ψ1,2

and the uncertainty (∆H)ψ1,2
.

4. Ehrenfest equations via operators

a) Prove first that for two linear operators A,B, we have [A2, B] = A[A,B] + [A,B]A.

b) For H = 1
2m

∑n
j=1 P

2
j +V , compute [H,Xj ] and [H,Pj ], where Xj and Pj are position and momen-

tum operators in the coordinate j, respectively.
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c) Use this to prove the Ehrenfest equations.

5. An alternative proof for the existence of e−itH .
Here is an alternative proof for the existence of solutions to the time-dependent Schrödinger equation.
We assume that H is a self-adjoint, possibly unbounded, operator.

a) For λ > 0, define

Hλ :=
1

2
λ2
(
(H + iλ)−1 + (H − iλ)−1

)
.

Using statements from the lecture, show that Hλ is well-defined and bounded for all λ > 0

b) Show that for every ψ ∈ D(H2), ‖(Hλ −H)ψ‖ → 0 as λ→∞.

c) Since Hλ is bounded, eitHλ exists. Prove that ( eitHλ )λ is a Cauchy sequence for λ→∞, e.g. take
λn = 1/n. To do this, check that

eiHλ′ − eiHλ =

∫ 1

0

∂s( eisHλ′ ei(1−s)Hλ ) ds.

Show that Hλ is self-adjoint, which implies ‖ eiHλ ‖ = 1. Then compute the derivative under the
integral, and use this to estimate the difference above, for ψ ∈ D(H2). Since D(H2) is dense, the
proof is finished.

6. Dynamics via spectral decomposition
Let H be any self-adjoint operator. Assume that (En)n∈N are eigenvalues of H with corresponding
eigenfunctions ψn. For coefficients αn ∈ C with

∑
n > 1 |αn|2 <∞, define φ =

∑∞
n=1 αnψn.

a) Show that φ ∈ D(H) if and only if
∑∞
n=1 |Enαn|2 <∞.

b) Under the assumption that
∑∞
n=1 |E2

nαn|2 < ∞, show that the unique solution to the equation
i∂tψ = Hψ, ψ(0) = φ is given by

ψ(t) =

∞∑
n=1

αn e−iEnt ψn.

7. Energy of the harmonic oscillator

Consider the harmonic oscillator with Hamiltonian H = − 1
2∂

2
x + x2

2 . From the time evolution of the
observables it follows that

〈X(t)〉ψ0
≡ 〈ψ(., t), Xψ(., t)〉 ≡ 〈ψ0, X(t)ψ0〉 = sin(t)〈P 〉ψ0

+ cos(t)〈X〉ψ0
,

〈X(t)〉ψ0
= cos(t)〈P 〉ψ0

− sin(t)〈X〉ψ0
,

for any initial state ψ0. So the classical energy (p2 + x2)/2 of the expected values is given by

Eclass =
1

2
(〈P 〉2ψ0

+ 〈X〉2ψ0
).

Show that Eclass is strictly smaller than the quantum energy 〈H〉ψ0
, for any given initial state ψ0. Find

the initial state that minimizes the difference.
Hint: Use the uncertainty principle.

8. Eigenfunctions and eigenvalues of the two-dimensional harmonic oscillator
Let H = − 1

2∆ + V (x, y) be a Schrödinger operator in L2(R2).

a) Assume that the potential V (x, y) is a sum of two independent potentials: V (x, y) = V1(x) + V2(y).
Define H1 = − 1

2∂
2
x + V1(x), H2 = − 1

2∂
2
y + V2(y). Assume that we know eigenfunctions ψ1(x) and

ψ2(y) of H1 and H2, with eigenvalues E1 and E2, respectively. Find an eigenfunction of H and the
corresponding eigenvalue. (Hint: try products)

b) Find all the eigenvalues and eigenfunctions of the two-dimensional harmonic oscillator H = − 1
2∆ +

|x|2, x ∈ R2. For this, first find all the eigenfunctions that can be constructed as in a). Using the
facts that the eigenspaces of the one-dimensional harmonic oscillator span L2(R) (you don’t need to
prove this), show that the spaces you have found span L2(R2). (Hint: use that any L2 function can
be approximated by a finite weighted sum of indicator functions of squares in R2, up to an error of
order ε/2. Then approximate each indicator function up to a sufficiently small error.)

c) Determine the dimension of each eigenspace of the two-dimensional harmonic oscillator. Try to guess
(or calculate, if you want) the eigenvalues and the dimension of each eigenspace for the n-dimensional
harmonic oscillator.
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