
Model Checking for Successor-Invariant First-Order
Logic on Minor-Closed Graph Classes

Kord Eickmeyer
National Inst. of Informatics, Tokyo

eickmeye@nii.ac.jp

Ken-ichi Kawarabayashi
National Inst. of Informatics, Tokyo,

and JST, ERATO,
Kawarabayashi Large Graph Project

k_keniti@nii.ac.jp

Stephan Kreutzer
Technical University Berlin

School of Elect. Eng. and Computer Science
stephan.kreutzer@tu-berlin.de

Abstract—Model checking problems for first- and monadic
second-order logic on graphs have received considerable attention
in the past, not the least due to their connections to problems
in algorithmic graph structure theory. While the model checking
problem for these logics on general graphs is computationally
intractable, it becomes tractable on important classes of graphs
such as those of bounded tree-width, planar graphs or more
generally, classes of graphs excluding a fixed minor.

It is well known that allowing an order relation or successor
function can greatly increase the expressive power of the respec-
tive logics. This remains true even in cases where we require the
formulas to be order- or successor-invariant, that is, while they
can use an order relation, their truth in a given graph must not
depend on the particular ordering or successor function chosen.

Naturally, the question arises whether this increase in expres-
sive power comes at a cost in terms of tractability on specific
classes of graphs. In LICS 2012, Engelmann et al. studied this
problem and showed that order-invariant monadic second-order
logic (MSO) remains tractable on the same classes of graphs
than MSO without an ordering. That is, adding order-invariance
to MSO essentially comes at no extra cost in terms of model
checking complexity. For successor-invariant first-order logic
something similar should be true. However, they only managed to
show that successor-invariant first-order logic is tractable on the
class of planar graphs which is very far from the best tractability
results currently known for first-order logic.

In this paper we significantly improve the latter result and
show that successor-invariant first-order logic is tractable on any
class of graphs excluding a fixed minor. This is much closer to
the best results known for FO without an ordering. The proof
relies on the construction of k-walks in suitable supergraphs of
the input graphs, i.e., walks which visit every vertex at least
once and at most k times, for some k depending on the excluded
minor H . The supergraphs may in general contain H minors,
but they still exclude some possible larger minor H′, so by results
of Flum and Grohe [20] model checking on these graphs is still
fixed-parameter tractable.

I. INTRODUCTION

Studying logics as foundation of query or specification
languages has a long history in computer science. For instance,
first-order logic is the logical foundation of the standard
database query language SQL and monadic second-order logic
plays a crucial rôle in formal language theory as, by Büchi’s
fundamental result [6], monadic second-order logic (MSO) in
strings is equivalent to regular expressions and finite automata.
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MSO also plays an important rôle in algorithmic graph struc-
ture theory, as common algorithmic problems on graphs can
very elegantly be formalised in MSO.

Many interesting problems on graphs have been shown
to be NP-complete. However, for problems such as finding
minimal dominating sets or 3-colourings of graphs, efficient
algorithms can be retained on restricted classes of graphs
such as trees or planar graphs. A huge body of research has
therefore been developed identifying graph classes on which
important problems can be solved efficiently and developing
the algorithmic and graph structural tools to establish such
algorithms. In this context, the concept of tree-width has
proved to be particularly important and successful. The tree-
width of a graph associates with any graph a natural number,
its tree-width tw(G), which measures how close a graph is
to being a tree. Many hard algorithmic problems on graphs
become tractable on graph classes of bounded tree-width, i.e.,
with a uniform bound on the tree-width of all members of
the class, and a huge number of papers establish linear time
algorithms for graph problems on graph classes of bounded
tree-width (see e.g. [14], [3], [4] and references therein).

The concept of tractability in this context can best be stated
in the framework of parameterised complexity theory (see [21],
[14]). A parameterised problem P takes as input pairs (w, k)
where w is a word over some alphabet, such as a graph or
a database, and k ∈ N. Here, k is called the parameter.
P is called fixed-parameter tractable (FPT), if there is a
constant c ∈ N and a computable function f : N → N

and an algorithm solving P which on input (w, k) takes
time f(k) · |w|c. Obviously, the concept of fixed-parameter
tractability crucially relies on the choice of parameter. Usually,
one either takes the solution size as parameter, or some
graph structural parameter such as tree-width. For instance,
it is known that 3-Colourability, the dominating set problem
and many other problems are fixed-parameter tractable with
respect to the tree-width as parameter. In the context of logical
evaluation problems, i.e. the problem, given a structure such
as a graph or database G and a formula ϕ, to decide whether
G |= ϕ, we usually take the size of the formula ϕ as parameter.
Hence, we aim for polynomial evaluation algorithms where
only the constants but not the degree of the polynomial depend
on the formula.



In 1992, Courcelle [7] proved his much celebrated result that
every graph problem definable in monadic second-order logic
can be decided in linear time on any class of graphs of bounded
tree-width. In this context, one usually distinguishes between
two variants of MSO, called MSO1 and MSO2. MSO2 is the
extension of first-order logic (FO) by quantification over sets
of edges as well as sets of vertices. MSO1, on the other hand,
is the extension of FO by quantification over sets of vertices
only. More precisely, Courcelle’s theorem can be phrased as
follows: there is a computable function f : N→ N such that
deciding whether an MSO2-formula ϕ is true in a given graph
G can be done in time f(tw(G) + |ϕ|) · |G|. As many graph
problems can be formalised in MSO, this has proved to be
an extremely useful and widely used strategy for obtaining
linear time algorithms for many problems. See e.g. [26], [4]
and references therein. See also [25], [27] where Courcelle’s
theorem is used in a highly non-trivial way that cannot be
replaced easily by an algorithmic method. While Courcelle’s
theorem has mostly been used as a quick way of proving that
linear time algorithms exist, more recently it has been shown to
be practically applicable and very promising implementations
have emerged. See [32] and the project webpage [36].

Courcelle’s theorem has been extended in many ways. One
direction is to consider extensions of MSO on classes of
bounded tree-width which make the logic based approach to
efficient algorithms applicable to optimisation and counting
problems. See e.g. [1], [10].

As shown in [33], [35], Courcelle’s theorem itself can es-
sentially not be extended beyond classes of graphs of bounded
tree-width. Hence, for more general classes of graphs one
needs to consider less expressive logics than MSO2. In [9],
combined with [29], Courcelle et al. showed that a variant of
MSO called MSO1 is fixed-parameter tractable on any class of
graphs of bounded clique-width. Seese [41] showed that first-
order logic is fixed-parameter tractable on any class of graphs
of bounded maximum degree. Frick et al. [22] extended this to
show that FO is FPT on any class of graphs of bounded local
tree-with. Furthermore, Flum et al. [19] showed the same result
for classes of graphs excluding a fixed minor. More recently,
both results have been unified and extended in [11] to classes
of graphs locally excluding a minor. The most general result
of this form known to date is tractability of first-order model
checking on classes of graphs of locally bounded expansion
[15]. As far as first-order model checking is concerned, it was
shown in [34] that FO model checking is essentially not FPT
on any class of graphs which is somewhere dense, i.e., not
nowhere dense. Hence, in this line of research, the main open
problem is tractability of FO model checking on classes of
graphs which are nowhere dense.

As mentioned above, Courcelle’s theorem has proved to be
extremely useful in obtaining tractability results for problems
on graph classes of bounded tree-width. Tree-width and many
other graph structural properties are defined in terms of graph
decompositions. For instance, tree-width is defined in terms of
tree-decompositions, a recursive, tree-like, decomposition of
a graph into subgraphs of constant size. This decomposition

allows to apply dynamic programming techniques to solve
algorithmic graph problems efficiently, similar to standard
methods for solving these problems on trees. Many other struc-
tural parameters are similarly defined by means of suitable
decompositions or embeddings into surfaces. For logic based
methods in this area, it is often very useful if the corresponding
decompositions can themselves be defined in the logic itself.
As pointed out, e.g., in [8], this can often be done if the
graph is equipped with an order relation. The problem is
that any logic is invariant under automorphisms, i.e., cannot
distinguish between automorphic vertices in a graph, whereas
most decompositions will distinguish between them. If an
ordering of the graph is given, then this problem disappears
so that many decompositions become definable. This applies
for instance to computing planar embeddings in MSO, chord
diagrams of circle graphs, rank decompositions of ordered
cographs, modular decompositions or split decompositions.

As all decompositions are defined on the graph itself, and
not on its ordered version, it is irrelevant for the definability of
the decompositions which order is used on the graph. As long
as it is a linear order, the constructions work. This motivates
the study of order-invariant MSO and FO, a concept that has
previously been studied in database theory. In order-invariant
MSO or FO we are allowed to use a linear order predicate
≤ in logical formulas, with the requirement that the truth of
a formula in a structure A must not depend on the choice of
order. More formally, if A is a logical structure over a signature
σ s.t. ≤ 6∈ σ, ϕ ∈ MSO[σ ∪ {≤}], and ≤1,≤2 are linear
orders on A then (A,≤1) |= ϕ if, and only if, (A,≤2) |= ϕ.
A related concept to order-invariance is successor-invariance,
where we are allowed to use a successor function but again
the truth must not depend on the actual choice of the successor
function. For MSO, order-invariance and successor-invariance
are equivalent, but for FO the two concepts are different as the
ordering is not definable from a successor function. As argued
above, order-invariance is exactly what is needed to define
various types of graph decompositions in logics, making this
an interesting concept to study in logical approaches to graph
algorithms.

Order-invariant logics where originally studied in a database
context. It is easily seen that order-invariant MSO is more
expressive than MSO, as for instance even cardinality becomes
definable on any structure. Gurevich (in an unpublished note)
was the first to observe that order-invariant FO is more
expressive than plain FO. It is known that order-invariant FO
collapses to FO on trees [2], [39], and that order-invariant FO
is a subset of MSO on graphs of bounded degree and on graphs
of bounded tree-width [2]. By a result of Rossman [40], we
know that already the expressive power of successor-invariant
FO is stronger than that of plain FO.

As mentioned above, much work has gone into studying
the (parameterised) complexity for MSO and FO on specific
classes of graphs. Given the usefulness of order-invariant log-
ics in the context of graph algorithms, it is a natural question
to study the complexity of the model checking problems for
order- and successor-invariant logics on classes of graphs,



i.e. to analyse in how that the increased expressive power of
order- or successor-invariant logics effects the tractability of
these logics on specific classes of graphs.

In [18], Engelmann et al. studied this problem and showed
that order-invariant MSO2 is FPT on classes of graphs of
bounded tree-with and MSO1 is fixed-parameter tractable on
classes of graphs of bounded clique-width. Hence, we get
exactly the same tractability results for order-invariant MSO
than plain MSO. Moreover, they were able to reduce the
problem for order-invariant MSO to the case for plain MSO
so that the same model checking algorithms can be used. In
particular, order-invariance could be added to implementations
such as [36] with minimal overhead.

We conjecture that the same should be true for successor-
invariant first-order logic, i.e. we conjecture that successor-
invariant FO should be tractable on the same classes of
graphs as plain FO. In [18] this was shown for planar graphs.
In this paper we prove a huge step towards the conjecture
by extending this result significantly to any class of graphs
excluding a fixed minor. Note that here we apply the structural
restriction, i.e., excluding a minor only to the graph and not to
the graph plus its successor relation. Graph classes excluding
a fixed minor are much more general than planar graphs and
include many interesting examples of graphs. Our result here
brings tractability of successor-invariant FO reasonably close
to the best tractablity results known for plain FO. There is,
however, still a gap between classes excluding a fixed minor
and those of locally bounded expansion. We leave this for
future research.

An important and very useful aspect of our technique is
that we can again reduce the model checking problem for
successor-invariant FO on graph classes excluding a fixed
minor to the model checking problem for plain FO on classes
excluding a fixed minor. This allows to reuse the algorithm
established for plain FO and also means that successor-
invariance could easily be added to any implementation of
these results.

Our algorithm works as follows. Let C be a class of graphs
excluding a fixed minor H . We show that there is a graph
H ′ and a constant k ≥ 1 such that for every graph G ∈ C
we can construct in polynomial time a k-walk P in G (i.e.,
a walk P which visits every vertex at least once and at most
k times) such that adding the edge set of P to G yields a
coloured graph G′ which excludes the graph H ′ as minor.
Furthermore, there is an FO-interpretation that constructs in
G′ a copy of the graph G together with a successor-relation
S. Now, given a graph G ∈ C and a successor-invariant first-
order formula ϕ, we can verify whether G |= ϕ as follows.
We first construct in polynomial time the graph G′ as before.
Applying the interpretation yields a successor-relation S on G
but also a formula ϕ′ ∈ FO which does not use any successor
relation such that (G,S) |= ϕ if, and only if, G′ |= ϕ′. As ϕ
is successor-invariant, the truth of ϕ in G does not depend on
the particular choice of the successor relation. Hence we can
verify whether G |= ϕ by checking whether G′ |= ϕ′. As G′

excludes the graph H ′ as a minor, this can be done using the

known algorithms for graph classes excluding a fixed minor
[19].

Organisation. We fix our notation and recall concepts from
logic and graph theory needed in the sequel in Section II. In
Section III we develop the main graph theoretical tools and
show that for any graph H there is a constant k ≥ 1 and a
graph H ′ such that any graph G excluding H as a minor has
a k-walk P such that G ∪ P excludes H ′. In Section IV we
establish the logical tools needed for our result, in particular
the first-order interpretation defining a successor relation from
the k-walk computed in Section III. Finally, in Section V we
combine these to prove the main result of this paper.

II. PRELIMINARIES AND NOTATION

For a natural number n we let [n] denote the interval
{1, . . . , n}.

A. Logics

We will be dealing with finite structures over finite, rela-
tional vocabularies. Thus a vocabulary σ is a finite set of
relation symbols R, each with an associated arity a(R), and
a σ-structure A consists of a finite set V (A) (the universe)
and relations R(A) ⊆ Aa(R) for all R ∈ σ. For vocabularies
σ ⊆ τ and a σ-structure A, a τ -expansion B is a τ -structure
with V (A) = V (B) and R(B) = R(A) for all R ∈ σ.

We use standard definitions for first-order logic (FO),
cf. [17], [16], [37]. In particular, ⊥ and > denote false and
true, respectively. Let σ be a vocabulary and succ 6∈ σ a new
binary relation symbol. We set σsucc := σ ∪ {succ} and say
that succ is interpreted by a successor relation in a σsucc-
structure B if succ(B) is the graph of a cyclic permutation on
V (B). An FO[σsucc]-formula ϕ is called successor-invariant
if for all σ-structures A and all σsucc-expansions B,B′ of A
in which succ is interpreted by a successor relation we have

B |= ϕ ⇔ B′ |= ϕ,

when all free variables of ϕ are interpreted identically in B
and B′. In this case we say that A |= ϕ if B |= ϕ for one
such expansion B (equivalently for all such expansions).

Note that another common definition of successor relation
is to require succ(A) to be of the form

{(a1, a2), (a2, a3), . . . , (an−1, an)}

for some enumeration V (A) := {a1, . . . , an} of the elements
of V (A). This differs from our definition in that we require
(an, a1) ∈ succ(A) as well, eliminating the somewhat artificial
status of the first and last element. The definition of successor-
invariant FO is not affected by this, though the quantifier rank
of formulas may change.

B. Graphs

We will be dealing with finite simple (i.e., loop-free and
without multiple edges) graphs, cf. [13], [43] for an in-depth
introduction. Thus a graph G = (V,E) consists of some finite
set V of vertices and a set E ⊆

(
V
2

)
of edges. We write



uv ∈ E for {u, v} ∈ E. For a set U ⊆ V we denote the
induced subgraph on U by G[U ], i.e., the graph (U,E′) with

E′ := {uv | u, v ∈ U and uv ∈ E}.

For ease of notation we occasionally blur the distinction
between a set U of vertices and the induced subgraph of
this set. The union G ∪ H of two graphs G = (V,E) and
H = (U,F ) is defined as the graph (U ∪V,E ∪F ). For a set
U of vertices, K[U ] denotes the complete graph (or clique)
with vertex set U . For k ∈ N, we denote the k-clique K[[k]]
by Kk.

For k ≥ 1, a k-walk through a graph G = (V,E) is a
surjective mapping w : [`]→ V for some ` ∈ N such that
• w(i)w(i+ 1) ∈ E for all 1 ≤ i < `,
• |{i ∈ [`] | w(i) = v}| ≤ k for all v ∈ V

The number ` is called the length of the walk.
A surface Σ is a compact Hausdorff space in which every

point has a neighbourhood homeomorphic to the real planeR2.
A path in Σ is a continuous mapping γ : [0, 1]→ Σ which is
injective except for possibly γ(0) = γ(1), in which case we
call the path closed. A drawing Π of a graph G = (V,E) on
a surface Σ associates a point π(v) ∈ Σ to every v ∈ V and a
path γ := π(e) to every edge e = uv such that γ(0) = π(u)
and γ(1) = π(v) or the other way around and such that no
two such paths share an interior point (i.e., a point γ(x) for
some 0 < x < 1), and no interior point equals π(v) for some
v ∈ V . A graph G is called embeddable into some surface Σ
iff such an embedding exists. A graph which is embeddable
into the sphere is called planar.

A drawing Π is called cellular if every connected compo-
nent of Σ − Π is homeomorphic to an open disc. (Here, we
identify Π with the subset {π(v) | v ∈ V } ∪

⋃
e∈E im(π(e))

of Π.) Such drawings can be described combinatorially by
so-called 2-cell embedding schemes, cf. [38, Ch. 3]. When
we speak of a 2-cell embedding (G,Π) of a graph G in an
algorithmic context, we mean a suitable representation of such
an embedding scheme.

A separation of a graph G = (V,E) is a pair (A,B) of
nonempty subsets A,B ⊆ V such that V = A ∪ B and there
is no edge in G between any a ∈ A \ B and b ∈ B \ A. For
c ∈ N, a graph is called c-connected if there is no separation
(A,B) with |A ∩B| < c. For c = 1 we just say connected.
We will need the following theorem about the existence of
2-walks in 3-connected planar graphs, cf. [23], [24]:

Theorem 2.1 (Gao and Richter). Let G = (V,E) be a 3-
connected planar graph. Then there is a 2-walk w through G,
and it can be computed from G in polynomial time.

Gao and Richter do not explicitly mention the polynomial
time computability of the 2-walk, but there are polynomial
time algorithms for computing planar embeddings (cf. [30],
[5]), and given such an embedding the proof in [23] is easily
seen to be constructive.

A tree is a connected acyclic graph, a path is a tree in which
every vertex has degree at most two. A tree-decomposition of

a graph G = (V,E) is a pair (T ,V) consisting of a tree
T = (T, F ) and a mapping V : T → 2V , t 7→ Vt such that
•
⋃

t∈T Vt = V ,
• for every edge uv ∈ E there is a t ∈ T with u, v ∈ Vt,

and
• for every v ∈ V the set {t ∈ T | v ∈ Vt} is a subtree of
T (i.e., connected).

The sets Vt are called the bags of the tree-decomposition. Let
t ∈ T have neighbours N (t) ⊆ T . The torso V̄t of Vt is the
graph

G[Vt] ∪
⋃

u∈N (t)

K[Vt ∩ Vu].

If T is a path then (T ,V) is called a path-decomposition.
The width of a tree-decomposition (or path-decomposition) is
defined by maxt∈T |Vt| − 1.

Let G = (V,E) and H = (W,F ) be graphs. We say that H
is a minor of G, written H � G, if there are disjoint connected
nonempty subgraphs (Xw)w∈W in G such that for every edge
xy ∈ F there is an edge ab ∈ E for some a ∈ Xx and b ∈ Xy .
We will need the following lemma:

Lemma 2.2. Let G = (V,E) be a graph, k ∈ N, and let
(A,B) be a separation of G with |A ∩B| ≤ k and such that
G[A ∩ B] is a clique. If Kk+1 � G then Kk+1 � A or
Kk+1 � B.

Proof: Suppose Kk+1 � G and let X1, . . . , Xk+1 be
disjoint nonempty connected subgraphs of G witnessing this
(i.e., such that there is an edge in G between some u ∈ Xi

and v ∈ Xj for every 1 ≤ i < j ≤ k+ 1.) Since |A ∩B| ≤ k,
some Xi does not meet this set, and so must lie entirely on
one side of the separation. Wlog we assume X1 ⊆ A \B.

Since there are no outgoing edges from X1 to B \ A we
have Xj ∩A 6= ∅ for j = 2, . . . , k+1. Since A∩B is a clique
we may replace Xj by Xj ∩A, thus Kk+1 � A.

Let k ≥ 0 and let Σ be a surface with disjoint closed
discs D1, . . . , Dk ⊆ Σ. Up to homeomorphism, the space
Σ \

⋃
i int(Di) only depends on k and Σ (and not, say, on

the positions of the discs Di), and we denote it by Σ−k. For
i = 1, . . . , k, let fi : [0, 1]→ Di be a path which follows the
boundary curve Ci of Di. Following Diestel [13], we call the
Ci the cuffs of Σ− k, and fi(0) ∈ Σ the root of Ci. On each
cuff Ci the path fi induces a linear order on the points of Ci.

For a graph G = (V,E), a s ≥ 0 and a surface Σ, we
say that G is s-nearly embeddable into Σ if there is a set
X ⊆ V with |X| ≤ s such that G − X can be written as
H0 ∪H1 ∪ . . . ∪Hs so that
(a) there is an embedding Π of H0 into Σ − s such which

meets cuffs only in vertices and which does not meet the
root of a cuff,

(b) the (possibly empty) graphs H1, . . . ,Hs are pairwise
disjoint and common vertices of H0 and Hi are exactly
those vertices of H0 which are mapped to Ci by Π,

(c) for i = 1, . . . , s, the graph Hi has a path-decomposition
(P,V) of width < s such that the vertices of P are the
vertices of H0 ∩ Hi, ordered in the linear order of the



cuff Ci, and v ∈ Vv for these vertices. The graphs Hi are
called vortices attached to H0.

The vertices in X are called apices of the almost embedding.

III. k-WALKS IN GRAPHS WITH EXCLUDED MINORS

In this section we will prove the following lemma:

Lemma 3.3. For every natural number r there is a k such
that: If G = (V,E) is a graph which does not contain a Kr-
minor, then there is a supergraph G′ = (V,E′) obtained from
G by possibly adding edges such that G′ does not contain a
Kk-minor and there is a k-walk w through G′. Moreover, G′

and w can be found in polynomial time for fixed r.

Proof: Without loss of generality we assume that G is
connected. We first compute a tree-decomposition (T ,V) of
G whose torsos are s-nearly embeddable into some surface
into which Kr can not be embedded, for some s depending
only on r. Such a decomposition exists by the Graph Struc-
ture Theorem (see, e.g., [13, Thm. 12.4.11]), and it can be
computed in polynomial time for fixed r (cf. [27], [12]).

Assume that each bag V comes with an s-near embedding
of its torso, i.e., for each bag Vt we are given a set Zt of
at most s apices, subgraphs V(0)

t , . . . ,V(s)
t of V̄t \ Zt, and an

embedding Πt of the graph V(0)
t into a surface into which Kr

can not be embedded and such that V(1)
t , . . . ,V(s)

t are attached
as vortices to this embedding. The algorithm in [12] actually
yields a decomposition and embeddings for which the tree T
is rooted, say, with root tr, and such that for every pair of
nodes t and u such that u is a child of t we have

Vt ∩ Vu ⊆ Zu (1)

and (Vt ∩ Vu) \ Zt is either contained in a single bag of the
path-decomposition of one V(i)

t for i ≥ 1 or is a set of size
at most three and the vertices in this set lie on the boundary
of a face of Πt. By adding edges to G if necessary we may
assume that
(D1) all bags are identical to their torsos, i.e., Vt = V̄t for all

t ∈ T ,
(D2) in every bag t ∈ T , all apices z ∈ Zt are connected to

all other vertices in Vt,
(D3) for every t, u ∈ T such that u is a child of t, the set

(Vt ∩ Vu) \ Zt is either a clique contained in a single
bag of the path-decomposition of one V(i)

t for i ≥ 1 or
a face of Πt of size three (i.e., a triangle).

We will need these properties later. After adding these edges
the graph still excludes some clique as a minor; for a proof
cf. [31, Thm. 1.1]. We will keep adding edges to G in the
course of this proof. For ease of notation, we still call the
resulting supergraphs G.

We add chords to all facial cycles of the embedding Πt to
turn it into a triangulation. In particular, the resulting graph is
3-connected (note that the neighbourhood of every v ∈ V(0)

t

induces a cycle as a subgraph, which is 2-connected), and
since it is still embedded into the same surface as before we
did not create a Kr-minor. By induction on the Euler genus eg

of Πt we show that there is a 2eg+1-walk through V(0)
t which

can be computed in polynomial time.
The base case for the induction is eg = 0, i.e., if V(0)

t

is a planar graph. In this case we invoke Gao and Richter’s
result (Theorem 2.1) to find a 2-walk. We extended V(0)

t to
a triangulation (which is 3-connected) exactly to be able to
apply this theorem.

Otherwise there are non-contractible cycles in V(0)
t . We

compute a shortest such cycle C; this can be done in polyno-
mial time, cf. [42]. We need to distinguish two cases.

First assume C is two-sided and surface separating. Define
left and right edges adjacent to C, as well as the left and right
subgraph Gl and Gr, as in [38, Ch. 3]. Since C is surface
separating, the graphs Gl and Gr are distinct, and by [38,
Prop. 4.2.1] the Euler genus of Πt equals the sum of the Euler
genera of the induced embeddings Πl and Πr of Gl ∪ C and
Gr ∪ C. Since we assumed C to be non-contractible, neither
of these graphs is planar, and so both have strictly positive
Euler genus, which is strictly smaller than the Euler genus of
Πt. By induction, we find 2eg-walks wl and wr in Gl ∪ C
and Gr ∪C. Putting these together and joining them at some
vertex in C yields a 2 · 2eg = 2eg+1-walk in V(0)

t .
Otherwise, if C is two-sided but not surface separating, or

if C is one-sided, we cut along C as in [38, Lemma 4.2.4].
This results in a graph H whose Euler genus is lower than
that of V(0)

t and such that each vertex of C has two copies in
H . Again, we use induction to find a 2eg-walk in H , which
directly gives us a 2 · 2eg = 2eg+1-walk in V(0)

t .
In order to extend this walk to a walk through V(0)

t ∪V
(1)
t ∪

. . . ∪ V(s)
t , we add edges to each V(i)

t , i = 1, . . . , s, to turn
each bag of the path-decomposition of V(i)

t into a clique. Each
bag contains some vertex v ∈ V(0)

t , and the first time the walk
through V(0)

t enters this v we make a detour through all nodes
in its bag which have not been visited before, return to v, and
then continue the walk. This results in a (2eg+1 + 1)-walk
through V(0)

t ∪ V(1)
t ∪ . . . ∪ V(s)

t .
So far we have found k′-walks through the torsos (excluding

the apices) of our tree-decomposition, for some k′ depending
only on r. We added some edges, but the torsos still exclude
some clique Kr′ as a minor: When we added chords to turn
V(0)
t into a triangulation, we also added chords through the

cuffs at which the V(i)
t are glued, but this can be done by

connecting one node vi on the cuff Ci to all other nodes on
Ci, and by adding v to all bags of the path-decomposition of
V(i)
t we still get an almost-embeddable graph, which excludes

some clique minor.
Furthermore, we only added edges within bags of our tree-

decomposition (T ,V), and these edges to not affect other bags,
because we assumed all bags to be identical to their torsos: If
u, v ∈ V appear together in more than one bag, then there is
already an edge between them in G. Thus (T ,V) remains a
tree-decomposition even after adding edges.

Now we extend these walks through the apices Zt of each
bag and paste the walks in the individual bags together to get
a walk through the whole graph. We start at the root tr of



(T ,V) and pick, for every z ∈ Ztr , an arbitrary neighbour
v ∈ V(0)

tr of z. If there is no such neighbour we add an edge
to an arbitrary node. We make a detour through z the first time
the walk visits v. This increases the number of times we visit
v by one, but since |Zt| < s, it can only turn our k′-walk into
a k1 := (k′ + s)-walk.

We extend the k1-walk step by step until it covers the whole
graph G. Let T̃ be the set of nodes of the tree-decomposition
which are already covered, i.e., such that we already have a
walk through

⋃
t∈T̃ Vt. By the last paragraph we may start

with T̃ = {tr}. Let ∂T̃ be the set of nodes t ∈ T̃ which still
have children u ∈ T \T̃ . In each step we pick one t ∈ ∂T̃ and
extend the walk through all its children. The constructed walk
will be a k2-walk for some k2 > k1, but for every t ∈ ∂T̃ , no
vertex from Vt \ Zt will be visited more than k1 times.

Let t ∈ ∂T̃ be a bag with children u1, . . . , un ∈ T . We call

Ai := Vui
∩ Vt

the adhesion set of u1. The basic idea is to insert the k1-walk
wi through the bag ui into the walk w through t when the
latter visits some vertex vi ∈ Ai. However, inserting wi at vi
increases the number of times we visit vi by one, and since
the number of children n is unbounded, we have to carefully
choose the vertices vi ∈ Ai so that no single vertex is used
more than a bounded number of times.

We first show that we may assume the adhesion sets Ai to
be distinct. By Property (D3), each Ai is of the form

Ai = A
(Z)
i ∪∆i,

where A(Z)
i := Ai∩Zt and ∆i is a face of Πt (the embedding

of V(0)
t ) or a clique which is contained in some bag of a

path-decomposition of a vortex. It may well happen that an
unbounded number of children of t have the same adhesion
set, and we first show how to deal with this case.

Let u1 be a child of t with adhesion set A, and let
u2, . . . , um be the other children of t with the same adhesion
set. For each ui we pick the endpoints ai, bi ∈ V(0)

u1 of an
arbitrary edge traversed from ai to bi by the walk wi. (The
case in which Ṽ

(0)
ui does not contain an edge can be dealt

with easily.) We add edges a1b2, a2b3, . . . , amb1 to G as in
Figure 1. The resulting graph still excludes some clique, for
if r′ ≥ |A|+ 3 and none of the bags ui has a Kr′ minor, then
neither does

⋃m
i=1 Vui

with the added edges. This follows from
Lemma 2.2, because Vui

intersects
⋃

j 6=i Vuj
in A ∪ {ai, bi},

which is a clique of size |A|+ 2.
We replace the bags u1, . . . , um by a single new bag ũ.

While ũ is no longer nearly embedded, it still excludes some
clique minor (whose size depends only on r).

Using the new edges we connect the walks w1, . . . , wm

through the bags ui, . . . , um as follows: By our choice of ai
and bi, each walk wi traverses the edge aibi at some point. We
go from ai to bi+1 instead (and from am to b1). The resulting
walk w̃ is a k1-walk through ũ.

From now on we assume that no two children of t have
identical adhesion sets. We want to pick a vi ∈ Ai such

· · · · · ·· · ·

Vt

Vu1
Vu2

Vum

w1

b1 bm am

w2

a2b2a1

wm

= Vui ∩ Vuj

A = Vt ∩ Vui

(1 ≤ i < j ≤ m)

Fig. 1. The walks w1, . . . , wm are joined by replacing edges aibi on the
walks (red) by edges aibi+1 (blue).

that no v ∈ Vt is chosen more than a bounded number of
times. Having done so we can insert the walk wi into the
walk through t at vi without increasing the number of times
vi is visited by too much.

We have to distinghuish two cases: If ∆i is contained in
one bag of a path-decomposition of one of the vortices of t,
we use the indexing vertex of that bag as vi. By our bound
on the path-width of the vertices, no vi is used more than a
bounded number of times.

For ∆i which form a face of the embedding of V(0)
t we

proceed as follows: Let Ĝ be a barycentric subdivision of
(V(0)

t ,Πt), i.e., we introduce a new vertex vF for every face
F of Πt and connect it to v ∈ V (V(0)

t ) iff v ∈ F . Then Ĝ is
again 3-connected and Πt can be extended to an embedding
of Ĝ in an obvious way. We compute a 2eg+1-walk ŵ through
Ĝ as above. Each vF is visited at least once, and since all its
neighbours are vertices of V(0)

t , its immediate predecessor on
ŵ when it is first visited is some uF ∈ V(0)

t . Now if ∆i is
some face F of Πt, we insert wi into w when first visiting
uF . This way uF is used at most 2eg+1 times.

IV. DEFINING A SUCCESSOR RELATION FROM A k-WALK
IN FO

The following lemma allows us to interpret a successor
relation from a k-walk in first-order logic.

Lemma 4.4. Let σ be a finite relational vocabulary, A a
finite σ-structure, and w : [`] → V (A) a k-walk through the
Gaifman graph of A.

Then there is a finite relational vocabulary σk and a first-
order fomula ϕ

(k)
succ(x, y), both depending only on k, and a

(σ ∪ σk)-expansion A′ of A which can be computed from A
and w in polynomial time, such that
• The Gaifman-graphs of A′ and A are the same,
• ϕ

(k)
succ defines a successor relation on A′.

Proof: We define a function f : [`] → [k] which counts
how many times we have visited a vertex on the walk before,
by

f(i) := |{j ≤ i | w(i) = w(j)}| .



Furthermore, let F : V (A) → [k] count how many times we
visit a vertex:

F (v) := |{i ∈ [`] | w(i) = v}| .

To simplify notation, we write F (i) for F (w(i)) if i ∈ [`].
We encode the k-walk w by binary relations Eab with a, b =

1, . . . , k, in such a way that (u, v) ∈ Eab iff there is some
i ∈ [`− 1] such that
• w(i) = u and f(i) = a, and
• w(i+ 1) = v and f(i+ 1) = b.

I.e., after visiting u for the a-th time, the walk w proceeds
to v, visiting it for the b-th time. Note that if k = 1 we can
immediately define a successor relation by

ϕ(1)
succ(x, y) := E11xy.

If k > 1, we show how to interpret a (k − 1)-walk w′

in first-order logic given a k-walk encoded by {Eab | 1 ≤
a, b ≤ k} as above. By daisy-chaining these interpretations we
end up with a 1-walk (i.e., a Hamiltonian cycle). Plugging in
the interpretation of this Hamiltonian cycle into ϕ(1)

succ defined
above we obtain the formulas ϕ(k)

succ.
In order to get from a k-walk to a (k− 1)-walk, we look at

all vertices which are visited k times, and “jump” over these
vertices either when they are visited for the (k − 1)-th or for
the k-th time. Jumping over a vertex can be done in first-
order logic, but we must be careful to choose the vertices for
jumping in such a way that we never jump over an unbounded
number of vertices in a row, which is not possible in first-order
logic. We encode the information on whether to jump when
visiting for the (k − 1)-th or the k-th time in a new unary
predicate Pk.

To be precise, let ϕk-times(x) be a formula which states that
x is visited k times:

ϕk-times(x) := ∃y
k∨

a=1

Ekaxy.

For those u ∈ V (A) which are visited k-times, we agree to
jump over them when they are visited for the k-th time if
u ∈ Pk, and when they are visited for the (k − 1)-th time
otherwise. Thus, if w(i) = u, f(i) = k and u ∈ Pk, we want
to remove the i-th step from the walk w and set

w−i(j) :=

{
w(j) if j < i

w(j + 1) if j ≥ i

However, it may be the case that w(i+1) is also visited k times
and needs to be jumped over. We define first-order formulas
which carry out a bounded number of such jumps as follows:
• For a ∈ [k], the formula ϕjump,a(x) holds if we jump over
x when visiting it for the a-th time:

ϕjump,1(x), . . . , ϕjump,k−2(x) := ⊥
ϕjump,k−1(x) := ϕk-times(x) ∧ ¬Pkx,

ϕjump,k(x) := ϕk-times(x) ∧ Pkx.

• For r ≥ 0 and a, b ∈ [k], the formula ϕ(r)
next,a,b(x, y) holds

if, when applying at most r consecutive jumps on entering
x for the a-th time, we end up in node y which is visited
for the b-th time in the (original) walk. Specifically:

ϕ
(0)
next,a,b(x, y) := x=̇y ∧ δab
ϕ
(r+1)
next,a,b(x, y) := (¬ϕjump,a(x)→ (x=̇y ∧ δab))∧(
ϕjump,a(x)→ ∃z

k∨
c=1

(
Eacxz ∧ ϕ(r)

next,c,b(z, y)
))

Here, δab is true if the indices a and b are the same:

δab :=

{
> if a = b,

⊥ otherwise.

• We will show below how to choose the predicate Pk so
that we never need to take more than two consecutive
jumps. Thus, we can interpret a (k − 1)-walk w′ using,
for a, b ∈ [k − 2], the formulas

ϕE,a,b(x, y) := ∃z
k∨

c=1

(
Eacxz ∧ ϕ(2)

next,c,b(z, y)
)
.

For a ∈ [k − 2] we set

ϕE,a,k−1(x, y) :=

∃z
k∨

c=1

(
Eacxz ∧

(
ϕ
(2)
next,c,k−1(z, y) ∨ ϕ(2)

next,c,k(z, y)
))
.

For b ∈ [k − 2] we set

ϕE,k−1,b(x, y) :=(
¬ϕjump,k−1(x)→ ∃z

k∨
c=1

(
Ek−1,cxz ∧ ϕ(2)

next,c,b(z, y)
))

∧
(
ϕjump,k−1(x)→ ∃z

k∨
c=1

(
Ek,cxz ∧ ϕ(2)

next,c,b(z, y)
))

And finally

ϕE,k−1,k−1(x, y) :=(
¬ϕjump,k−1(x)→ ∃z

k∨
c=1

(
Ek−1,cxz∧

(
ϕ
(2)
next,c,k−1(z, y) ∨ ϕ(2)

next,c,k(z, y)
)))
∧(

ϕjump,k−1(x)→ ∃z
k∨

c=1

(
Ek,cxz∧

(
ϕ
(2)
next,c,k−1(z, y) ∨ ϕ(2)

next,c,k(z, y)
)))

To define the predicate Pk, let T ⊆ [`] be the set of indices
i ∈ [`] for which F (i) = k and f(i) ∈ {k−1, k}. We obtain a
perfect matching M on T by matching i and j iff w(i) = w(j).
We define a subset J ⊂ [`] with the intended meaning that if



i ∈ J we jump over the i-th step of w. The set J will satisfy
the following two conditions:
• Every vertex v with F (v) = k is jumped over exactly

once, i.e.,

|{i ∈ [`] | w(i) = v} ∩ J | = 1.

• We never jump more than twice in a row, i.e., if i, i+1 ∈
J then i+ 2 6∈ J .

We partition the set [`] into intervals of size 2, setting

U :=
{
{1, 2}, {3, 4}, . . .

}
,

with the last set {`} being a singleton if ` is odd. Then the
matching M defines a multigraph without loops on U , and
the degree of I ∈ U is at most 2. We direct the edges of
M , viewed as edges in the multigraph (U,M), in such a way
that every I ∈ U has at most one incoming edge. The edges
incident with I correspond to the elements of I ∩ T , and we
put i ∈ I into J iff the edge corresponding to i is directed
towards I . For every k = 1, . . . , b(` − 1)/2c at most one of
2k − 1 and 2k is in J , and therefore J satisfies the above
requirements.

The definition of Pk ⊆ V (G) is now straightforward:

Pk := {v ∈ V (G) | F (v) = k and
f(i) = k for the i ∈ J with w(i) = v}.

In summary, we end up with

σk := {Eab | a, b ∈ [k]} ∪ {Pa | a = 2, . . . , k},

and it is clear that our construction can be carried out in
polynomial time.

V. SUCCESSOR-INVARIANT FO ON MINOR-CLOSED
GRAPH CLASSES

Now we can put the results from Sections III and IV
together to prove our main result:

Theorem 5.5. For every finite graph H , the model checking
problem for successor-invariant first-order logic on the class
of all finite structures whose Gaifman graph does not contain a
H as a minor is fixed-parameter tractable when parameterised
by the size of the formula.

Proof: Since the minor-relation is transitive, and every
finite graph is a minor of some clique Kr, it suffices to prove
the theorem for cliques. Given a structure A whose Gaifman
graph does not contain a Kr minor and a successor-invariant
first-order formula ϕ, we first compute the Gaifman graph G of
A. Using the algorithm of Lemma 3.3, we compute an s-walk
w : [`] → V (A) for some s depending only on r such that
after adding edges between successive vertices on the walk w
the graph G still excludes a Ks minor.

We now apply Lemma 4.4 to expand A into a structure A′

whose Gaifman graph contains no Ks minor and such that
there is a first-order formula ϕsucc which defines a successor

relation in A′. We plug ϕsucc into ϕ to obtain a formula ϕ′

which satisfies

A |= ϕ ⇔ A′ |= ϕ′.

Since ϕsucc depends only on r, the size of ϕ′ is bounded by a
function of the size of ϕ, and since model checking for FO on
classes of structures which exclude some minor was shown to
be fixed-parameter tractable in [20], this proves our claim.

CONCLUSION

We proved that for every r ∈ N, the model checking
problem for successor-invariant first-order logic on the class
of structures whose Gaifman graph does not contain a clique
of size r as a minor is fixed-parameter tractable when param-
eterised by the size of the input formula. This comes close to
corresponding results for first-order logic.

The stronger tractability result for first-order logic obtained
by Dawar et al. in [11] and by Dvořák et al. in [15] do not rely
on decompositions into almost embeddable parts and instead
use weaker decompositions which are easier to compute. Since
our proof heavily relies on the topological properties of almost
embeddable graphs, it is not at all clear how our result for
successor-invariant FO could be strengthened to obtain similar
results as for FO, and this calls for further research.

Another well-studied logic similar to successor-invariant FO
is order-invariant first-order logic. By a result of Grohe et
al. [28], order-invariant FO enjoys locality properties similar to
those of FO, and these locality properties lie at the heart of all
tractability results for FO. Whether they can be used to obtain
tractability results for order-invariant FO is an interesting open
question.
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