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Abstract. For first-order logic model checking on monotone graph
classes the borderline between tractable and intractable is well charted:
it is tractable on all nowhere dense classes of graphs, and this is essen-
tially the limit. In contrast to this, there are few results concerning the
tractability of model checking on general, i.e. not necessarily monotone,
graph classes.
We show that model checking for first-order logic on map graphs is fixed-
parameter tractable, when parameterised by the size of the input for-
mula. Map graphs are a geometrically defined class of graphs similar to
planar graphs, but here each vertex of a graph is drawn homeomorphic to
a closed disk in the plane in such a way that two vertices are adjacent if,
and only if, the corresponding disks intersect. Map graphs may contain
arbitrarily large cliques, and are not closed under edge removal.
Our algorithm works by efficiently transforming a given map graph into
a nowhere dense graph in which the original graph is first-order inter-
pretable. As a by-product of this technique we also obtain a model check-
ing algorithm for FO on squares of trees.

1 Introduction

Starting with Courcelle’s groundbreaking result [2] that model checking for
monadic second-order logic (MSO) is fixed-parameter tractable on graphs of
bounded tree width, efficient algorithms for model checking on restricted classes
of structures have been thoroughly investigated. Since many well-known algo-
rithmic problems on graphs (such as finding cliques, dominating sets, or vertex
covers of a given size) can be rephrased as model checking problems, efficient
algorithms for model checking immediately yield efficient algorithms for these
problems as well. Therefore results showing the existence of such model checking
algorithms are commonly referred to as algorithmic meta theorems.

For first-order logic (FO), model checking has been shown to be fixed-
parameter tractable on a wide range of graph classes, cf. [9,4,6,14]. These results
hinge on the fact that FO has very strong locality properties, and clever graph-
theoretic tools for small-diameter graphs. In particular, the methods used in



proving these results are well-behaved under edge-removal. A graph class which
is closed under taking (not necessarily induced) subgraphs is called monotone,
and for monotone graph classes, FO model checking is fixed-parameter tractable
if, and only if, the graph class is nowhere dense [14] (modulo some minor tech-
nicalities).

Thus to overcome the barrier of sparse graphs, entirely different algorith-
mic techniques are necessary. Previous results for model checking on non-sparse
graph classes are few. In particular, Courcelle’s result has been generalised to
graphs of bounded clique width [3], and there are results for FO model checking
on partially ordered sets of bounded width [11] and on certain interval graphs, if
these graphs are given as an interval representation [12]. Recently, Gajarský et
al. obtained an efficient model checking algorithmic for FO on graphs that are
FO-interpretable in graphs of bounded degree [10].

In this work we obtain a new algorithmic meta theorem for first-order logic:

Theorem 1. The model checking problem for first-order logic on vertex coloured
map graphs is fixed-parameter tractable, parameterised by the size of the input
formula.

Map graphs have been introduced by Chen, Grigni, and Papadimitriou [1]
as a generalisation of planar graphs. They are defined as graphs which can be
drawn in the plane in a way such that to every vertex of the graph a region
homeomorphic to a closed disk is drawn, and the regions corresponding to ver-
tices u and v touch if, and only if, uv is an edge of the graph. Here, two regions
are considered to touch already if they intersect (as point sets) in a single point.
If instead one insists that regions intersect in a set containing a homeomorphic
image of a line segment, one obtains the familiar notion of planar graphs.

Note that unlike planar graphs, map graphs may contain arbitrarily large
cliques, and the class of map graphs is not closed under taking arbitrary sub-
graphs. The recognition problem for map graphs, i.e. deciding for a given an
abstract graph G = (V,E) whether it can be realised as a map graph, has been
shown to be feasible in polynomial time by Thorup in the extended abstract [22].
However, Thorup’s algorithm has a running time of roughly O(|V |120), and no
complete description of it has been published. Moreover, it does not produce a
witness graph (which is a combinatorical description of a map drawing) if the in-
put graph is found to be a map graph. Recently, Mnich, Rutter, and Schmidt [19]
have given a linear algorithm that decides whether a map graph has an outer-
planar witness graph, and computes one if the answer is yes.

The graph input to our algorithm is given as an abstract graph (and not
as, say, a geometric representation as a map), and we do not rely on Thorup’s
algorithm nor any results from [22]. Instead, we use Chen et al.’s classification
of cliques in a map graph and show how to efficiently compute, given a map
graph G, a graph R in which G is first-order interpretable and such that the
class of all graphs arising in this way is nowhere dense. In fact, G is an induced
subgraph of the square of R, i.e. the graph with the same vertex set as R in
which two vertices are adjacent if, and only if, they have distance at most 2 in



R. In Section 7 we show how know results on squares and square roots of graphs
can be used to obtain further algorithmic meta theorems.

2 Preliminaries

2.1 Logic

We use standard definitions for first-order logic (FO), cf. [8,7,16]. In particular,
⊥ and > denote false and true, respectively. We will only be dealing with finite,
vertex coloured graphs as logical structures, i.e. finite structures with vocab-
ularies of the form {E,P1, . . . , Pk}, with a binary edge relation E and unary
predicates P1, . . . , Pk.

2.2 Graphs

We will be dealing with finite simple (i.e. loop-free and without multiple edges)
undirected graphs, cf. [5,24] for an in-depth introduction. Thus a graph G =
(V,E) consists of some finite set V of vertices and a set E ⊆

(
V
2

)
of edges. A

clique C ⊆ V is a set of pairwise adjacent vertices, i.e. such that uv ∈ E for all
u, v ∈ C, u 6= v. The neighbourhood of a vertex v ∈ V is defined as

N(v) := {w ∈ V | vw ∈ E}.

For a set W ⊆ V of vertices we denote by E[W ] ⊆ E the set of edges that have
both endpoints in W .

A topological embedding of a graph H = (W,F ) into a graph G = (V,E), is
an injective mapping ι : W → V together with a set {pxy | xy ∈ F} of paths in
G such that

– each path pxy connects ι(x) to ι(y) and
– the paths pxy share no internal vertices, and no ι(z) is an internal vertex of

any of these paths.

If a topological embedding of H into G exists we say that H is a topological
minor of G, written H � G.

If all paths pxy of a topological embedding have length at most r then the
embedding is said to be r-shallow. The notion of an r-shallow topological minor,
written �r, is defined accordingly. A class C of graphs is called nowhere dense if
for every r there is an m with Km 6�r G for any G ∈ C.

We relax these notions by allowing vertices of G to be used more than once
but at most c times, for a constant c. Thus H is a topological minor of complexity
≤ c of G (written H �c G) if there is a mapping ι : W → V and paths pxy
connecting ι(x) to ι(y) for every xy ∈ F such that no v ∈ V is used more than
c times as an internal vertex of some pxy or as ι(x). Similarly for H �c

r G.
It is well known that K5 6� G for any planar graph G. While for every graph

H and every c ≥ 2 there is a planar graph G with H �c G, for every c, r ∈ N
there is some m = m(c, r) ∈ N such that Km 6�c

r G for any planar graph G
(cf. [21, Sec. 4.8]).



2.3 Map Graphs

A graph G = (V,E) is a map graph if there are sets Dv ⊆ R2, one for each
v ∈ V , such that

– each Dv is homeomorphic to a closed disc (i.e. homeomorphic to {(x, y) ∈
R2 | x2 + y2 ≤ 1},

– Dv and Dw intersect only on their boundaries, for v 6= w, and
– Dv ∩Dw 6= ∅ if, and only if, vw ∈ E.

Chen et al. showed thatG is a map graph if, and only if, there is a planar bipartite
graph H = (V ∪P, F ) having the vertices of G as one side of its bipartition and
such that uv ∈ E iff up, vp ∈ F for some p ∈ P ; moreover we may assume that
|P | ≤ 4|V | ([1, Thm. 2.2, Lemma 2.3]). Such a graph H is called a witness for
G. We call the elements of P the points of the witness, and refer the term vertex
to elements of V .3

By [1, Thm. 3.1], every clique C in a map graph is of one (or more) of the
following types (cf. Figure 1):

pizza there is a p ∈ P such that pv ∈ F for all v ∈ C, or
pizza-with-crust there is a v ∈ C and a p ∈ P such that pv 6∈ F but pw ∈ F

for all w ∈ C \ {v}, or
hamantasch there are p, q, r ∈ P such that every v ∈ C is adjacent to at least

two of these points, or
rice ball |C| ≤ 4 and any p ∈ P is adjacent to at most two vertices in C.

Furthermore, the number of maximal cliques in a map graph with n vertices is
bounded by 27n [1, Thm. 3.2].

pizza pizza

with crust

hamantasch rice ball

Fig. 1. The possible types of cliques in map graphs.

3 Elements of V are referred to as nations by Chen et al.



3 The Maximal Clique Graph

Let G = (V,E) be a map graph and H = (V ∪ P, F ) a planar witness graph for
it. Let C1, . . . , Cm ⊆ V be the maximal cliques in G. Then m ≤ 27 · |V |. We
define the maximal clique graph M = (V ∪W,FM ) as the bipartite graph with
W = {wC |C = C1, . . . , Cm} and v ∈ V and wC ∈ W adjacent if, and only if,
v ∈ C.

Note that

– any witness graph H is, by definition, planar, but we do not know how to
efficiently compute one from G,

– we can recover G from coloured versions of both H and M by first-order
interpretations,

– we can compute M from G in polynomial time, because we can enumerate
the maximal cliques of G in output-polynomial time [23] and there are only
linearly many.

In Section 5 we define a graph similar toM which will indeed be nowhere dense.
Before doing so we give a sequence of a map graphs Gn for which Kn �2 Mn,
i.e. the class of maximal clique graphs of map graphs is not nowhere dense.

Let Gn = (Vn, En) with

Vn := {v1, . . . , vn}︸ ︷︷ ︸
=:V

∪{a1, . . . , am}︸ ︷︷ ︸
=:A

∪{b1, . . . , bm}︸ ︷︷ ︸
=:B

,

En :=

(
V

2

)
∪
(
A

2

)
∪
(
B

2

)
∪ {aibi | 1 ≤ i ≤ m}∪

{viaj , vibj | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

where m :=
(
n
2

)
. This is a map graph, as witnessed by Figure 2. The maximal

cliques are the sets V ∪A, V ∪B, and

Ci := {v1, . . . , vn, ai, bi}

for i = 1, . . . ,m, which can be seen as hamantasch or pizza-with-crust cliques.
But then the maximal clique graph Mn contains a 2-subdivision of Kn as a
subgraph, so {Mn | n ≥ 1} is not nowhere dense.

We will deal with this by making sure that

– hamantasch cliques are of bounded size, and
– pizza-with-crust cliques with identical centre points are treated only once.

This will be the content of Sections 4 and 5.

4 Neighbourhood Equivalence

We call two vertices v, w ∈ V in a graph G = (V,E) neighbourhood equivalent,
written v ∼ w, if

N(v) \ {v, w} = N(w) \ {v, w}.



v1 · · · vn

a1

am

bm

b1
v2

Fig. 2. The map graphs Gn whose maximal clique graphs contain large cliques as (even
topological) 2-shallow minors.

This defines an equivalence relation on V ; for transitivity note that u ∼ v and
v ∼ w imply that {u, v, w} is either a clique or an independent set. This equalence
relation has been studied before, e.g. in [15] and [10], where it is called twin
relation. For the purpose of model checking we may prune a graph by removing
neighbourhood equivalent vertices, as long as we keep track of their number, up
to a given threshold.

Define the graph G/∼ to be the graph with vertex set

V/∼ = {[v] | v ∈ V }

and vertices [v] 6= [w] adjacent if, and only if, vw ∈ E. Note that this is indepen-
dent of the particular choice of representatives, since v ∼ v′ and w ∼ w′ imply
that (vw ∈ E)⇔ (v′w′ ∈ E).

In G/∼ no two vertices have identical neighbourhoods:

N([v]) = N([w]) ⇒ [v] = [w]

To see this, assume [v] 6= [w]. Wlog there is some u ∈ V such that uv ∈ E but
uw 6∈ E. But then [u][v] ∈ E/∼ but [u][w] 6∈ E/∼, so N([v]) 6= N([w]).

We add information on the size of [v] to the graphG/∼ using unary predicates
as follow: for i ∈ N we set

Pi(G) := {[v] | |[v]| ≥ i} ⊆ V/∼,

and we let G∼,m be the graph G/∼ together with the unary predicates
P1, . . . , Pm. Note that G∼,m can be computed on input G and m in polyno-
mial time, e.g. using colour refinement techniques. Our definition of G∼,m is
motivated by the following lemma, whose (straight-forward) proof we omit here:

Lemma 1. For every ϕ ∈ FO of quantifier rank m there is a ψ ∈ FO of the
same quantifier rank such that

G |= ϕ ⇔ G∼,m |= ψ

for every graph G.



5 3-connected Map Graphs

In the following we show how to perform FO model checking on 3-connected
map graphs. Using Lemma 1 we may, and will, assume that no two vertices of
the input graph have identical neighbourhoods. We start by showing that this
together with 3-connectedness implies that hamantasch cliques have size at most
9.

Lemma 2. Let G = (V,E) be a 3-connected map graph, H = (V ∪ P, F ) a
witness graph for G and p, q ∈ P . Consider the vertices of G adjacent to both p
and q:

Np,q := N(p) ∩N(q) = {v ∈ V | pv, qv ∈ F}.

Then all but (possibly) two of the vertices in Np,q have identical neighbourhoods
in G: There are vertices u,w ∈ V such that

N(v) = N(v′)

for all v, v′ ∈ Np,q \ {u,w}.

Proof. We fix an arbitrary drawing of H. If |Np,q| ≤ 2 we are done. Otherwise
we may order the vertices of Np,q as {v1, v2, . . . , v`} in such a way that for any
1 ≤ i < j < k ≤ `, the vertex vj is inside the region bounded by the cycle
pviqvkp in the drawing of H.

Now let v ∈ V be a neighbour of vj in G, for 1 < j < `. Then there is a point
r ∈ P such that both vj and v are adjacent to r in H. Then r must be inside
the (closed) region bounded by pvj−1qvj+1p. If either r = p or r = q, then v is
adjacent to all vertices in Np,q and we are done.

Otherwise the point r must either be inside pvj−1qvjp or inside pvjqvj+1p, but
then either {vj−1, vj} or {vj , vj+1} disconnect v from vj+1 or vj−1, contradicting
the 3-connectedness of G. The lemma follows by choosing u = v1 and w = v`.

Since we assume all vertices of our graph to have unique neighbourhoods, it
follows that

|Np,q| ≤ 3

for all p, q ∈ P . Thus if C ⊆ V is a hamantasch-clique, then |C| ≤ 9, because

C = Np,q ∪Nq,r ∪Np,r

for a suitable choice of points p, q, r ∈ P in a witness H = (V ∪ P, F ).

The Reduced Maximal Clique Graphs

Starting from a given 3-connected map graph G we now compute a graph which
we call reduced maximal clique graph M(G). Let C1, . . . , Cm ⊆ V be the maximal
cliques of G, ordered in decreasing size:

|C1| ≥ |C2| ≥ · · · ≥ |Cm| ,



and cliques of the same size may appear in arbitrary order. By a result of Chen et
al. [1, Thm. 3.2] we know thatm ≤ 27·|V |, and using an algorithm of Tsukiyama
et al. [23] we may compute all of these in polynomial time.

We construct a bipartite graph R = (V ∪ U,A) such that for every v, w ∈ V
there is a u ∈ U adjacent to both v and w if, and only if, vw ∈ E. In this case
we say that the edge vw is covered by u. We process the cliques in descending
size, keeping a set Si ⊆ E of edges which are already covered, a set Ti ⊆ E of
edges which will be covered by individual vertices, and sets Ui, Ai of vertices
and edges in the graph that is created. Initially we have

S0 := ∅, T0 := ∅, U0 := ∅, and A0 := ∅

and do the following for i = 1, . . . ,m:

(R1) E[Ci] ⊆ Si−1 then all edges of Ci are already covered and we ignore Ci

(setting Si = Si−1, Ti = Ti−1 and so on),
(R2) otherwise, if there is a vertex v ∈ Ci such that E[Ci \ {v}] ⊆ Si−1 we set

Si := Si−1, Ti := Ti−1 ∪ {vw | w ∈ Ci, w 6= v},
Ui := Ui−1, and Ai := Ai−1,

(R3) otherwise, if |Ci| ≤ 9, we treat all edges in Ci as special edges:

Si := Si−1

Ti := Ti−1 ∪ E[Ci]

Ui := Ui−1, and
Ai := Ai−1

(R4) In all other cases we introduce a new vertex ui connected to all vertices in
Ci:

Si := Si−1 ∪ E[Ci] Ti := Ti−1

Ui := Ui−1 ∪ {ui}, and Ai := Ai−1 ∪ {uiv | v ∈ Ci}

At the end of this process we have a bipartite graph (V ∪ Um, Am), plus a set
Tm of edges. For any edge vw ∈ Tm \ Sm we add a new vertex u to Um and
connect it only to v and w. We call the resulting graph R = R(G) := (V ∪U,A)
the reduced maximal clique graph for G. Note that R is not uniquely determined
by G but is also influenced by choices the algorithm makes at various stages.

By construction, the graph G is a half-square of R, i.e. for any v, w ∈ V the
edge vw is in E if, and only if, there is a u ∈ U such that uv, uw ∈ A. Since R
is not necessarily planar, it need not be a witness graph of G, but we will now
show that the class of graphs arising in this way from map graphs is nowhere
dense. Since we can easily recover G in a coloured version of R by a first-order
interpretation, and since R can be constructed from G in polynomial time, we
may use Grohe et al.’s model checking algorithm for first-order logic on nowhere



dense classes of graphs [14] to obtain a model checking algorithm for first-order
logic on 3-connected map graphs.

To show that the class

{R(G) |G is a 3-connected map graph}

is indeed nowhere dense we choose an r ∈ N and assume that K2m �r R. We
will now show that in this case Km �c

r H
′ for some planar graph H ′, for an

absolute constant c whose value will become apparent during the proof. Since
this is not possible for large enough values of m, we conclude that for every r
there is an m with K2m 6�r R, and thus the class of reduced maximal clique
graphs is nowhere dense.

We fix a witness graph H = (V ∪ P, F ) of G with an arbitrary drawing.
Suppose K2m �r R. This means that there are vertices x1, . . . , x2m ∈ V ∪U and
pairwise internally vertex-disjoint paths pij connecting xi and xj , for 1 ≤ i <
j ≤ 2m. If we could map these vertices and paths injectively into H, we would
obtain a topological K2m-minor in H, contradicting the fact that H is planar if
2m ≥ 5. We can map the vertices in V to their respective counterparts in H.
However,

(i) some maximal cliques (pizza-with-crust and hamantasch) do not correspond
to single points in P , and

(ii) we may need to pass through points in P more than once.

We first deal with (i). This concerns vertices u ∈ U that have been introduced
to cover the edges of pizza-with-crust and hamantasch maximal cliques. Each
xi ∈ V ∪ U has degree 2m − 1, which is > 9 if we choose m large enough. If
xi = u ∈ U then u has been added by rule (R4) to R to cover the edges of a
maximal clique C in G of size > 9. This clique must be either a pizza or pizza-
with-crust, because all hamantasch cliques have size ≤ 9. Therefore there is a
point p ∈ P that is adjacent to all but at most one of the vertices in C. If there
is a vertex v ∈ V adjacent to xi in R but not adjacent to p in H, we remove the
xj which is connected to xi via the path containing v.

We do this for all the 2m vertices of the topological K2m minor in R and,
after relabelling the vertices, are left with a topological Km-minor in R and a
mapping of its vertices x1, . . . , xm ∈ V ∪ U to y1, . . . , ym ∈ V ∪ P such that:

– If xi ∈ V , then yi = xi, and
– if xi ∈ U , then yi ∈ P , and all neighbours of xi on paths of the Km minor

are also neighbours of yi in H.

Furthermore, no p ∈ P appears as yi for more than one i: Obviously, any p ∈ P
can only be the centre vertex of at most one maximal clique of pizza type. It
may be the centre vertex of more than one (in fact, an unbounded number of)
maximal cliques of pizza-with-crust-type, but in this case it is also the centre
vertex of a larger clique of pizza-type. It is precisely the purpose of rule (R2)
in the construction of R to guarantee that only one of these maximal cliques
results in a vertex in U .



It remains to map vertices on the paths connecting the xi to vertices in H.
Again we map vertices in V to their identical counterparts. For the remaining
vertices, we do not need to preserve all adjacencies, but only their two neighbours
on the path belonging to the topological minor. In the following, let xuy be a
part of one of the paths connecting the xi, with x, y ∈ V and u ∈ U .

We make a case distinction, depending on how the vertex u was introduced
to the graph R: If u was introduced using rule (R4) then there is a maximal
clique C in G of size > 9 containing both x and y. We make a case distinction
on the type of C:

– If C is a maximal pizza-clique, then there is a p ∈ P connected to exactly
the elements of C, and we may map u to p.

– If C is a maximal pizza-with-crust-clique, there are two possibilities: If both
x and y are connected to the centre point p ∈ P of the pizza-with-crust, then
we may map u to p. Using the same reasoning as above, we can ensure that
no p ∈ P is used more than once, because if it is the centre vertex of two
or more pizzas-with-crust, then is is also the centre vertex of an even larger
pizza-clique, and by rule (R2) u could not have been introduced in this case.
Finally, C may be a pizza-with-crust-clique, and x and y connected by a
vertex p ∈ P that is not the centre vertex of C. We can not bound the
number of pairs x, y for which this happens, i.e. there may be arbitrarily
many x1, . . . , xk, y1, . . . , yk ∈ V such that
• all xi, yi are adjacent to p,
• each pair xi, yi belongs to some maximal clique Ci in G,
• no Ci ∪ Cj is a clique for 1 ≤ i < j ≤ k.

However, in this case the paths xipyi do not cross but only touch at p, i.e.
in the drawing of H, the pairs xiyi are consecutive in the cyclic order of
the neighbours {x1, . . . , xk, y1, . . . , yk} of p. Therefore we may split p into
vertices p1, . . . , pk, with each pi adjacent to xi and yi, and still obtain a
planar graph H ′.

Otherwise, x and y are the endpoints of some edge xy ∈ Tm, and u was
introduced to cover this edge. Then there is some p ∈ P adjacent to both x and
y in H. This p has degree at most 9, for otherwise the neighbours of p (plus
possibly one other vertex) would form a maximal clique of size larger than 9,
and there would be a vertex u′ ∈ U for this clique. Since p has degree ≤ 9 we
may safely map u to p, because there can be at most

(
9
2

)
= 36 pairs of vertices

that get routed through p in this way.
Thus after possibly splitting some vertices of H, we end up with a planar

graph H ′ and an r-shallow topological embedding of Km into H ′ of complexity
at most 38, which gives the desired contradiction if m is large enough.

6 General Map Graphs

We briefly sketch how our algorithm can be adapted to map graphs that are not
necessarily 3-connected. Recall that we needed 3-connectedness to bound the
size of hamantasch cliques, which followed from Lemma 2.



Using Feferman and Vaught’s composition theorem [18] we may treat con-
nected components individually. Similarly, we may build a tree of 2-connected
components (blocks) and process the blocks one by one. We are left with the
case of 2-connected but not necessarily 3-connected graphs.

These can be tree-decomposed into parts which are cycles, parallel edges,
or 3-connected map graphs, and such that these parts are glued together along
edges (cf. [24], it is easy to see that the 3-connected parts in this decomposition
are again map graphs). We could colour the edges of these component graphs
with the FO[q]-types of the graphs attached to them, but this would result in
3-connected parts that are not necessarily map graphs. In fact, any graph can
be encoded in a clique (which is a map graph) of the same size by colouring its
edges with two colours.

Instead we introduce coloured vertices of degree 2 rather than colouring the
edges. Essentially as in the proof of Lemma 2 we can then show that in any
hamantasch clique, there can be only 9 different neighbourhood types if we
neglect vertices of degree 2. Again using Feferman-Vaught, we can prune vertices
from hamantasch cliques.

7 Squares of Trees

Algorithmic meta theorems for a logic L on a class C of structures immediately
carry over to a structure D if

– every structure A ∈ C can be interpreted in a structure A′ ∈ D using a
L-interpretation that depends only on the classes C and D, and

– the structure A′ can be efficiently computed from A.

Courcelle’s result for MSO model checking on graphs of bounded tree-width can
be seen as an example of this, since for every graph G of tree-width k there is a
tree T such that G is MSO-interpretable in T , using an interpretation that only
depends on k, and T can be efficiently computed from G.

Our proof of Theorem 1 also uses this approach, with a very specific kind of
FO-interpretation: The input graph G was interpretated as an induced subgraph
of the square of the bipartite graph R computed in Section 5. Squares and square-
roots of graphs have been studied in graph theory, cf. e.g. [20,13]. In particular,
Lin et al. [17] showed that checking whether a given graph is a square of a tree,
and computing such a tree, can be done in polynomial time. The key observation
towards this algorithm is that if G = (V,E) is a square of some tree T = (V, F ),
then v ∈ V is simplicial (i.e. N(v) is a clique) if, and only if, v is a leaf of T .

Using Lin et al.’s result we immediately get:
Theorem 2. Model checking for first-order logic on the class of (coloured)
squares of trees is fixed-parameter tractable.
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