
Approximating Multi Commodity Network
Design on Graphs of Bounded Pathwidth and

Bounded Degree

Kord Eickmeyer? and Ken-ichi Kawarabayashi

National Institute of Informatics,
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

{eickmeye,k keniti}@nii.ac.jp

Abstract. In the Multicommodity Network Design problem (MCND)
we are given a digraph G together with latency functions on its edges
and specified flow requests between certain pairs of vertices. A flow satis-
fying these requests is said to be at Nash equilibrium if every path which
carries a positive amount of flow is a shortest path between its source
and sink. The goal of MCND is to find a subgraph H of G such that
the flow at Nash equilibrium in H is optimal. While this has been shown
to be hard to approximate (with multiplicative error) for a fairly large
class of graphs and latency functions, we present an algorithm which
computes solutions with small additive error in polynomial time, assum-
ing the graph G is of bounded degree and bounded path-width, and the
latency functions are Lipschitz-continuous. Previous hardness results in
particular apply to graphs of bounded degree and graphs of bounded
path-width, so it is not possible to drop one of these assumptions.

1 Introduction

We model road networks by directed graphs whose edges are labelled with latency
functions, i.e., functions which express the expected time it takes to traverse
the edge depending on the amount of traffic taking it. Adding the assumption
that each driver will take a route which, given the current traffic situation, has
shortest travel time, one arrives at the model of selfish routing, which we review
in Section 1.1. Surprisingly, simple examples show that, in this model, removing
edges from the network may improve the perfomance of the network, in the
sense that the travel time of all participants may be reduced. This phenomenon
is called Braess’s paradox after Dietrich Braess, who first described it in [1].

The obvious question of which edges should be removed to yield an optimal
traffic situation is called Multicommodity Network Design Problem (MCND)
and has been shown to be computationally hard to solve even approximately, see
section 1.2 for details. Our main contribution is a polynomial time approximation
algorithm on inputs in which

? This work was supported by a fellowship of the first author within the FIT-
Programme of the German Academic Exchange Service (DAAD).

– the input graph is of bounded path-width and bounded degree and

– the time it takes to traverse an edges depends in a Lipschitz continuous way
on the amount of traffic traversing that edge.

The algorithm returns a subgraph in which an ε-approximate Nash equilibrium
exists which is at most by an additive term of ε worse than the best γ-Nash
equilibrium in any other subgraph, for some γ depending on ε and which is
smaller than ε, see Definition 6. Here, an ε-Nash equilibrium is a flow in which
all traffic is routed along paths which are at most an additive term of ε worse
than shortest paths. The proof is contained in Theorem 7 and Lemma 10.

s t
u v

s t
u v

· · ·

(a) (b)

Fig. 1. (a) The reduction in [2] produces very simple graphs in which all of the input
is encoded in a set of parallel edges between a certain pair of vertices (u, v). (b) By
replacing the parallel edges with binary trees one obtains graphs of bounded degree.

Assuming the input graph to be simultaneously of bounded degree and
bounded path-width is a strong restriction. However, previous hardness results
(B2, B3 of Section 1.2) showed that MCND is hard even on very simple graphs
(planar, acyclic) with just one source of complexity: There are pairs of nodes
with many disjoint paths between them. If these paths are short (or even paral-
lel edges), then there must be vertices of high degree (cf. Fig 1a). If we bound
the maximum degree there may still be pairs of vertices with many paths be-
tween them, by replacing nodes of high degree with binary trees (cf. Fig 1b).
We rule this out by bounding the path-width. Note that our approximation al-
gorithm works with approximate Nash equilibria, so technically the hardness
results mentioned here do not apply exactly. However, they can be adapted to
include approximate Nash equilibria.

Previous attempts at obtaining approximation algorithms for the (single com-
modity) network design problem on restricted instances include Fotakis et al. [3].
Using a probabilistic argument, they show that approximate Nash equilibria can
be found in a restricted search space, which yields a polynomial time algorithm
on instances with only polynomially many paths from the source to the sink
whose length is polylogarithmical in the number of edges of the graph.

2

1.1 Selfish Routing

We follow the definitions and notation of [4]. Let G = (V,E) be a digraph, and
let (si, ti) be k pairs of designated vertices. Furthermore, for each edge e ∈ E
there is an associated latency function le : IR≥0 → IR≥0, and for each pair (si, ti)
we are given a flow request ri ∈ IR≥0. We assume all latency functions to be
continuous and non-decreasing. We frequently denote the number of vertices by
n and the number of edges by m. We use the notation [l] := {1, . . . , l} for every
natural number l.

The intuition behind the problem is that we want to route ri units of traffic
from each of the source nodes si to the corresponding target node ti. The traffic
is supposed to consist of infinitesimally small pieces, so that it may be split
arbitrarily among the possible paths connecting si to ti in the graph. Formally,
by a u-v-path P we mean a sequence u = v0, v1, . . . , vn = v of pairwise distinct
nodes vi ∈ V such that (vi−1, vi) ∈ E for all i ∈ [n]. Denoting the set of all
si-ti-paths in G by Pi and the set of all paths between pairs of vertices in the
problem by P = ∪iPi, a flow f feasible for (G, r, l) is any function f : P → IR≥0
such that for each i ∈ [k] the equation

∑
P∈Pi

fP = ri is satisfied. We denote
the set of all paths in the graph by Pall :=

⋃
u,v∈V {P | P is a u-v-path}. The

length |P | of a path P ∈ Pall is the number of edges in P .
The latency function le specifies the amount of time it takes to traverse the

edge e, as a function of the amount of traffic being routed along this edge. More
traffic might cause congestion and therefore increase this time. The flow function
f can be seen as a way of assigning a path P ∈ Pi to each of the infinitesimal
atoms (say, cars) composing the traffic from si to ti.

For an edge e ∈ E and a flow f , denote by fe the total amount of traffic that
is routed along e, i.e., fe =

∑
P∈P,e∈P fP . The latency lP (f) of a path P ∈ Pall

given a specific flow f is the sum of the latencies of all edges along this path,
i.e., lP (f) =

∑
e∈P le(fe).

The assumption that each atom behaves selfishly is captured in the notion
of Nash equilibrium: A feasible flow f is said to be at Nash equilibrium if

lP (f) ≤ lP ′(f) for all i ∈ [k] and all P, P ′ ∈ Pi with fP > 0.

Note that since the atoms are infinitesimally small, a single deviation will not
change the latencies le(fe).

1

1.2 Braess’s Paradox

By the definition of Nash equilibrium, all si-ti-paths P ∈ Pi actually carrying
flow (i.e., fP > 0) must have the same latency, which we denote by Li(f). It can
be shown ([4, Cor. 2.6.2]) that for an instance (G, r, l), all Nash equilibria yield
the same edge latencies, i.e., le(fe) = le(f

′
e) for all edges e ∈ E and flows f, f ′

1 Alternatively, taking some δ > 0 as atomic amount of traffic and letting δ tend to
zero yields the same notion of Nash equilibrium.

3

both at Nash equilibrium. In particular the maximum latency

M(f) := max
i
Li(f)

of a Nash equilibrium of an instance (G, r, l) is well-defined for each instance; we
denote this by M(G, r, l).

Braess’s paradox amounts to the fact that there may be a subgraph H ≤ G,
obtained from G by removing edges, such that M(H, r, l) < M(G, r, l). We define
the Braess ratio of (G, r, l) as

B(G, r, l) := max
H≤G

M(G, r, l)

M(H, r, l)
,

with the convention that 0/0 := 1; if M(H, r, l) = 0 for some H ≤ G then also
M(G, r, l) = 0. Braess’s paradox has been studied intensively recently, and there
are strong bounds on the Braess ratio:

(A1) In single-commodity instances (G, r, l), i.e., when k = 1, then B(G, r, l) ≤
bn2 c, and this bound is optimal [5].2 Moreover [2], if every matching of
V \ {s, t} using only edges in G \H has size at most c, then

L(G, r, l) ≤ (c+ 1)L(H, r, l).

In particular, removing c edges from G may only reduce L(G, r, l) by a
factor of 1/(c+ 1).

(A2) In multi-commodity instances, there are (G, r, l) with B(G, r, l) = 2Ω(n),
and this ratio may be attained by removing a single edge from G (see [2]).
The same paper contains an upper bound of 2O(min{m logn,kn}) on the
Braess ratio in arbitrary networks.

(A3) In single-commodity instances with linear latency functions (i.e., le(x) =
ae+ be ·x for all e ∈ E), the Braess ratio is at most 4/3. Again, this bound
may actually be attained by removing a single edge (see [4]).

(A4) In [5], Roughgarden defines the incline Γ (c) of a continuous monotonely

increasing function c : IR≥0 → IR≥0 as Γ (c) := supx>0
x·c(x)∫ x
0
c(t) dt

, with

0/0 := 1. With this definition, he obtains the bound B(G, r, l) ≤ γ for all
instances (G, r, l) with Γ (le) ≤ γ for all e ∈ E.

Finding a subgraph H ≤ G which minimises M(H, r, l) is a natural algorith-
mic question. This problem, called Multicommodity Network Design (MCND) is
hard to approximate in the following sense: For δ > 1, we say that an algorithm
is a δ-approximation algorithm for MCND if it computes, on input (G, r, l), a
subgraph H ≤ G with

M(H, r, l) ≤ δ · min
H′≤G

M(H ′, r, l).

Assuming P 6= NP,

2 Note that, in single-commodity instances, M(G, r, l) = L(G, r, l).

4

(B1) there is no polynomial-time (4
3 − ε)-approximation algorithm for single-

commodity network design with linear latency functions [5], for any ε > 0,
(B2) there is no polynomial-time (n/2− ε)-approximation algorithm for single-

commodity network design with arbitrary latency functions [5], for any
ε > 0,

(B3) there is no polynomial-time 2o(n)-approximation algorithm for multi-com-
modity network design [2].

(B4) there is a constant c > 0 such that for all γ ≥ 1, there is no (c · γ)-
approximation algorithm for network design for instances (G, r, l) with
Γ (le) ≤ γ for all e ∈ E [5].

Note that A1 and A3 imply that in the first two cases, the trivial algorithm
(which always returns the whole graph G) is a best-possible approximation al-
gorithm.

These results are proved by reducing NP-complete problems to the appro-
priate network design problems. For B2 and B3, the reductions produce acyclic
planar graphs which contain pairs of vertices with many parallel edges (Fig. 1a).
The latency functions used in these reductions are continuous approximations
of step functions and therefore increase very steeply in very small regions.

Since step functions can not be approximated sufficiently well (for the pur-
pose of the above reductions) by linear functions or functions with bounded
incline, the proofs for B1 and B4 use an entirely different approach. Here, the
reductions start from the problem 2-Directed Vertex Disjoint Paths (2DDP) of
finding, in a directed graph with two designated pairs (s1, t1) and (s2, t2) of
vertices, a pair of vertex-disjoint paths between them. This problem has been
shown to be NP-hard for general graphs [6], but it is solvable in polynomial time
on planar graphs [7]. On the other hand, by inspection we see that the reduction
B1 actually uses only latency functions with slopes 0 and 1.

2 An Approximation Algorithm for MCND

In this section we will describe an approximation algorithm for MCND on a
restricted set of instances. The restriction is two-fold: We impose restrictions on
the graph G (see Definition 1 and section 3), and we bound the slope of the
admissible latency functions.

In contrast to the inapproximability results mentioned in section 1, we obtain
approximations up to an additive, rather than multiplicative, error. Because in all
of the non-approximability results of section 1 there was no si-ti-path of latency
less than 1, these results also hold for additive errors (note that c+ ε < c · (1 + ε)
if c ≥ 1).

We discretise the MCND problem in two ways:

1. We consider only flows which route integer multiples of γ along each edge,
for some γ > 0 and

2. we approximate path latencies up to an additive error of γ.

5

With these discretisations, we are able to approximately solve MCND on in-
stances for which the latency functions are Lipschitz continuous (see below) and
for which the underlying graph is of bounded total degree and bounded path-
width (ignoring the edge directions). For such graphs it is possible to compute
the following kind of decomposition:

Definition 1. Let G = (V,E) be a directed graph. A strong directed path-
decomposition (sdpd) is a sequence of subsets ∅ = A0, . . . , Am ⊂ V (called
bags) such that:

(SDPD1) |Aj \Aj−1| ≤ 1 for all j ∈ [m], and if v ∈ Aj \Aj−1, then all incoming
edges to v come from vertices in Aj−1,

(SDPD2) for every v ∈ V there are 1 ≤ a ≤ b ≤ m such that

v ∈ Aj ⇔ a ≤ j ≤ b

for all j = 0, . . . ,m (in particular,
⋃
j Aj = V).

For a vertex v ∈ V we denote by ι(v) := min{j | v ∈ Aj} the index of the first
bag which contains it. We call m the length and maxi |Ai| − 1 the width of the
decomposition. We define Gj := (Vj , Ej) to be the subgraph of G induced on the
set of vertices in the bags up to Aj, i.e.,

Vj :=
⋃
j′≤j

Aj′ and Ej := E ∩ (Vj × Vj).

We use the term strong to distinguish our definition from the definition of a
directed path-decomposition given, e.g., by Barát in [8], where (SDPD1) is re-
placed by the weaker condition that for all edges uv there be indices i ≤ j with
u ∈ Ai and v ∈ Aj . In particular, any acyclic digraph has directed path-width
0, but the strong directed path-width may be arbitrarily high. Also, to simplify
the presentation we require that |Aj \Aj−1| be at most 1, but it should be clear
how to adjust the update step of Theorem 7 to the case |Aj \Aj−1| ≥ 2. In
Section 3 we show how to find sdpds in polynomial time in graphs of bounded
path-width and bounded degree.

The important feature of sdpds which we use in our algorithm is that

1. every bag Aj separates Gj from Ḡj := G \Gj and

2. all edges between Gj and Ḡj are directed from the former to the latter.

Consequently, any path between vertices u, v ∈ Vj stays entirely in Gj . Directed
path-decompositions in the sense of [8] only have the second property, while
undirected path-decompositions (see Definition 8) have only the first one.

In general, discretising the amount of traffic that may travel along each edge
might drastically change the set of Nash equilibria. In order to prevent this, we
use the following continuity condition:

6

Definition 2. For α > 0 we call an instance (G, r, l) of MCND α-Lipschitz con-
tinuous if all latency functions are Lipschitz continuous with Lipschitz constant
α, i.e.,

|le(x)− le(y)| ≤ α |x− y|

for all edges e ∈ E and x, y ∈ IR≥0.

Lipschitz continuity ensures that we may slightly change a flow without changing
path latencies by too much:

Lemma 3. Let ε, α > 0 and let (G, r, l) be an α-Lipschitz continuous instance
of MCND. If f and f ′ are flows for which |fe − f ′e| < ε for all edges e, and
P ∈ Pall is a path, then

|lP (f)− lP (f ′)| < |P |αε

We omit the straightforward proof. Putting these two together we obtain the
following lemma for discretised flows:

Lemma 4. Let α > 0 and let (G, r, l) be an α-Lipschitz continuous instance of
MCND, and A0, . . . , Am is an sdpd of G. Let γ > 0 and assume that all ri are
integer multiples of γ. Then if f : P → IR≥0 is a flow in (G, r, l), there is a flow
f ′ such that

– f ′e is an integer multiple of γ for all edges e ∈ E and
– |fe − f ′e| < ι(v)γ for all e ∈ E directed towards the node v ∈ V .
– |lP (f)− lP (f ′)| < αγ |P | ι(v) for all simple paths P ∈ Pall ending in a vertex
v ∈ V .

Proof. We can obtain the flow f ′ by discretising along the decomposition, main-
taining the conditions that the total flow which f ′ routes into vertices in Aj is
an integer multiple of γ and does not differ from the flow which f routes into
these vertices by more than jγ. The statement about path latencies is an easy
consequence of Lemma 3. ut

We relax the notion of a Nash equilibrium as follows:

Definition 5. Let (G, r, l) be an instance of selfish routing and ε > 0. An ε-Nash
equilibrium is a flow f for (G, r, l) such that for all i and all paths P, P ′ ∈ Pi
we have

lP (f) ≤ lP ′(f) + ε if fP > 0.

Accordingly, we define

Mε-Nash(G, r, l) := min{M(f) | f is ε-Nash equilibrium},

where M(f) is the maximum latency of a path from some si to some ti in the
flow f .

Note that we use an additive error here, as opposed to a factor of (1 + ε) as in
Roughgarden’s definition of ε-approximate Nash equilibria [4, Sec. 4.2]. We can
now make precise what we mean by “approximately solving MCND”:

7

Definition 6. Let (G, r, l) be an instance of MCND, and ε, γ > 0. An (ε, γ)-
approximate solution to MCND is a subgraph H ⊆ G such that

Mε-Nash(H, r, l) ≤Mγ−Nash(H ′, r, l) + ε

for all subgraphs H ′ ⊆ G.

We will invoke this definition with γ much smaller than ε. With these definitions
we are ready to state our main approximation result:

Theorem 7. Let α, ε > 0 and k, ρ ∈ IN be fixed. Assume we are given an α-
Lipschitz continuous MCND instance (G, r, l) with k source-sink pairs s1, t1, . . . ,
sk, tk, together with a strong directed path-decomposition A0, . . . , Am ⊂ V of
width ρ. Then it is possible to find an (ε, γ)-approximate solution to MCND in
time polynomial in the size of G and max ri, for γ := ε

1+αm2 .

Proof. Let M be an upper bound on all flow requests ri and on the latency of
an si-ti-path in a Nash equilibrium in the input graph G, and denote by k the
number of source-sink pairs in (G, r, l). For a fixed Lipschitz constant α, this
bound can be taken to be α |V |max ri.

We discretise flows and approximate latencies with the γ stated in the theo-

rem. For each Aj we compute a table Tj which is indexed by all tuples (σ
(1)
j , . . . ,

σ
(k)
j , λ

(1)
j , . . . , λ

(k)
j) of functions such that

– σ
(i)
j is a function from Aj to IR≥0∪{⊥,>} such that if σ

(i)
j (Aj) ⊂ IR≥0 then∑

v∈Aj

σ
(i)
j (v) = ri

and σ
(i)
j (v) is an integer multiple of γ for all v ∈ Aj . If σ

(i)
j (v) ∈ {⊥,>} for

some v ∈ Aj we demand σ
(i)
j (w) = σ

(i)
j (v) for all w ∈ Aj .

– λ
(i)
j is a function from Aj to [0,M] such that every λ

(i)
j (v) is an integer

multiple of γ for all v ∈ Aj .

An index (σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j) is meant to represent a flow routing ap-

proximately σ
(i)
j (v) of traffic from si to v, such that the common latency of all

si-v-paths is roughly λ
(i)
j (v). The special symbol ⊥ signifies that si 6∈ Gj , while

> signifies that ti ∈ Gj . Note that the size of this index set is linear in k and
polynomial of degree ρ in M for fixed values of ρ and ε (note that m < M). An
entry in the table may be ⊥ or a subset of the edges of Gj . We define

Bj := 1 + αj2

The table entries will satisfy the following conditions:

8

(a) If Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j) is a subset of E, then after removing these

edges there is a flow f in Gj which routes an amount σ
(i)
j (v) of traffic from

source si to v ∈ Aj , such that for each path P from si to v with fP > 0 the

latency lP (f) is within Bjγ of λ
(i)
j (v), and such that the flow f is a Bjγ-Nash

equilibrium. If si 6∈ Vj then we demand σ
(i)
j ≡ ⊥, and if ti ∈ Gj we demand

σ
(i)
j ≡ >.

(b) If Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j) = ⊥, then no way of removing edges from

G will yield the existence of a flow f routing σ
(i)
j (v) traffic from source si

to v in such a way that f is a γ-Nash equilibrium and such that the latency

from source si to v under this flow is λ
(i)
j (v).

We successively compute the entries of Tj as follows:

– For T0 we set all entries to ⊥ except for the one corresponding to σ
(i)
0 ≡ ⊥

and λ
(i)
0 ≡ 0 for all i ∈ [k], which we set to ∅.

– Let Aj \ Aj−1 = {v} for some node v 6∈ {s1, . . . , sk, t1, . . . , tk}, and let
U = {u1, . . . , uh} ⊆ Aj−1 be the starting points of all incoming edges to v.

Let σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j be an index into the table Tj .

If si 6∈ Gj we ignore commodity i in the following discussion and focus on

indices (both into Tj−1 and into Tj) with σ
(i)
j ≡ ⊥ and λ

(i)
j ≡ 0. Similarly,

if ti ∈ Gj−1 we focus on indices with σ
(i)
j ≡ > and λ

(i)
j ≡ 0.

To determine the entry Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j), we use the values in

the table Tj−1 to determine possible ways of routing traffic to the nodes in
Aj−1, and try to extend these flows to a flow which is still an approximate

Nash equilibrium and such that the new flow routes σ
(i)
j of commodity i to

the nodes in Aj , and such that the latency of travelling from source si to

v ∈ Aj is λ
(i)
j (v), up to an additive error of jε/m. We need only change

flows to Aj−1 in such a way that we additionally route traffic from the nodes
u1, . . . , uh ∈ Aj−1 to v, as re-routing traffic between the nodes in Aj−1 only
results in flows which have already been considered when computing the
table Tj−1.

We are looking for an index (σ
(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1) into the table

Tj−1, a subset S ⊂ {u1, . . . , uh} of predecessors of v and real numbers φi,w ∈
IR≥0 for w ∈ S and i ∈ [k] such that:
• There is a way of removing edges from Gj−1 to yield the existence of an

approximate Nash equilibrium up to Aj−1, i.e.,

Tj−1(σ
(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1) 6= ⊥.

• Routing φi,w of commodity i from w to v changes σ
(i)
j−1 into σ

(i)
j :∑

w∈S
φi,w = σ

(i)
j (v) for all i = 1, . . . , k

9

and for all w ∈ S and i = 1, . . . , k we have

σ
(i)
j−1(w)− φi,w =

{
σ
(i)
j (w) if w ∈ Aj

0 otherwise

In particular, the φi,w are also integer multiples of ε/m.

• If σ
(i)
j (v) = 0 then also λ

(i)
j (v) = 0. Otherwise, the latencies of si-v-paths

are approximately given by λ
(i)
j (v): If φi,w > 0, then∣∣∣∣∣λ(i)j−1(w) + l(wv)

(
k∑
i=1

φi,w

)
− λ(i)j (v)

∣∣∣∣∣ ≤ (Bj −Bj−1)γ

and the flow is still approximately at Nash equilibirium: For all w ∈ S
and i ∈ [k] with σ

(i)
j−1(w) > 0,

λ
(i)
j−1(w) + l(wv)

(
k∑
i=1

φi,w

)
≥ λ(i)j (v)− ε

2
.

• The approximate latencies for vertices in Aj ∩ Aj−1 remain unchanged

unless σ
(i)
j (v) = 0: λ

(i)
j (u) = λ

(i)
j−1(u) for all i ∈ [k] and u ∈ Aj ∪Aj−1.

If there is such a combination, then we set

Tj(σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j) := Tj−1(σ

(1)
j−1, . . . , σ

(k)
j−1, λ

(1)
j−1, . . . , λ

(k)
j−1)

∪ {uv | u ∈ U \ S}
– If Aj \ Aj−1 = {si} for a source node si we proceed essentially as in the

previous step but demand that σ
(i)
j (v) = ri and λ

(i)
j = 0. The other latencies

and flows of other commodities into si are handled as above. Note that this
can be adjusted to the case where si = si′ for i 6= i′.

– Finally, if Aj \Aj−1 = {ti} for a source node ti we demand that σ
(i)
j (v) = >

treat this to mean that exactly an amount ri of commodity enters ti. The
other latencies and flows of other commodities into ti are handled as above.

That this way of filling the table will satisfy condition (a) is easily verified.
We now turn to condition (b). Assume that for some bag Aj and some index

(σ, λ) = (σ
(1)
j , . . . , σ

(k)
j , λ

(1)
j , . . . , λ

(k)
j) into Tj we have Tj(σ, λ) = ⊥ but still there

is a subset F ⊂ Ej and a flow f the graph Gj with the edges in F removed such

that f is a γ-Nash equilibrium which routes λ
(i)
j (v) of commodity i into v.

Using Lemma 4, we discretise f to obtain a flow f ′ such that |lP (f)− lP (f ′)| <
αj2γ for all paths P ∈ Pall with endpoints in Aj . Since we assumed f to be a
γ-Nash equilibrium, for two si-u-paths P and P ′ with endpoint u ∈ Aj we have

|lP (f ′)− lP ′(f ′)| ≤ |lP (f ′)− lP (f)|+ |lP (f)− lP ′(f)|+ |lP ′(f)− lP ′(f ′)|
≤ αγj2 + γ + αγj2 ≤ (2Bj − 1)γ

In particular, there is an integer multiple λ of γ such that all latencies lP (f ′) for
si-u paths p are within distance Bj of λ. Following the computation path we see
that the corresponding table entry in Tj can not be ⊥. ut

10

3 Graphs of Bounded Path-Width

While the strong directed path-decompositions of Definition 1 are convenient
for the purpose of our algorithm, they are non-standard and it is not clear what
kinds of graphs allow for these decompositions and how they can be obtained.
In this section we show that in particular graphs of bounded path-width and
simultaneously bounded degree allow for such decompositions.

Path-width was defined by Robertson and Seymour in the first paper of their
Graph Minors series [9]:

Definition 8. Let G = (V,E) be an undirected graph. A path-decomposition of
G is a sequence X1, . . . , Xs of subsets of V such that

– for every e ∈ E there is an i ∈ [s] such that both endpoints of e are in Xi

and
– Xi ∩Xk ⊆ Xj for all 1 ≤ i ≤ j ≤ k ≤ s.

The width of the decomposition is maxi |Xi| − 1. The path-width ρ of G is the
minimum ρ ∈ IN such that G has a path-decomposition of width ρ.

We will need the following fact about graphs of bounded path-width:

Fact 9. For every ρ ∈ IN there is an h ∈ IN such that no graph of path-width at
most ρ has a minor isomorphic to the complete binary tree of height h.

This follows easily from theorem (1.2) in [9] and the fact that every tree is a
minor of a sufficiently large complete binary tree. As usual, a minor of a graph
G is a graph obtained from a subgraph of G by contracting edges.

We are now ready to state the main result of this section:

Lemma 10. Let b ∈ IN and let G be a class of acyclic directed graphs such that
for every G ∈ G, the total degree (i.e., in-degree plus out-degree) of every vertex
v ∈ V (G) is at most b and the (undirected) path-width of G is at most b. Then
there is a ρ ∈ IN depending only on b such that, given a graph G ∈ G, an sdpd
of G of width at most ρ can be computed from G in linear time.

Proof (Proof of Lemma 10). Using Fact 9, let d0 ∈ IN be such that none of the
graphs in G contains a complete binary tree of depth d0 as a minor (ignoring all
edge directions).

Pick some G ∈ G. We may assume that G has exactly one sink. Otherwise,
let X1, . . . , Xl be a path-decomposition of G, and let v1, . . . , vs be the sinks of
G in the order in which they first appear in the path-decomposition, breaking
ties arbitrarily. Adding a directed edge from vi to vi+1 for i ∈ [s − 1] increases
the path-width of G by at most 1, because we can obtain a path-decomposition
for the new graph by adding vi to all bags between the first entry of vi and the
first entry of vi+1, increasing each bag-size by at most one. Furthermore, we only
increase the degree of the graph by at most two. Acyclicity is also maintained,
and by a result of Bodlaender and Kloks [10], for fixed path-width b a path-
decomposition of width b can be computed in linear time.

11

To obtain an sdpd for G, we start from the sink and successively create new
bags by taking all predecessors of all nodes in the current bag. If, at some point,
the resulting bag has size exceeding bd0 , then G has a minor isomorphic to a
complete binary tree of depth d0, a contradiction. ut

Conclusion

We complemented Roughgarden’s [5] and Lin et al.’s [2] results on the hardness
of approximation (up to a multiplicative error) of the multi-commodity network
design problem by giving an approximation algorithm for this problem on a
certain restricted class of inputs, namely graphs allowing for what we call a
bounded path-decomposition with Lipschitz-continuous latency functions. For
technical reasons, we have to work with approximate Nash equilibria, so our
algorithm does not directly compare with previous hardness results.

For general latency functions, restrictions on the class of input graphs sim-
ilar to ours seem to be necessary [2]. If the latency functions are polynomials
of bounded degree, the proof technique used in [5] combined with Schrijver’s
algorithm for 2DDP on planar graphs [7] raises the question of whether efficient
approximation algorithms exist for less severely restricted classes of input graphs
such as planar graphs.

References

1. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Mathematical Methods
of Operations Research 12(1) (1968) 258–268

2. Lin, H.C., Roughgarden, T., Tardos, É., Walkover, A.: Stronger bounds on Braess’s
paradox and the maximum latency of selfish routing. SIAM J. Discrete Math. 25(4)
(2011) 1667–1686

3. Fotakis, D., Kaporis, A.C., Spirakis, P.G.: Efficient methods for selfish network
design. In: ICALP Track C. Volume 5556 of LNCS. (2009) 459–471

4. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press (2005)
5. Roughgarden, T.: On the severity of Braess’s paradox: Designing networks for

selfish users is hard. J. Comput. Syst. Sci. 72(5) (2006) 922–953
6. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-

lem. Theoretical Computer Science 10(2) (1980) 111–121
7. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM Journal

on Computing 23(4) (August 1994) 780–788
8. Barát, J.: Directed path-width and monotonicity in digraph searching. GRAPHS

AND COMBINATORICS 22 (2006) 161–172
9. Robertson, N., Seymour, P.D.: Graph minors I. Excluding a forest. Journal of

Combinatorial Theory Series B(35) (1983) 39–61
10. Bodlaender, H.L., Kloks, T.: Better algorithms for the pathwidth and treewidth

of graphs. In: 18th International Colloquium on Automata, Languages and Pro-
gramming. Volume 510 of LNCS., Springer Verlag (1991) 544–555

12

