 |
you need access to the journal |
2020 (25) |
C. Erath and R. Schorr.
Stable Non-symmetric Coupling of the Finite Volume Method and the
Boundary Element Method for Convection-Dominated
Parabolic-Elliptic Interface Problems,

Comput. Methods Appl. Math. 20(2): 251-272, 2020.
DOI: 10.1515/cmam-2018-0253 |
2020 (24) |
C. Erath, G. Gantner, and D. Praetorius.
Optimal convergence behavior of adaptive FEM driven by simple (h-h/2)-type error estimators,

Comput. Math. Appl. 79(3): 623-642, 2020.
DOI: 10.1016/j.camwa.2019.07.014 |
2019 (23) |
C. Erath and D. Praetorius.
Optimal adaptivity for the SUPG finite element method,

Comput. Methods Appl. Mech. Engrg. 353: 308-327, 2019.
DOI: 10.1016/j.cma.2019.05.028 |
2019 (22) |
C. Erath and D. Praetorius.
Adaptive vertex-centered finite volume methods for general
second-order linear elliptic partial differential equations,

IMA J. Numer. Anal. 39(2): 983-1008, 2019.
DOI: 10.1093/imanum/dry006 |
2019 (21) |
C. Erath and R. Schorr.
A simple boundary approximation for the non-symmetric coupling of the finite element method and
the boundary element method for parabolic-elliptic interface problems,

Numerical Mathematics and Advanced Applications. ENUMATH 2017. Lecture Notes in
Computational Science and Engineering, Springer, Volume 126, 993-1001, 2019.
DOI: 10.1007/978-3-319-96415-7_94 |
2018 (20) |
H. Egger, C. Erath, and R. Schorr.
On the nonsymmetric coupling method
for parabolic-elliptic interface problems,

SIAM J. Numer. Anal. 56(6): 3510-3533, 2018.
DOI: 10.1137/17M1158276 |
2017 (19) |
C. Erath and R. Schorr.
Comparison of adaptive non-symmetric and three-field FVM-BEM coupling,

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems,
Springer Proceedings in Mathematics & Statistics, Volume 200, 337-345, 2017.
DOI: 10.1007/978-3-319-57394-6_36 |
2017 (18) |
C. Erath and D. Praetorius.
Céa-type quasi-optimality and convergence rates for (adaptive) vertex-centered FVM,

Finite Volumes for Complex Applications VIII - Methods and Theoretical Aspects,
Springer Proceedings in Mathematics & Statistics, Volume 199, 215-223, 2017.
DOI: 10.1007/978-3-319-57397-7_14 |
2017 (17) |
C. Erath and R. Schorr.
An adaptive non-symmetric finite
volume and boundary element coupling method for a fluid mechanics interface problem,

SIAM J. Sci. Comput. 39(3): A741-A760, 2017.
DOI: 10.1137/16M1076721 |
2017 (16) |
C. Erath, G. Of, and F.-J. Sayas.
A non-symmetric coupling of the
finite volume method and the boundary element method,

Numer. Math. 135(3): 895-922, 2017.
DOI: 10.1007/s00211-016-0820-3 |
2016 (15) |
C. Erath and D. Praetorius.
Adaptive
vertex-centered finite volume methods with convergence rates,

SIAM J. Numer. Anal. 54(4): 2228-2255, 2016.
DOI: 10.1137/15M1036701 |
2016 (14) |
C. Erath, M. A. Taylor, and R. D. Nair.
Two conservative multi-tracer
efficient semi-Lagrangian schemes for multiple processor systems
integrated in a spectral element (climate) dynamical core,
Commun. Appl. and Ind. Math.,
special issue on New trends in semi-Lagrangian methods,
7(3): 71-95, 2016.
DOI: 10.1515/caim-2016-0023
|
2015 (13) |
C. Erath.
A nonconforming a posteriori estimator for the coupling of cell-centered
finite volume and boundary element methods,

Numer. Math. 131(3): 425-451, 2015.
DOI: 10.1007/s00211-014-0694-1
|
2014 (12) |
C. Erath.
Comparison of two Couplings of the Finite
Volume Method and the Boundary Element Method,

Finite Volumes for Complex Applications VII - Methods and Theoretical Aspects,
Springer Proceedings in Mathematics & Statistics, Volume 77, 255-263, 2014.
DOI: 10.1007/978-3-319-05684-5_24
|
2014 (11) |
C. Erath and R. D. Nair.
A conservative multi-tracer transport scheme for spectral-element spherical grids,

J. Comput. Phys. 256: 118-134, 2014.
DOI: 10.1016/j.jcp.2013.08.050 |
2013 (10) |
C. Erath.
A posteriori error estimates and
adaptive mesh refinement for the coupling of the finite volume
method and the boundary element method,

SIAM J. Numer. Anal. 51(3): 1777-1804, 2013.
DOI: 10.1137/110854771 |
2013 (9) |
C. Erath.
A new conservative numerical scheme for
flow problems on unstructured grids and unbounded domains,

J. Comput. Phys. 245: 476-492, 2013.
DOI: 10.1016/j.jcp.2013.03.055 |
2013 (8) |
C. Erath, P. H. Lauritzen, and H. M. Tufo.
On mass-conservation in high-order
high-resolution rigorous remapping schemes on the sphere,
 Mon. Weather Rev. 141(6): 2128-2133, 2013.
DOI: 10.1175/MWR-D-13-00002.1 |
2012 (7) |
C. Erath, S. A. Funken, P. Goldenits, and D. Praetorius.
Simple error estimations
for Galerkin BEM for some hypersingular integral equation in 2D,

Appl. Anal. 92(6): 1194-1216, 2013.
DOI: 10.1080/00036811.2012.661045 |
2012 (6) |
C. Erath, P. H. Lauritzen, J. H. Garcia, H. M. Tufo.
Integrating a scalable and efficient
semi-Lagrangian multi-tracer transport scheme in HOMME,

Procedia Computer Science (ERA A-ranked) 9: 994-1003, 2012.
DOI: 10.1016/j.procs.2012.04.106 |
2012 (5) |
C. Erath.
Coupling of the finite volume
element method and the boundary element method: an
a priori convergence result,

SIAM J. Numer. Anal. 50(2): 574-594, 2012.
DOI: 10.1137/110833944 |
2011 (4) |
P. H. Lauritzen, C. Erath, and R. Mittal.
On simplifying 'incremental remap'-based transport schemes,

J. Comput. Phys., 230(22): 7957-7963, 2011.
DOI: 10.1016/j.jcp.2011.06.030 |
2009 (3) |
C. Erath, S. Ferraz-Leite, S. A. Funken, and D. Praetorius.
Energy
norm based a posteriori error estimation for
boundary element methods in two dimensions,

Appl. Numer. Math., 59(11): 2713-2734, 2009.
DOI: 10.1016/j.apnum.2008.12.024 |
2008 (2) |
C. Erath, S. A. Funken, and D. Praetorius.
Adaptive Cell-Centered
Finite Volume Method,
Finite Volumes for Complex Applications V, Wiley (ISBN: 978-1-84821-035-6) , 359-366, 2008.
|
2008 (1) |
C. Erath and D. Praetorius.
A posteriori error estimate
and adaptive mesh refinement for the cell-centered
finite volume method for elliptic boundary value
problems,

SIAM J. Numer. Anal., 47(1): 109-135, 2008.
DOI: 10.1137/070702126 |