
Chapter 4

Modules and presentations

4.1 Definition, examples, and basic concepts

4.1.1 Modules

Let R be a commutative ring. An R- module [der Modul, die Moduln] M is a commu-
tative group (M,+,−, 0) (we denote the axioms by (V1-4)) together with an action of R
on M , i.e. with each scalar r ∈ R and v ∈ M one has associated a unique rv ∈ M such
that

(V 5) for all r in K and v, w in V it holds r(v + w) = rv + rw

(V 6) for all v in V it holds 1v = v

(V 7) for all r, s in K and v in V it holds (r + s)v = rv + sv

(V 5) for all r, s in K and v in V it holds r(sv) = (rs)v .

For commutative R it does not matter whether we write rv or vr. For non-commutative
is does matter and vr would fit better to the usual notations of Linear Algebra (in all
countries where by law one drives and writes on the wrong side). If you see an vr,
occasionally, in these notes, read it as rv.

Examples.

a. if K is a field then the K-modules are exactly the K-vector spaces

b. Each ring R is an R-module with rv = r · v

c. Rn is an R-module for each ring R.

d. Each commutative group is a Z-module with nv as defined defined recursively for
n ∈ N by 0v = 0V , (n+ 1)v = nv + v and with (−n)v = −(nv).

One has the general associative-commutative law for addition and the distributive laws
(Proof as exercise)

r(
n∑
i=1

~vi) =
n∑
i=1

r~vi, [
n∑
i=1

ri]~v =
n∑
i=1

ri~v

0v = r0 = 0, (−r)v = −(rv).

1
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In particular, each term is equivalent to one of the from

n∑
i=1

rixi

4.1.2 Submodules and homomorphisms

These are defined in analogy to vector spaces. U is an R- submodule of the R-module M
if it is a subgroup and ru ∈ U for all r ∈ R and u ∈ U . The submodule generated by a
subset E is

SpanR(E) = {
n∑
i=1

ri~vi | n ∈ N, ri ∈ R, ~vi ∈ E}

In particular,the submodule generated by a single element v is given as Rv = {rv | r ∈ R}
an called cyclic. If we consider R as an R module, then we also write (v) = RV .

A map φ between R-modules M and N is R- linear or an homomorphims if

φ(~x+ ~y) = φ~x+ φ~y, φ(r~x) = rφ~x for all ~x, ~y ∈M, r ∈ R

Congruence relations are associated with submodules and homomorphism as for vector
spaces (cf Ch.11) and direct sums and products behave as well. But be aware that not
every submodule U gives rise to a direct decomposition M − U ⊕W - consider the Z-
submodule U = 2Z of Z, Thus, sect.11.2.5 and 11.3.7 do not extend to modules.

4.1.3 K[x]-modules

Every K-vector space V is an End(V )-module

φ · x = φ(x)

if we allow a non-commutative ring. Here, writing scalars form K and endomorphisms on
different sides of vectors would be reasonable - if is mandatory if K is not commutative.

Recall the polynomial ring K[x] with coefficents from the field K. It elements are poly-
nomials

p(x) = anx
n + . . .+ a1x+ a0

Given a K-vector space V and an endomorphism φ we can evaluate p(x) at φ (in the
commutative K-subalgebra of End(V ) generated by φ

p(φ) = anφ
n + . . .+ a1φ+ a0id

The map p(x) 7→ p(φ) is a K-algebra homomorphims of K[x] into End(V ). Also, given
A ∈ Kn×n we can evaluate at A

p(A) = anA
n + . . .+ a1A+ E

and if A corresponds to φ w.r.t. a give basis of V then p(A) corresponds to p(φ).
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Proposition 4.1.1 Given a field K, there is a 1-1-correspondence between K[x]-modules
and pairs (V, φ) where V is a K-vector space and φ and endomorphism of V . It is given
by

φ(v) = xv for all v ∈ V

Moreover, the K[x]-submodules are exactly the φ-invariant subspaces.

Proof. Given a K[x]-module V , V is also a K-vector space since K is a subring of K[x].
Due to the module laws and commutativity of K[x], φ(v) = xv defines an endomorphism
of V . Conversely, given φ ∈ End(V ), define

p(x)~v = p(φ)(~v)

Since evaluation of polynomials is a homomorphism, this defines a K[x]-module. Observe
that U is a K[x]-submodule if it is a K-vector subspace and xv ∈ U for all v ∈ U . Indeed,
(
∑

i rix
i)v =

∑
i rix

iv ∈ U for all v ∈ U . �

We denote this K[x]-module by K[φ]V . It contains all information about φ in a convenient
form. In particular, it gives an easy access to transformations into canonical form.

4.2 Free modules and presentations

4.2.1 Modular philosophy of freeness

We need an understanding of module computations form a logic background - in the
structural disguise this means to understand free modules. Recall the view of K[x] as a
free K-algebra with generator x.

The free R-module with generators e1, . . . , en (fixed R) can (and should) be understood
as follows: consider the algebraic structure T all terms which can be be constructed from
e1, . . . , en by addition, subtraction, constant 0, and multiplications with ‘scalars from R,
i.e.

• e1, . . . , en and 0 are terms

• If s, t are terms, then so are s+ t, −t and rt for r ∈ R.

and compute modulo (∼) the laws of R-modules - using the general rules of equational
logic. In other words, ∼ is the coarsest congruence relation on T such that that for all
a, b, c ∈ T and r, s ∈ R

a+ (b+ c) ∼ (a+ b) + c, a+ b ∼ b+ a, a+ 0 ∼ a, −a+ a ∼ 0

1a ∼ a, r(a+ b) ∼ ra+ rb, (rs)a ∼ r(sa), (r + s)a ∼ ra+ sa

and we call T/∼ the R-module freely generated by e1, . . . , en. Actally, if π : T → T/∼ is
the canonical projection, then π(e1), . . . , π(en) are free generators of the R-module T/ ∼.

Principle 4.2.1 For any ring R, the R-module F = T/∼ freely generated by e1, . . . , en
has the following universal property
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• F is generated by π(e)1m. . . , π(en) and for any R-module N and wi ∈ N there is a
(unique) homomorphism φ : F → N such that φ(π(ei)) = wi for i = 1, . . . , n.

and is characterized by this property up to isomorphism (matching free generators). φ is
surjective if N is generated by the wi.

If there is no danger of confusion, we use ei to denote π(ei). This does not mean that
ei = ej ⇔ π(ei) = π(ej).

Proof. Given wi ∈ N we may evaluate terms t = t(e1, . . . , en) ∈ T

ψ(t) = t(w1, . . . , wn) ∈ N

ψ : T → N is a homomorphism and a ∼ b implies ψ(a) = ψ(b) since N is an R-module. By
the Homomorphims Theorems, there is a homomorphism φ : F → N such that ψ = φ◦π.

Assume that we have R-modules Fi and πi : {e1, . . . , en} → Fi both with the universal
property, i = 1, 2 Then we have φij : Fi → Fj such that φij(πi(ek)) = πj(ek) for all k. It
follows φjiφij(π(ek)) = π(ek) whence φjiφji = idFi

. Thus, φ12 and φ21 are mutually inverse
isomorphisms. �

4.2.2 Bases

e1, . . . , en is a basis of the R-module M if E = {e1, . . . , en} generates M and and if they
are independent

r1e1 + . . . rnen = 0 ⇒ r1 = . . . = rn = 0 for all ri ∈ R

Corollary 4.2.2 For an R-module M and e1, . . . , en in M t.f.a.e.

(1) e1, . . . , en is a basis of M

(2) The elements of M have unique representation a = r1e1 + . . .+ rnen with ri ∈ R

(3) There is an isomorphism φ : M → Rn such that φei = ei for i = 1, . . . , n

(4) M is freely generated by e1, . . . , en as an R-module

Proof. (1) ⇔ (2) Existence of representation means that the ei generate, uniqueness
means independence. (3) ⇒ (2) is obvious. (2) ⇒ (3): One has well and necessarily
so defined φ(a) =

∑
i riei. This is R-linear -as is easily checked. (4) ⇒ (2): Choose

N = Rn. There is linear φ : M → Rn such that φei = ei. Now, if
∑

i riei
∑

i siei in M
then

∑
i riφ(ei) =

∑
i suφ(ei), whence ri = si. (3)⇒ (4). We know that a free module F

with generators v1, . . . , vn exists. Let ψ : F → Rn the homomorphism with ψ(vi) = ei.
The elements of F have a representation

∑
i riei and this is unique by the preceeeding

argument. Thus, F ∼= Rn and Rn is freely generated by the ei. Then M is freely generated
by the ei due to the isomorphism φ−1ψ : F →M . �.
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4.2.3 Presentation of modules

If we say that the R-module M is given by generators e1, . . . , en and relations ai
!

= bi (i ∈
I) (which together make a presentation) then we mean that we calculate with R-module
terms in the e1, . . . , en

• using the general rules of equational logic

• modulo the R-module laws (this includes the tables describing the ring R), i.e. we
may substitute in these lwas any terms for the variables

• modulo the equalities ai = bi (no substitution for an ei!!!)

If no relations are given, then we calculate only modulo R-module laws and obtain the
free R-module with generators e1, . . . , en.

Actually, we should consider the ei as generator symbols which are interpreted in

modules N by elements eNi . The relation a
!

= b is given as a formal expression by a pair
(a, b) of terms a = a(e1, . . . , en) and b = b(e1, . . . , en) and it is valid in the module N
under the interpretation eNi if and only if

a(eN1 , . . . , e
N
n ) = b(eN1 , . . . , e

N
n ) holds in N

Principle 4.2.3 Let M be an R-module and e1, . . . , en ∈ M . Then the R-module M

is given by the generators e1, . . . , en and the relations ai
!

= bi (i ∈ I) if and only if
M is generated by the eMi and if for any R-module N and interpretation eNi there is a
homomorphism φ : M → N such that φ(eMi ) = eNi for i = 1, . . . , n (which is surjective if N
is generated by the eNi ). Moreover, M is determined by the presentation up to isomorphism
and is obtained form the free R-module F with generators e1, . . . , en as F/ ∼ where ∼ is the
finest congruence relation such that ai ∼ bi for all i ∈ I - corresponding to the submodule
U of F generated by the ai−bi (more precisely, the elements ai(e

F
1 , . . . , e

F
n )−b(eF1 , . . . , eFn )

of F (i ∈ I). Thus, M ∼= F/U .

Observe that any relation a
!

= b may be equivalently replaced by a− b !
= 0.

Corollary 4.2.4 The free R-mode with generators e1, . . . , en and relations wi
!

= 0, (i ∈ I)
is obtained, up to isomorphism, as Rn/U with generators π(e1), . . . , π(en) where π : Rn →
R/U is the canonical homomorphism and

U = SpanR{wi(e1, . . . , en) | i ∈ I}.

Recall, that π(v) = U + v = v + U is a popular notation.

4.2.4 Cyclic one-relation K[x]-modules

We consider R-modules presented with single generator g and a single relation w
!

= 0.
Then w is equivalent to a term dg with d ∈ R. If R = Z we obtain Z/Zd, the integers
modulo d.
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Lemma 4.2.5 K[x]/(m(x)) is a commutative K-algebra and the canonical homomor-
phism π : K[x]→ K[x]/(m(x)) is a K-algebra homomorphism.

Theorem 4.2.6 Let m(x) = xn + rn−1x
n−1 + . . . r1x + r0 ∈ K[x]. The K[x]-modules

given by a presentation with one generator v0 and the relation m(x)v0
!

= 0 are exactly the
K-vector spaces V with endomorphism φ where V has basis α w.r.t. to which the matrix
of φ is

φα = A =



0 0 0 . . . 0 −r0
1 0 0 . . . 0 −r1
0 1 0 0 −r2
...

. . . . . . . . .
...

...
0 0 0 −rn−2
0 0 . . . 1 −rn−1


Then this basis is

α : v0, φ(v0), φ
2(v0), . . . , φ

n−1(v0)

A is the Frobenius-matrix or companion matrix of the polynomial m(x).

Proof. By Cor.4.2.4, up to isomorphism, the module given by the presentation is V =
K[x]/(m(x)) with generator 1. The canonical homomorphism π : K[x]→ V is surjective
and with some precaution we may use the elements p(x) of K[x] to denote their images
in V where π(p(x)) = p(x) + (m(x)) is meant.

By Prop.4.1.1, φ(v) = xv is an endomorphism of the K-vector space V . We claim
that

1, x, . . . , xn−1

is a basis of the K-vector space V . From

(∗) xn = −(rn−1x
n−1 + . . . r1x+ r0)

is follows that SpanK{1, x, . . . , xn−1} is a φ-invariant subspace, hence a K[x] submodule
and equal V since it contains the generator 1. Now, consider si ∈ K with

s0 + s1x+ . . .+ sn−1x
n−1 = 0

more precisely
s0π(1) + s1π(x) + . . .+ sn−1π(xn−1) = π(0)

Since by Lemma 4.2.5 π is a K-algebra homomorphism, this implies

π(s0 + s1x+ . . .+ sn−1x
n−1) = π(0)

thus
s0 + s1x+ . . .+ sn−1x

n−1 ∼ 0 in K[x]

i.e.
q(x) = s0 + s1x+ . . .+ sn−1x

n−1 = p(x) ·m(x)

for some p(x) ∈ K[x]. Since deg q(x) < degm(x) this is possible only if p(x) = q(x) = 0
and so si = for all i. This proves independence. The claim about the matrix is then
obvious from (∗).
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Conversely, given a K-vector space and an endomorphism φ having matrix A = φα

for some basis α, the basis looks as indicated (as one reads from the matrix). Thus, the
K[x]-module V is generated by v0. Moreover

φn(v0) = φ(φn−1(v0)) = −(rn−1φ
n−1(v0)+. . . r1φ(v0)+r0v0) = −(rn−1φ

n−1+. . . r1φ+r0)(v0)

i.e.

m(φ)(v0) = 0

Thus, the K[x] module V with generator v0 satisfies the relation m(x)v0
!

= 0. By Principle
4.2.3 there is a homomorphism ψ : K[x]/(m(x)) into the K[x]-module V mapping 1 onto
v0. ψ is surjective, since v0 is a generator. φ is also a K-linear map whence an isomorphism
since dimK[x]/(m(x)) = n = dimV . �

Corollary 4.2.7 m(x) is a polynomial p(x) of minimal degree such p(φ) = 0 and the
unique normed such. (−1)nm(x) is the characteristic polynomial of φ.

m(x) is also called the minimal polynomial of φ. Proof. The first claim is obvious from
the proof of the theorem, the second an exercise. �

Corollary 4.2.8 Here, for any λ ∈ K,

β : (φ− λid)n−1(v0), . . . , (φ− λid)(v0), v0

is also a basis of V and m(x) = (x− λ)n if and only if

φβ = Jλ,n =


λ 1 0 . . . 0
0 λ 1 0
...

. . . . . . . . .
...

0 0 λ 1
0 . . . 0 λ

 .

The matrix Jλ,n is a Jordan-block and the basis β a Jordan-chain (for φ and λ) with
startvector v0 and eigenvector φ− λidn−1.

Proof. The (x−λ)k generate the K-vector space K[x]: inductively on obtains all xk since
(x− λ)k = xk + pk(x) with a polynomial pk(x) of degree < k. Thus, the (x− λ)k, k < n,
generate the K-vector space K[x]/(m(x)) and form a basis β : (x − λ)n−1, . . . , 1 (since
dim = n). For m(x) = (x− λ)n the matrix of φ w.r.t. β is Jλ,n as is seen from

x(x− α)k = (x− λ)k(λ+ x− λ) = λ(x− λ)k + (x− λ)k+1. �

4.2.5 Presentation matrix

Consider a presentation of an R-module with generators e1, . . . , en and relations wi
!

= 0
(i ∈ I). Since module laws allow reduction of any term to a linear combination

∑
i riei,we

may assume that the wi are of this form. Thus
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1 Any presentation of an R-module with generating set E = {e1, . . . , en} may be
equivalently given by

n∑
i=1

rijei, j = 1, 2, 3, . . . , A =

r11 r12 r13 . . .
...
rn1 rn2 rn3 . . .

 ∈ Rn×m

2 The matrix A is called the presentation matrix

3 The module M is obtained as M Rn/U , U generated by the columns of A

4 For n = 1 and A = (d1), one has M ∼= R/Rd where Rd = {rd | r ∈ R}

5 If the presentation matrix is diagonal with entries d1, . . . , dn, then M is isomorphic
to

R/Rd1 × . . .×R/Rdn

Ad 5: Let U = Span{e1d1, . . . , endn} ⊆ Rn and π : Rn → Rn/U and πi : R → R/Rdi
canconical projections and

ψ : Rn → R/Rd1 × . . .×R/Rdn where ψ

r1...
rn

 =

r1[ mod Rd1]
...

rn[ mod Rdn]


Then ψ is a surjective homomorphism. Moreoverr1...
rn

 ∈ Kern(π)⇔

r1...
rn

 =
∑

disiei =

d1s1...
dnsn

⇔⇔ r1 ∈ Rd1, . . . , rn ∈ Rdn ⇔

r1...
rn

 ∈ Kerψ

Hence, by the Homomorphism Theorem, there is an isomorphism χ : Rn/U → R/Rd1 ×
. . .×R/Rdn. �

4.2.6 Characteristic matrix of an endomorphism

Theorem 4.2.9 Given a K-vector space V with basis α : ~e1, . . . , ~en and endomorphism
φ with matrix A w.r.t. α. Then w.r.t. the generators ~e1, . . . , ~en of the K[x]-module K[φ]V

the characteristic matrix A− xE of φ is a presentation matrix of K[φ]V .

Proof. The ~ei satisfy the relations given by A− xE:

x~ej = φ(~ej) =
∑
i

aij~ei ⇔ 0 = (ajj − x)~ej +
∑
i 6=j

aij~ei

Hence there is a surjective K[x]-linear map χ from the K[x]-module M with generators
ei and presentation matrix A − xE onto K[φ]V with ei 7→ ~ei. As a K[x]-module, M is
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generated by the ei. M is also a K-vector space. The K-vector subspace U generated by
the π(ei) is a K[x]-submodule, since

xej =
∑
i

aijei

due to the presentation. Thus, U = M whence dimKM ≤ n. χ is also K-linear and
surjective, whence due to dimK V = n an isomorphism. �

4.3 Transformations of presentations

We will show that for ringsK[x] any presentation can be equivalently replaced by one given
by a diagonal matrix in K[x]n×n. For that purpose we need two kinds of transformations
of the presentation matrix

• Replacing relations by equivalent ones

• Change of basis

A matrix S ∈ Rn×n is invertible if and only if there is T ∈ Rn×n such that ST = T S = E
the unit matrix. The invertible matrices form a subgroup of the multiplicative monoid
(Rn×n, ·, E). In particular, the inverse is uniquely determined: T = S−1.

4.3.1 Change of relations

Given a commutative ring R and a basis α : e1, . . . , en of a free R-module F , each v ∈ F
has unique representation

v =
n∑
i=1

xiei

and we have the coordinate column of v

vα =

x1...
xn


Now, given a matrix A = (aij) ∈ Rn×m, we write

SpanαR(A) = SpanR{
n∑
i=1

aijei | j = 1, . . . ,m}

which is the span of those elements of F which have colums of A as coordinates.

Lemma 4.3.1 Given a commutative ring R, a matrix A ∈ Rn×m, and Q ∈ Rm×m. Then
for each basis α of a free R-module

SpanαR(A) = SpanαR(AQ)
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Proof. Let Q = (qjk) and AQ = B = (bik). Then for all k = 1, . . . ,m

n∑
i=1

bikei =
n∑
i=1

(
m∑
j=1

aijqjk)ei =
m∑
j=1

qjk

n∑
i=1

aijei ∈ SpanαR(A)

whence
SpanαR(B) ⊆ SpanαR(A)

Since A = BQ−1 the converse inclusion is also valid. �.

4.3.2 Change of basis

Lemma 4.3.2 Given a commutative ring R and a basis α : e1, . . . , en of a free R-module
F , and invertible matrix P ∈ Rn×n, there is a unique basis β : f1, . . . , fn of F such that

vβ = Pvα for all v ∈ F

Proof. Choose fj such that fαj is the j-th column of S = P−1, i.e.

fj =
n∑
i=1

sijei

Then f1, . . . , fn is generating since

n∑
j=1

pjkfj =
n∑
j=1

pjk

n∑
i=1

sijei =
n∑
i=1

(
n∑
j=1

sijpjk)ei = ek

They are independent, too:
∑n

j=1 rjfj = 0 implies

n∑
i=1

(
n∑
j=1

rjsij)ei =
n∑
j=1

rj(
n∑
i=1

sijei) =
n∑
j=1

rjfj = 0

whence by independence of the e1. . . . , en

n∑
j=1

rjsij = 0 for all j = 1, . . . , n

S

r1...
rn

 = 0,

r1...
rn

 = PS

r1...
rn

 = 0

Finally, we have vα = Svβ since for v =
∑n

j=1 yjfj it follows

v =
n∑
j=1

yjfj =
n∑
j=1

yj

n∑
i=1

sijei =
n∑
i=1

(
n∑
j=1

sijyj)ei �

Over non-commutative rings R this remains valid if we consider right R-modules, i.e.
write vr and have the law v(rs) = (vr)s. The point is, that Rn is a left-Rn×n right-R
bi-module: we have A(vr) = (Av)r.
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4.3.3 Transformation of presentations

Corollary 4.3.3 If A ∈ Rn×M is a presentation matrix of the R-module M w.r.t. the
basis α : e1, . . . , en of the free R-module F , and if P ∈ Rn×n and Q ∈ Rm×m are invert-
ible then PAQ is a presentation matrix for M w.r.t. the basis β : f1, . . . , fn of F the
coordinates of which w.r.t. α are the columns of P−1.

Proof. M = F/U where

U = SpanαR(A) = SpanR{v ∈ F | vα colum of A} =

= SpanR{v ∈ F | vβ colum of PA} = SpanβR(PA) = SpanβR(PAQ) �

Lemma 4.3.4 If A ∈ Rn×M is a presentation matrix of the R-module M w.r.t. the basis
α : e1, . . . , en of the free module F and if B arises from A by deleting zero colums, then
B is a presentation matrix of M w.r.t. α.

Proof. Obvious. �

4.3.4 Elementary matrices

Given a commutative ring R, let Eij the matrix with all entires 0 but 1 in position (i, j).
The following matrices in Rn×n elementary

[Zi := Zi+ rZj] = [Sj := Sj + rSi] = E + rEij r ∈ R

[Zi↔ Zj] = Sj ↔ Si] = E − Eii − Ejj + Eij + Eji i 6= j

[Zi := uZi] = [Si := uSi] = E + (u− 1)Eii u ∈ R invertible

The notation corresponds to the row transformations [Z] of a matrix A induced by mul-
tiplying the elementary matrix on the left of A resp. column transformations [S] on the
right.

Lemma 4.3.5 Elementary matrices are invertible with inverses

[Zi := Zi+ rZj]−1 = [Sj := Sj − rSi]

[Zi↔ Zj]−1 = [Sj ↔ Si], [Zi := uZi]
−1 = [Si := u−1Si]

Proof. Obvious. �



Chapter 5

Euclidean rings

Subsections * are not needed for the for the main result: the theory of invariant divisors
and rational canonical form.

5.1 Ideals

5.1.1 Ideals and congruences of rings

Given a commutative rings resp. K-algebra R, an ideal is submodule of the R-module
R, i.e.

a, b ∈ I ⇒ a+ b ∈ I and a ∈ I ⇒ ra ∈ I for all a, b, r ∈ R
There is a 1-1-correspondence between congruence relations and ideals given by

I = {a ∈ R | a ∼ 0} a ∼ b⇔ a− b ∈ I

Indeed, an equivalence relation ∼ is a congruence relation of the ring R if and only if it
is a congruence relation of the R-module R: in both cases one has a congruence relation
of the additive group (K-vector space) R satisfying

a ∼ b ⇒ ra ∼ rb

Consequently, a factor algebra R/∼ may be written as R/I and the canonical projection
as π(a) = I + a = a+ I. The homomorphism theorems apply as well.

Form the description of spans in modules we obtain

(a) = Ra = {ra | r ∈}

is an ideal, the principal ideal generated by a. The smallest ideal containing a, b is

{ra+ sb | r, s ∈ R} = (a, b) = (a) + (b)

Corollary 5.1.1 * For ideals I, J of a commutative ring or K-algebra, R/I ∼= R/J as
R-modules if and only if I = J .

Proof. Let M = R/I. I = {r ∈ R | rv = 0 for all v ∈ M} is the annihilator of M and
invariant under linear isomorphisms. �.

12
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5.1.2 Second Isomorphism Theorem *

Theorem 5.1.2 Let π : M → N a surjective homomorphism between R-modules. Then
for each submodule U of N , π−1(U) is a submodule of M and

M/π−1(U) ∼= N/U

This estabilishes a 1-1- correspondence between submodules of N and submodules ⊇ ker π
of M with inverse given by V 7→ π(V ). Morever

U ⊆ W ⇔ π−1(U) ⊆ π−1(W )

π−1(U +W ) = π−1(U) + π−1(W ), π−1(U ∩W ) = π−1(U) ∩ π−1(W )

The analogous results hold for commutative rings and K-algebras and, formulated in terms
of congruence relations for any algebraic structures.

Proof. π−1(U) is a submodule, obviously, and the kernel of πU ◦ π where πU : N → N/U
is the canonical projection. Thus M/π−1(U) ∼= N/U .

By surjectivity, we have π(π−1(U)) = U . If V ⊇ ker π and w ∈ π−1(π(V )) then
π(w) = π(v) for some v ∈ V whence w − v ∈ V and w ∈ V . Since both maps U 7→
π−1(U) and V 7→ π(V ) preserve inclusion between submodules and since + and ∩ may
be characterized in these terms, the remaining claims follow. �.

Example: Consider π : Z → Z/Zn the canonical homomorphism. The submodules resp.
ideal of Z/Zn are given as Zπ(m) where m divides n. For the canonical homomorphisms
χ : Z/Zn→ (Z/Zn)/Zπ(m) and ψ : Z→ Z/Zm we have ψ = χ ◦ π.

5.2 Integral domains

5.2.1 Definition and examples

An integral domain is commutative ring without divisors of zero, i.e. ab = 0 implies
that a = 0 or b = 0. Equivalently, one has the cancellation law

• From ax = ay and a 6= 0 it follows x = y

Examples. Z,Q,R,C.
If K is an integral domain, the degree formula of 14.2.2. remains valid and it follows

that K[x] is an integral domain, too. Long division of p(x) by q(x) is possible if the
leading coefficient bm in q(x) has an inverse in K. In the results about zeros in 14.2.4. it
suffices to have K a subfield of the integral domain A.

5.2.2 Horner scheme *

Lemma 5.2.1 Given an itegral domain K and p(x) ∈ K[x] of degree n und α ∈ K there
is h(x) ∈ K[x] such that

p(x) = h(x)(x− α) + p[α]



14 CHAPTER 5. EUCLIDEAN RINGS

Proof. The idea is that

p(x) = (. . . ((anx+ an−1)x+ an−2) . . .+ a1)x+ a0

and one may obtain p[α] with less multiplications as follows

an an−1 . . . a1 a0
α cn−1α . . . c1α c0α
cn−1 = an cn−2 = cn−1α + an−1 . . . c0 = c1α + a1 p[α] = c0α + a0

Now, put
h(x) = cn−1x

n−1 + . . .+ c1x+ c0.

For verification consider

q(x) = (. . . (anx+ an−1)x+ an−2) . . .+ a1 i.e. p(x) = q(x)x+ a0.

Computing q[α] one obtains the Horner-coefficients cn−1, . . . , c1 and it holds q[α] = c0 and
c0α + a0 = p(α). Applying inductive hypothesis to q(x) one gets

p(x) = q(x)x+ a0 = ((cn−1x
n−2 + . . .+ a1)(x− α) + q[α])x+ a0

= (cn−1x
n−1 + . . . c1x+ c0)(x− α)− c0x+ c0α + q[α]x+ a0

and the last 4 summands add up to p[α].

5.2.3 Quotient fields *

A field Q is a quotient field of the ring R, if R is a subring of Q and

Q = {ab−1 | a, b ∈ R, b 6= 0}

Necessarily, R is an integral domain. Example: Q is quotient field of Z.

Theorem 5.2.2 Each integral domain R admits an extension to a quotient field Q (unique
up to isomorphism). Any embedding of R into a field K can be extended to an embbing
of Q into K.

Proof. As in the construction of Q from Z define on Q′ = {(a, b) | a, b ∈ R, b 6= 0}

(a, b) + (c, d) = (ad+ bc, bd), (a, b) · (c, d) = (ac, bd)
(a, b) ∼ (c, d) ⇔ ad = bc

which is a congruence relation. By factorizing, π : Q′ → Q′/ ∼, one obtains an algebraic
structure and even a commutative ring Q - (Q, ·, 1) is a commutative monoid being a
homomorphic image of R × (R \ {0}), the other laws require some computation. The
inverse of π(a, b) is π(b, a). The map a 7→ π(a, 1) is an embedding og R into Q and
π(a, b) = π(a, 1)π(1, b). Thus we may conceive R as a subring of Q and obtain the
required representation. Given φ : R→ K define

φ(ab−1) = φ(a)φ(b)−1

This is well defined since ad = bc implies φ(a)φ(d) = φ(b)φ(c), also φ(a)φ(b)−1 =
φ(c)φ(d)−1. �

The quotient field of the polynomial ring K[x] over a field is the field of rational functions

over K and denoted by K(x). Its elements are written as f(x)
g(x)
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5.2.4 Units

A Monoid is a set M with associative multiplication and neutral element e. An element
u of a monoid M is a unit or invertible, if there is x ∈M such that xu = ux = 1.

Lemma 5.2.3 The units of a monoid M from a group M∗.

Proof. The inverse x is unique since yu = uy = 1 implies y = y1 = yux = 1x = x. We
may write x = u−1; clearly u−1 ∈ M∗ and (u−1)−1 = u. If v ∈ M∗, then uvv−1u−1 =
u1u−1 = uu−1 = 1 and v−1u−1 = uv, whenve uv ∈M∗. �

The group of units R∗ of a ring R consists of the units of the monoid (R, ·, 1). Clearly

Z∗ = {1,−1}, (K[x])∗ = K∗ for fields K

and for the direct product R1×R2 of rings (component wise addition and multiplication)

(R1 ×R2)
∗ = R∗1 ×R∗2.

In the ring of n× n-matrices over a commutative ring R one defines determinants by the
explicte formula. Then (detA)adA = E. If detA ∈ R∗ then A−1 = det(A)−1adA whence

(Rn×n)∗ = {A | detA ∈ R∗} for commutative R.

Corollary 5.2.4 For any commutative ring, R = Ru if and only if u is a unit. Then,
M = Rug for any cyclic R-module M with generator g.

5.2.5 Divisibility

In a commutative ring one defines

d|a ⇔ d divides a ⇔ ∃r ∈ R. rd = a.

This ia a ‘quasi order’ on R

a|a (reflexive), a|b and b|c⇒ a|c (transitive)

with compatibility

a|b⇒ ac|bc, a|b und a|c⇒ a|(b± c)

One has

a | b ⇔ Ra ⊇ Rb

Lemma 5.2.5 In a commutative ring, a | b if and only if there is a surjective R-linear
map χ : R/(a)→ R/(b).

Proof. This is immediate by the Homomorphism Theorem. �
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5.2.6 Associated elements

Let R be an integral domain. a and b are associated, a ≈ b, iff one of the following
conditions is satisfied

a|b and b|a , ∃r ∈ R∗ : ra = b.

Indeed ra = b and sb = a imply rsb = b whence rs = 1 by cancellation. ≈ is an
equivalence relation since units form a subgroup. Moreover

• a ≈ a′ und b ≈ b′ ⇒ (a|b⇔ a′|b′)

• a ∼ b w.r.t. the congruence associated with (d) ⇔ a ≡ mod d ⇔ d|(a− b)

• a|b ⇔ (b) ⊆ (a)

• a ≈ b ⇔ (a) = (b)

• a ∈ R∗ ⇔ (a) = (1) = R

5.3 Principal ideals in euclidean rings

5.3.1 Definition and examples

An integral domain R is an euclidean ring if there is a map

δ : R \ {0} → N

∀a, b ∈ R \ {0} : δ(ab) ≥ δ(a)
∀a, b ∈ R \ {0} ∃q, r ∈ R : a = bq + r and δ(r) < δ(b) or r = 0

.

Define δ(0) = −∞. Examples

Z with δ(a) = |a|, K[x] with δ(f(x)) = deg f(x), K a field.

Lemma 5.3.1 In any euclidean ring

a|b und δ(a) = δ(b) ⇔ a ≈ b.

Proof. Let b = ac. Then a = bq + r with r = 0 or r = a− bq = a− acq = a(1− cq) and
δ(b) > δ(r) = δ(a(1 − cq)) ≥ δ(a). If δ(a) = δ(b), then the latter may not occur whence
also b | a, and a ≈ b. �

5.3.2 Principal ideals

An integral domain in which every ideal is principal is a principal ideal domain.

Theorem 5.3.2 Any euclidean ring is a principal ideal domain: 0 6= a ∈ I with δ(a)
minimal then I = (a).

Proof. Assume I 6= (0). Choose 0 6= a ∈ I with δ(a) minimal. Then (a) ⊆ I. Consider
0 6= b ∈ I. Then b = aq + r mit r = 0 or δ(r) < δ(a). In the second case r = b− aq ∈ I
contradicting minimality of δ(a). Thus r = 0 and b ∈ (a). �
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5.3.3 Cyclic modules

Recall that an R-module M is cyclic if it is generated by a single element g: M = Rg.

Proposition 5.3.3 Any cyclic R-module M = Rg has presentation given by generator g

and relation d
!

= 0 where 0 6= d ∈ R with δ(d) minimal such that dg = 0 in M . Moreover,
dv = 0 for all v ∈ M , there is a surjective R-linear map π : R → M such that π(1) = g,
and M is a commutative ring (and K-algebra if so is R) and π a homomorphism w.r.t.
the multiplication

π(r) · π(s) := π(rs)

The generators of M are exactly the units of this ring.

d is unique up to association and called a minimal annihilator of g resp. M .

Proof. I = {r ∈ R | rg = 0} is an ideal of R: if r, s ∈ I then (r+ s)g = rg+ sg = 0 and if
r ∈ R and s ∈ R then (sr)g = s(rg) = s0 = 0. Since R is euclidean, we have I = (d) with
d as stated and unique up to association. Then dv = drg = rdg = 0 for all v = rg ∈ M .
Since R is freely generated by 1, there is a unique homomorphism π : R → M such that

π(1) = g. Then I = (d) = Ker π and it follows that M is presented by g, d
!

= 0. Moreover,
since I is an ideal, M = R/I can be seen as the factor ring with the above multiplication.
Now, π(u) is a unit iff π(s)π(u) = π(1) = g for some s iff π(u) is a generator. �.

5.4 Euclidean algorithm, GCD, and factorization

5.4.1 Bezout’s Theorem

Consider an integral domain R. d is a greatest common divisor of a and b

d ≈ GCD(a, b) ⇔ d|a, d|b and ∀c : (c|a and c|b)⇒ c|d.

If such exists, it is unique up to association. Moreover

GCD(a, b) ≈ GCD(b, a− qb)

since a, b and a− qb have the same divisors.

Theorem 5.4.1 In an euclidean ring GCDs exist and have additive representation

d ≈ GCD(a, b) ⇔ d|a, d|b and ∃r, s : d = ra+ sb ⇔ (d) = (a) + (b).

Proof. The extended euclidean algorithm produces d, r, s such that d|a, d|b, d = ra+ sb.
Then d is a GCD: c|a and c|b imply c|ra and c|sb whence c|(ra+ sb). Conversely, if d′ is
a GCD of a, b then d′ ≈ d by uniqueness and (d′) = (a) + (b). �

Algorithm 5.4.2 (Euklid+Bezout). Given an euclidean ring R and a, b in R determine
a d ≈ GCD(a, b) and x, y in R such that

d = ax+ by.
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• Put d1 := a, x1 := 1, y1 := 0; d2 := b, x2 := 0, y2 := 1

• Loop: n n+ 1

– Find dn = dn−1q + r with 0 ≤ δr < δdn−1 or r = 0

– If r 6= 0 do dn+1 = r = dn − qdn−1, xn+1 = xn − qxn−1 yn+1 = yn = qyn−1

– else d = r, x = xn, y = yn stop

Proof. Loop invariant: dn = axn + bxn, GCD(dn, dn−1) = GCD(a, b) If r = 0, then
dn|dn−1, whence d = GCD(a, b). �

42 1 0
25 0 1
17 1 −1
8 −1 2
1 3 −5

1 = 3 · 42− 5 · 25, 25−1 ≡ −5 ≡ 20 mod 42

x10 + 1 1 0
x6 + 1 0 1
−x4 + 1 1 −x4 x4

x2 + 1 x2 −(x6 − 1) −x2
0 0 0 x2 + 1

GCD(x10 + 1, x6 + 1) = x2 + 1 = x2(x10 + 1)− (x6 − 1)(x6 + 1)

a and b are relatively prime or coprime if GCD(a, b) ≈ 1 i.e. iff ra+ sb = 1 for some r, s

Corollary 5.4.3 a|(bc) ∧GCD(a, b) = 1 ⇒ a|c

Proof . 1 = ax+ by, whence a|(axc+ bcy) = c.

Corollary 5.4.4 If GCD(a, b) = 1, then b̃ = b[ mod a] invertible in R/(a)

by ≡ 1 mod a if 1 = ax+ by for some x

x2 + 1 = (x+ 2)(x− 2) + 5, 1 =
1

5
(x2 + 1− (x+ 2)(x− 2))

(x+ 2)−1 ≡ −1

5
(x− 2) mod x2 + 1

x3 + x ≡ xx2 + x ≡ x(x+ 1) + x ≡ x2 ≡ x+ 1 mod x2 + x+ 1

1 = x2 + x+ 1− x(x+ 1), (x+ 1)−1 ≡ x mod x2 + x+ 1
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5.4.2 Primes

Theorem 5.4.5 For 0 6= a 6∈ R∗ in an euclidean ring t.f.a.e.

• a is irreducible, i.e. a = bc⇒ b ∈ R∗ or c ∈ R∗

• (a) is a maximal ideal, i.e. for all ideals: a ∈ I ⇒ (a) = I or I = R.

• R/(a) is a field

• a is prime, i.e. a|bc⇒ a|b or a|c

Proof. (1)⇒ (2): I = (b) and a = bc, whence I = R if b ∈ R∗ resp. (a) = I if c ∈ R∗.
(2) ⇒ (3): Let b̃ 6= 0 in R/(a), whence b 6∈ (a). Thus (a) 6= (a, b) and it follows
1 ∈ R = (a, b), i.e. there are r, c with ar + bc = 1. Thus b̃ · c̃ = 1̃, i.e. b̃ is invertible

(3)⇒ (4): a|bc implies b̃ · c̃ = b̃c = 0 thus b̃ = 0 or c̃ = 0, i.e. b ∈ (a) or c ∈ (a).
(4) ⇒ (1): If a = bc is prime, then a|b or a|c. On the other hand c|a and b|a, whence
b ∈ R∗ or c ∈ R∗. �

Corollary 5.4.6 Given a, b in an euclidean ring R, b[ mod a] is invertible in R/(a) iff
GCD(a, b) ≈ 1.

5.4.3 Factorization

An integral domain is factorial or an UFD if any non-unit a 6= 0 is a product

a = p1 · . . . · pn

of primes, unique up to order and association.

Theorem 5.4.7 Any euclidean ring is factorial.

Proof of existence by order induction on δ(a): If a is not irreducible then a = bc with
δ(a) > δ(b), δ(c) and by induction b =

∏
i pi and c =

∏
j qj whence a =

∏
i pi ·

∏
j qj with

irreducible pi and qj.
Proof of uniqueness by induction on the number of factors. Let

p1 · . . . · pn ≈ q1 · . . . · qm.

W.l.o.g. p1|q1, i.e. q1 ≈ p1 since both are prime. It follows

p2 · . . . · pn ≈ q2 · . . . · qm

and, by induction, n = m and pi ≈ qi after renumbering. �
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5.4.4 Factorization algorithms *

At present, there are is a fast algorithms for testing primeness, but none for factorization
of integers. For factorization of polynomials over finite fields there is a simple and efficient
(GCD with test polynomials) cf. Berlekamp, Algebraic coding theory. For polynomials
over Q there is a efficient but non-trivial procedure: Lenstra2,Lovasz, Math.Ann 261, cf.
Lenstra2: Algorithms in number theory, Handbook of Theoretical Computer Science A.

According to a theorem of Gauss, a polynomial in Z[x] is irreducible if and only if
it is irreducible in Q[x] and the GCD of it coefficients is 1. This can be used for a
brute force factorization method due to Kornecker: Given p(x) ∈ Z[x] of degree n, choose
z0, . . . , zm ∈ Z where m = n

2
and determine for each k the set Dk of divisors of p(zk). Thus

if f(x) ∈ Z[x] divides p(x) then f(zk) ∈ Dk. By interpolation, construct all polynomials
f(x) of degree ≤ m with f(zk) ∈ Dk and carry out long division of p(x) by f(x). If
p(x) = q(x)f(x) is a proper decomposition continue with both q(x) and f(x) in place of
p(x).

5.4.5 LCM

m is an least common multiple, m ≈ LCM(a, b) if

a | m, b | m and if a|c and b|c implies m|c for all c

In an integral domain. LCMs are unique up to association, if they exist, In an euclidean
ring they exist and

m ≈ LCM(a, b) ⇔ (m) = (a) ∩ (b)

Given factorizations

a = pk11 · . . . · pknn , b = pl11 · . . . · plnn
it follows

GCD(a, b) ≈ p
min{k1,l1}
1 · . . . · pmin{kn,ln}

n

LCM(a, b) ≈ p
max{k1,l1}
1 · . . . · pmax{kn,ln}

n , m ≈ LCM(a, b) ⇔ (a) ∩ (b) = (m).

GCD(a, b) · LCM(a, b) ≈ ab

5.5 Invariant and elementary divisors

5.5.1 Invariant divisors

Theorem 5.5.1 For any euclidean ring R and A ∈ Rn×m there are products P ∈ Rn×n

and Q ∈ Rm×m of elementary matrices such that

PAQ = D =


d1 0 0 . . .
0 d2 0
...

. . .

. . .

 with di|di+1 for i < min{m,n}.
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The d1, d2, . . . form a system of invariant divisors of A. Later we shall show uniqueness
up to association. For many purposes it is good enough to have D a diagonal matrix.
Anyway, one should derive such, first.

Proof by the following algorithm. P is the product Pk · · · P1 of elementary matrices asso-
ciated with the row transformations used, Q is the product Q1 · · · Ql of of the elementary
matrices associated with the column transformations used. �

Algorithm 5.5.2 dynamic: A Anew =: A.

a pair (i, j) of indices is active in A, if aij 6= 0 and if in the i-th row or j-th
column there is an entry 6= 0

Now, we proceed induction/recursion on

δ(A) =

{
min{δ(aij) | (i, j) active in A} if non-empty
−∞ else

to obtain a transformation of A to a diagonal matrix:

• If δ(A) ≥ 0 do

– [Sk := Sk − qSi] with δ(aik − qaij) < δ(aij)

– [Zk := Zk − qZj] with δ(akj − qaij) < δ(aij)

– such that δ(Anew) < δ(A)

• If δ(A) = −∞ apply permutation to transform A into diagonal form

Given d = GCD(a, b) = ra+ sb the tranformations [S2 := S2 + rS1], [Z1 := Z1 + sZ2],
[S1 := S1− a

d
S2], [Z2 := Z2− b

d
Z1], [S1↔ S2], [S2 := (−1)S2] are used to obtain(

a 0
0 b

)
 

(
a ra
0 b

)
 

(
a d
0 b

)
 

(
0 d
−a
d
b b

)

 

(
0 d
−a
d
b 0

)
 

(
d 0
0 −a

d
b

)
 

(
d 0
0 a

d
b

)
Given diagonal D proceed as follows

• If there is i < j such that di does not divide dj choose first i mininal and then j

minimal and apply the above transformations to the minor

(
di 0
0 dj

)
.

5.5.2 Scheme of computation

For applications, the matrix P is of no interest, but of interest is

P1 = P−11 · · · P−1k

The following scheme of computation can be used
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• Start with E | A | E

• Given L | B | R apply a column transformation T to B and R simultaneously, leave
L unchanged, i.e. produce

L | BT | RT

• Given L | B | R apply a row transformation to B and the inverse column transfor-
mation to L, leave R unchanged, i.e. produce

LT −1 | T B | R

• If B in L | B | R is in the required form then P−1 = L and Q = R

5.5.3 Example: Presentation of an abelian group

A =

4 0 4
6 12 16
0 6 6

 , P =

1 2 0
1 3 0
0 0 1

 , Q =

 0 1 −6
1 0 −5
−1 0 6


It follows that in the free commutative group with generators e1, e2, e3 the subgroup

U = SpanZ{4e1 + 6e2, 12e2 + 6e3, 4e3 + 16e2 + 6e3}

is given w.r.t. the basis

f1 = e1 + e2, 2e1 + 3e2, e3

as

U = Z2f2 ⊕ Z4f2 ⊕ Z6f3

and that commutative group G with generators e1, e2, e3 and relations

4e1 + 6e2
!

= 0, 12e2 + 6e3
!

= 0, 4e3 + 16e2 + 6e3
!

= 0

is isomorphic to

G ∼= Z/Z2× Z/Z4× Z/Z6

Further transformation yields the invariant divisors

2, 2, 12

whence

G ∼= Z/Z2× Z/Z2× Z/Z12
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1 0 0 4 0 4 1 0 0
0 1 0 6 12 16 0 1 0
0 0 1 0 6 6 0 0 1

[S3 := S3− S1]
1 0 0 4 0 0 1 0 −1
0 1 0 6 12 10 0 1 0
0 0 1 0 6 6 0 0 1

[Z2 := Z2− Z1]
[S1 := S1 + S2]

1 0 0 4 0 0 1 0 −1
1 1 0 2 12 10 0 1 0
0 0 1 0 6 6 0 0 1

[Z1 := Z1− 2Z2]
[S2 := S2 + 2S1]

1 2 0 0 −24 −20 1 0 −1
1 3 0 2 12 10 0 1 0
0 0 1 0 6 6 0 0 1

[S2 := S2− 6S1]
1 2 0 0 −24 −20 1 −6 −1
1 3 0 2 0 10 0 1 0
0 0 1 0 6 6 0 0 1

[S3 := S3− 5S1]
1 2 0 0 −24 −20 1 −6 −6
1 3 0 2 0 0 0 1 0
0 0 1 0 6 6 0 0 1

[S2 := S2− S3]
1 2 0 0 −4 −20 1 0 −6
1 3 0 2 0 0 0 1 0
0 0 1 0 0 6 0 −1 1

[S3 := S3− 5S2]
1 2 0 0 −4 0 1 0 −6
1 3 0 2 0 0 0 1 −5
0 0 1 0 0 6 0 −1 6

[S1↔ S2]
1 2 0 2 0 0 0 1 −6
1 3 0 0 −4 0 1 0 −5
0 0 1 0 0 6 −1 0 6
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5.5.4 Example: Presentation of an endomorphism

For our principal application, the matrix Q is not needed. Also, transformations in which
one row resp. column is used to change others may be carried out simultaneously. Apply-
ing row transformations, there is no need to list also the inverse column transformations.
Thus, the row and column transformations listed are applied to the right hand matrix
and with each row transformation the inverse column transformation has to be applied
to the left hand matrix. Example

1 0 0 −x −1 1
0 1 0 1 −2− x 1
0 0 1 0 0 −1− x

= A

S1 : +S1 + xS3, S2 := S2 + S3

1 0 0 0 0 1
0 1 0 x+ 1 −(x+ 1) 1
0 0 1 −x(x+ 1) −(x+ 1) −1− x

S2 := −S2

1 0 0 0 0 1
0 1 0 x+ 1 x+ 1 1
0 0 1 −x(x+ 1) x+ 1 −1− x

Z2 := Z2− Z1, Z3 := Z3 + (1 + x)Z1

1 0 0 0 0 1
1 1 0 x+ 1 x+ 1 0

−x− 1 0 1 −x(x+ 1) x+ 1 0

S1 := S1− S2

1 0 0 0 0 1
1 1 0 0 x+ 1 0

−x− 1 0 1 −(x+ 1)2 x+ 1 0

Z3 := Z3− Z2

1 0 0 0 0 1
1 1 0 0 x+ 1 0

−x− 1 1 1 −(x+ 1)2 0 0

S1↔ S3, S3 := −S3

P−1 =
1 0 0 1 0 0
1 1 0 0 x+ 1 0

−x− 1 1 1 0 0 (x+ 1)2
= D

Here, given a Q-vector space V with basis α : ~e1, ~e2, ~e3 we may consider A the presentation
matrix of the endomorphism φ given by

A =

0 −1 1
1 −2 1
0 0 −1


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In the free Q[x]-module with basis e1, e2, e3 (and canonical homomorphism π : F → V
with π(ei) = ~ei) the submodule

U = SpanQ[x]{(x− 1)e1, −e1 + (−2− x)e2, e1 + e2 + (−1− x)e3}

corresponding to this presentation is given w.r.t. the basis

f1 = e1 + e2 + (−1− x)e3, f2 = e2 + e3, f3 = e3

as

U = Q[x]1f1 ⊕Q[x](x+ 1)f2 ⊕Q[x](x+ 1)2f3

Consequently, as a Q[x]-module

V ∼= Q[x]/Q[x]×Q[x]/Q[x](x+1)×Q[x]/Q[x](x+1)2 ∼= Q[x]/Q[x](x+1)×Q[x]/Q[x](x+1)2

namely

V = Q[x]~f2 ⊕Q[x]~f3

where

π(f1) = ~f1 = ~e1 + ~e2 + (−x− 1)~e3 = ~0, π(f2) = ~f2 = ~e2 + ~e3, π(f3) = ~f3 = ~e3

Thus, w.r.t. the basis

β : ~f2, ~f3, φ(~f3) = ~e1 + ~e2 − ~e3

of the Q-vector space V we have

φβ =

−1 0 0
0 0 −1
0 1 −2



5.5.5 Solving systems of linear equations *

To solve a sytem Ax = b over an euclidean ring compute P , P−1, D and Q such that
PAQ = Q. Substitute y = Qx. Then the system is equivalent to

Dy = Pb =: c

and solvable if and only if ci ∈ Rdi for all i. The solution set is then given as

{Q

 r1q1
...

rmqm

 | ri ∈ R} where diqi = ci
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5.5.6 Elementary divisors

Consider two types of list of elements of an euclidean ring

• d1, . . . , dk such that di | di+1

• all members are 0, units, or prime powers and no two powers of the same or ass-
coiated prime are not associated

Lemma 5.5.3 Up to association and order there is a 1-1-correspondence between the two
types of list given by

• Both have the same number of units and the same number of zeros

• For any di = pn1
1 · . . . · p

nl
l of the first list, pn1

1 , . . . , p
nl
l belongs to the second

Proof. To produce a list of the first type from the second, assume that associated primes
are equal. For each prime pj choose the highest exponent nj with p

nj

j in the list and let

d0 =
∏
j

p
nj

j

Cancel these p
nj

j from the list and continue with the remaining prime powers in the same
way. This yields

dl, . . . , d0 with di|di+1

Add the units on the left, the zeros on the right end of the list and renumber if you like.
�

5.6 Direct products and Chinese Remainder Theorem

5.6.1 Direct products

Given ideals Ii of a commutative ring resp. K-algebra R we say that I1 and I2 are coprime
if 1 = r1 + r2 for some ri ∈ Ii. We also write R = I1 + I2

Lemma 5.6.1 If I1, I2 are coprime ideals of R then there is a canonical surjective ho-
momorphism φ : R → R/I1 × R/I2 which is also R-linear with kernel ker φ = I1 ∩ I2

Proof. Define
φ(a) = (π1(a), π2(a)) = (a+ I1, a+ I2)

Then φ is a homomorphism and φ(a) = 0 ⇔ π1(a) = π2(a) = 0 ⇔ a ∈ I1 ∩ I2. Consider
(π1(a1), π2(a2)) ∈ R/I1 ×R/I2. We need a ∈ R such that

πi(a) = πi(ai) i.e. a− ai ∈ Ii for i = 1, 2

By hypothesis, there are ri ∈ Ii such that 1 = r1 + r2. In particular, πi(rib) = 0 for all
b ∈ R. Thus

πi(rjai) = πi(rjai + riai) = πi((rj + ri)ai) = πi(ai) and πj(rjai) = 0 for i 6= j

Thus, choose
a = r2ra1 + r1a2 �
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Corollary 5.6.2 If I1, I2 are coprime ideals of R then, canonically,

R/(I1 ∩ I2) ∼= R/I1 ×R/I2

Corollary 5.6.3 R ∼= R1 ×R2 if and only if there are ideals I1 and I2 of R such that

Ri
∼= R/Ii, I1 ∩ I2 = 0, I1 + I2 = R

Proof. If R = R1 ×R2 choose I1 = {0} ×R2 and I2 = R1 × {0}. �

5.6.2 Chinese Remainder

In an euclidean ring, principal ideals (d1) and (d2) are coprime iff the elements d1, d2 are
coprime.

Theorem 5.6.4 Let R be an euclidean ring (and a K-algebra) and d = LCM(d1, d2) ∈ R.
Then there is a canonical injective R-linear map which is also a ring (and a K-algebra)
homomorphism

χ : R/Rd→ R/Rd1 ×R/Rd2, φ(a+Rd) = (a+Rd1, a+Rd2)

and φ is an isomorphism if d1, d2 are coprime. If R/Rd0 ∼= R/Rd1×R/Rd2 as R-modules
then d0 = d1d2 and d1, d2 are coprime. then

In particular, all simultaneous congruences

x ≡ b1 mod d1, x ≡ b2 mod d2

have unique solution modulo d = d1d2 if and only if d1, d2 are coprime. Namely,

(∗) x = b1a2d2 + b2a1d1 if 1 = a1d1 + a2d2

Proof. Let Ii = Rdi and observe that r(a + Ii) = ra + Ii so in the above lemma φ is R-
linear and then so is χ. Also I1 ∩ I2 = LCM(d1, d2), obviuosly. Now, if GCD(d1, d2) = 1
then LCM(d1, d2) = d1d2 = d and we may apply Cor.5.6.2.

Now, assume R/Rd0 ∼= R/Rd1 × R/Rd2 as R-modules. Then there is a surjective R-
linear map of R/Rd0 onto R/Rdi whence di | d0 by Lemma 5.2.5. Also, this implies that
all simultaneous congruences (∗) have unique solution modulo d0. Consider b1 = b2 = 0.
Any multiple of LCM(d1, d2) is a solution, in particular d1d2 and d0. By uniqueness it
follows d0 = d1d2 = LCM(d1, d2). But then GCD(d1, d2) = 1. � In an more abstract
approach, this isomorphism means in view of Cor.5.6.2 that there are ideals Ii of R/Rd0
such that

I1 + I2 = R/Rd0, I1 ∩ I2 = {0}, (R/Rd0)/Ii ∼= R/Rdi

Let π : R→ R/Rd0 the canonical homomorphism. Then by the Isomorphism Theorem

Ji = π−1(Ii) = {r ∈ R | π(r) ∈ Ii
are ideals of R and Ji = Rdi by Cor.5.1.1. Moreover

J1 + J2 = π−1(I1 + I2) = π−1(R/Rd0), J1 ∩ J2 = π−1(I1 ∩ I2) = π−1({0}) = Ker π = Rd0

Thus, d1, d2 are coprime and d0 = LCM(d1, d2) = d1d2. �
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Corollary 5.6.5 Let M be an R-module, g, g1, g2 ∈M and d, d1, d2 ∈ R.

(i) If M = Rg with minimal annihilator d and d = d1d2 with coprime d1, d2 then
M = Rd2g ⊕Rd1g with minimal annihilators di of djg (i 6= j).

(ii) If di is a minimal annihilator of gi for i = 1, 2 and M = Rg1⊕Rg2 then M is cyclic
if and only if d1, d2 are coprime and then M = R(g1 + g2) with minimal annihilator
d1d2.

Proof. Ad (i): We have by Chinese remainder

M ∼= R/d ∼= R/Rd1 ×R/Rd2, g 7→ 1 7→ (1, 1)

Now, dj is u unit modulo di for i 6= j thus a generator of R/di - corresponding to
gi = djg ∈ M under this isomorphism. And rdjg = 0 iff didj|rdj iff di|r so di is the
minimal annihilator of gi.

Ad (ii). We have Rgi ∼= R/Rdi whence by Chinese Remainder

M = Rg1 ⊕Rg2 ∼= R/Rd1 ×R/Rd2

cyclic if and only if d1, d2 are coprime and M ∼= R/Rd where d = d1d2. Now, under these
isomorphisms, gi corresponds to a unit ui of R/Rdi whence g1 + g2 to the unit (u1, u2) of
R/Rd1 ×R/Rd2 and this to a unit u of R/Rd. �

5.6.3 Example

Consider an 8-dimensional R-vector space V with basis α : ~e1, . . . , ~e8. The endomorphism
φ with matrix φα = A turns V into an R[x]-module

A =



0 0 0 −1 0 0 0 0
1 0 0 2 0 0 0 0
0 1 0 −2 0 0 0 0
0 0 1 2 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


The minimal polynomials of the blocks and their factorization in R[x] are given as

x4 − 2x3 + 2x2 − 2x+ 1 = (x− 1)2(x2 + 1), x2 − 2x+ 1 = (x− 1)2, x2 + 1

Generators of the invariant subspaces associated with the blocks are

~e1, ~e6, ~e7

The prime powers factors give the list of elementary divisors of A

(x− 1)2, x2 + 1, (x− 1)2, x2 + 1
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Generators of the associated invariant subspaces are

(x2 + 1)~e1, (x− 1)2~e1, ~e6, ~e7

observe that the third block is Jordan, so its generator is the last vector ~e6. W.r.t. the
basis

(x2 + 1)~e1 = ~e1 + ~e3, x(x2 + 1)~e1 = ~e2 + ~e4, (x− 1)2~e1 = ~e1 − 2~e2 + ~e3,

x(x− 1)2~e1 = ~e2 − 2~e3 + ~e4, ~e6, x~e6 = ~e5 + ~e6, ~e7, ~e8

φ has matrix 

0 −1 0 0 0 0 0 0
1 2 0 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 2 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0


The invariant divisors of A are obtained first multiplying as large as possible coprime
elementary divisors. Here, this amounts to the minimal polynomial of the first and the
produtc of the minimal polynomials of the second and third block.

(x− 1)2(x2 + 1), (x− 1)2(x2 + 1)

Thus, we have generators for invariant subspaces

~e1, ~e6 + ~e7

and w.rt.t. the basis

~e1, ~e2, ~e3, ~e4, ~e6 + ~e7, x(~e6 + ~e7) = ~e5 + ~e6 + ~e8,

x2(~e6 + ~e7) = 2~e5 + ~e6 − ~e7, x3(~e6 + ~e7) = 3~e5 + ~e6 − ~e8

0 0 0 −1 0 0 0 0
1 0 0 2 0 0 0 0
0 1 0 −2 0 0 0 0
0 0 1 2 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 1 0 0 2
0 0 0 0 0 1 0 −2
0 0 0 0 0 0 1 2


The minimal polynomial of A is the invariant divisor of highest degree, the characteristic
polynomial the product of all elementary divisors

(x− 1)2(x2 + 1), (x− 1)4(x2 + 1)2
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Passing to the complexification, we can further factorize x2+1 = (x+i)(x−i). We obtain
Jordan-basis and matrix

(x− 1)(~e1 + ~e3) = −~e1 + ~e2 + ~e4, ~e1 + ~e3,

(x+ i)(~e1 − 2~e2 + ~e3) = i~e1 + (1− 2i)~e2 + (−2 + i)~e3 + ~e4

(x− i)(~e1 − 2~e2 + ~e3) = i~e1 + (1 + 2i)~e2 + (−2− i)~e3 + ~e4,

~e5, ~e6, (x+ i)~e7 = i~e7 + ~e8, (x− i)~e7 = −i~e7 + ~e8

1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 i 0
0 0 0 0 0 0 0 −i


5.6.4 Multiple GCDs

Let R be an euclidean ring (and a K-algebra). d ≈ GCD(k1, . . . , kn) if and only if d|ki
for all i and c | d for all c such that c | ki for all i. Clearly

GCD(k1, . . . , kn) = GCD(GCD(k1, . . . , kn−1), kn)

If follows that there are

ai ∈ R such that d = a1k1 + . . .+ ankn

• Determine ci with dn−1 =GCD(k1, . . . , kn−1) = c1k1 + . . .+ cn−1kn−1

• d =GCD(d1, kn). Determine b, an mit d = bdn−1 + ankn

• a1 = bc1, . . . , ak−1 = bck−1

Elements m1, . . . ,mn of an euclidean ring are pairwise coprime if GCD(mi,mj) ≈ 1 for
all i 6= j Equivalently

GCD(mi,
m

mi

) ≈ 1 where m =
∏
j 6=i

mj

5.6.5 Partial fractions *

Theorem 5.6.6 If Q is the quotient field of an euclidean ring R then any f
g
∈ Q with

δf < δg can be written as a sum of partial fractions of the form a
pk

with irreducible p|g,
δa < δp and δq < δf .
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Proof. Let g = pk11 · . . . · pkmm with prime pi and

qi = pk11 · . . . · p
ki−1

i−1 · p
ki+1

i+1 · . . . · pkmm

By Chinese Remainder we have

f = a1q1 + . . .+ amqm,
f

g
=

a1

pk11
+ . . .+

am
pkmm

Thus, we have to deal only with with quotients a
pk

. This is done by recursion on k. Long
division yields

a = bp+ r,
a

pk
=

r

pk
+

b

pk−1
with δr < δp �

5.6.6 Chinese Remainder Theorem in multiple factors *

Given pairwise coprime mi it follows

a. GCD(
∏

i∈I mi,
∏

j∈jmj) ≈ 1 for I ∩ J = ∅

b. There are ai ∈ R such that 1 = a1
m
m1

+ . . .+ an
m
mn

c. There is a canonical isomorphism

χ : R/(m)→ R/(m1)×. . .×R/(mn) mit a[ mod m] 7→ (a[ mod m1], . . . , a[ mod mn])

d. The following simultaneuos congruences are solvable

x ≡ b1 ( mod m1), . . . , x ≡ bn ( mod mn)

with solution given by

a = b1a1
m

m1

+ . . .+ bnan
m

mn

Concerning d) compute

biai
m

mi

≡ 0 ≡ b1ai
m

mi

( mod m1) for i > 1

a ≡ b1a1
m

m1

+ b1a2
m

m2

+ . . .+ b1an
m

mn

≡ b1(a1
m

m1

+ . . .+ an
m

mn

) ≡ b1 ( mod m1)

and similarly for m2, . . . ,mn. This gives surjectivity of φ as in Lemma 5.6.1. Clearly,
(m) = Ker φ. Thus, χ is an isomorphism. �

5.6.7 Decomposition Lemma

The following can be obtained via the isomorphism given by the Chinese Remainder
Theorem. Though, we formulate and prove it independently.

Lemma 5.6.7 Let d0 6= 0 and d0 = d1d2 in the euclidean ring R and 1 = r1d1 + r2d2.
Let M be an R-module and Mi = {v ∈M | div = 0. Let {i, j} = {1, 2}. Then
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(i) M0 = M1 ⊕M2 with submodules of M

(ii) v 7→ djv is an R-linear automorphism of Mi with inverse v 7→ rjv

(iii) If M0 = Rg then Mi = Rdjg

(iv) If M1 = Rg1 and M2 = Rg2 then M0 = R(g1 + g2)

Proof.

a. By commutativity of R, the Mi are submodules.

b. djv ∈Mi for all v ∈M0, since d0 = d1d2

c. For all v ∈M : v = 1v = r2d2v + r1d1v ∈M1 +M2 whence M = M1 +M2

d. For v ∈Mi: rjdjv = 0 + rjdjv = ridiv + rjdjv = 1v = v whence (ii)

e. Let vi ∈Mi and v1 + v2 = 0. Then 0 = rjdj(v1 + v2) = rjdjv1 + rjdjv2 = rjdjvi = vi.
Thus M0 = M1 ⊕M2.

f. Let M0 = Rg and v1 ∈M1. Then v1 = rg = r1g = r(r1d1+r2d2)g = rr1d1g+rr2d2g
with rr1d1g ∈M2 whence v1 = rr2d2g.

g. Let M1 = Rg1 and M2 = Rg2. For any v there are vi ∈ Mi and si ∈ R such that
v = v1 + v2 = s1g1 + s2g2 = s1r2d2g1 + s2r1d1g2 = (s1r2d2 + s2r1d1)(g1 + g2) �

5.5.7 Minimal annihilators and Cayley-Hamilton

Given an R-module M over an euclidean ring

Ann(M) = {r ∈ R | rv = 0 for all v ∈M}

is an ideal of R, obviuosly, whence Ann(M) = (d) where d ∈ Ann(M) with δ(d) minimal. d
is unique up to association and called minimal annihilator for M . In the case of an K[x]-
module given by an endomorphism φ of a finite dimensional vector space V , a minimal
annhilator is given as the normed d(x) ∈ K[x] of minimal degree suh that d(φ) = 0 and
called the minimal polynomial of φ. By finite dimension, d(x) neq0 exists (otherwise,
K[x] would be isomorphic to a subspace of V ).

Proposition 5.5.8 If the module M is presented by a diagonal matrix with entries d1, . . . , dn
then any minimal annihilator is d ≈ LCM(d1, . . . , dn)

Proof. We have M =
⊕

iRvi with Rvi ∼= R/(di). Let d′ the LCM of the di. Then
d′ ∈ Ann(M) wgence d | d′. On the other hand, dvi = 0 so di | d for all i and d′ | d. �

Corollary 5.5.9 Cayley-Hamilton. For any endomorphism φ of a finite dimensional K-
vector space, the minimal polynomial d(x) divides the characteristic polynomial χ(x) in
K[x]. In particular, χ(]phi) = 0
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Proof. Assume φ given by the matrix A ∈ Kn×n.then A−xE is a presentation matrix for
the K[x]-module V given by φ. There are invertible P and Q ∈ K[x]n×n, in particular
detP ∈ K∗ and detQ ∈ K∗) such that P(A − xE)Q is diagonal with di(x) | di+1(x). It
follows

χ(x) = det(A− xE) = detP det(A− xE) detQ ≈ d1(x) · . . . · dn(x)

where dn(x) ≈ d(x). �

5.5.8 Extension to principal ideal domains*

Recall that a principal ideal domain is an integral domain in which every ideal is principal.
In particular, for all a, b there is d such that

(a) + (b) = (d)

equivalently, there are a1, b1, d, x, y such that

a = a1d, b = b1d, a1x+ b1y = 1

the latter obtained from ax+ by = d by cancellation. It follows(
a1 b1
−y x

)(
x −b1
y a1

)
= E

(
a b

)(x −b1
y a1

)
= d

(
a1 b1

)(x −b1
y a1

)
= d

(
1 0

)
=
(
d 0

)
and by transposing (

x y
−b1 a1

)(
a
b

)
=

(
d
1

)
Thus, the Theorem on Invariant Divisors extends to principal ideal domains and so does
its corollary: Any finitely generated module over an principal ideal domain is a direct
sum of finitely many cyclic ones. Also, principal ideal domains have unique factorization.

5.6.7 Addenda et corrigenda

a. Lemma 22.2.5 applies to ring homomorphisms as well as to R-linear maps. Proof
immediate by Homomorphism Theorem

b. proof of 22.3.3 read r, s ∈ I

c. proof of 22.4.1 read c|(ra+ sb)

d. Algorithm 22.5.2: Induction on (δ(A), n where n is th number of row. Read [Sk :=
Sk − qSj] and [Zk := Zk − qZi] with δ(akj − qij) < δ(aij).

e. In Lemma 22.6.1 φ is also R-linear. In the proof: Choose a = r2a1 + r1a2.

f. In Thm. 22.6.4. Let d = LCM(d1, d2) not d = d1d2.



Chapter 6

Canonical forms of matrices

A general assumption for this chapter is that V is an n-dimensional K-vector space with
an endomorphism φ such that the minimal polynomial is a product of linear factors. We
consider V as the K[x]-module where x~v = φ(~v).

6.1 Jordan matrices and bases

6.1.1 Jordan-chains and Jordan-blocks

For any eigenvalue λ of φ define

φλ = φ− λid, i.e. φλ(~x) = φ(~x)− λ~x

The λ- Jordan-chain Jλ(~v) of the vector ~v with head or start vector ~v and tail or
eigenvector σ(~v) consists of the vectors

~0 6= σ(~v) = φk−1λ (~v), φk−2λ (~v), . . . , φλ(~v), ~v with φλσ(~v) = φkλ(~v) = ~0

and has length k.

φλ

φk−2
λ (~v)

φλ φλ φλ

~vφλ(~v)φk−3
λ (~v)φk−1

λ (~v)~0

The vectors in the chain form an independent list: If
∑k−1

i=0 riφ
i
λ(~v) = ~0 then then∑k−2

i=0 riφ
i+1
λ (~v) = φ(~0) = ~0 so by induction ri = 0 for i > k − 1 and then rk−1φ

k−1~v = ~0
and rk−1 = 0.

A λ- Jordan-block is a matrix

= Jλ,n =


λ 1 0 . . . 0
0 λ 1 0
...

. . . . . . . . .
...

0 0 λ 1
0 . . . 0 λ

 .

Lemma 6.1.1 Let φ ∈ End(V ) and β : ~v1, . . . ~vk a basis of V . Then the matrix φβ of φ
w.r.t. β is a λ-Jordan-block if and only if ~v1, . . . , ~vK is a λ-Jordan-chain.

34
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Proof. To have a λ-Jordan block as matrix means that

φ(~v1) = λ~v1, φ(~vi) = λ~vi + ~vi−1, i.e. ~vi−1 = φ(~vi)− λ~vi �

Proposition 6.1.2 V is a cyclic K[x]-module with minimal polynomial (x − λ)n degree
n if and only if the K-vector space V admits a basis which is a λ-Jordan-chain (of length
n). If so, then

(i) The K[x]-module V is isomorphic to K[x]/((x− λ)n).

(ii) W.r.t. some Jordan-chain β, the matrix of of φ is a Jordan-block Jλ,n.

(iii) ~v is a generator of the K[x]-module V if and only if ~v is a start vector of a Jordan-
chain.

Proof. Assume that V is cyclic with minimal polynomial (x− λ)n, then V ∼= K[x]/((x−
λ)n). The (x− λ)k generate the K-vector space K[x]: inductively on obtains all xk since
(x− λ)k = xk + pk(x) with a polynomial pk(x) of degree < k. Thus, the (x− λ)k, k < n,
generate the K-vector space and form a basis β : (x− λ)n−1, . . . , 1 (since dim = n). This
tranfers ot V via the isomorphism. That φ has w.r.t. β matrix Jλ,n is seen from

x(x− λ)k = (x− λ)k(λ+ x− λ) = λ(x− λ)k + (x− λ)k+1.

Conversely, given a basis consisting of a Jordan-chain, the start-vector ~v is a generator,
obviously. Also (x− λ)m(~v) = ~0⇔ m ≥ n so (x− λ)n is the minimal polynomial. �

6.1.2 Jordan-matrices and bases

A Jordan basis for φ is a basis which is a list-concatenation of λ-Jordan chains, λ ranging
over the eigenvalues of φ. A Jordan matrix is a block-diagonal matrix with λ-Jordan-
blocks on the diagonal.

Corollary 6.1.3 β is a Jordan basis for the endomorphism φ if and only if φβ is a Jordan
matrix.

Theorem 6.1.4 Let φ be an endomorphism of a finite dimensional K-vector space V such
that the minimal polynomial is a product of linear factors from K[x] (which is guaranteed
by the Fundamental Theorem of Algebra if K = C). Then V admits a Jordan-basis of φ.
The associated Jordan-matrix J is uniquely determined up to permutation of blocks, For
each EW λ, the number of λ-Jordan blocks is the geometric multplicity, the sum of the
block sizes the algebraic multiplicity, i.e. the number of occurences of the EW λ on the
diagonal.

Proof. Let α : ~e1, . . . , ~en be a basis of V and φ be given by A w.r.t. α. Then A − xE is
a presentation matrix for the K[x]-module V w.r.t. the basis e1, . . . , enof the free K[x]-
module F . In particular, there is a canonical K[x]-linear π : F → V with π(ei) = ~ei. By
the Theorem on Invariant Divisors 5.5.1 there are invertible matrices P and Q in K[x]n×n

such that PAQ = D is diagonal and presentation matrix of V w.r.t. the basis f1, . . . , fn
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of the free K[x]-module given by the columns of P−1 cf Cor.4.3.3. Then we have a direct
decomposition into cyclic submodules

V = K[x]~f1 ⊕ . . .⊕K[x]~fn

where ~fi = π(fi).
Now, by Prop.??lcmann the LCM of the di(x) is the minimal polynomial, so by

assumption a product of linear factors. Thus each di(x) is a product with pairwise distinct
λj

(x− λ1)k1 · . . . · (x− λl)kl

By iterated application of the Decomposition Lemma 5.6.7 we get

K[x]~fi =
l⊕

h=1

K[x]~fih with ~fih =
∏
j 6=h

(x− λj)kj ~fi

• K[x]~fih cyclic with minimal polynomial (x− λh)kh

Thus, each of these invariant subspaces admits a basis which is a λh-Jordan-chain of
length kh. Taken together, these bases form a Jordan basis of V . �

6.1.3 Canonical forms

Corollary 6.1.5 Any endomorphism of a finite dimensional K-vector space admits a
basis such that the matrix is block diagonal with companion matrices of polynomials
mi(x) ∈ K[x]. One may require

• mi(x)|mi+1(x) for all i, Frobenius- or rational canonical form with invariant divisors
mi(x)

• mi(x) = pi(x)ki with prime pi(x), Weierstrass canonical form with elementary divi-
sors pi(x)ki

• If pi(x) = (x − λi)ki for all i (e.g. if K is algebraically closed, say K = C), then
in the Weiertrass canonical form on may replace the companion matrices by Jordan
blocks (changing the basis) to obtain Jordan canonical form

Proof. Follow the proof of Jordan canonical from to the diagonal presentation with di(x) |
di+1(x). This yields Frobenius. Use Decomposition Lemma to pass to Weierstrass.

6.1.4 Example

Let V a Q-vector space with basis ~e1, . . . , ~e5 and φ the endomorphism with matrix

A =


2 1 0 0 0
0 2 0 0 0
0 0 2 0 0
1 1 0 1 −4
−1 0 0 1 −2


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1 0 0 0 0 || 2− x 1 0 0 0
0 1 0 0 0 || 0 2− x 0 0 0
0 0 1 0 0 || 0 0 2− x 0 0
0 0 0 1 0 || 1 1 0 1− x −4
0 0 0 0 1 || −1 0 0 1 −2− x

S1 := S1− (2− x)S2

1 0 0 0 0 || 0 1 0 0 0
0 1 0 0 0 || −(2− x)2 2− x 0 0 0
0 0 1 0 0 || 0 0 2− x 0 0
0 0 0 1 0 || −1 + x 1 0 1− x −4
0 0 0 0 1 || −1 0 0 1 −2− x

Z2 := Z2− (2− x)Z1, Z4 := Z4− Z1, S1↔ S2

1 0 0 0 0 || 1 0 0 0 0
2− x 1 0 0 0 || 0 −(2− x)2 0 0 0

0 0 1 0 0 || 0 0 2− x 0 0
1 0 0 1 0 || 0 −1 + x 0 1− x −4
0 0 0 0 1 || 0 −1 0 1 −2− x

S2 := S2 + S4, S5 := −(S5 + (2 + x)S4)

1 0 0 0 0 || 1 0 0 0 0
2− x 1 0 0 0 || 0 −(2− x)2 0 0 0

0 0 1 0 0 || 0 0 2− x 0 0
1 0 0 1 0 || 0 0 0 1− x x2 + x+ 2
0 0 0 0 1 || 0 0 0 1 0

Z4 := Z4− (1− x)Z5

1 0 0 0 0 || 1 0 0 0 0
2− x 1 0 0 0 || 0 −(2− x)2 0 0 0

0 0 1 0 0 || 0 0 2− x 0 0
1 0 0 1 1− x || 0 0 0 0 x2 + x+ 2
0 0 0 0 1 || 0 0 0 1 0

S4↔ S2, Z5↔ Z2, Z5↔ Z4, S4 := −S4

1 0 0 0 0 || 1 0 0 0 0
2− x 0 0 1 0 || 0 1 0 0 0

0 0 1 0 0 || 0 0 2− x 0 0
1 1− x 0 0 1 || 0 0 0 (2− x)2 0
0 1 0 0 0 || 0 0 0 x2 + x+ 2
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Diagonalize the characteristic matrix E | A− xE  (f1, . . . , f5) | A′

d1 = d2 = 1, d3 = 2− x, d4 = (2− x)2, d5 = x2 + x+ 2

Characteristic polynomial (x− 2)3(x2 + x+ 2)
Minimal polynomial (x− 2)2(x2 + x+ 2)
Eigenvalues 2 ( geom. multipl. 2, alg. multipl. 3)

−1
2
±
√
7
2
i

The matrix transformation yields the decomposition of V into cyclic submodules: gener-
ators are the images ~f1, . . . , ~f5 in V of the new basis vectors f1, . . . , f5 of the free modul
Q[x]5. Those which are ~0 may be discarded, here ~f1 and ~f2 since at the associated position

in the diagonal presentation matrix A′ one has a 1 (i.e. 1f1
!

= 0). We verify ~f1 = 0

~f1 = ~e1 + (2− x)~e2 + ~e4 = ~e1 + 2~e2 − φ(~e2) + ~e4 = ~e1 + 2~e2 − (~e1 + 2~e2 + ~e4) + ~e4 = 0

This leaves us with (in general, applications of A would be required)

~f3 = ~e3, ~f4 = ~e2, ~f5 = ~e4

and relations
(2− x)f3

!
= 0, (2− x)2f4

!
= 0, (x2 + x+ 2)f5

!
= 0

From there we can read the structure of V as Q[x]-module and choose suitable bases

V ∼= Q[x]/(2− x) × Q[x]/(2− x)2 × Q[x]/(x2 + x+ 2)

1 1, x 1, x

V = Q[x]~f3 ⊕ Q[x]~f4 ⊕ Q[x]~f5

~f3 ~f4, x ~f4 ~f5, x ~f5

~e3 ~e2, φ(~e2) ~e4, φ(~e4)
0
0
1
0
0




0
1
0
0
0

 ,


1
2
0
1
0




0
0
0
1
0

 ,


0
0
0
1
1


The associated matrix of φ is

A′ =


2 0 0 0 0
0 0 −4 0 0
0 1 4 0 0
0 0 0 0 −2
0 0 0 1 −1


Since the polynomials are powers of primes, A′ is in Weierstrass canonical form. Other
generators for the cyclic submodules may be obtained multiplying with a polynomial
invertible modulo the mimimal polynomial of the submodule.
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Frobenius canonical form is obtained combining submodules into sums according to Chi-
nese Remainder. Here, this applies to (2− x)2 and x2 + x+ 1. Adding the generators ~f4
and ~f5 one gets a generator ~f4 + ~f5 of the direct sum

V ∼= Q[x]/(2− x) × Q[x]/((2− x)2(x2 + x+ 2)

1 1, x, x2, x3

V = Q[x]~f3 ⊕ Q[x](~f4 + ~f5)

~f3 ~f4 + ~f5, x(~f4 + ~f5), x
2(~f4 + ~f5), x

3(~f4 + ~f5)

~e3 ~e2 + ~e4, φ(~e2 + ~e4), φ
2(~e2 + ~e4), φ

3(~e2 + ~e4)
0
0
1
0
0




0
1

1
0

 ,


1
2
0
2
1

 ,


4
4
0
1
−1

 ,


12
8
0
13
−1


with matrix in Frobenius canonical form

A′′ =


2 0 0 0 0
0 0 0 0 −8
0 1 0 0 4
0 0 1 0 2
0 0 0 1 3



da (2− x)2(x2 + x+ 2) = x4 − 3x3 − 2x2 − 4x+ 8.

Again there are other generators of Q[x](~f4 + ~f5): all

b(x)~f4 + a(x)~f5

where b(x) invertible mod (2− x)2, a(x) invertible mod x2 + x+ 2

To obtain Jordan canonical form, do everything over C. The decomposition into cyclics
remains valid but can be refined due to

x2 + x+ 2 = (x− λ)(x− λ) with λ =
−1

2
+

√
7

2
i, λ =

−1

2
−
√

7

2
i
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C5 ∼= C[x]/(2− x) × C[x]/(2− x)2 × C[x]/(x− λ) × C[x]/(x− λ)

1 x− 2, 1 2i=λ −2i=λ

C5 = C[x]~f3 ⊕ C[x]~f4 ⊕ C[x]~f51 ⊕ C[x]~f52

~f3 (x− 2)~f4, ~f4 (x− λ)~f5 (x− λ)~f5

~e3 (φ− 2id)(~e2), ~e2 (φ− λid)~e4 (φ− λid)~e4
0
0
1
0
0




1
0
0
1
0

 ,


0
1
0
0
0




0
0
0

−1
2

+
√
7
2
i

1




0
0
0

−1
2
−
√
7
2
i

1


Jordan matrix von φ 

2 0 0 0 0
0 2 1 0 0
0 0 2 0 0

0 0 0 −1
2

+
√
7
2
i 0

0 0 0 0 −1
2
−
√
7
2
i


Namely x− λ ≡ 2i=λ mod x− λ and x− λ ≡ −2i=λ mod x− λ since

1 =
−1

2i=λ
(x− λ) +

1

2i=λ
(x− λ)

with eigenvectors
~f3, (x− 2)~f4 w.r.t. EW2

~f51 w.r.t. EW
−1

2
+

√
7

2
i

~f52 w.r.t. EW
−1

2
−
√

7

2
i

6.1.5 Review: Structure of an endomorphism

a. The basis α of a freeK[x]-module and matrix A−xE may be transformed into a basis
f1, . . . , fn and diagonal matrix with normed diagonal entries 1, . . . , 1, ds, . . . , dn ∈
K[x], di 6≈ 1 forr i ≥ s. This yields a direct decomposition into cyclic submoduls
with minimal polynomials di

V = K[x]~fs ⊕ . . .⊕K[x]~fn

where ~fj =
∑
i,k

bjikφ
k(~ei) in V if fj =

∑
i

(
∑
k

bjikx
k)ei in the free module.

b. The K-vector space V has basis

~fi, φ(~fi), . . . , φ
ni−1(~fi), i = s, . . . , n, ni = deg di.
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W.r.t. this basis φ has matrix A′, block diagonally composed from Frobenius ma-
trices or companion matrices of the polynomials di.

A′i =



0 0 0 . . . 0 −ri0
1 0 0 . . . 0 −ri1
0 1 0 0 −ri2
...

. . . . . . . . .
...

...
0 0 0 −rini−2
0 0 . . . 1 −rini−1


where di =

ni∑
k=0

rikx
k.

c. det(A− xE) ≈ d1 · . . . · dn, n = dimK V = deg det(A− xE) =
∑

i deg di.

d. One may achieve di | di+1 for i < n. These di are unique up to ≈ and called invariant
divisors of φ, also dn is the minimal polynomial of φ. A′ is a Frobenius or rational
canonical form of A.

e. (Cayley-Hamilton) The LCM(d1, . . . , dn) is associated to the minimal polynomial
d(x) of φ and divides the characeristic polynomial of φ. In particular d(φ) = 0.

f. Factorizing the di into powers dij of coprime irreducible polynomials di = di1·. . .·dimi
,

one obtains a direct decomposition into primary cyclic submodules with minimal
polynomial dih

V = K[x]fs1 ⊕ · · · ⊕K[x]fsms ⊕ . . .⊕K[x]fn1 ⊕ · · · ⊕K[x]fnmn

where fih = (di/dih)fi = (di1(φ) ◦ . . . di,h−1(φ) ◦ di,h+1(φ) ◦ . . . ◦ dimi
(φ))(fi) in V

g. The K-vector space V has basis

fih, φ(fih), . . . , φ
nih−1(fih), i = s, . . . , n, h = 1, . . . ,mi, nih = deg dih.

W.r.t. this basis φ has matrix A′, block diagonally composed from the companions
of the dih.

A′ih =



0 0 0 . . . 0 −rih0
1 0 0 . . . 0 −rih1
0 1 0 0 −ri2
...

. . . . . . . . .
...

...
0 0 0 −rihnih−2
0 0 . . . 1 −rihnih−1


where dih =

nih∑
k=0

rihkx
k.

h. The elementary divisors dih of φ are unqiue up to ≈. A′ is a Weierstrass canonical
form of A.

i. If the dih are powers of linear polynomials dih = (x − λih)nih then the K-vector
space V has Jordan basis

(φ− λihid)nih−1(fih), . . . , (φ− λihid)(fih), fih, i = s, . . . , n, h = 1, . . . ,mi.
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W.r.t. this basis φ has matrix A′ block diagonally composed from nih × nih Jordan
blocks

Jλih,nih
=


λih 1 0 . . . 0
0 λih 1 0
...

. . . . . .
...

0 λih 1
0 . . . 0 λih

 .

j. This matrix is unique, if it exists, up to order of blocks and called Jordan canonical
form of A. It can be achieved passing from K to its algebraic closure.

6.2 Primary decomposition

6.2.1 Primary decomposition for modules

An R-module M is a torsion module if T (M) = M . In a particular, any K[x]-module
which is a finite dimensional K-vector space is a torsion module.

Given a prime element p of R, a torsion module is p- primary if for any v ∈ M there
is k ≥ 0 such that pkv = 0. Of course, then M is q-primary for any q associated with p.

Theorem 6.2.1 Let R be an euclidean ring and M a a finitely generated torion R-module.
Then

(i) There is d 6= 0 with δ(d) minimal such that dv = 0 for all v ∈M . d is unique up to
association and called the minimal annihilator of M .

(ii) Given a factorization d ≈
∏l

i=1 p
ki
i into primes pi 6≈ pj for i 6= j.

M = M1 ⊕ . . .⊕Ml, Mi = {v ∈M | pkii v = 0}

(iii) M has unique direct decomposition into pi-primary submodules Ni 6= 0 with non-
associated primes.

(iv) In (iii) one has minimal annihilators pkii of Ni (i ≤ l) if and only if d =
∏l

i=1 p
ki
i is

a minimal annhilator of M . In particular, l is unique and the pkii are unique up to
order and association.

(v) d in (iv) is an invariant divisor of M of highest degree.

If R = K[x] and if pi = x− λi then Mi is the generalized eigenspace w.r.t. eigenvalue λi
and d = d(x) is called the minimal polynomial of M .

Proof of the Thm. Ad (i). For each generator vi, choose ri 6= 0 with rivi = 0. Then rv = 0
for all v where r =

∏
i ri. Now, d is a generator of the ideal {r ∈ R | rv = 0 for all v ∈M}.

(ii) follows with Lemma5.6.7. If M =
⊕

Ni with pi primary Ni then Ni ⊆ Mi and so
Ni = Mi since both sums are direct. Ad (iv). Clearly dv = 0 for v ∈ Ni so for all v ∈M .
d is minimal, since pki−1i v 6= 0 for some v ∈ Ni. The uniqueness of the pkii follows from
unique factorization. (v) is immediate by Thm.6.5.1(iii). �
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6.2.2 Example: Generalized eigenspaces

Q[x]-module Q6 given by A w.r.t. canonical basis.

A =


3 1 1 1 0 0
0 3 0 0 1 0
0 0 3 0 0 1
0 0 0 2 1 1
0 0 0 0 2 0
0 0 0 0 0 2



A− 3E =


0 1 1 1 0 0
0 0 0 0 1 9
0 0 0 0 0 1
0 0 0 −1 1 1
0 0 0 0 −1 0
0 0 0 0 0 −1

 (A− 3E)2 =


0 0 0 −1 2 2
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 1 −2 −2
0 0 0 0 1 0
0 0 0 0 0 1


rk(A− 3E) = 4, rk(A− 3E)2 = rk(A− 3E)3 = 3

Minimal polynomial for generalized eigenspace w.r.t. λ = 3 is (x− 3)2

basis β3 of ker(A− 3E)2 : e1, e2, e3

A− 2E =


1 1 1 1 0 0
0 1 0 0 1 9
0 0 1 0 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 , (A− 2E)2 =


1 2 2 1 2 2
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


rk(A− 2E) = rk(A− 3E)2 = 3

Minimal polynomial for generalized eigenspace w.r.t. λ = 2 is (x− 2)2

basis β2 of ker(A− 2E)2 :

−e3 + e6, −e2 + e5, −e1 + e4

Minimal polynomial of A is (x− 3)2(x− 2)2

αTβ =


1 0 0 0 0 −1
0 1 0 0 −1 0
0 0 1 −1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

 , A” = αT
−1
β A αTβ =


3 1 1 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 1 1
0 0 0 0 2 0
0 0 0 0 0 2


=

(
A′|V3 O
O A′|V2

)
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A′|V3 =

3 1 1
0 3 0
0 0 3

 , A′|V2 =

2 1 1
0 2 0
0 0 2


J-basis V3 : γ3 : e1, e2, e3 − e2

J-basis: V2 : γ2

−e3 + e6, −e2 + e5, −e1 + e4 − (−e2 + e5)

βTγ =


1 0 0 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 0 1

 , αTγ = αTβ βTγ =


1 0 0 0 0 −1
0 1 −1 0 1 1
0 0 1 −1 0 0
0 0 0 1 0 0
0 0 0 0 1 −1
0 0 0 0 0 1



J = αT
−1
γ A αTγ =


3 1 0 0 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 2 1 9
0 0 0 0 2 0
0 0 0 0 0 2


6.3 Nilpotent matrices

6.3.1 Shift

Lemma 6.3.1 Let µ ∈ K and ψ = φµ = φ − µid Then λ is an EW of φ if and only if
λ− µ is an EW of ψ. Moreover β is a Jordan-basis for φ if and only if it is so for ψ. U
is ψ-invariant if and only if U is φ-invariant.

Proof. ψλ−µ = φλ. �

This reduces the case where the minimal polynomial is (x − λ)m, i.e. (φ − λid)m = 0 to
the nilpotent case: we may assume that

• φm = 0 for some m ≤ n

6.3.2 Module versus vector space

Let R = K[x]. A list ~v1, . . . , ~vk, Since primary decomposition is most simply dealt with
as in the general case of modules, of vectors in V , all 6= ~0, shall be called J- indepenent
if the sum

∑k
i=1R~vi is direct, J- generating if V =

∑k
i=1R~vi, and a J- basis if it is both.

Given ~0 6= ~v ∈ V its J- chain is the list

J(~v) : ~v, φ1~v, . . . , φl~v 6= ~0, where φl+1~v = ~0



6.3. NILPOTENT MATRICES 45

• ~v1, . . . , ~vk is J-independent (J-generating for V ) if and only if the concatenated list
J(~v1), . . . J(~vk) is K-independent (K-generating for V ).

Here, we refer to independence and generators in the K-vector space V . Indeed

v∑
i=1

pi(φ)~vi =
v∑
i=1

ki∑
j=1

rijφ
j~vi where pi(x) =

ki∑
j=0

rijx
j

V7V3
V2V1

~0

V4 V5 V6

Lemma 6.3.2 Let φh~v1, . . . , φ
h~vk be K-independent. Then

(i) ~v1, . . . , ~vk are K-independent, the sum W = spanK{~v1, . . . , ~vk}+ker φh is direct, and
dimW = k + dim ker φh

(ii) T.f.e.a.

– φh+1~vi = ~0 for all i

– φ~v1, . . . , φ~vk, ~vk+1, . . . ~vl is a J-basis of ker φh

– ~v1, . . . , ~vl is a J-basis of W

Proof. If ~w ∈ ker φh and
∑

i ri~vi + ~w = ~0 then
∑

i riφ
h~vi + ~0 = ~0 whence ri for all i and

~w = ~0. �

6.3.3 Uniqueness of Jordan canonical form for nilpotent maps

Theorem 6.3.3 For a nilpotent endomorphism, the Jordan canonical form is unique up
to permutation of blocks.
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Proof. The Jordan matrix is determined by the number of J-chains of given lengths.
Ordering by decraesing length k1 ≥ k2 . . . we claim that these numbers are obtained as
follows (where φ is given by A)

|{i | ki > k}| = dim ker φk+1 − dim ker φk = rankAk − rankAk+1

This is shown by induction (compare the general primary case) applied to U = ker φk1−1.
Let k1 = kt > kt+1. By the Lemma,

φ~v1, . . . , φ~vt, ~vt+1, . . . , ~vs

is a J-basis of U and so the k1 − 1, . . . , kt − 1, kt+1, . . . , ks are obtained form the data for
U - which are part of that for V . Finally, t = dimV − dimU . �.

6.3.4 Existence and computation of J-bases for nilpotent maps

Theorem 6.3.4 Let m be minimal with φm+1 = 0 and φm~v1, . . . , φ
m~vj be K independent.

Then there is a J-basis ~v1, . . . , ~vj, . . . ~vl of V . It can be computed iterating the following
two steps

• Preparation: Determine ~v1, . . . , ~vj, . . . ~vk with φm~v1, . . . , φ
m~vk a K-basis of imφm

• Recursion: Determine a J-basis φ~v1, . . . , φ~vk, ~vk+1, . . . ~vl of ker φm

Proof. The preparation step can be carried out, obviously. For the recursion step apply
inductive hypothesis (w.r.t. m) to the φ-invariant subspace

U = ker φm and φ~v1, . . . , φ~vk

According to (ii) of the Lemma, ~v1, . . . , ~vk, ~vk+1, . . . ~vl is a J-basis of W . But by the
dimension formula for the endomorphism φm we have dimV = dimU + dim im φm =
dimU + k and with (i) of the lemma it follows W = V . � The following observations are
of use in the computation. Given

V = spanR({~v1, . . . , ~vj} ∪X)

a. ~vj+1, . . . , ~vk may be choosen from X

b.
ker φm = spanR({φ~v1, . . . , φ~vk} ∪ {~x′ | ~x ∈ X})

where for ~x ∈ X

~x′ = ~x−
k∑
i=1

ri~vi with φm~x =
k∑
i=1

riφ
m~vi if φm~x 6= ~0, , ~x′ = ~x else

c. Start with j = 0 and X any K-basis of V .

d. If φ is given by A w.r.t. the basis ~e1, . . . , ~en choose the ~v1, . . . , ~k as a maximal subset
such that the corresponding colums of Am are independent
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e. From the ranks of the powers of A one can determine the Jordan canonical form,
i.e. the structure of a Jordan basis. This then can be used to verify in each step
that the proper number of vectors needed to build the basis has been found.

Proof. For (a) observe that

imφm = spanK{φm ~wi | i ∈ I} if V = spanR{~wi | i ∈ I}

Indeed, if ~v =
∑

i pi(φ)~wi =
∑

i

∑
j rijφ

j ~wi then φm~v =
∑

i ri0φ
m ~wi.

Concerning (b) observe that φm~x′ = φm~x−
∑

i riφ
m~vi = ~0 and, by defintion of ~x′

V = spanR({~v1, . . . , ~vk} ∪X ′) = spanK{~v1, . . . , ~vk}+ U ′

where

U ′ = spanR({φ~v1, . . . , φ~vk} ∪X ′) ⊆ U = ker φm

By (i) of the lemma, this sum is direct, whence dimU ′ = dimV −k = dimU and U = U ′.
�

The unique eigenvector in the J-chain of ~v is σ~v = φl~v where l is maximal with φl~v 6= ~0.

Corollary 6.3.5 If the σ~v1, . . . , σ~vk are K-independent, then the ~v1, . . . , ~vk are J-independent.

Proof. Choose h minimal with φh+1~vi = ~0 for all i. Define

~wi =

{
φ~vi if φh~vi 6= ~0
~vi else

Applying inductive hypothesis to ker φh, the ~w1, . . . ~wk are J-independent. By (i) of the
lemma, J(~v1), . . . , J(~vk) is a basis of W as defined, there, whence a J-basis of W . �.

6.3.5 Example

A =



0 0 1 1 0 0 1 0
0 0 1 −1 0 0 2 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0


, A2 =



0 0 0 0 2 0 0 3
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


A3 = O, rank(A2) = 2. A2e5 = 2e1 and A2e6 = 2e2 are independent, thus e5 and e6 are
suitable heads. The associated Jordan-chains contain Ae5 = e3 + e4 and Ae6 = e3 − e4,
hence their span U has basis e1, . . . , e6. Basis completion with vectors from kerA2 e.g.
e7,v = 2e8− 3e5. Now Ae7 = e1 + 2e2 ∈ U but Av = −3e2 + e4 + 2e7 6∈ U , whence v is
the wanted head.
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6.3.6 Uniqueness of Jordan canonical form

Theorem 6.3.6 Given A ∈ Kn×n, there exists invertible S ∈ Kn×n such that J = S−1AS
is block-diagonal with Jordan blocks if and only if the minimal or the characteristic poly-
nomial of A is a product of linear factors x− λi in K[x]. J is unique up to the order of
blocks.

Proof. Existence: Decompose the K[x]-module V given by A (resp. φ) into primary
components Vλi , then generalized eigenspaces of the λi. For each, construct a Jordan
basis for the nilpotent (φ− λiid)|Vλi . The concatenation of these yields a Jordan basis of
V and the colums of S. Conversely, det(A− xE) is a product of linear factors, claerly.

Uniqueness follows from uniqueness of the generalized eigenspaces and uniqueness in
the nilpotent case. �

Corrigenda et addenda.

a. In the proof of Thm.23.1.4 read: K[x]~fi in place of K[x[di(x)~fi and recall that di(x)

is the minimal polynomial of the module K[x]~fi ∼= K[x]/(di(x))

b. The generalized eigenspace Vλ w.r.t. λ is given as

ker((φ− λid)k)

k mimimal such that

dim im(φ− λid)k) = dim im(φ− λid)k+1)

i.e. rank((A− λE)k) = rank((A− λE)k+1)

and then
dim im(φ− λid)k) = dim im(φ− λid)k) for all l ≥ k

Indeed, V = Vλ ⊕W with invariant subspace W such that (φ− λid)|W is bijective
and ker((φ− λid)k ⊆ Vλ whence

dim im(φ− λid)k = dim im((φ− λid)|Vλ)k + dimW

= dimVλ − dim ker((φ− λid)k + dimW

and this is dimW if and only Vλ − ker((φ− λid)k

6.4 Jordan-Chevalley decomposition

6.4.1 Existence

Theorem 6.4.1 For A ∈ Cn×n there are H,N ∈ Cn×n such that

A = H +N, HN = NH, H diagonalizable , N nilpotent

Proof. There is an invertible matrix S such that S−1AS = J is in Jordan form. Obviously,
J = H0 + N0 where H0 is diagonal and N0 nilpotent. Moreover, Ji = Hi + Ni in the
block decomposition into Jordan-blocks with Hi = λiEki whence HiNi = NiHi, It follows
H0N0 = N0H0. Now, put H = SH0S

−1 and N = SN0S
n−1. �.
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Corollary 6.4.2 If l is the maximal block size in the Jordan canonical form then

Am =
m∑
k=0

(
m
k

)
NkHm−k =

min{m, l−1}∑
k=0

(
m
k

)
NkHm−k

Proof. Since HN = NH we may apply the polynomial formula. But, Nk = O for k ≥ l.
�.

6.4.2 Matrix exponential function

For each A ∈ Cn×n there is a uniquely determined matrix exp(A) such that

exp(A) = lim
h→∞

h∑
m=0

1

m!
Am

To prove this, let φ be the endomorphism determined by A. Since the limit is to be
understood column wise, the claim amounts to the existence of limh→∞

∑h
m−0

1
m!
φh(x) =

exp(φ)(x) for the canonical basis vectors, i.e. for all vectors in Cn. .Thus, we may assume
A = H + N in Jordan canonical form. It follows according to the corollary, computing
with series, formally,

exp(A) =
∞∑
m=0

1

m!
Am =

∞∑
m=0

m∑
k=0

(
m
k

)
1

m!
NkHm−k =

∞∑
m=0

m∑
k=0

1

k!(m− k)!
NkHm−k

= (
l−1∑
k=0

1

k!
Nk) · (

∞∑
j=0

1

j!
Hj) = exp(N) exp(H) = exp(H) exp(N)

since HN = NH. But, if H is diagonal with diagonal entries λi then Hk has diagoal
entries λki whence exp(H) erists and

exp(H) =

e
λ1 0 . . .
0 eλ2 . . .

0 0
. . .


This meas that for any ε > 0 there is an h0 such that for all k ≥ h ≥ h0 one has
|
∑k

m=h
1
m!
Hm| < ε which readily transfers to prove existence of exp(A).

Now, consider the vector valued function

y(t) = exp(At)y0 (t ∈ R) with fixed y0 ∈ Cn

We claim that one has derivative

d

dt
y(t) = Ay(t)

i.e. that y(t) is a solution of the system of first order linear differential equations with
constant coefficients given by A. Again, this claim is invariant under basis transformation,
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hence we may assume A in Jordan canonical form and even consisting of a single Jordan-
block of size l and EW λ, i.e A = λE +N . In that case

exp(At) = exp(λEt+Nt) = exp(λEt) exp(Nt) =
l−1∑
k=0

eλt

k!
tkNk

Differentiating entry-wise we get

l−1∑
k=

1

k!
(λeλttk+eλtktk−1)Nk = (λE)

l−1∑
k=

1

k!
(λeλttk)Nk+N(

l−1∑
k=

1

(k − 1)!
eλttk−1Nk−1) = A exp(A)

6.4.3 Uniqueness of Jordan-Chevalley decomposition

Theorem 6.4.3 Given A ∈ Kn×n the minimal polynomial of which is a product of linear
factors in K[x], there are unique diagonalizable H and nilpotent N such that A = H +N
and HN = NH. Moreover, H,N ∈ K[A].

Lemma 6.4.4 Let V be a finite dimensional vector space with endomorpism φ and min-
imal polynomial d(x) = d1(x)d2(x) with coprime d1(x), d2(x). Then V = V1 ⊕ V2 where
Vi = {v ∈ V | di(φ)v = 0} and π ∈ K[φ] for the projections π : V → Vi.

Proof. V = V1 ⊕ V2 by Lemma 5.6.7. Also 1 = r1(x)d1(x) + r2(x)d2(x) and (rjdj)(φ) is
identity on Vi and 0 on Vj. Thus, π = (rjdj)(φ) ∈ K[φ]. �

Lemma 6.4.5 Let R be a K-algebra and α1, . . . , αm ∈ R such that αiαj = αjαi for all
i, j. Then the smallest K-subalgebra containing all αi is given as

{
∑

i1,...,im

ai1,...,imα
i1 · . . . · αim | ii ∈ N. ai1,...,im ∈ K}

and is, in particular, commutative.

This is then the K-subalgebra generated by the commuting A1, . . . , Am. Proof. Straight-
foreward computation. �

Lemma 6.4.6 If the matrices N1, . . . , Nk ∈ Kn×n are nilpotent and NiNj = NjNi for all
i, j then each A in the K-algebra generated by the Ai is nilpotent.

Proof follows from the exercise: sum and product of two commuting nilpotent matrices is
nilpotent. �

Proof of the Thm. We first show that there are H,N in K[A] with A = H + N , H
diagonalizable, N nilpotent. Then also HN = NH. The statement can also be formulated
for endomorphism - and is basis invariant. thus. So we may assume that A = J is in
Jordan canonical form and we have the obvious decomposition J = H+N . We claim that
H ∈ K[A] - then also N = A − H in K[A] and so HN = NH. But the endomorphism
defined by H is

∑
i λiπi where the πi are the projections associated with decomposition
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into generalized eigenspaces, so π ∈ K[φ] by iterated application of Lemma 6.4.4 and so
H ∈ K[A] whence N = A−H ∈ K[A].

Now, given H,N in K[A] with A = H + N , H diagonalizable, N nilpotent, consider
A = H ′ + N ′ with diagonalizable H ′, nilpotent N ′, and H ′N ′ = N ′H ′. It follows H ′A =
H ′(H ′ + N ′) = H ′H ′ + H ′N ′ = H ′H ′ + N ′H ′ = AH ′. Similarly, N ′A = AN ′. Since
H,N ∈ K[A], it follows from Lemma 6.4.5 that HH ′ = H ′H and NN ′ = N ′N .

By Thm.?? we have H and H ′ simultaneously diagonalizable and so H−H ′ diagonaliz-
able. On the other hand, by Lemma 6.4.6, N ′−N is nilpotent. From A = H+N = H ′+N ′

it follows H −H ′ = N ′−N which is a matrix which is both diagonalizable and nilpotent.
So it has to be O, since a nilpotent diagonal matrix is O. �

6.5 Rational canonical form

In this section, R denotes an euclidean ring.

6.5.1 Structure theorem

Theorem 6.5.1 Given an R-module M on n generators ~e1, . . . , ~en over an euclidean ring
R and canonical homomorphism π : F →M , π(ei) = ~ei, where α : e1, . . . , en is a basis of
a free R-module F . Then

(i) M is isomorphic to a direct product of cyclic modules

(ii) Given any presentation matrix A there are invertible P and Q such that PAQ is
diagonal with diagonal entries di (with di | di+1)

(iii) Given matrices as in (ii) and A w.r.t. the basis α there is a basis β : f1, . . . , fn of
F such that P−1 gives the α-coordinates of the fi and

M = Rπ(f1)⊕ . . .⊕Rπ(fn) with Rπ(fi) ∼= R/Rdi

(iv) Requiring di | di+1, the di 6≈ 1 are unique up to association (and called the invariant
divisors of M) resp. the nonzero summands in (iii) are unique up to isomorphism.

Proof. Given a system aj (j ∈ J) of generators of U , let A be a matrix with colums (aj)
α.

By Thm.5.5.1 on invariant divisors there are invertible P and Q such that D = PAQ is
diagonal with diagonal entries di | di+1 - this also applies if A has infinitely many colums,
since the column operations in a step reducing the format of the matrix may be carried
out, simultaneously. Now, Cor.4.3.3 and sect. 21.2.5. point 5 apply. Uniqueness of the
invariant divisors follows from that of the elementary divisors - see below). �

Corollary 6.5.2 For any submodule of a free R-module F on n-free generators there is
a basis f1, . . . , fn von F , an r ≤ n and di ∈ R with di|di+1, i < r such that d1f1, . . . , drfr
is a basis of U .
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6.5.2 Torsion free part

Given an R-module M , its torsion submodule is

T (M) = {v ∈M | rv = 0 for some r 6= 0}

M is torsion free if T (M) = 0.

Theorem 6.5.3 Let R be an euclidean ring and M an R-module with n generators. Then
M = T (M)⊕U with some U freely generated by m elements for some uniquely determined
0 ≤ m ≤ n

Proof. In Thm.6.5.1 let di | di+1 and di 6= 0 ⇔ i ≤ s. Then we have M = W ⊕ U where
W = SpanR{π(fi) | i ≤ s} and U = SpanR{π(fi) | i > s}. In particular, U has basis
π(fs+1), . . . , π(fn) and dsw = 0 for all w ∈ W . Thus U ∼= Rm with m = n − s − 1. If
w ∈ W and 0 6= u ∈ U then ru 6= 0 whence r(w + u) 6= 0 for all r 6= 0. Thus, T (M) = W
and Rm ∼= U ∼= M/W .

Now, it suffices to show that Rm ∼= Rk implies m = k. Assume k ≤ m, let Q be the
quotient field of R, and consider Rm as a subset (and R-submodule) of Qm. Then the
canonical basis of Rm is a basis of the Q-vector space Qm. The canonical basis of Rk

corresponds under the isomorphism to a k-element generating set of Rm. But this is then
also a generating set of the Q-vector space Qm, whence k = m. �

6.5.3 Structure of primary modules

Theorem 6.5.4 Let R be an euclidean ring and M a finitely generated p-primary R-
module. Then

(1) M = Rv1 ⊕ . . .⊕Rvs with Rvi ∼= R/(pki ) and k1 ≥ . . . ≥ ks > 0

(2) In (1), s and the pki are uniquely determined by M and called the elementary divisors
of M

(3) φp(v) = pv is an R-linear map φp : M →M and k1 the minimal k with ker φkp = M
resp. imφkp = 0

(4) (ker φk+1
p )/(ker φkp) is canonically a R/(p)-vector space. M is determined up to iso-

morphism by the dimensions of these spaces for 0 ≤ k < k1

|{i | ki > k}| = dim (ker φk+1
p )/(ker φkp)

(5) (imφkp)/(imφk+1
p ) is canonically a R/(p)-vector space. M is determined up to iso-

morphism by the dimensions of these spaces for 0 ≤ k < k1.

(6) imφk1−1p is uniquely determined, 6= 0 but φp(imφk1−1p ) = 0.
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In the case of the Jordan canonical form of an endomorphism φ with unique eigenvalue
λ, we have p = x− λ, i.e. φp = φ− λid. imφk1−1p is then a subspace of the eigenspace of
φ and any Jordan basis has to contain a subset which is a basis of this subspace.

Proof. Given p-primary M , the minimal annhilator is a power of p. Thus, (i) and (iii) are
obvious from the Theorem on primary decomposition.

Now, let U = ker φk+1
p and W = ker φkp. Claerly W ⊆ U . Given u ∈ U and r ∈ R we

define

(r + (p)(u+W ) = ru+W

This is well defined: if r + (p) = r′ + (p) then r − r′ = sp a whence (r − r′)u = spu ∈ W
and so

ru+W = r′u+W

On the other hand, if u−u′ ∈ W then r′u−r′u′ = r′(u−u′) ∈ W since W is a submodule.
Thus

ru+W = r′u+W = r′u′ +W

The module laws are inherited, obviuosly. Thus U/W is a vector space over the field
R/(p). Observe that

φk1−1p (r1v1 + . . .+ rsvs) = 0 ⇔ pk1−1rivi = 0 for all i

and the latter holds a priori for all i > m and for i ≤ m if and only if p | ri. Thus

N := ker φk1−1p = Rpv1 ⊕ . . .⊕Rpvm ⊕Rvm+1 ⊕ . . .⊕Rvs

and N is p-primary submodule of M with elementary divisors determined by those of M
as the pki−1 with ki > 1. Assuming uniqueness as inductive hypothesis (proceeding by
induction on k1) uniqueness for M follows provided we have the number m of the ki = k1.

M/N ∼= Rv1/Rpv1 ⊕ . . .⊕Rvm/Rpvm ∼= (R/(p))m

so m is the dimension of the R/(p)-vector space M/N . This proves (2) and (4) follows by
induction, too. The proof of (5) is similar, (6) is obvious. �

6.5.4 Uniqueness of elementary and invariant divisors of a matrix

Corollary 6.5.5 The invariant divisors as well as the elementary divisors of a matrix
over a euclidean ring are unique up to association and order.

Proof. Consider A a presentation matrix of an R-module M . The number of elementary
or invariant divisors di = 0 is the size of a basis of M/T (M). The elementary divisors pk

are determined up to association by the p-primary components of T (M). From these we
combine the invariant divisors di 6≈ 0, 1 beginning with the highest powers. Having these,
the number of invariant (and elementary) divisors di ≈ 1 just has to fill up to the number
of rows of A. �



54 CHAPTER 6. CANONICAL FORMS OF MATRICES

6.5.5 Similar matrices

Theorem 6.5.6 For n× n-matrices A and A′ over a field K t.f.a.e.

(1) A and A′ are similar, i.e. there is an invertible matrix S over K such that A′ =
S−1AS

(2) A−xE and A′−xE are equivalent, i.e. there are invertible matrices P and Q over
K[x] such that A′ − xE = P (A− xE)Q

(3) The K[x]-modules K[A]K
n and K[A′]K

n defined by A resp. A′ are isomorphic

(4) A and A′ (i.e. A− xE and A′ − xE)) have the ‘same’ invariant divisors

(5) A and A′ (i.e. A− xE and A′ − xE) have the ‘same’ elementary divisors

(6) A and A′ (i.e. A− xE and A′ − xE) have the ‘same’ determinantal divisors

Proof. 1 ⇒ 2: S−1(A − xE)S = S−1AS − xE = A′ − xE. 2 ⇒ 3: by Cor.4.3.3. 3 ⇒ 1:
The module isomorphism σ : K[A′]K

n → K[A]K
n and the matrix S are related by

σ(v) = Sv.

Given σ is bijective and K-linear and one can find S. By K[x]-linearity, for all v

ASv = Aσv = xσv = σ(xv) = SA′v.

3⇒ 2 can be shown, directly: Given S, one obtains a module isomorphsim

ω : K[A]K
n → K[A′]K

n, ωv = S−1v

Indeed, for all v and f(x) =
∑

k rkx
k

f(x)ω(v) =
∑
k

rkA
′kω(v) =

∑
k

rk(S
−1AS)kS−1v =

∑
k

rkS
−1Akv =

= S−1
∑
k

rkA
kv = ω(f(x)v).

(3) is equivalent to (4) resp. (5) by existence and uniqueness of divisors. The k-th
determinantal divisor is defined as the normed GCD of all determinants of k × k-minors
of A − xE. This is unchanged under transformation. In the diagonal matrix having the
invariant divisors on the diagonal, the k-th determinantal divisor is the product of the
fisst k invariant divisors. Hence, these determine each other. �

Corollary 6.5.7 For any A ∈ Kn×n there is invertible S ∈ Kn×n such that S−1AS = At.
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