Chapter 4

Modules and presentations

4.1 Definition, examples, and basic concepts

4.1.1 Modules

Let R be a commutative ring. An R- module [der Modul, die Moduln] M is a commu-
tative group (M, +,—,0) (we denote the axioms by (V1-4)) together with an action of R
on M, i.e. with each scalarr € R and v € M one has associated a unique rv € M such
that

(V5) for all r in K and v,w in V it holds r(v 4+ w) = rv + rw

(V6) for all v in V it holds 1lv = v
(V7) forall r;sin K and v in V' it holds (r + s)v = rv + sv
(V5) forall r,sin K and v in V' it holds r(sv) = (rs)v.

For commutative R it does not matter whether we write rv or vr. For non-commutative
is does matter and vr would fit better to the usual notations of Linear Algebra (in all
countries where by law one drives and writes on the wrong side). If you see an vr,
occasionally, in these notes, read it as rv.

Examples.

a. if K is a field then the K-modules are exactly the K-vector spaces
b. Each ring R is an R-module with rv =7 - v
c. R™is an R-module for each ring R.

d. Each commutative group is a Z-module with nv as defined defined recursively for
n € N by 0v =0y, (n+1)v =nv+v and with (—n)v = —(nv).

One has the general associative-commutative law for addition and the distributive laws

(Proof as exercise)
DI WL WL it
i=1 i=1 i=1 i=1
0v=7r0=0, (—r)v=—(rv).

1



2 CHAPTER 4. MODULES AND PRESENTATIONS

In particular, each term is equivalent to one of the from
n
> i
i=1

4.1.2 Submodules and homomorphisms

These are defined in analogy to vector spaces. U is an R- submodule of the R-module M
if it is a subgroup and ru € U for all r € R and w € U. The submodule generated by a
subset F is

Spang(E) = {Z riv; |[n €N, r; € R, U; € E}

i=1

In particular,the submodule generated by a single element v is given as Rv = {rv | r € R}
an called cyclic. If we consider R as an R module, then we also write (v) = RV.
A map ¢ between R-modules M and N is R- linear or an homomorphims if

O(T+7Y) =T+ oy, o(rd) =rod forall T,y € M, r € R

Congruence relations are associated with submodules and homomorphism as for vector
spaces (cf Ch.11) and direct sums and products behave as well. But be aware that not
every submodule U gives rise to a direct decomposition M — U & W - consider the Z-
submodule U = 27 of Z, Thus, sect.11.2.5 and 11.3.7 do not extend to modules.

4.1.3 K[x]-modules
Every K-vector space V' is an End(V')-module

6@ = ola)

if we allow a non-commutative ring. Here, writing scalars form K and endomorphisms on
different sides of vectors would be reasonable - if is mandatory if K is not commutative.

Recall the polynomial ring K[z] with coefficents from the field K. It elements are poly-
nomials

p(z) = az™ + ...+ a1z + ag

Given a K-vector space V' and an endomorphism ¢ we can evaluate p(z) at ¢ (in the
commutative K-subalgebra of End(V') generated by ¢

p(¢) =a,o" + ...+ a19 + apid

The map p(x) — p(¢) is a K-algebra homomorphims of K[z]| into End(V'). Also, given
A € K™" we can evaluate at A

p(A)=a, A"+ ...+ A+ FE

and if A corresponds to ¢ w.r.t. a give basis of V' then p(A) corresponds to p(¢).
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Proposition 4.1.1 Given a field K, there is a 1-1-correspondence between K [x]-modules
and pairs (V, ¢) where V' is a K-vector space and ¢ and endomorphism of V. It is given
by

o(v) =zv forallveV

Moreover, the K[x]-submodules are exactly the ¢-invariant subspaces.
Proof. Given a K[z]-module V, V is also a K-vector space since K is a subring of K|x].

Due to the module laws and commutativity of K|x], ¢(v) = zv defines an endomorphism
of V. Conversely, given ¢ € End(V'), define

p(x)7 = p(¢)(7)

Since evaluation of polynomials is a homomorphism, this defines a K [z]-module. Observe
that U is a K[z]-submodule if it is a K-vector subspace and xv € U for all v € U. Indeed,
O iy =>rztveUforallve U. O

We denote this K [z]-module by g4V . It contains all information about ¢ in a convenient
form. In particular, it gives an easy access to transformations into canonical form.

4.2 Free modules and presentations

4.2.1 Modular philosophy of freeness

We need an understanding of module computations form a logic background - in the
structural disguise this means to understand free modules. Recall the view of K[z] as a
free K-algebra with generator x.

The free R-module with generators ey, . .., e, (fixed R) can (and should) be understood
as follows: consider the algebraic structure 7" all terms which can be be constructed from
e, ..., e, by addition, subtraction, constant 0, and multiplications with ‘scalars from R,
ie.

® ¢,...,e, and 0 are terms
e If s,t are terms, then so are s +t, —t and rt for r € R.

and compute modulo (~) the laws of R-modules - using the general rules of equational
logic. In other words, ~ is the coarsest congruence relation on 7" such that that for all
a,b,ceT'and r,s € R

a+(b+c)~(a+b)+c,a+b~b+a, a+0~a, —a+a~0

la ~a, r(a+0b) ~ra+rb, (rs)a~r(sa), (r+s)a~ra+sa
and we call T'/ ~ the R-module freely generated by ey, ..., e,. Actally,if 7 : T — T/~ is

the canonical projection, then 7(ey),...,m(e,) are free generators of the R-module T’/ ~.

Principle 4.2.1 For any ring R, the R-module F =T/~ freely generated by eq,..., e,
has the following universal property
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o [ is generated by w(e)ym ..., m(e,) and for any R-module N and w; € N there is a
(unique) homomorphism ¢ : F' — N such that ¢(n(e;)) = w; fori=1,... n.

and is characterized by this property up to isomorphism (matching free generators). ¢ is
surjective if N s generated by the wj.

If there is no danger of confusion, we use e; to denote m(e;). This does not mean that
e, =e; = 7(e;) = m(ej).

Proof. Given w; € N we may evaluate terms t = t(ey,...,e,) €T
() =t(wy,...,w,) €N

¢ : T — N is a homomorphism and a ~ b implies ¢(a) = () since N is an R-module. By
the Homomorphims Theorems, there is a homomorphism ¢ : ' — N such that ¢ = ¢o.

Assume that we have R-modules F; and 7; : {eq, ..., e,} — F; both with the universal
property, ¢ = 1,2 Then we have ¢;; : F; — Fj such that ¢;;(m;(ex)) = m;(ey) for all k. It
follows ¢;¢:(m(ex)) = m(ex) whence ¢;;¢;; = idg,. Thus, ¢12 and ¢9; are mutually inverse
isomorphisms. []

4.2.2 Bases

€1,... 6, 1s a basis of the R-module M if E = {e;,..., e,} generates M and and if they
are independent

reir+...me, =0 =>r=...=r,=0 forallr; € R

Corollary 4.2.2 For an R-module M and ey, ... e, in M t.f.a.e.
(1) e1,...,e, is a basis of M
(2) The elements of M have unique representation a = rie; + ...+ rpe, withr; € R
(8) There is an isomorphism ¢ : M — R"™ such that ¢pe; = e; fori=1,....n

(4) M is freely generated by e, ..., e, as an R-module

Proof. (1) < (2) Existence of representation means that the e; generate, uniqueness
means independence. (3) = (2) is obvious. (2) = (3): One has well and necessarily
so defined ¢(a) = ) ,r;e;. This is R-linear -as is easily checked. (4) = (2): Choose
N = R". There is linear ¢ : M — R" such that ¢e; = e;. Now, if > . 7e; >, s;e; in M
then ) . rip(e;) =Y. su¢(e;), whence r; = s;. (3) = (4). We know that a free module F’
with generators vq,...,v, exists. Let ¢ : FF — R" the homomorphism with ¥ (v;) = e;.
The elements of F' have a representation ), 7;e; and this is unique by the preceeeding
argument. Thus, /' = R"™ and R" is freely generated by the e;. Then M is freely generated
by the e; due to the isomorphism ¢t : I — M. .
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4.2.3 Presentation of modules

If we say that the R-module M is given by generatorsey,..., e, and relations a; - b; (i €
I) (which together make a presentation) then we mean that we calculate with R-module
terms in the eq,..., e,

e using the general rules of equational logic

e modulo the R-module laws (this includes the tables describing the ring R), i.e. we
may substitute in these lwas any terms for the variables

e modulo the equalities a; = b; (no substitution for an e;!!!)

If no relations are given, then we calculate only modulo R-module laws and obtain the
free R-module with generators ey, ..., e,.
Actually, we should consider the e; as generator symbols which are interpreted in

modules N by elements e. The relation a = bis given as a formal expression by a pair
(a,b) of terms a = a(eq,...,e,) and b = b(ey,...,e,) and it is valid in the module N
under the interpretation e if and only if

aled,....eMy=0b(el,...,eY) holdsin N

v n rn

Principle 4.2.3 Let M be an R-module and eq,...,e, € M. Then the R-module M
15 given by the generators eq,...,e, and the relations a; - b; (i € I) if and only if
M is generated by the eM and if for any R-module N and interpretation eV there is a
homomorphism ¢ : M — N such that ¢p(eM) = el fori=1,...,n (which is surjective if N
is generated by the e ). Moreover, M is determined by the presentation up to isomorphism
and is obtained form the free R-module F' with generators ey, ..., e, as F/ ~ where ~ is the
finest congruence relation such that a; ~ b; for all i € I - corresponding to the submodule
U of F generated by the a;—b; (more precisely, the elements a;(el ... el)—b(el, ... el)
of F (iel). Thus, M = F/U.

Observe that any relation a = b may be equivalently replaced by a — b = 0.

Corollary 4.2.4 The free R-mode with generators ey, ..., e, and relations w; L 0,(iel)
is obtained, up to isomorphism, as R" /U with generators w(ey), ..., n(e,) wherew : R" —
R/U is the canonical homomorphism and

U = Spang{w;(ey,....e,) | i€ I}.

Recall, that 7(v) = U + v = v + U is a popular notation.

4.2.4  Cyclic one-relation K[x]-modules

We consider R-modules presented with single generator g and a single relation w = 0.
Then w is equivalent to a term dg with d € R. If R = Z we obtain Z/Zd, the integers
modulo d.
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Lemma 4.2.5 K[z]/(m(x)) is a commutative K-algebra and the canonical homomor-
phism m : K|x] — K[z]/(m(x)) is a K-algebra homomorphism.

Theorem 4.2.6 Let m(z) = 2" + rp, 2™ '+ ...rx + 19 € K[z]. The K[z|-modules

given by a presentation with one generator vy and the relation m(x)vg =0 are exactly the
K-vector spaces V' with endomorphism ¢ where V' has basis o w.r.t. to which the matrix

of ¢ is

0 0 0 ... 0 -—nr
1 0 0 ... 0 -—nr
(bo‘ A 0 1 0 0 —T9
0 0 0 —T'n—2
0 O R R L |

Then this basis is

a :vg, ¢(vo), 9°(vo), - .-, "' (vo)

A is the Frobenius-matrix or companion matriz of the polynomial m(z).

Proof. By Cor.4.2.4, up to isomorphism, the module given by the presentation is V' =
K|[z]/(m(z)) with generator 1. The canonical homomorphism 7 : K[z] — V is surjective
and with some precaution we may use the elements p(x) of K[x] to denote their images
in V where 7(p(z)) = p(z) + (m(x)) is meant.

By Prop.4.1.1, ¢(v) = xv is an endomorphism of the K-vector space V. We claim
that

17 x? Y xn_l
is a basis of the K-vector space V. From
(*) ,I‘n = —(Tn_ll‘nil 4+ ... IS¥ + 7"0)
is follows that Spany{1,z,...,2" "1} is a ¢-invariant subspace, hence a K[z| submodule

and equal V since it contains the generator 1. Now, consider s; € K with
So+Ss124+ ...+ 52" =0
more precisely
som(1) + s1m(x) + ... + s, am(z™1) = 7(0)
Since by Lemma 4.2.5 7 is a K-algebra homomorphism, this implies
m(sg+ 812+ ...+ 512" 1) = 7(0)
thus
so+ s+ .. 812" ~0 in K]

i.e.

q(z) = so+ 12+ ...+ sp12" " = p(x) - m(z)

for some p(x) € K[z]. Since degq(x) < degm(z) this is possible only if p(z) = ¢(z) =0
and so s; = for all 2. This proves independence. The claim about the matrix is then
obvious from (x).
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Conversely, given a K-vector space and an endomorphism ¢ having matrix A = ¢“
for some basis «a, the basis looks as indicated (as one reads from the matrix). Thus, the
K[z]-module V' is generated by vy. Moreover

¢"(vg) = P(¢" " (vg)) = — (110" (v0)+. . . T10(v0)+Tov0) = —(ru—10™ ... T10+70) (Vo)

1.e.

m(¢)(vo) =0

Thus, the K[z] module V' with generator v, satisfies the relation m(x)v = 0. By Principle
4.2.3 there is a homomorphism 1 : K[z]/(m(z)) into the K[z]-module V mapping 1 onto
vg. % is surjective, since v is a generator. ¢ is also a K-linear map whence an isomorphism
since dim Kz|/(m(z)) =n=dimV. O

Corollary 4.2.7 m(x) is a polynomial p(z) of minimal degree such p(¢) = 0 and the
unique normed such. (—1)"m(z) is the characteristic polynomial of ¢.

m(x) is also called the minimal polynomial of ¢. Proof. The first claim is obvious from
the proof of the theorem, the second an exercise. [

Corollary 4.2.8 Here, for any \ € K,

B (p— Nid)" H(vg), ..., (¢ — Nid)(vg),vo

is also a basis of V- and m(z) = (x — \)" if and only if

A1 0O ... 0
0o X 1 0
¢’8:J,\,n= LT Tl
0 0 X 1
0 oo 00N

The matrix Jy, is a Jordan-block and the basis § a Jordan-chain (for ¢ and \) with
startvector vy and eigenvector ¢ — Nid" L.

Proof. The (x — \)* generate the K-vector space K|z]: inductively on obtains all z* since
(r — \)* = 2% 4 pp(2) with a polynomial py(x) of degree < k. Thus, the (z — \)*, k < n,
generate the K-vector space K|[z]/(m(x)) and form a basis 8 : (x — \)"71,... 1 (since
dim = n). For m(xz) = (z — A\)" the matrix of ¢ w.r.t. §is Jy, as is seen from

2z —a)f =@ - N0\ +z-AN) =Xz - N+ (2N O

4.2.5 Presentation matrix

Consider a presentation of an R-module with generators e, ..., e, and relations w; L0
(¢ € I). Since module laws allow reduction of any term to a linear combination » _, r;e;, we
may assume that the w; are of this form. Thus
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1 Any presentation of an R-module with generating set £ = {ej,...,e,} may be
equivalently given by

n 11 T2 13

. . nXm
E rijei,]:1,2,3,..., A: : ER
i=1

Tl Tn2 Tn3...
2 The matrix A is called the presentation matriz
3 The module M is obtained as M R"/U, U generated by the columns of A

4 Forn=1and A= (dy), one has M = R/Rd where Rd = {rd | r € R}

5 If the presentation matrix is diagonal with entries dy, ..., d,, then M is isomorphic
to

R/Rdy x ... x R/Rd,

Ad 5: Let U = Span{eidy,...,e,d,} € R" and 7 : R* — R"/U and 7m; : R — R/Rd,

canconical projections and

T 7”1[ mod Rdl]
Y :R"— R/Rd; X ...x R/Rd, where ¢y | : | = :
T rn| mod Rd,]
Then % is a surjective homomorphism. Moreover
r o d151 "
€ Kern(m) < | :Zdisiei: : Ssr e Rdy,. ..,y € Rd, &
T'n Tn dnsn T'n

Hence, by the Homomorphism Theorem, there is an isomorphism x : R"/U — R/Rd; X
...x R/Rd,. O

4.2.6 Characteristic matrix of an endomorphism

Theorem 4.2.9 Given a K-vector space V' with basis « : €1,...,€, and endomorphism
¢ with matriz A w.r.t. o. Then w.r.t. the generators €1, ..., €, of the K|x]-module x5V

the characteristic matrix A — xE of ¢ is a presentation matriz of gV |.

Proof. The €; satisfy the relations given by A — zE:
ve; = (&) = Y ay€ & 0= (a; — )&+ Y _ a;é;
i i#]

Hence there is a surjective K [x]-linear map x from the K[z]-module M with generators
e; and presentation matrix A — 2 F onto gV with e; — €. As a K[z]-module, M is

€ Kery
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generated by the e;. M is also a K-vector space. The K-vector subspace U generated by
the 7(e;) is a K|[x]-submodule, since

ZL’@j: E aijez»

i

due to the presentation. Thus, U = M whence dimxg M < n. x is also K-linear and
surjective, whence due to dimg V' = n an isomorphism. [J

4.3 Transformations of presentations

We will show that for rings K [x] any presentation can be equivalently replaced by one given
by a diagonal matrix in K[z]"*". For that purpose we need two kinds of transformations
of the presentation matrix

e Replacing relations by equivalent ones
e Change of basis

A matrix S € R™" is invertible if and only if there is 7 € R™*" such that ST =TS =&
the unit matrix. The invertible matrices form a subgroup of the multiplicative monoid
(R™ " . £). In particular, the inverse is uniquely determined: 7 = S~

4.3.1 Change of relations

Given a commutative ring R and a basis « : ey, ..., e, of a free R-module F, each v € F
has unique representation
n
v = E €T;€;
i=1

and we have the coordinate column of v
xq
Ty

Now, given a matrix A = (a;;) € ™", we write

Spanik(A) = SpanR{Z age; | j=1,...,m}
i=1

which is the span of those elements of F' which have colums of A as coordinates.

Lemma 4.3.1 Given a commutative ring R, a matriz A € R"*™, and Q@ € R™*™. Then
for each basis o of a free R-module

Span%(A) = Span%(AQ)
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Proof. Let Q = (qjx) and AQ = B = (bjx). Then forall k =1,...,m

m

D biei = O ayg)ei= > i Y aie; € Spanf(A)
i=1 j=1 =1

i=1 j=1

whence

Span(B) € Spanf(A)

Since A = BQ ™! the converse inclusion is also valid. [J.

4.3.2 Change of basis

Lemma 4.3.2 Given a commutative ring R and a basis a : ey, ..., e, of a free R-module
F, and invertible matriz P € R™™"™, there is a unique basis B : f1,..., fn of F such that

VP =Pv* forallveF

Proof. Choose f; such that ff* is the j-th column of § = P1ie.

n
fi= E Sij€i
i=1

Then fy,..., f, is generating since
n n n n n
ijkfj = ijk Z Sij€i = Z(Z SijDjk)€i = €y
j=1 j=1 =1 i=1 j=1

They are independent, too: Z?Zl r;f; = 0 implies

DO rysile = ZW(Z $ij€i) = erfj =0

i=1 j=1 j=1

whence by independence of the e;.... e,

ersij:() forall j=1,...,n

Jj=1
r 1 r
S =0, L =PS =0
Tn Tn Tn

Finally, we have v® = Sv? since for v = Z?Zl y; f; it follows

v = Zyjfj = Zyj Z Sij€i = Z(Z sijyj)e; U
j=1 j=1 =1

i=1 j=1

Over non-commutative rings R this remains valid if we consider right R-modules, i.e.
write vr and have the law v(rs) = (vr)s. The point is, that R™ is a left-R"*" right-R
bi-module: we have A(vr) = (Av)r.
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4.3.3 'Transformation of presentations

Corollary 4.3.3 If A € R™M s a presentation matriz of the R-module M w.r.t. the
basis «v : ey, ..., e, of the free R-module F', and if P € R™" and Q € R™ ™ are invert-
ible then PAQ is a presentation matrix for M w.r.t. the basis 5 : fi1,..., fn of F the
coordinates of which w.r.t. a are the columns of P~1.

Proof. M = F/U where
U = Span%(A) = Spang{v € F | v* colum of A} =
— Spang{v € F | v¥ colum of PA} = Span),(P.A) = Spank(PAQ) O

Lemma 4.3.4 If A € R™M s a presentation matriz of the R-module M w.r.t. the basis
a:eg,... e, of the free module F' and if B arises from A by deleting zero colums, then
B is a presentation matrix of M w.r.t. o.

Proof. Obvious. [

4.3.4 Elementary matrices

Given a commutative ring R, let &; the matrix with all entires 0 but 1 in position (¢, 7).
The following matrices in R™*™ elementary

Zi=Zi+rZj] =[] :=5j+rSi|=E+1&; reR
[Zi(—)Zj]ZSj(-)Si]:g—gz‘i—gjj—f—gz‘j'}‘gji 27&]
[Zi=uZ]) =[S =uS;] =&+ (u—1)&; ue€ R invertible

The notation corresponds to the row transformations [Z] of a matrix A induced by mul-
tiplying the elementary matrix on the left of A resp. column transformations [S] on the
right.

Lemma 4.3.5 Elementary matrices are invertible with inverses
(Zi = Zi+rZj]t = [Sj = Sj —rSi]
[Zi < Z§]7F = [S] < Si), [Zi:=uZ]' =[S =u"'S]

Proof. Obvious. [
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Fuclidean rings

Subsections * are not needed for the for the main result: the theory of invariant divisors
and rational canonical form.

H.1 Ideals

5.1.1 Ideals and congruences of rings

Given a commutative rings resp. K-algebra R, an ideal is submodule of the R-module
R, ie.
a,bel=a+bel andacl=racl forallabreR

There is a 1-1-correspondence between congruence relations and ideals given by
I={aeR|a~0} a~bsa—-bel

Indeed, an equivalence relation ~ is a congruence relation of the ring R if and only if it
is a congruence relation of the R-module R: in both cases one has a congruence relation
of the additive group (K-vector space) R satisfying

a~b = ra~rb

Consequently, a factor algebra R/~ may be written as R/I and the canonical projection
as m(a) = I +a = a+ I. The homomorphism theorems apply as well.

Form the description of spans in modules we obtain
(a) = Ra={ra|r e}
is an ideal, the principal ideal generated by a. The smallest ideal containing a, b is
{ra+sb|r,s€ R} = (a,b) = (a) + (b)

Corollary 5.1.1 * For ideals I,J of a commutative ring or K-algebra, R/I = R/J as
R-modules if and only of I = J.

Proof. Let M = R/I. I ={r € R|rv=0forall v e M} is the annihilator of M and
invariant under linear isomorphisms. [J.

12
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5.1.2  Second Isomorphism Theorem *

Theorem 5.1.2 Let m: M — N a surjective homomorphism between R-modules. Then
for each submodule U of N, 7= *(U) is a submodule of M and

M/=~Y(U) = N/U

This estabilishes a 1-1- correspondence between submodules of N and submodules O ker
of M with inverse given by V +— w(V'). Morever

UCW e r H(U)Cr (W)

T U+W)=aYU)+7* (W), = UnNW)=aYU)nz (W)

The analogous results hold for commutative rings and K -algebras and, formulated in terms
of congruence relations for any algebraic structures.

Proof. #=1(U) is a submodule, obviously, and the kernel of 7y o 7 where myy : N — N/U
is the canonical projection. Thus M/7~Y(U) = N/U.

By surjectivity, we have 7(7~'(U)) = U. If V D kerm and w € 7 !(x(V)) then
m(w) = m(v) for some v € V whence w —v € V and w € V. Since both maps U —
71 (U) and V + m(V) preserve inclusion between submodules and since + and N may
be characterized in these terms, the remaining claims follow. [J.

Example: Consider 7 : Z — Z/Zn the canonical homomorphism. The submodules resp.
ideal of Z/Zn are given as Zm(m) where m divides n. For the canonical homomorphisms
X:Z]/Zn — (Z/Zn)/Zn(m) and ¢ : Z — Z/Zm we have 1) = x o .

5.2 Integral domains

5.2.1 Definition and examples

An integral domain is commutative ring without divisors of zero, i.e. ab = 0 implies
that a = 0 or b = 0. Equivalently, one has the cancellation law

e From ax = ay and a # 0 it follows x =y

Examples. Z,Q, R, C.

If K is an integral domain, the degree formula of 14.2.2. remains valid and it follows
that K[z] is an integral domain, too. Long division of p(z) by ¢(z) is possible if the
leading coefficient b, in g(z) has an inverse in K. In the results about zeros in 14.2.4. it
suffices to have K a subfield of the integral domain A.

5.2.2 Horner scheme *

Lemma 5.2.1 Given an itegral domain K and p(z) € K[z] of degree n und o € K there
is h(x) € Klz| such that
p(z) = h(z)(z — @) + pla]
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Proof. The idea is that
p(z) = (... ((apx + ap_1)x + ap_s) ...+ a1)x + ag

and one may obtain p|a] with less multiplications as follows

Qp, Ap—1 ...y ap
« Cro1CX ... o coev
Cn1 =0p Cp9=Cp Q@+ a1 ... co=cra+a; pla]=coa+ ag

Now, put
h(l’) = cn_lxn_l +...+cx+ .

For verification consider
q(x) = (... (anT + @p-1)T + ap—2) ...+ ay i.e. p(x) = q(z)x + ao.
Computing g[a] one obtains the Horner-coefficients ¢, _1, ..., ¢; and it holds ¢a] = ¢y and
cor + ag = p(a). Applying inductive hypothesis to ¢(x) one gets
p(z) = q()z + ap = ((camr2" 2+ ...+ a1)(z — @) + qla])z + a
= (cp1 2" 4.+ ) (r — @) — cor + coa + g[a)x + ag

and the last 4 summands add up to p[a].

5.2.3 Quotient fields *

A field @ is a quotient field of the ring R, if R is a subring of () and
Q= {ab '|a,be R, b#0}

Necessarily, R is an integral domain. Example: Q is quotient field of Z.

Theorem 5.2.2 FEach integral domain R admits an extension to a quotient field () (unique
up to isomorphism). Any embedding of R into a field K can be extended to an embbing
of Q into K.

Proof. As in the construction of Q from Z define on Q' = {(a,b) |a,b € R, b # 0}

(a,b) + (¢,d) = (ad + bc,bd), (a,b) - (c,d) = (ac, bd)
(a,b) ~ (¢,d) < ad = bc

which is a congruence relation. By factorizing, 7 : Q" — @)’/ ~, one obtains an algebraic
structure and even a commutative ring @ - (@,-,1) is a commutative monoid being a
homomorphic image of R x (R \ {0}), the other laws require some computation. The
inverse of m(a,b) is m(b,a). The map a — 7(a,1) is an embedding og R into @) and
m(a,b) = 7m(a,1)m(1,b). Thus we may conceive R as a subring of ) and obtain the
required representation. Given ¢ : R — K define

p(ab™") = ¢(a)p(b)
This is well defined since ad = be implies ¢(a)p(d) = ¢(b)d(c), also ¢(a)p(b)™t =
é(c)p(d)~". O

The quotient field of the polynomial ring K [x] over a field is the field of rational functions

over K and denoted by K (x). Its elements are written as %
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5.2.4  Units

A Monoid is a set M with associative multiplication and neutral element e. An element
u of a monoid M is a unit or invertible, if there is x € M such that zu = ux = 1.

Lemma 5.2.3 The units of a monoid M from a group M*.

Proof. The inverse x is unique since yu = uy = 1 implies y = yl = yuxr = lx = . We
may write z = u™!; clearly u=' € M* and (u™')™' = u. If v € M*, then wvvtu™! =

wlu™ =wu™t =1 and v 'u~! = wv, whenve uv € M*. O

The group of units R* of a ring R consists of the units of the monoid (R, -, 1). Clearly
7r={1,-1}, (K[z])* = K* for fields K
and for the direct product R; x Ry of rings (component wise addition and multiplication)
(R1 X Ry)" = R} x Rj.

In the ring of n X n-matrices over a commutative ring R one defines determinants by the
explicte formula. Then (det A)adA = E. If det A € R* then A~! = det(A) *adA whence

(R™™)" = {A] det A € R*} for commutative R.

Corollary 5.2.4 For any commutative ring, R = Ru if and only if u is a unit. Then,
M = Rug for any cyclic R-module M with generator g.

5.2.5 Divisibility

In a commutative ring one defines
dla < d divides a < 3r € R. rd = a.
This ia a ‘quasi order’ on R
ala (reflexive), alb and b|c = a|c (transitive)

with compatibility
alb = aclbc, alb und alc = al(b+ c)

One has
a|b < Ra2DRb

Lemma 5.2.5 In a commutative ring, a | b if and only if there is a surjective R-linear
map x : R/(a) — R/(b).

Proof. This is immediate by the Homomorphism Theorem. [J
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5.2.6 Associated elements

Let R be an integral domain. a and b are associated, a =~ b, iff one of the following

conditions is satisfied
alband bla, Ir € R* :ra=b.

Indeed ra = b and sb = a imply rsb = b whence rs = 1 by cancellation. =
equivalence relation since units form a subgroup. Moreover

e ar~dund b = (a|b< d|V)

e a ~ b w.r.t. the congruence associated with (d) < a= mod d < d|(a —b)
e alb & (b) C (a)

= ()

e ar~b<e (a)
eaER & (a)=(1)=R

5.3 Principal ideals in euclidean rings

5.3.1 Definition and examples
An integral domain R is an euclidean ring if there is a map
0: R\ {0} - N

Va,b € R\ {0} : d(ab) > d(a)
Va,b € R\ {0} 3¢, r € R: a=bg+r and 0(r) < d(b) orr =0 "

Define §(0) = —oo. Examples
Z with 0(a) = |a|, K[z] with §(f(z)) = deg f(z), K a field.
Lemma 5.3.1 In any euclidean ring

alb und §(a) = 6(b) < a ~b.

1S an

Proof. Let b = ac. Then a = bg+r with r =0 or r = a — bg = a — acq = a(1 — ¢q) and
d(b) > 6(r) = d(a(l — cq)) > d(a). If 6(a) = §(b), then the latter may not occur whence

also b | a, and a = b. O

5.3.2 Principal ideals

An integral domain in which every ideal is principal is a principal ideal domain.

Theorem 5.3.2 Any euclidean ring is a principal ideal domain: 0 # a € I with 6(a)

minimal then I = (a).

Proof. Assume I # (0). Choose 0 # a € I with §(a) minimal. Then (a) C I. Consider
0#bel. Thenb=ag+r mitr=0ord(r)<d(a). In the second case r =b—aqg € I

contradicting minimality of §(a). Thus r =0 and b € (a). O
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5.3.3 Cyclic modules
Recall that an R-module M is cyclic if it is generated by a single element g: M = Ryg.

Proposition 5.3.3 Any cyclic R-module M = Rg has presentation given by generator g

and relation d = 0 where 0 # d € R with §(d) minimal such that dg =0 in M. Moreover,
dv =0 for all v € M, there is a surjective R-linear map w: R — M such that w(1) = g,
and M is a commutative ring (and K-algebra if so is R) and m a homomorphism w.r.t.
the multiplication

7w(r)-m(s) :=m(rs)

The generators of M are exactly the units of this ring.

d is unique up to association and called a minimal annihilator of g resp. M.

Proof. I ={r € R|rg=0}is anideal of R: if ;s € I then (r+s)g = rg+ sg = 0 and if
r € Rand s € R then (sr)g = s(rg) = s0 = 0. Since R is euclidean, we have I = (d) with
d as stated and unique up to association. Then dv = drg = rdg = 0 for all v =rg € M.
Since R is freely generated by 1, there is a unique homomorphism 7 : ® — M such that

7(1) = g. Then I = (d) = Ker 7 and it follows that M is presented by g, d = 0. Moreover,
since [ is an ideal, M = R/I can be seen as the factor ring with the above multiplication.
Now, m(u) is a unit iff 7(s)m(u) = 7(1) = g for some s iff 7(u) is a generator. OJ.

5.4 FEuclidean algorithm, GCD, and factorization

5.4.1 Bezout’s Theorem

Consider an integral domain R. d is a greatest common divisor of a and b
d~ GCD(a,b) < d|a,d|b and Ve : (c|la and c|b) = c|d.
If such exists, it is unique up to association. Moreover
GCD(a,b) ~ GCD(b,a — gb)
since a,b and a — ¢b have the same divisors.
Theorem 5.4.1 In an euclidean ring GCDs exist and have additive representation
d~ GCD(a,b) < dla,dlb and Ir,s:d=ra+ sb < (d) = (a)+ (b).

Proof. The extended euclidean algorithm produces d, r, s such that d|a, d|b, d = ra + sb.
Then d is a GCD: ¢|a and ¢|b imply c¢|ra and c¢|sb whence c|(ra + sb). Conversely, if d’ is
a GCD of a, b then d’ =~ d by uniqueness and (d’') = (a) + (b). O

Algorithm 5.4.2 (Euklid+Bezout). Given an euclidean ring R and a,b in R determine
ad=~ GCD(a,b) and x,y in R such that

d = az + by.
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o Putdy:=a,x1:=1,y1:=0; dy:=0b, 29 :=0, yp :=1
e Loop: n~~>n+1

— Findd, =d,_1qg+1r with 0 < ér < dd,_1 orr =0
~Ifr#0dodyy1=r=d,—qdp_1, Tni1 =Ty — QTp-1 Ynt1 = Yn = QYn—1

—elsed=r, x=u1u,, y=1y, stop

Proof. Loop invariant: d, = az, + bx,, GCD(d,,d,_1) = GCD(a,b) If r = 0, then
dy|d,—1, whence d = GCD(a,b). O

421110
251 0 | 1
171 -1
8 |—1] 2
113 ]-5

1=3-42—-5-25 25'= —5=20 mod42

2041 |1

25+1 |0 1

—zt+1]1 —z? x?

2 4+1 |22 | (2% —1)| —2?
0 0 0 2+ 1

GCD@” +1,2°+ 1) =2 +1=2%@" +1) — (2° - 1)(2° + 1)
a and b are relatively prime or coprime if GCD(a,b) ~ 1 i.e. iff ra+ sb = 1 for some 7, s
Corollary 5.4.3 a|(bc) AGCD(a,b) =1 = alc
Proof . 1 = ax + by, whence al|(axc + bcy) = c.
Corollary 5.4.4 If GCD(a,b) = 1, then b = b[mod a] invertible in R/(a)

by=1 moda ifl=ax—+by for somex

2?4+ 1= (z+2)(z—2)+5, 1:%(552—{—1—@—{—2)(:3—2))

1
(x+2)7' = —g(:zj —2) mod 22 +1

Prr=rtr=c@+)+tr=2"=r+1 mod 2*+a+1

l=r*+x+1—z(x+1), (z+1)'=2 mod 2> +x+1
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5.4.2 Primes

Theorem 5.4.5 For 0 # a ¢ R* in an euclidean ring t.f.a.e.
e a is irreducible, i.e. a =bc=b € R* orc € R*
e (a) is a maximal ideal, i.e. for all ideals: a € [ = (a) =1 or I = R.
e R/(a) is a field

e a is prime, i.e. albc = al|b or alc

Proof. (1) = (2): I = (b) and a = bc, whence [ = R if b € R* resp. (a) = I if c € R*.

2) = (3): Let b # 0 in R/(a), whence b & (a). Thus (a) # (a,b) and it follows
R = (a,b), i.e. there are r,c with ar + bc = 1. Thus b-¢=1,ie bis invertible
= (4): albc implies b-¢=bc=0thusb=0or ¢ =0, i.e. b€ (a) or c € (a).

= (1): If @ = bc is prime, then a|b or a|c. On the other hand c|a and b|a, whence
be Rforce R*.

Corollary 5.4.6 Given a,b in an euclidean ring R, bjmod a] is invertible in R/(a) iff
GCD(a,b) ~ 1.

5.4.3 Factorization

An integral domain is factorial or an UFD if any non-unit a # 0 is a product

a=1pP1-..." Pn

of primes, unique up to order and association.

Theorem 5.4.7 Any euclidean ring is factorial.

Proof of existence by order induction on d(a): If a is not irreducible then a = bc with
d(a) > d(b),d(c) and by induction b = [[, p; and ¢ = []; ¢; whence a = [[; p; - [, ¢; with
irreducible p; and g;.

Proof of uniqueness by induction on the number of factors. Let

Lo PR
W.lo.g. pi|qi1, i.e. ¢1 = p; since both are prime. It follows
P2 Pn=Qq2- ... Q4m

and, by induction, n = m and p; ~ ¢; after renumbering. [
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5.4.4 Factorization algorithms *

At present, there are is a fast algorithms for testing primeness, but none for factorization
of integers. For factorization of polynomials over finite fields there is a simple and efficient
(GCD with test polynomials) cf. Berlekamp, Algebraic coding theory. For polynomials
over Q there is a efficient but non-trivial procedure: Lenstra? Lovasz, Math.Ann 261, cf.
Lenstra?: Algorithms in number theory, Handbook of Theoretical Computer Science A.
According to a theorem of Gauss, a polynomial in Z[z] is irreducible if and only if
it is irreducible in Q[z] and the GCD of it coefficients is 1. This can be used for a
brute force factorization method due to Kornecker: Given p(x) € Z[x] of degree n, choose
20, .-, %m € Z where m = % and determine for each k the set D, of divisors of p(z;). Thus
if f (ac) Z[z| divides p(x) then f(zx) € Dy. By interpolation, construct all polynomials
f(z) of degree < m with f(z) € Dy and carry out long division of p(z) by f(x).
p(z) = q(x)f(x) is a proper decomposition continue with both ¢(z) and f(z) in place of
)-

p(x

5.4.5 LCM

m is an least common multiple, m ~ LC'M (a,b) if
a|m, b|m and if a|c and b|c implies m/|c for all ¢

In an integral domain. LCMs are unique up to association, if they exist, In an euclidean
ring they exist and
m =~ LCM(a,b) < (m)=(a)N(b)

Given factorizations
_ kl kn P ll ln
a=p -...op, b=pi - Dy

it follows '
GOD(G, b) ~ p11111n{k1,l1} p;nm{kn JIn}
LCM (a,b) m prextbebid o pmax{bnlnd oy~ LOM (a,b) < (a) N (b) = (m).

n

GCD(a,b) - LCM (a,b) ~ ab

5.5 Invariant and elementary divisors

5.5.1 Invariant divisors

Theorem 5.5.1 For any euclidean ring R and A € R™"™ there are products P € R™™"
and Q € R™*™ of elementary matrices such that

d 0 0

0 do O
PAQ=D=| . ' with d;|d;1 for ¢ < min{m,n}.
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The dy,ds, ... form a system of invariant divisors of A. Later we shall show uniqueness
up to association. For many purposes it is good enough to have D a diagonal matrix.
Anyway, one should derive such, first.

Proof by the following algorithm. P is the product Py - - - P; of elementary matrices asso-
ciated with the row transformations used, Q is the product Q; --- Q; of of the elementary
matrices associated with the column transformations used. O

Algorithm 5.5.2 dynamic: A ~ Apew =: A.

a pair (i,7) of indices is active in A, if a;; # 0 and if in the i-th row or j-th
column there is an entry # 0

Now, we proceed induction/recursion on

min{d(a;;) | (,j) active in A} if non-empty
—00 else

o4 =

to obtain a transformation of A to a diagonal matrix:
o Ifo(A) >0 do

— [Sk :== Sk — ¢Si] with §(a;, — qai;) < 6(a;;)
~ [Zk == Zk — qZj] with 6(ar; — qaij) < 6(a;;)
— such that §(Anew) < 6(A)

o [f6(A) = —o0 apply permutation to transform A into diagonal form

Given d = GCD(a,b) = ra + sb the tranformations [S2 := S2 + rS1], [Z1 := Z1 + sZ2],
[S1:= 81— 452, [Z2:=Z2— 2Z1], [S1 <+ S2], [S2 := (—1)52] are used to obtain

a 0 o [a ra) | adW 0 d
0 b 0 b 0 b —%bb
(5 0) =6 %) -6 p)

—%bO 0—% O%b

Given diagonal D proceed as follows

o [f there is 1 < j such that d; does not divide d; choose first i mininal and then j

manimal and apply the above transformations to the minor (Céz c(l))
J

5.5.2  Scheme of computation

For applications, the matrix P is of no interest, but of interest is

The following scheme of computation can be used
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Start with £ | A| &

Given L | B | R apply a column transformation 7 to B and R simultaneously, leave
L unchanged, i.e. produce

L|BT|RT

Given L | B | R apply a row transformation to B and the inverse column transfor-
mation to L, leave R unchanged, i.e. produce

LT V| TB|R

If Bin £ | B| R is in the required form then P! = £ and Q =R

5.5.3 Example: Presentation of an abelian group

4 0 4 120 0 1 —6
A=[6 12 16], P=[1 3 0|, =1 0 -5
0 6 6 00 1 ~1 0 6

It follows that in the free commutative group with generators ey, e, €3 the subgroup
U = SpanZ{4el + 662, 1262 + 663, 463 —+ 1662 + 663}

is given w.r.t. the basis

fi=e1+e2, 2e1 + 3ea, €3

as
U = 72f, © TAf, & 76 f

and that commutative group G with generators ey, es, e3 and relations
dey +6eg =0, 1265+ 6eg = 0, des + 166y + ez = 0

is isomorphic to

G=Z]72 X Z]7A x 7]Z6
Further transformation yields the invariant divisors
2, 2,12

whence

G>7)72 x 772 x 7] Z12
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INVARIANT AND ELEMENTARY DIVISORS

1 00[4 O 4 10 0
01 0|6 12 16 |0 1 0
00 1|0 6 6 0 1
[S3 := 53 — S1]
1 0 0(4 O 0 1 0 -1
01 0j{6 12 100 1 0
00 1|0 6 6 0 0 1
(722 := 72— Z1]
[S1:=S1+ S2]
1 0 0(4 O 0 1 0 -1
11 012 12 10 0 1 0
00 1|0 6 6 0 0 1
[Z1 .= Z1 - 222
[S2:= 52+ 251]
1 2 0]0 =24 -20| 1 0 -1
1302 12 10,0 1 0
00 1|0 6 6 0 0 1
[S2:= 52— 651]
1 2 0/0 =24 -20|{ 1 -6 -1
1 30[2 O 010 1 0
00 1|0 6 6 0 0 1
[S3:= 53 —551]
1 2 0/0 —24 -20, 1 -6 -6
1 30[2 O 0 0O 1 0
00 1|0 6 6 0O 0 1
[S2:= 52— S3]
1200 -4 —-201 0 -6
1 30[2 O 0 1 0
00 1|0 0 6 0 -1 1
[S3:= 53 —552]
12 0/0 -4 0 1 0 -6
1 30[2 O 0 0 1 =5
00 1|0 0 6 0 -1 6
[S1 < S2]
1 202 O 0 0 1 —6
13 0/0 —4 0 1 0 -5
00 1|0 0 6 |—-1 0 ©6

23
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5.5.4 Example: Presentation of an endomorphism

For our principal application, the matrix Q is not needed. Also, transformations in which
one row resp. column is used to change others may be carried out simultaneously. Apply-
ing row transformations, there is no need to list also the inverse column transformations.
Thus, the row and column transformations listed are applied to the right hand matrix
and with each row transformation the inverse column transformation has to be applied
to the left hand matrix. Example

1 0 0|—2x -1 1
0101 -2-=x 1 =A
0010 0 —1—u

S1:+51+ 253, 52:= 52+ 53

1 00 0 0 1
01 0] z+1 —(z+1) 1
00 1|—-xz(zx+1) —(x+1) -1—-2z
S2:=-52
1 00 0 0 1
010 r+1 r+1 1
00 1|—2z(z+1) z+1 —1—=x
72:=22— 271, 73:=2Z3+ (1+ )71
1 00 0 0 1
1 10 r+1 r+1 0
—z—1 0 1|—z(z+1) 2+1 0
S1:=51-52
1 0 0 0 0 1
1 10 0 r+1 0
—x—1 0 1|=(z+1)? z+1 0
43:=43—-272
1 00 0 0 1
1 10 0 r+1 0
—r—1 1 1|—(z+1)*> 0 0
S1 < 53, S3:=-S53
1 0 01 0 0
Pl — 1 1 0/0 z+1 0 =D
—z—1 1 1|0 0 (z+1)

Here, given a Q-vector space V with basis « : €, €3, €3 we may consider A the presentation
matrix of the endomorphism ¢ given by

0 -1 1
A=1|1 -2 1
0 0 -1
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In the free Q[z]-module with basis ey, es, €5 (and canonical homomorphism 7 : FF — V
with 7(e;) = €;) the submodule

U = Spangp{(z — 1)e1, —e1 + (=2 —x)ea, e1 + €2+ (=1 — x)es}
corresponding to this presentation is given w.r.t. the basis
fi=merter+ (=1 —m)es, fa=extes, fs=e3

as

U =Ql]Lfi & Qzl(x +1)f2 © Qz](z + 1)°f5
Consequently, as a Q[z]-module
V = Q[z]/Q[z]xQ[z]/Q[z](z+1)xQ[z] /Qlz](2+1)* = Q[z]/Qlz](+1) xQ[z] /Qlz] (z+1)*

namely

V = Qlz]f: ® Qlz]f3
where
rf)=fi=@+&+(—2-1)&=0,n(fo)=fo=6G+& n(fs)=Ffr=2

Thus, w.r.t. the basis
6:f;7 .fé? ¢(f_‘é):é)l+_’2__‘3

of the Q-vector space V' we have

-10 0
=10 0 -1
0 1 -2

5.5.5 Solving systems of linear equations *

To solve a sytem Ax = b over an euclidean ring compute P, P~1, D and Q such that
PAQ = Q. Substitute y = Qx. Then the system is equivalent to

Dy =Pb=:c
and solvable if and only if ¢; € Rd; for all 2. The solution set is then given as

i
{Q : | 7 € R}  where d;q; = ¢;

T'mGm
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5.5.6 Elementary divisors
Consider two types of list of elements of an euclidean ring
e dy,...,dy such that d; | d;i1q

e all members are 0, units, or prime powers and no two powers of the same or ass-
coiated prime are not associated

Lemma 5.5.3 Up to association and order there is a 1-1-correspondence between the two
types of list given by

e Both have the same number of units and the same number of zeros
o Foranyd; =pi*-...-p/" of the first list, pi*,...,p;" belongs to the second

Proof. To produce a list of the first type from the second, assume that associated primes
are equal. For each prime p; choose the highest exponent n; with p?j in the list and let

do = H p?j
J

Cancel these p;” from the list and continue with the remaining prime powers in the same
way. This yields
dl, c. ,do with di|di+1

Add the units on the left, the zeros on the right end of the list and renumber if you like.
O

5.6 Direct products and Chinese Remainder Theorem

5.6.1 Direct products

Given ideals I; of a commutative ring resp. K-algebra R we say that I; and I, are coprime
if 1 = ry + 79 for some r; € I;. We also write R = I; + I

Lemma 5.6.1 If I, I, are coprime ideals of R then there is a canonical surjective ho-
momorphism ¢ : R — R/I; X R/Iy which is also R-linear with kernel ker¢ = I, N I

Proof. Define

o(a) = (m(a), m(a)) = (a+ I, a+ )
Then ¢ is a homomorphism and ¢(a) = 0 < m(a) = me(a) = 0 < a € I; N I,. Consider
(m1(a1), ma(az)) € R/Iy x R/I5. We need a € R such that

mi(a) = m(a;) ie. a—a; €1; fori=1,2

By hypothesis, there are r; € I; such that 1 = r; + ro. In particular, m;(r;b) = 0 for all
b € R. Thus

Wi(rjai) = 7TZ'(7"]'CZ,L' + TZ'CZZ') = 7TZ'<<T']' + 7’1‘)@1') = Wi(ai) and 7Tj(7’jai> =0 foriq 7éj

Thus, choose
a =rora; +riay U
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Corollary 5.6.2 If I, I, are coprime ideals of R then, canonically,
R/([l ﬂ]Q) = R/[l X R/[Q

Corollary 5.6.3 R = Ry x Ry if and only if there are ideals Iy and Iy of R such that
ngR/[fL, [1ﬂ[2 :07 [1+[2 :R
Proof. If R = Ry X Ry choose I = {0} x Ry and I, = Ry x {0}. O

5.6.2 Chinese Remainder

In an euclidean ring, principal ideals (d;) and (ds) are coprime iff the elements d;, ds are
coprime.

Theorem 5.6.4 Let R be an euclidean ring (and a K -algebra) and d = LCM (dy, ds) € R.
Then there is a canonical injective R-linear map which is also a ring (and o K-algebra)
homomorphism

X: R/Rd — R/Rdy x R/Rds, ¢(a+ Rd) = (a+ Rdy, a+ Rdy)
and ¢ is an isomorphism if di, dy are coprime. If R/Rdy = R/Rdy x R/Rdy as R-modules
then dy = didy and dq, dy are coprime. then
In particular, all simultaneous congruences
r=b modd;, x=0b modd,
have unique solution modulo d = d;d, if and only if d;, dy are coprime. Namely,
(%) x = biagdy + board; if 1 = aydy + aqds

Proof. Let I; = Rd; and observe that r(a + I;) = ra + I; so in the above lemma ¢ is R-
linear and then so is x. Also Iy NI, = LCM(dy,ds), obviuosly. Now, if GCD(dy,ds) = 1
then LCM (dy,dy) = dids = d and we may apply Cor.5.6.2.

Now, assume R/Rdy = R/Rd, x R/Rdy as R-modules. Then there is a surjective R-
linear map of R/Rdy onto R/Rd; whence d; | dy by Lemma 5.2.5. Also, this implies that
all simultaneous congruences () have unique solution modulo dy. Consider by = by = 0.
Any multiple of LC'M(dy,ds) is a solution, in particular didy; and dy. By uniqueness it
follows dy = dydy = LCM(dy,dy). But then GCD(dy,dy) = 1. O In an more abstract
approach, this isomorphism means in view of Cor.5.6.2 that there are ideals I; of R/Rd,
such that

L+ I, =R/Rdy, NIy ={0}, (R/Rdy)/I; = R/Rd,;

Let 7 : R — R/Rdy the canonical homomorphism. Then by the Isomorphism Theorem
Ji=rm ML) ={reR|n(r) e

are ideals of R and J; = Rd; by Cor.5.1.1. Moreover

I+ J=rYL+1L)=71"R/Rdy), hNJo=n L NIL)=7"{0}) =Kerr = Rdy

Thus, dy,dy are coprime and dy = LCM (dy,ds) = dydy. O
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Corollary 5.6.5 Let M be an R-module, g,q91,92 € M and d,dq,ds € R.

(i) If M = Rg with minimal annihilator d and d = didy with coprime dy,dy then
M = Rdyg @& Rdig with minimal annihilators d; of d;g (i # j).

(i) If d; is a minimal annihilator of g; fori = 1,2 and M = Rg; @ Rgs then M is cyclic
if and only if di,dy are coprime and then M = R(g1 + go) with minimal annihilator
dyds.

Proof. Ad (i): We have by Chinese remainder
M= R/d= R/Rd; x R/Rdy, g+~ 1+ (1,1)
Now, d; is u unit modulo d; for i # j thus a generator of R/d; - corresponding to
gi = djg € M under this isomorphism. And rd;g = 0 iff d;d;|rd; iff d;|r so d; is the
minimal annihilator of g;.
Ad (ii). We have Rg; = R/Rd; whence by Chinese Remainder
M = Rg; ® Rgs = R/Rd; x R/Rds

cyclic if and only if dy, ds are coprime and M = R/Rd where d = dydy. Now, under these
isomorphisms, g; corresponds to a unit u; of R/Rd; whence g; + g2 to the unit (u, ug) of
R/Rdy x R/Rdsy and this to a unit u of R/Rd. O

5.6.3 Example

Consider an 8-dimensional R-vector space V with basis a : €1, ..., €s. The endomorphism
¢ with matrix ¢* = A turns V into an R[z]-module

SO OO+ OO oo
OO R P, OO OO
_— O O O O o oo
| S OO O OO

—

[ eloleoleoloeol =
[ elelelell =]
DO oo+ OO O

=}

The minimal polynomials of the blocks and their factorization in R[z] are given as
' —22° + 227 =20+ 1= (z—1)*(a*+ 1), 2* —22+1=(z—1)> 2°+1
Generators of the invariant subspaces associated with the blocks are
€1, g, €7
The prime powers factors give the list of elementary divisors of A

(x—1)% 22 +1, (x —1)2 22 +1
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Generators of the associated invariant subspaces are
2 — 2 = — —
(x®+ 1)éy, (x —1)%€, é,¢ér

observe that the third block is Jordan, so its generator is the last vector 5. W.r.t. the
basis

— — —

(1’2 —+ 1)51 = 51 + 53, 13(172 + 1)51 =€y + €4, (CL’ - 1)251 = €1 — 252 + 53,

2 — = . = = - o o
x(x —1)%€) = €y — 25 + €y, €5, xég = €5 + €, €7, €5

¢ has matrix

0 -10 0 0 O 0 O
1 2 0 0 0 0 0 O
0 0 0 -1 0 0 0 O
0 061 060 0 0 O
0 0 0 0 0 -1 0 O
0O 0 0 01 2 0 O
0O 0 0 00 0 0 -1
0 0 0 00 0 1 O

The invariant divisors of A are obtained first multiplying as large as possible coprime
elementary divisors. Here, this amounts to the minimal polynomial of the first and the
produtc of the minimal polynomials of the second and third block.

(z = 1)*(2" +1), (z—1)*(2" +1)
Thus, we have generators for invariant subspaces

€1, € + €7

and w.rt.t. the basis

€1, €, €3, €4, €6+ €7, x(€s + €7) = €5 + € + €3,
I2(€6+€7) :2€5+56—€7, m3(€6+€7) :3_‘5—’— _»6_58
000 —-1000 0
100 2 0O0O0 O
010 -200U0 0
001 2 00O0 O
000 0 0O0O0O -1
000 0 100 2
000 0 010 —2
000 0 001 2

The minimal polynomial of A is the invariant divisor of highest degree, the characteristic
polynomial the product of all elementary divisors

(x—1)*2*+1), (z—D*2?+1)?
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Passing to the complexification, we can further factorize z>+1 = (z+1)(x —i). We obtain
Jordan-basis and matrix

(x —1)(€1 + €3) = —€1 + € + €y, €1 + €5,
(x +1)(e1 — 265 + €3) = i€y + (1 —2i)éy + (—2+1i)e3 + €,
+

(JI — Z)(é} — 252 + 53) == 251 + (1 + 2Z) _)2

55, 567 (33 + 2)57 = 257 + gg, (.T — Z) _)7 = —?:57 + 58
110 0 000 O
010 0 O0O0O0 O
002 0 0O0O0 O
000 — 0O0O0 O
000 0 110 O
000 0 010 O
000 0 O0O0 <22 O
000 0 0O0O0 —

5.6.4 Multiple GCDs

Let R be an euclidean ring (and a K-algebra). d ~ GCD(ky,...,k,) if and only if d|k;
for all ¢ and ¢ | d for all ¢ such that ¢ | k; for all i. Clearly

GCD(ky,...,k,) = GCD(GCD(ky,... kn_1),kn)
If follows that there are
a; € R such that d = a1k + ... + a,k,
e Determine ¢; with d,_1 =GCD(ky, ..., k,_1) = c1hk1 + ...+ cn1kn_1
e d =GCD(dy, k,). Determine b, a,, mit d = bd,, 1 + a,k,

e a; =bcy,...,ap_1 =bcy_1

Elements my, ..., m, of an euclidean ring are pairwise coprime if GCD(m;,m;) ~ 1 for
all 7 # j Equivalently

m

(m mi) where m jl;[im]

5.6.5 Partial fractions *

Theorem 5.6.6 If Q) is the quotient field of an euclidean ring R then any % € Q with

0f < dg can be written as a sum of partial fractions of the form 1% with irreducible plg,
da < op and g < O f.
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Proof. Let g = plfl «...+pFm with prime p; and
kion ki -
G =P D
By Chinese Remainder we have
a A,
f:a1Q1+---+@QO> i:Tll‘f‘---—f‘T
g pl mm

Thus, we have to deal only with with quotients 1%. This is done by recursion on k. Long
division yields

a=bp+r, £:L+ with or < dop O
p

5.6.6 Chinese Remainder Theorem in multiple factors *

Given pairwise coprime m; it follows
a. GOD([[;e;mi, [1;e;my) = 1for INJ =10
b. There are a; € R such that 1 = almﬁl +...+ anmﬂn

c. There is a canonical isomorphism

X :R/(m) — R/(my)x...xR/(m,) mit a[ mod m] — (a[ mod my],...,a] mod m,))

d. The following simultaneuos congruences are solvable
x=by( mod my),...,x =b,( mod m,)
with solution given by

m m
a=bja— +...+ba,—

my my,

Concerning d) compute

biaiﬂ =0= blaiﬂ ( mod my) fori>1

m; m;
m m m m m
a=ba— +bjag—+ ...+ ba,—=bi(a;—+ ... +a,—) =by ( mod my)
mq mo my mq my
and similarly for ma, ..., m,. This gives surjectivity of ¢ as in Lemma 5.6.1. Clearly,

(m) = Ker ¢. Thus, x is an isomorphism. [J

5.6.7 Decomposition Lemma

The following can be obtained via the isomorphism given by the Chinese Remainder
Theorem. Though, we formulate and prove it independently.

Lemma 5.6.7 Let dy # 0 and dy = dids in the euclidean ring R and 1 = ridy + rads.
Let M be an R-module and M; = {v e M |dwv =0. Let {i,j} = {1,2}. Then
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(i) My = My @ My with submodules of M
(it) v d;v is an R-linear automorphism of M; with inverse v — ;v
(1i1) If My = Rg then M; = Rd;g

(i) If My = Rgy and My = Rgy then My = R(g1 + g2)

Proof.
a. By commutativity of R, the M; are submodules.
b. djv € M; for all v € My, since dy = dids
c. Forallve M: v=1v =rydyv + ridiv € My + My whence M = M; + M,
d. For v € M;: rjdjv = 0+ r;jdju = r;dv + r;djuv = 1v = v whence (ii)

e. Let v; € Mz and V1 + Uy = 0. Then 0 = Tjdj(vl +Ug) = Tjdjvl +Tjdjv2 = rjdjvi = ;.
Thus Mo = M1 D MQ.

f. Let My = Rg and vy € M;. Then vy =rg =rlg = r(ridi+reds)g = rridig+rradag
with rridig € My whence vy = rradag.

g. Let My = Rg; and My = Rgs. For any v there are v; € M; and s; € R such that
V=01 + Uy = 5101 + 5292 = S172dog1 + Sor1dige = (s172ds + S2r1d1) (91 + g2) O

5.5.7 Minimal annihilators and Cayley-Hamilton

Given an R-module M over an euclidean ring
Ann(M)={re R|rv=0forallve M}

is an ideal of R, obviuosly, whence Ann(M) = (d) where d € Ann(M) with §(d) minimal. d
is unique up to association and called minimal annihilator for M. In the case of an K|x]-
module given by an endomorphism ¢ of a finite dimensional vector space V', a minimal
annhilator is given as the normed d(z) € K[z] of minimal degree suh that d(¢) = 0 and
called the minimal polynomial of ¢. By finite dimension, d(x) neq0 exists (otherwise,
K[z] would be isomorphic to a subspace of V).

Proposition 5.5.8 If the module M 1is presented by a diagonal matriz with entriesdy, ..., d,
then any minimal annihilator is d =~ LCM (dy, ..., d,)

Proof. We have M = €, Rv; with Rv; = R/(d;). Let d' the LCM of the d;. Then
d € Ann(M) wgence d | d’. On the other hand, dv; =0 so d; | d for all : and d' | d. O

Corollary 5.5.9 Cayley-Hamilton. For any endomorphism ¢ of a finite dimensional K-
vector space, the minimal polynomial d(x) divides the characteristic polynomial x(zx) in
Klz]. In particular, x(]phi) =0
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Proof. Assume ¢ given by the matrix A € K™*".then A — xF is a presentation matrix for
the K|[x]-module V' given by ¢. There are invertible P and Q € Klz|"*", in particular
det P € K* and det Q@ € K*) such that P(A — xE)Q is diagonal with d;(x) | dit1(z). It
follows

x(z) = det(A —zF) =det Pdet(A — xE)det Q = dy(x) - ... d,(x)

where d,(z) ~ d(z). O

5.5.8 Extension to principal ideal domains™

Recall that a principal ideal domain is an integral domain in which every ideal is principal.
In particular, for all a, b there is d such that

equivalently, there are aq, by, d, x,y such that

a=ayd, b="bd, a1z +biy=1

the latter obtained from ax + by = d by cancellation. It follows

(CLl bl) (I‘ —bl) _E
-y Yy ay

(a b) ("’” ‘afl) —d(a b) (“”C ‘afl) —d(1 0)=(d 0)

Y Y

and by transposing

(5 2) (=)

Thus, the Theorem on Invariant Divisors extends to principal ideal domains and so does
its corollary: Any finitely generated module over an principal ideal domain is a direct
sum of finitely many cyclic ones. Also, principal ideal domains have unique factorization.

5.6.7 Addenda et corrigenda

a.

Lemma 22.2.5 applies to ring homomorphisms as well as to R-linear maps. Proof
immediate by Homomorphism Theorem

proof of 22.3.3 read r,s € I
proof of 22.4.1 read c|(ra + sb)

Algorithm 22.5.2: Induction on (0(.A), n where n is th number of row. Read [Sk :=
Sk —¢S;] and [Zk := Zk — qZ;] with §(ax; — gij) < 6(as;).

In Lemma 22.6.1 ¢ is also R-linear. In the proof: Choose a = rqay + r1as.

In Thm. 22.6.4. Let d = LCM(dy, ds) not d = dyds.



Chapter 6

Canonical forms of matrices

A general assumption for this chapter is that V' is an n-dimensional K-vector space with
an endomorphism ¢ such that the minimal polynomial is a product of linear factors. We
consider V' as the K[z]-module where 20 = ¢(v).

6.1 Jordan matrices and bases

6.1.1 Jordan-chains and Jordan-blocks
For any eigenvalue X\ of ¢ define
¢r = ¢ — Aid, Le. ¢A(F) = &(T) — AT

The A- Jordan-chain J\(¥) of the vector ¢ with head or start vector @ and tail or
eigenvector o(¥) consists of the vectors

0 # o(¥) = $571(@), $52(0),...,6:(8), T  with ¢ro(7) = ¢5(7) =0

and has length k.

0 N (o) Nl () Y3 (@) oA(D)
i3\ 3\ O o

<y

The vectors in the chain form an independent list: If Zf:_ol riph (0) = 0 then then
Zf:_g ¢ (@) = ¢(0) = 0 so by induction r; = 0 for i > k — 1 and then r_1¢* 5 = 0
and r,_1 = 0.

A \- Jordan-block is a matrix

A1 0 0
0 XA 1 0
0 0 X 1
0 o 0

Lemma 6.1.1 Let ¢ € End(V) and 8 : Uy,... 0 a basis of V. Then the matriz ¢g of ¢
w.r.t. B is a A-Jordan-block if and only if vy, ..., Uk is a A-Jordan-chain.

34
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Proof. To have a A\-Jordan block as matrix means that
o)) = Ay, @(U;) = A\ + Ui—q, le. Timy = @(0;) — Ay O

Proposition 6.1.2 V is a cyclic K[x]-module with minimal polynomial (x — X\)™ degree
n if and only if the K-vector space V' admits a basis which is a A-Jordan-chain (of length
n). If so, then

(i) The K[z]-module V is isomorphic to Klz]/((x — \)").
(11) W.r.t. some Jordan-chain B, the matriz of of ¢ is a Jordan-block J),,.

(111) U is a generator of the K[x]-module V if and only if U is a start vector of a Jordan-
chain.

Proof. Assume that V' is cyclic with minimal polynomial (x — \)", then V = K|x]/((z —
A)"). The (x — A\)* generate the K-vector space K|[z]: inductively on obtains all z* since
(x — \)* = 2% + pi(x) with a polynomial py(x) of degree < k. Thus, the (z — \)*, k < n,
generate the K-vector space and form a basis 8 : (x — X\)"!,... 1 (since dim = n). This

tranfers ot V' via the isomorphism. That ¢ has w.r.t. 8 matrix Jy,, is seen from
vz =N = (@ - NN +2 =) =Xz — N+ (z - N

Conversely, given a basis consisting of a Jordan-chain, the start-vector ¢ is a generator,
obviously. Also (x — A\)™(¢) =0 < m > nso (x — A)" is the minimal polynomial. [J

6.1.2 Jordan-matrices and bases

A Jordan basis for ¢ is a basis which is a list-concatenation of A-Jordan chains, A ranging
over the eigenvalues of ¢. A Jordan matriz is a block-diagonal matrix with A-Jordan-
blocks on the diagonal.

Corollary 6.1.3 3 is a Jordan basis for the endomorphism ¢ if and only if ¢ is a Jordan
matriz.

Theorem 6.1.4 Let ¢ be an endomorphism of a finite dimensional K -vector space V' such
that the minimal polynomial is a product of linear factors from K|x| (which is guaranteed
by the Fundamental Theorem of Algebra if K = C). Then V' admits a Jordan-basis of ¢.
The associated Jordan-matriz J is uniquely determined up to permutation of blocks, For
each EW X\, the number of A-Jordan blocks is the geometric multplicity, the sum of the
block sizes the algebraic multiplicity, i.e. the number of occurences of the EW X\ on the
diagonal.

Proof. Let a: €1,...,€, be a basis of V and ¢ be given by A w.r.t. a. Then A — zF is
a presentation matrix for the K[z]-module V w.r.t. the basis ey, ..., e,of the free K|z]-
module F'. In particular, there is a canonical K{[z]-linear 7 : F* — V with 7 (e;) = é;. By
the Theorem on Invariant Divisors 5.5.1 there are invertible matrices P and Q in K[x]™*"
such that PAQ = D is diagonal and presentation matrix of V w.r.t. the basis fi,..., f,
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of the free K[z]-module given by the columns of P! ¢f Cor.4.3.3. Then we have a direct
decomposition into cyclic submodules

V=Kfi®. oKaf
where f; = 7 (f,).

Now, by Prop.??lcmann the LCM of the d;(z) is the minimal polynomial, so by
assumption a product of linear factors. Thus each d;(z) is a product with pairwise distinct
Aj

(x—A)" - (= M)M

By iterated application of the Decomposition Lemma 5.6.7 we get

l

Klalfi = @ Klalfy with fin = [J(x — A% i

h=1 i#h
o K[z]fi, cyclic with minimal polynomial (z — Aj)*

Thus, each of these invariant subspaces admits a basis which is a \,-Jordan-chain of
length kj. Taken together, these bases form a Jordan basis of V. [J

6.1.3 Canonical forms

Corollary 6.1.5 Any endomorphism of a finite dimensional K-vector space admits a
basis such that the matriz is block diagonal with companion matrices of polynomials
m;(z) € K[x]. One may require

o m;(z)|m1(x) for alli, Frobenius- or rational canonical form with invariant divisors
mi(x)

o m;(x) = p;(x)* with prime p;(x), Weierstrass canonical form with elementary divi-
sors p;(x)ki

o Ifpi(z) = (z— N\)¥ for all i (e.g. if K is algebraically closed, say K = C), then
in the Weiertrass canonical form on may replace the companion matrices by Jordan
blocks (changing the basis) to obtain Jordan canonical form

Proof. Follow the proof of Jordan canonical from to the diagonal presentation with d;(z) |
d;y1(z). This yields Frobenius. Use Decomposition Lemma to pass to Weierstrass.

6.1.4 Example

Let V a Q-vector space with basis €7, ..., €5 and ¢ the endomorphism with matrix
2 100 0
0 200 0
A=10 0 2 0 0
1 101 —4
-1 0 0 1 =2
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6.1.

-2 -z

0
0
1

S1—(2—12)52

Sl :=

—2—x

72— (2—2)Z1, Z4 = Z4 — Z1, S1 <> 52

o\
53
— | © - O
[a]
P
8 8
—
0_O+_
o —
N~— _
|
o OO O H
o OO H O
o O —H O O
o H O OO
— O O O O

72 =

—2—=x

0
0

S2+ 54, S5 := —(S5 + (2 + 2)54)

1
0
1
0

S2 -

l—z 224+zx+2

1
0
1
0

74 =724 — (1 —2)Z5

0
0
0

0 224x+2

0

1

54 ¢ 52, Z5 «» 22, Z5 > Z4, 54 := —S54]
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Diagonalize the characteristic matrix £ | A —zFE  ~  (f1,...,f5) | A

dlzdgzl, d3:2—l’, d4:<2—$)2, d5:$2+$+2
Characteristic polynomial (2 — 2)3(2* + 2 + 2)

Minimal polynomial (x —2)%(2* + 2 +2)
Eigenvalues 2 ( geom. multipl. 2, alg. multipl. 3)
_1 4 VT
2 -7
The matrix transformatlon yields the decomposition of V' into cyclic submodules: gener-
ators are the images fl, . f5 in V' of the new basis vectors fi,..., fs of the free modul
Ql[z]°. Those which are 0 may be discarded, here f1 and f2 smce at the associated position

in the diagonal presentation matrix A’ one has a 1 (i.e. 1f; = 0). We verify f1 =0
ﬁ:€1+(2—$)€2+g4:€1+2€2—¢(€2)+€4:€1+2€2—(€1+252+€4)+€4:O

This leaves us with (in general, applications of A would be required)

—

f3:€37 f4:€27 f5:_;

and relations ' ' '
2—2)fs =0, 2—2)’fs =0, (z°+2+2)f; =0

From there we can read the structure of V' as Q[z]-module and choose suitable bases

Vo= Q]/2-2) x Q]/2-2)* x Q]/(2*+x+2)

1 1,z 1,z
V = Qs @ Qlz]fa @ Qlz]fs
fs fi,xfa f.afs
€3 52, ¢(€2) 547 ¢<€4)
0 0 1 0 0
0 1 2 0 0
1 01,10 0,]0
0 0 1 1 1
0 0 0 0 1

The associated matrix of ¢ is

20 0 0 O
00 —40 0
A=101 4 0 0
00 0 0 =2
00 0 1 -1

Since the polynomials are powers of primes, A’ is in Weierstrass canonical form. Other
generators for the cyclic submodules may be obtained multiplying with a polynomial
invertible modulo the mimimal polynomial of the submodule.
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Frobenius canonical form is obtained combining submodules into sums according to Chi-
nese Remainder. Here, this applies to (2 — z)? and 2? + = + 1. Adding the generators f;
and f5 one gets a generator f; + f5 of the direct sum

Vo= Q]/(2-x) X Qlz]/((2 — 2)*(2* 4+ 2 + 2)
1 1,2, 2% 23
V = Qllfs @ Qlz](fu + f5)
fa fit fooa(fit f5),2%(fa+ f3), 2 (fa + f5)
€3 € + €1, P(€s + €1), ¢° (€ + €1), ¢ (€ + €4)
0 0 1 4 12
0 1 2 4 8
1 101,11 0 (, O
0 1 2 1 13
0 0 1 —1 —1

with matrix in Frobenius canonical form

2000 O
0000 =8
A"=10 1 0 0 4
0010 2
0001 3

da (2 — 2)*(2* + v +2) = 2 — 32° — 2% — 42 + 8.

Again there are other generators of Q[z](f; + f5): all

—

b(x) fi + a(x) f5

where b(z) invertible mod (2 — z)?, a(x) invertible mod z* + x 4 2

To obtain Jordan canonical form, do everything over C. The decomposition into cyclics
remains valid but can be refined due to

-1 V7.

P Hr+2=(r— N -\ With/\ZT
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C = Clz]/2-2) x Clz]/2-2)* x Clz]/(z=A) x Cla]/(z -}
1 z—2,1 23\ — 23\
= Clhlfsi o Clalfi ® Chlfa @ Chlfs
fi (z = 2) 1, fi (z =N s (z =N fs
& (¢ — 2id)(E), (¢ — Aid)éy (¢ — Aid)éy
0 1 0 0 0
0 0 1 0 0
1 01,10 0 0
0 L] 10 2y -
0 0 0 1 1
Jordan matrix von ¢
200 0 0
0 21 0 0
00 2 0 0
000 F+¥% 0
000 0 -
Namely 2 — A =23\ mod 2 — A and z — A= —2i3\ mod z — A since
-1 1 —
= aioa TN Fggy e

with eigenvectors

Far(x — 2) fa wort, EW?2

- —1 7
f51 w.r.t. EW —_— + \/—_Z
2 2
- —1 7
f52 w.r.t. EW 7 — gl

6.1.5 Review: Structure of an endomorphism

a. The basis a of a free K [z]-module and matrix A—zE may be transformed into a basis
fi,--., fn and diagonal matrix with normed diagonal entries 1,...,1,d,,...,d, €
Kz], d; % 1 forr i > s. This yields a direct decomposition into cyclic submoduls
with minimal polynomials d;

V=K@lf.o... o Kalf,

where f; = Z bjikqﬁk(éi) in Vit f; = Z(Z bjikxk)ei in the free module.
ik

ik
b. The K-vector space V' has basis

ﬁ7¢(ﬁ)7 cee 7¢ni_1(ﬁ>7 1= Sy, Ny Ny = degdz
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W.r.t. this basis ¢ has matrix A’, block diagonally composed from Frobenius ma-
trices or companion matrices of the polynomials d;.

0 0 0 ... 0 —Ti0
1 0 0 ... 0 —Ti1
Al = O _1 'O . O @2 where d; = Zrikxk.
Do e : 0
0 0 0 —Tin,—2
0 0 | —Tin;—1

c. det(A—zE)~dy-...-d,, n=dimgV =degdet(A—zF)=>" degd,.

d. One may achieve d; | d;41 for i < n. These d; are unique up to = and called invariant
divisors of ¢, also d,, is the minimal polynomial of ¢. A’ is a Frobenius or rational
canonical form of A.

e. (Cayley-Hamilton) The LCM(dy,...,d,) is associated to the minimal polynomial
d(x) of ¢ and divides the characeristic polynomial of ¢. In particular d(¢) = 0.

f. Factorizing the d; into powers d;; of coprime irreducible polynomials d; = d;1-. . .-dip,;,
one obtains a direct decomposition into primary cyclic submodules with minimal
polynomial d;,

V=Kz|fa ® & K[x]fsm, ®... 0 K[z]fr1 @ & K[z]fam,
where fi, = (d;/din) fi = (dir(d) 0 ... dij_1(0) 0 dipy1(¢) 0 ... 0 dim,(0))(f;) in V
g. The K-vector space V has basis
Finy ®(fin), - " (i), i=s5,...,m, h=1,....my, ng = degdy,.

W.r.t. this basis ¢ has matrix A’, block diagonally composed from the companions

of the d;h.

0 0 0 .. 0 —Tiho

1 0 0 0 —Tin1

0 1 0 0 —T; Lih

Ay = Ce e . i where dy = Zﬁhkﬂﬁk-

: . . .o : =0

0 O 0 —Tinng,—2

0 0 | —Tihng,—1

h. The elementary divisors d;, of ¢ are unqiue up to ~. A’ is a Weierstrass canonical
form of A.

i. If the d;;, are powers of linear polynomials  d;, = (z — A\y,)"* then the K-vector
space V' has Jordan basis

(¢ — Ninid)™ ™ (fin)s - .o (& — Xanid) (fin), fin, i=s,...,n, h=1,...,m,.
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W.r.t. this basis ¢ has matrix A’ block diagonally composed from n;;, x n;, Jordan

blocks
N 10 ... 0
0 XNp 1 0
J)‘i}unih el T
0 )\ih 1
0 o 00 A

j. This matrix is unique, if it exists, up to order of blocks and called Jordan canonical
form of A. It can be achieved passing from K to its algebraic closure.

6.2 Primary decomposition

6.2.1 Primary decomposition for modules

An R-module M is a torsion module if T(M) = M. In a particular, any K[z]-module
which is a finite dimensional K-vector space is a torsion module.

Given a prime element p of R, a torsion module is p- primary if for any v € M there
is k > 0 such that p*v = 0. Of course, then M is g-primary for any ¢ associated with p.

Theorem 6.2.1 Let R be an euclidean ring and M a a finitely generated torion R-module.
Then

(i) There is d # 0 with 6(d) minimal such that dv =0 for allv € M. d is unique up to
association and called the minimal annihilator of M.

(i1) Given a factorization d =~ Hizlpfi into primes p; % p; fori # j.

M=M®&...oM, M={veM|piv=0}

(11i) M has unique direct decomposition into p;-primary submodules N; # 0 with non-
associated primes.

(iv) In (iii) one has minimal annihilators p¥ of Ny (i < 1) if and only if d = []._, pl* is
a minimal annhilator of M. In particular, | is unique and the pf" are unique up to
order and association.

(v) d in (iv) is an invariant divisor of M of highest degree.

If R = K[z] and if p; = x — \; then M, is the generalized eigenspace w.r.t. eigenvalue \;
and d = d(x) is called the minimal polynomial of M.

Proof of the Thm. Ad (i). For each generator v;, choose r; # 0 with r;u; = 0. Then rv =0
for all v where r = [, ;. Now, d is a generator of the ideal {r € R | rv = 0 for all v € M}.
(ii) follows with Lemmab5.6.7. If M = @ N; with p; primary N; then N; C M; and so
N; = M; since both sums are direct. Ad (iv). Clearly dv = 0 for v € N; so for all v € M.
d is minimal, since pfi_lv = 0 for some v € N;. The uniqueness of the pf” follows from
unique factorization. (v) is immediate by Thm.6.5.1(iii). O
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6.2.2 Example: Generalized eigenspaces

Qlx]-module Q° given by A w.r.t. canonical basis.

O O OO oo

o O O o

0

O O OO O

311100
030010
003001

A_000211
000020
00000 2

0 0 00
1 9 00
0 1 U
1 1 (A_?’E)_oo
-1 0 00
0 —1 00

rk(A—3E) =4, rk(A — 3E)? = rk(A — 3E)?
(

S OO oo o

3

—1

O O = OO

Minimal polynomial for generalized eigenspace w.r.t. A = 3 is (z — 3)?

(>l eNell S

basis 33 of ker(A — 3E)?: ey, e, e3

[l eleleoll S o

S OO = O -

O O O OO

00 1 2
19 0 1
0 1 > |00
11’(A_2E>_00
00 00
00 00

rk(A —2E) = rk(A — 3E)* =3

Minimal polynomial for generalized eigenspace w.r.t. A = 2 is (x — 2)?

basis 3y of ker(A — 2E)? :

—E€s + €5, —€9 + €5, —€; + ey

Minimal polynomial of A is (z — 3)%(z — 2)?

OO O OO

OO o= O

S oo~ OO

A" = T ATy =

OO = OO
S OO OO W

(AVs O
S\ 0 A

O OO = O

S OO oo W

O O OO O

S OO WwWo

[elelell

—1
0
-2

1

0

SO NN O OO

O OO = O N

SN = O OO

-1
-2
0
1

N O = O OO
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311 2 1
AlVs=10 3 0], AVa=[0 2
00 3 00

N O =

J-basis V3 : 73 : e1,es,e3 — e
J-basis: V5 @ v

—e3 -+ €5, —€2 -+ €5, —€; -+ €y — (—82 + 65)

10 0 00 0 10 0 0 0 —1
01 -100 0 01 -1 0 1 1
00 1 00 0 00 1 —-10 0

=100 0 10 o *D=ed8shlhi=1g0 0 1 0 o0
00 0 01 —1 00 0 0 1 —1
00 0 00 1 00 0 0 0 1

310000
030000
I 1003000
J aTvAaT“/_000219
000020
00000 2

6.3 Nilpotent matrices

6.3.1 Shift

Lemma 6.3.1 Let p € K and ¢ = ¢, = ¢ — pid Then X is an EW of ¢ if and only if
A—pis an EW of y. Moreover B is a Jordan-basis for ¢ if and only if it is so for . U
18 Y-invariant if and only if U is ¢p-invariant.

Proof. ¥x—,, = ¢x. U

This reduces the case where the minimal polynomial is (z — )™, i.e. (¢ — Aid)™ = 0 to
the nilpotent case: we may assume that

e 9™ =0 for some m <n

6.3.2 Module versus vector space

Let R = K|[z]. A list ¥y,..., ¥, Since primary decomposition is most simply dealt with
as in the general case of modules, of vectors in V, all # 0, shall be called J- indepenent
if the sum Zle Ru; is direct, J- generating if V = Zle Ru;, and a J- basis if it is both.
Given 0 # ¢ € V its J- chain is the list

J(0): 0,0'0,...,¢'0#0, where ¢'5=0
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® Uy,..., U is J-independent (J-generating for V') if and only if the concatenated list
J(0h),...J(Ug) is K-independent (K-generating for V).

Here, we refer to independence and generators in the K-vector space V. Indeed

v vk ki
sz(ﬁb)ﬁz = Z anﬁj{,‘i where p;(x) = Zﬁ‘ﬂj
i=1 =

i=1 j=1

Vl V2
V3 V4 VtB ‘/6 V7

Lemma 6.3.2 Let o9, ..., ¢"10, be K-independent. Then

(i) U1,..., 0 are K-independent, the sum W = spany{0y,..., 0y} +ker ¢" is direct, and
dim W = k + dim ker ¢"

(ii) T.f.e.a.
— "G, =0 for all i
— QU ..., OV, Ups, ... T) is a J-basis of ker ¢
— U,...,U s a J-basis of W

Proof. If @ € ker ¢" and > il W = 0 then > rio"; + 0 = 0 whence r; for all i and
@ =0.0

6.3.3 Uniqueness of Jordan canonical form for nilpotent maps

Theorem 6.3.3 For a nilpotent endomorphism, the Jordan canonical form is unique up
to permutation of blocks.
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Proof. The Jordan matrix is determined by the number of J-chains of given lengths.
Ordering by decraesing length k; > ko ... we claim that these numbers are obtained as
follows (where ¢ is given by A)

[{i | ki > k}| = dimker ¢*™' — dim ker ¢* = rank A* — rank A"

This is shown by induction (compare the general primary case) applied to U = ker ¢*1 71,
Let k1 = k¢ > ky11. By the Lemma,

—

ngl, ceey ¢6t,17t+17 ..o, Ug
is a J-basis of U and so the ky — 1,...,k — 1, ki, ..., ks are obtained form the data for
U - which are part of that for V. Finally, t = dimV —dim U. [l

6.3.4 Existence and computation of J-bases for nilpotent maps

Theorem 6.3.4 Let m be minimal with ¢™ ' =0 and ¢"v1, ..., ¢"v; be K independent.

Then there is a J-basis Uy,...,U;,...0 of V. It can be computed iterating the following
two steps

e Preparation: Determine vy,...,0;,... Uy with ¢™01,..., 9" 0, a K-basis of im @™

e Recursion: Determine a J-basis ¢vy, ..., ¢Uk, Uki1, - ..U of ker ¢

Proof. The preparation step can be carried out, obviously. For the recursion step apply
inductive hypothesis (w.r.t. m) to the ¢-invariant subspace

U = ker¢p™ and ¢uy, ..., ¢

According to (ii) of the Lemma, vy,..., Uk, Ugt1,...0; is a J-basis of W. But by the
dimension formula for the endomorphism ¢ we have dimV = dimU + dimim ¢ =
dim U + k and with (i) of the lemma it follows W = V. OO The following observations are
of use in the computation. Given

V =spang({#,...,0;} UX)

a. Uj41,...,U; may be choosen from X

ker " = spany({¢v, ..., 00} U{T | T € X})
where for 7 € X

k k

F=E-) rt with ¢"F =Y r¢" if ¢"T#0,, & =7 else
=1 i=1

c. Start with 7 = 0 and X any K-basis of V.

d. If ¢ is given by A w.r.t. the basis €7, ..., €, choose the 77, . .. ,E as a maximal subset
such that the corresponding colums of A™ are independent
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e. From the ranks of the powers of A one can determine the Jordan canonical form,
i.e. the structure of a Jordan basis. This then can be used to verify in each step
that the proper number of vectors needed to build the basis has been found.

Proof. For (a) observe that
im @™ = span{¢™w; | i € I} if V =spang{w; |i€ I}

Indeed, if o= 37, pi(d)w; = 32, 32, rij¢?w; then ¢"T = 3, riod™ ;.

Concerning (b) observe that ¢"'z" = ¢ — > . r;¢™v; = 0 and, by defintion of &’
V =spany({th,..., 0} UX") =spang{v1,..., 00 + U’

where

U' = spang({ov1, ..., 00 UX') CU = ker o™

By (i) of the lemma, this sum is direct, whence dimU’ = dimV —k =dimU and U = U".
U

The unique eigenvector in the J-chain of 7 is 0@ = ¢! where [ is maximal with ¢'@ 0.
Corollary 6.3.5 Iftheovy,...,ou, are K-independent, then the vy, ..., vy are J-independent.

Proof. Choose h minimal with ¢"*17; = 0 for all 4. Define

= . h—" g
w‘:{ ?vz if o"v; # 0

1
U; else

Applying inductive hypothesis to ker ¢", the 0y, ... are J-independent. By (i) of the
lemma, J(v,),...,J(¥k) is a basis of W as defined, there, whence a J-basis of W. [J.

6.3.5 Example

— o O

A2 =

I

—_
O OO OO NN
OO OO o NO

b

I
S OO OO o oo
S OO OO o oo
SO OO OO =
S OO o oo
O OO O == OO
o O O O
O R OO NO OO
S OO OO o oo
S OO OO o oo
S OO OO o oo
SO OO OO oo
OO DD DD OO o
S OO OO o oo
SO DD OO W

0 0

A3 = O, rank(A?) = 2. A%es; = 2e; and A’es = 2e, are independent, thus e; and eg are
suitable heads. The associated Jordan-chains contain Aes = e3 + e4 and Aeg = e3 — ey,
hence their span U has basis ey, ..., es. Basis completion with vectors from kerA? e.g.
e;, v =2eg — 3e;. Now Ae; = e; +2e; € U but Av = —3ey+ e, +2e; € U, whence v is
the wanted head.
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6.3.6  Uniqueness of Jordan canonical form

Theorem 6.3.6 Given A € K™*", there exists invertible S € K™ such that J = S™'AS
is block-diagonal with Jordan blocks if and only if the minimal or the characteristic poly-
nomial of A is a product of linear factors x — X\; in K[z|. J is unique up to the order of

blocks.

Proof. Existence: Decompose the K[z]-module V' given by A (resp. ¢) into primary
components V), , then generalized eigenspaces of the )\;. For each, construct a Jordan
basis for the nilpotent (¢ — A;id)|V),. The concatenation of these yields a Jordan basis of
V' and the colums of S. Conversely, det(A — zF) is a product of linear factors, claerly.

Uniqueness follows from uniqueness of the generalized eigenspaces and uniqueness in
the nilpotent case. [

Corrigenda et addenda.

a. In the proof of Thm.23.1.4 read: K[z]f; in place of K[z]d;(z)f; and recall that d;(x)
is the minimal polynomial of the module K|z|f; = K[z]/(d;(x))

b. The generalized eigenspace V) w.r.t. A is given as
fer((6 — Aid)")
kE mimimal such that
dimim(¢ — Aid)*) = dimim(¢p — Aid)**1)
i.e. rank((A— AE)*) = rank((A — AE)")

and then
dimim(¢ — Aid)*) = dimim(¢ — Aid)*) for all I > k

Indeed, V' = V), @ W with invariant subspace W such that (¢ — Aid)|W is bijective
and ker((¢ — Aid)* C Vy whence

dimim(¢ — Aid)* = dimim((¢ — Aid)[V3)* + dim W
= dim Vy, — dim ker((¢ — Aid)* + dim W
and this is dim W if and only Vy — ker((¢ — Aid)*

6.4 Jordan-Chevalley decomposition

6.4.1 Existence
Theorem 6.4.1 For A € C"*™ there are H, N € C"*" such that
A=H+ N, HN = NH, H diagonalizable ; N nilpotent

Proof. There is an invertible matrix S such that S~1AS = .J is in Jordan form. Obviously,
J = Hy+ Ny where Hj is diagonal and Ny nilpotent. Moreover, J; = H; + N; in the
block decomposition into Jordan-blocks with H; = \;Ey, whence H;N; = N,;H;, It follows
HyNy = NyHy. Now, put H = SH()Sil and N = SN()Snil. Ll
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Corollary 6.4.2 If [ is the maximal block size in the Jordan canonical form then

min{m, -1}

=S ()= ()

k=0 k=0

Proof. Since HN = NH we may apply the polynomial formula. But, N¥ = O for k > [.
0.

6.4.2 Matrix exponential function
For each A € C™*" there is a uniquely determined matrix exp(A) such that

"1
exp(4) = lim —A™
h—o0 0 m!
To prove this, let ¢ be the endomorphism determined by A. Since the limit is to be
understood column wise, the claim amounts to the existence of limy,_, an_o %W”(m) =
exp(¢)(x) for the canonical basis vectors, i.e. for all vectors in C". .Thus, we may assume
A = H + N in Jordan canonical form. It follows according to the corollary, computing
with series, formally,

R N T L GV LAY SN et L ykpgm+
exp(A) = ) — A" = <k)mNH =22 wm oVl
m=0 m=0 k=0 m=0 k=0
-1 1 o] 1
= (2 V) (2 559 = exp() o) = explexp()
=0 J=

since HN = NH. But, if H is diagonal with diagonal entries )\; then H* has diagoal
entries \¥ whence exp(H) erists and

eM 0
exp(H)= [ 0 €™
0 0

This meas that for any € > 0 there is an hg such that for all £k > h > hy one has
| an:h %H ™| < ¢ which readily transfers to prove existence of exp(A).

Now, consider the vector valued function
y(t) = exp(At)y, (t € R) with fixed y, € C"
We claim that one has derivative
d
—uy(t) = Ay(t
Zy(t) = Ay(1)

i.e. that y(¢) is a solution of the system of first order linear differential equations with
constant coefficients given by A. Again, this claim is invariant under basis transformation,
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hence we may assume A in Jordan canonical form and even consisting of a single Jordan-
block of size [ and EW A, i.e A= AE 4+ N. In that case

exp(At) = exp(AEt + Nt) = exp(AEt) exp(Nt) = ek—|tka
k=0
Differentiating entry-wise we get
1y 1y -1 1
Xk Atp.pk—1\ Atk _ L\ Atk ATE At pk—1 Ark—1\ _
;H()\e thpeMEth )N —(AE);k!()\e YN +N(; T tFINEY) = Aexp(A)

6.4.3 Uniqueness of Jordan-Chevalley decomposition

Theorem 6.4.3 Given A € K™*" the minimal polynomial of which is a product of linear
factors in K[x], there are unique diagonalizable H and nilpotent N such that A= H + N
and HN = NH. Moreover, H, N € K|[A].

Lemma 6.4.4 Let V be a finite dimensional vector space with endomorpism ¢ and min-
imal polynomial d(z) = di(x)ds(z) with coprime dy(x),dy(x). Then V = Vi @ V, where
Vi={v eV |dip)v=0} and m € K[¢] for the projections m: V — V;.

Proof. V.=V, &V, by Lemma 5.6.7. Also 1 = r(x)d;(x) + ra(x)da(x) and (r;d;)(¢) is
identity on V; and 0 on V;. Thus, m = (r;d;)(¢) € K¢]. O

Lemma 6.4.5 Let R be a K-algebra and o, ..., an € R such that a0 = ooy for all
1,7. Then the smallest K-subalgebra containing all o; is given as

{Z Wiy i@ ™ i €NLay, . € K}

and 1is, 1n particular, commutative.

This is then the K-subalgebra generated by the commuting Ay, ..., A,,. Proof. Straight-
foreward computation. [

Lemma 6.4.6 If the matrices Ny, ..., N € K™" are nilpotent and N;N; = N,;N; for all
1,] then each A in the K-algebra generated by the A; is nilpotent.

Proof follows from the exercise: sum and product of two commuting nilpotent matrices is
nilpotent. [J

Proof of the Thm. We first show that there are H, N in K[A] with A = H+ N, H
diagonalizable, N nilpotent. Then also HN = N H. The statement can also be formulated
for endomorphism - and is basis invariant. thus. So we may assume that A = J is in
Jordan canonical form and we have the obvious decomposition J = H+ N. We claim that
H € KJ[A] - then also N = A — H in K[A] and so HN = NH. But the endomorphism
defined by H is ), \;m; where the 7; are the projections associated with decomposition
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into generalized eigenspaces, so m € K|[¢| by iterated application of Lemma 6.4.4 and so
H € K[A] whence N = A— H € K[A].

Now, given H, N in K[A] with A = H + N, H diagonalizable, N nilpotent, consider
A = H' + N’ with diagonalizable H’, nilpotent N’, and H'N' = N'H'. It follows H'A =
H'(H + N') = HH' + HN = H'H + N'H' = AH'. Similarly, NYA = AN’. Since
H,N e K[A], it follows from Lemma 6.4.5 that HH' = H'H and NN’ = N'N.

By Thm.?? we have H and H' simultaneously diagonalizable and so H — H' diagonaliz-
able. On the other hand, by Lemma 6.4.6, N'— N is nilpotent. From A = H4+N = H'+ N’
it follows H — H' = N’ — N which is a matrix which is both diagonalizable and nilpotent.
So it has to be O, since a nilpotent diagonal matrix is O. [J

6.5 Rational canonical form

In this section, R denotes an euclidean ring.

6.5.1 Structure theorem

Theorem 6.5.1 Given an R-module M on n generators €1, . .., €, over an euclidean ring
R and canonical homomorphism w: F — M, w(e;) = €;, where o : ey, ..., e, is a basis of
a free R-module F'. Then

(1) M is isomorphic to a direct product of cyclic modules

(i1) Given any presentation matriz A there are invertible P and Q such that PAQ is
diagonal with diagonal entries d; (with d; | diy1)

(i1i) Given matrices as in (ii) and A w.r.t. the basis « there is a basis : fi,..., fn of
F such that P~ gives the a-coordinates of the f; and

(iv) Requiring d; | diyq1, the d; % 1 are unique up to association (and called the invariant
divisors of M) resp. the nonzero summands in (iii) are unique up to isomorphism.

Proof. Given a system a; (j € J) of generators of U, let A be a matrix with colums (a;)*.
By Thm.5.5.1 on invariant divisors there are invertible P and Q such that D = PAQ is
diagonal with diagonal entries d; | d;;; - this also applies if A has infinitely many colums,
since the column operations in a step reducing the format of the matrix may be carried
out, simultaneously. Now, Cor.4.3.3 and sect. 21.2.5. point 5 apply. Uniqueness of the
invariant divisors follows from that of the elementary divisors - see below). [J

Corollary 6.5.2 For any submodule of a free R-module F' on n-free generators there is
a basis f1,..., fon von F, anr <n and d; € R with d;|d;11, i <1 such that dy f1,...,d.f.
is a basis of U.
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6.5.2 Torsion free part

Given an R-module M, its torsion submodule is
T(M)={veM|rv=0 for some r # 0}

M is torsion free if T(M) = 0.

Theorem 6.5.3 Let R be an euclidean ring and M an R-module with n generators. Then
M =T(M)®U with some U freely generated by m elements for some uniquely determined
0<m<n

Proof. In Thm.6.5.1 let d; | d;41 and d; # 0 < i < s. Then we have M = W @ U where
W = Spang{n(f;) | i < s} and U = Spang{n(f;) | ¢ > s}. In particular, U has basis
T(fs1)s .- m(fn) and dsw = 0 for all w € W. Thus U = R™ with m =n —s—1. If
w € W and 0 # u € U then ru # 0 whence r(w + ) # 0 for all » # 0. Thus, T(M) =W
and R =U = M/W.

Now, it suffices to show that R™ = RF implies m = k. Assume k < m, let () be the
quotient field of R, and consider R™ as a subset (and R-submodule) of Q™. Then the
canonical basis of R™ is a basis of the Q-vector space Q™. The canonical basis of RF
corresponds under the isomorphism to a k-element generating set of R™. But this is then
also a generating set of the Q-vector space ™, whence k = m. [J

6.5.3 Structure of primary modules

Theorem 6.5.4 Let R be an euclidean ring and M a finitely generated p-primary R-
module. Then

(1) M = Rv; & ... ® Ru, with Rv; 2 R/(pf) and k1 > ... > ks >0

(2) In (1), s and the p¥ are uniquely determined by M and called the elementary divisors
of M

(3) ¢p(v) = pv is an R-linear map ¢, : M — M and ky the minimal k with ker ¢’; =M
resp. im ¢’; =0

(4) (ker ¢E+1)/(ker ¢%) is canonically a R/(p)-vector space. M is determined up to iso-
morphism by the dimensions of these spaces for 0 < k < k;

{i | ki > k}| = dim (ker ¢™")/ (ker ¢f)

(5) (im¢k)/(im ¢Et1) is canonically a R/(p)-vector space. M is determined up to iso-
morphism by the dimensions of these spaces for 0 < k < k.

(6) im @~ is uniquely determined, # 0 but ¢,(im@f—") = 0.



6.5. RATIONAL CANONICAL FORM 53

In the case of the Jordan canonical form of an endomorphism ¢ with unique eigenvalue
A, we have p = — A, i.e. ¢, = ¢ — Aid. im ¢’;1_1 is then a subspace of the eigenspace of
¢ and any Jordan basis has to contain a subset which is a basis of this subspace.

Proof. Given p-primary M, the minimal annhilator is a power of p. Thus, (i) and (iii) are
obvious from the Theorem on primary decomposition.

Now, let U = ker ¢} and W = ker ¢%. Claerly W C U. Given u € U and r € R we
define

(r+ (p)ut W) = ru + W
This is well defined: if r + (p) = 1’ + (p) then r — ' = sp a whence (r — r")u = spu € W
and so

ru+W =r'u+W

On the other hand, if u—u" € W then r’u—r'v/ = r'(u—u') € W since W is a submodule.
Thus

ru+W=r'u+W =r'v+W

The module laws are inherited, obviuosly. Thus U/W is a vector space over the field
R/(p). Observe that

QS];l_l(rlvl A rs) =0 & pM Tl =0 forall i
and the latter holds a priori for all ¢ > m and for ¢ < m if and only if p | r;. Thus
N = kergb’;l_l = Rpv; ®...® Rpv,, ® Rupy1 @ ... & R,

and N is p-primary submodule of M with elementary divisors determined by those of M
as the p*~! with k; > 1. Assuming uniqueness as inductive hypothesis (proceeding by
induction on k;) uniqueness for M follows provided we have the number m of the k; = k;.

M/N = Rv,/Rpv, @ ... ® Rvn,/Rpvn, = (R/(p))™

so m is the dimension of the R/(p)-vector space M /N. This proves (2) and (4) follows by
induction, too. The proof of (5) is similar, (6) is obvious. O

6.5.4 Uniqueness of elementary and invariant divisors of a matrix

Corollary 6.5.5 The invariant divisors as well as the elementary divisors of a matrix
over a euclidean ring are unique up to association and order.

Proof. Consider A a presentation matrix of an R-module M. The number of elementary
or invariant divisors d; = 0 is the size of a basis of M/T(M). The elementary divisors p*
are determined up to association by the p-primary components of T'(M). From these we
combine the invariant divisors d; % 0, 1 beginning with the highest powers. Having these,
the number of invariant (and elementary) divisors d; ~ 1 just has to fill up to the number
of rows of A. [



o4 CHAPTER 6. CANONICAL FORMS OF MATRICES

6.5.5 Similar matrices

Theorem 6.5.6 For n x n-matrices A and A" over a field K t.f.a.e.

(1) A and A’ are similar, i.e. there is an invertible matriz S over K such that A" =
STLAS

(2) A—zFE and A’ —xE are equivalent, i.e. there are invertible matrices P and Q over
K[z] such that A’ — 2 E = P(A — 2E)Q

3) The K[x|-modules g K™ and gianK"™ defined by A resp. A’ are isomorphic
[A] [A]

(4) A and A" (i.e. A—2xE and A’ — xFE)) have the ‘same’ invariant divisors

(5) A and A" (i.e. A—2zE and A’ — xF) have the ‘same’ elementary divisors

(6) A and A" (i.e. A—xE and A" — xF) have the ‘same’ determinantal divisors

Proof. 1= 2: STY(A—2E)S = S1'AS —axE = A —zE. 2= 3: by Cor.4.3.3. 3= 1:
The module isomorphism o : g4 K" — g4 K" and the matrix S are related by

o(v) = Sv.
Given o is bijective and K-linear and one can find S. By K|x]-linearity, for all v
ASv = Aov = xov = o(zv) = SAw.
3 = 2 can be shown, directly: Given S, one obtains a module isomorphsim
w: gaK" = ganK", wv= S~

Indeed, for all v and f(z) = >, rpa”
Zr Aw( Zrk STTAS)S o = ZrkS Ak =

=51 ZrkAkv = w(f(z)v).

(3) is equivalent to (4) resp. (5) by existence and uniqueness of divisors. The k-th
determinantal divisor is defined as the normed GCD of all determinants of k£ x k-minors
of A — xFE. This is unchanged under transformation. In the diagonal matrix having the
invariant divisors on the diagonal, the k-th determinantal divisor is the product of the
fisst k invariant divisors. Hence, these determine each other. [J

Corollary 6.5.7 For any A € K™ there is invertible S € K™*" such that ST*AS = A’
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