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ON MODULAR LATTICES GENERATED BY TWO COMPLEMENTED PAIRS 

Christian Herrmann 

In [1; Problem 43] G. Birkhoff called for a description of the modular lattice 

FM(B) freely generated by four elements a, b, c, and d satisfying a+d = b+c = I and 

ad = bc = 0. Examples of subdirectly irreducible factors (as it turns out all of them) 

are provided in the paper [2] of A. Day, R. Wille et al.. There the modular lattice 

14 -- FM(J ) freely generated by elements a,b,c,d subject to the relations ab = ac = ad = 

bc = bd = cd = 0 and a+b = a+c = a+d = b+d = c+d = 1 has been determined and shown 

to be subdirectly irreducible. Moreover, defining recursively e o = 1, en+ 1 = •e n + Te n 
if n+l is odd, and en+ 1 = men+ •e n if n+l is even, they have finite subdirectly 
irreducible sections S(n,4) = [ en, 1 ] generated by •+en, •+en, •+en, and •+e n- 

Subsequently, Sauer, Seibert, and Wille showed in [4] that the only subdirectly 

irreducible homomorphic images of FM(B) which, in addition, satisfy ab = ac = bd = 

cd = 0 are FM(J14 ) and the length two lattice M 4 with four atoms (an alternative proof 
shall be outlined in õ4). From this and the lemma below our main result follows 

immediately. 

THEOREM. M 4, FM(J14) and its dual, and for n < oo the S(n,4) are exactly the 
subdirectly irredu cible homo morphic images of FM(B). 

Since in [2] the word problem for FM(Ji4 ) has been solved and it has been shown 
that FM(J14 ) is a homomorphic image of any 4-generated subdirect product of 
infinitely many S(n,4)'s, this establishes a solution of the word problem for any 

finitely presented homomorphic image of FM(B). An explicit description of FM(B) 

shall be given in õ 5. 

To formulate the quoted Lemma (which is an essential tool in the analysis of the 

free modular lattice with four generators, too) we introduce polynomials g0(w,x,y,z) = 

w+x+y+z and gn+l (w,x,y,z) = (Wgn+Xgn)(ygn+Zgn). 
LEMMA. Let M be a subdirectly irreducible modular lattice with generators 
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a,b,c,d which is not isomorphic to M 4 nor to any of the S(n,4). Then either 

ab = ac = ad = bc = bd = cd = 0 = II gn(a,b,c,d)gn(a,c,b,d)gn(a,d,b,c) 

or the dual statement holds. 

The proof of the lemma is based on the following two propositions the first of 

which is a variant of Proposition 7 in Wille [5]. 

PROPOSITION 1. Let L and M be modular lattices, L finite and M subdirectly 

irreducible. Let 7 (o) be a meet (join) homomorphism of L in M. Suppose that ox • 

'¾x holds for all x in L and that M is generated by the union of the intervals [ox,'¾x], x 

in L. Then either M is a homomorphic image of L or op • '¾q holds for all prime 

quotients p/q of L. 

PROPOSITION 2. Let M be a modular lattice, u an element of M, S a lattice and 

o• an order preserving map of S into M such that uooc-t- uo•y = uodx-t-y) and 

(u-t-ax)(u-t-o•y) = u -t- odxy) hold for all x,y in S. Moreover, let M be generated by the 

union of the sets E x = [uooc, cv, x] U [uooc, u] (x G S). Then u is a neutral element of M. 
Before we prove the Propositions we shall outline the proof of the Lemma. Let 

Aoo be the lattice of fig. 1 a precise description of which is given in Section 1. 

Obviously, its interval A n = [mn,1] has S(n,4) as its only subdirectly irreducible 

image. We are going to apply Proposition I to the An. Given a modular lattice M and a 

map e of {ao,bo,co,d o} into M we construct inductively a map 3'• of Aoo into M such 
e 

that 3,Mmn = gn(eao,ebo,eCo,edo). For any lattice L we denote the dual by L* and 

e e write x* = x for x in L. Let o be the map of A• in M defined dually to 3,M, i.e. o M = 
e 

3,M, holds with respect to the underlying sets. By induction we prove: 

CLAIM 2. If M is subdirectly irreducible, generated by the image of e, and not a 

homomorphic image of any A k with k < n, then 3,•lA n (o•lA•) is a meet (join) 
homomorphism of A n (A•) into M and, for all i,j • n with i +j • n + 1, it holds 

oMm i • q, Mmj. 

To check, in the inductive step, oMm i • 7Mmj for all i,j • n + 1 with i + j • n + 
e 

2 we apply Proposition 1 with L = An+ 1 , 7 = 7•llAn+l , and o = OMCOn+ 1 where COn+ 1 
is the nontrivial dual automorphism of An+ 1 which maps m i onto mn+l_ i mn+l_ i 

and leaves the generators fixed. One should be aware of the fact that oMm • • 7•imj is 
not true in An+ 2 if i + j > n + 2. 



ON MODULAR LATTICES GENERATED BY TWO COMPLEMENTED PAIRS 515 

Then, coming to the proof of the Lemma, we consider a subdirectly irreducible 

modular lattice M with generators a,b,c,d which is not a homomorphic image of any 

A n . We define 

u n = gn(a,b,c,d)gn(a,c,b,d)gn(a,d,b,c) 

and take u to be the filter of M generated by the u n. Then, we verify the hypotheses 

of Proposition 2 for L = M 4, u, and the sublattice M' generated by a,b,c,d and u in the 
filter lattice of M. To do so, we make use of the downward continuity and the fact 

that the '),•llAn are meet homomorphisms according to Claim 2. We conclude that u 
must be neutral in M' and therefore equal 0 M or 1M. By duality, we get the same 

statement for the ideal v which is defined, dually. But, the validity of u = 1M and v = 

0 M would imply that M is isomorphic to M 4. Thus, we have u = 0 M or v = 1M and this 
immediately yields the claim of the Lemma. 

PROOF OF PROPOSITION 1. Suppose that M is not a homomorphic image of 

L. Let •b be the largest congruence on L which does not contain p/q and rt the 

canonical projection onto L/•b. Then L/•b is subdirectly irreducible and not 

isomorphic to M. We define o','),': L/•b -• L by mapping any congruence class on its 

smallest respectively greatest element. Then oo' and '),'),' are join and meet 

homomorphism of L/•b into M respectively, and because of o'rtx • x • '),'rtx it holds 

oo'y •< 'y'),'y for all y C L/•b and M is generated by the union of the [oo'y,'y'),'y], y in 

L. Since rtp/rtq is a prime quotient in L/•b we can apply Proposition 7 in [5] to get 

oo'rtp < '),'),'rtq. But by the definition of rt we have o'rtp 5t q and '),'rtq •p, hence p = 

q + o'rtp and q = p'),'rrq. Now, op = o(q+o'.rrp) =oo'mp +oq • '),'),'rtq and, finally, op • 

'yp'),'),'rtq = 'y(p'),'rtq) = 'yq follow. 

PROOF OF PROPOSITION 2. Let M x be the sublattice generated by E x, i.e. the 

set of all a in M with a = actx + au >• uax. Then for a in M x and z >• x it follows a + 

uo•z C M z. Therefore, we conclude for b in My, a + b = a + uo•x + b + uo•y = a + b + 
uo•(x+y) C Mx+y. Hence the union of the M x (x • S) is closed under joins and, dually, 
meets, i.e. a sublattice of M and equal to M. Thus, for any a and b in M there are x and 

y in S such that aC M x and bC My and one calculates u(a+b)= au+ bu+ 
u(ao•x+bo6,) • au + bu + uo•(x+y) = au + uo•x + bu + uo6, = au + bu. This shows that u 

is neutral in M. Moreover M x is the interval [uo•x,u+o•x] in M, since uo•x • a •< u + o•x 
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implies ao•x + au = a(o•x+u) = a. 

1. The Pitzer-lattice. Let Aoo be the sublattice of FM(J14) X. FM(J14) which is 
generated by a o = (a,b), b o = (d,c), c o = (b,a) and d o = (c,d). Define recursively m o = 

1 o = r o = 1, ln+ 1 = a n + bn, rn+ 1 = c n + dn, mn+ 1 = ln+lrn+l, and Xn+ 1 = Xomn+ 1 
for x = a,b,c,d. Define moo = 0. 

As an easy consequence of the description of FM(J14) given in [2] we get the 
following claim. 

CLAIM 1. Aoo equals the set of all elements mn(0 < n • oo), In and r n (1 • n • 

oo), and a i + mn, b i + mn, c i + mn, d i + m n with 2 • n • oo and 0 • i • n-2. Moreover, 
this representation is unique and it holds for x,y = a,b,c,d 

x i + m n • xj + m k if and only if i >• j and n >• k 
in the case that x = y or ( x,y} C ((a,b}, (c,d}} takes place. In the remaining cases it 

holds 

x i + m n • xj +mk if and only if k >• i. 

All this results in the diagram of Aoo which is given by figure 1 (cf. [4] ). 

In fact, this diagram is crucial for the proof of our result and overcoming our 

pedantry we could have defined Aoo by this diagram, as well. 

Now, let A n denote the section [mn,1 ] of Aoo. We observe that A n is generated 

by a o + mn, b o + mn, c o + m n and d o + m n and thus a subdirect product of two 

copies of S(n,4). Let C•n: A n • A n be defined by C•nm i = mn_i, c•nl i = ln+l_ i, C•nr i = 

rn+l_i, and C•n(Xj+mi)= (Xo+mn_j)mn_ i. By evidence, c• n is a dual automorphism of 
A n ß 

Finally, if M is a modular lattice generated by a,b,c,d and e a map of 

( ao,bo,Co,d o ) onto (a,b,c,d), then we define a map 3' = 3 'e of Aoo into M recursively: 
3,m o = 1 = go(eao,ebo,eCo,edo), 

,¾1n+ 1 = eao,¾m n + ebo'¾mn, '¾rn+ 1 = eCo,¾m n + edo7m n, 
for x = a,b, for x = c,d, 

3,(mn+ 1 + x o) = ex o + '¾1n+ 1 , 3'(mn+ 1 + x o) = ex o + 3,rn+ 1 , 

for 1 •< i •< n-l, 3,(mn+ 1 + xi) = 3,(mn+ 1 + Xo)q,(m n + xi) 
'¾mn+ 1 = ')'In+ 13'rn+ 1 = gn+ 1 (eao,ebo,eCo,edo), 

3,x k = eXoq, m n for x = a,b,c,d, 
'),moo -- 0 
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Let o .Aoo -• M be defined dually. 

2. Exclusion of S(n,4) - Proof of Claim 2. We proceed by induction on n. For 

n = 1 the hypotheses of Proposition 1 are satisfied trivially and we may conclude, in 

particular, oeml *= eaoeb o + ecoed o 4 (ea o + ebo)(ec o + edo) = 3'em 1 . Thus in the 
inductive step n -* n + 1 we may assume eaoeb o + ecoed o = o em 1 4 • em n 4 3'em n. 
First, we show that 3, = 3,eiAn+l is a meet homomorphism. Evidently, 3, is order 
preserving. Moreover, we have eao3,(bo+ mn+ 1) = eao(ebo+ 71n+ 1) = eaoebo+ 

eao3,m n 4 3,ln+ 1 and 3,ln+ 1 4 ,¾(mn+ 1 + ai)3'(mn+ 1 + bi)4 3'(mn+ 1 + ao)3'(mn+ 1 + 

bo) 4 3,In+ 1. Now, for x = a,b, y•> m n and y(m n+ xi)= m n+ xj we conclude 
3,(mn+ 1 + xi)3,y = 3,(ran+ 1 + Xo)3,(m n + xi)3,y = 3,(ran+ 1 + Xo)3,(m n + xi)Y = 3,(ran+ 1 + 

Xo)3,(mn+ xj) = 3,(mn+ 1 + xj)= 3,Y(mn+ 1 + xi). This proves that 3,l[ln+l,1] and, 
symmetrically, 3,l[rn+l,1] preserve meets. Finally, for x = a,b, y=,'c,d one gets 

3,(mn+ 1 + xi)3,(mn+ 1 + yj) 4 3,(m n + xi)3,(m n + yj) = 3,(m n + xi)(m n + yj) = 3,m n and, 
thus, 

3,(ran+ 1 + xi)3,(mn+ 1 + yj) = 3,(ran+ 1 + xi)3,mn3,(mn+ 1 + yj) = 3,ln+13,rn+ 1 = 3,ran+ 1 . 

This shows that 3, is a meet homomorphism. By duality,o =o eo COn+ 1: An+ 1 -* M is a 
join homomorphism. We observe that ox 4 3'x holds for all x in An+ 1. Namely, by 

definition we have 3,In o = 1, Omn+ 1 = 0 and o(x o + mn+l) 4 ex o 4 3,(x o + mn+l) for 

x = a,b,c,d. Moreover, the inductive hypothesis states that om i = oem•+l_i 4 3'm i for 
14i4n. 

This implies 

o (x o + mn+l)m i 4o (x o + mn+ 1 )om i 4 3'(x o + mn+l)3'm i = 3,(x o + mn+l)m i 

for x = a,b,c,d. Since any element u of An+ 1 can be written as join u = v + w of two 

elements of this kind o u = ov + ow 43, v + 3' w 4 3'u follows for any u C An+ 1' 

This and o(x o + mn+l)4 ex o 4 3'(x o + mn+l) show that the hypotheses of 
Proposition 1 are satisfied. 

To check the inductive claim we consider i,j 4 n + 1 such that i + j • n + 2. Then 

withk=n+ 1-i andh=n+ 2-i we have k=h- 1, h•>j,m k =1 h+r h and the fact 

that lh/m h and rh/m h are prime quotients in An+ 1 . 
Thus, Proposition 1 yields 

o m i = om k = ol h + or h 4 3'm h 4 3'emj. 
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3. Exclusion of M 4 - Proof of the Lemma. Let M be a subdirectly irreducible 

modular lattice with generators a,b,c,d which is not a homomorphic image of any An. 

Let A consist of the (three) maps e of (ao,bo,Co,d o} onto (a,b,c,d} which map a o 

onto a and b o onto b,c, and d, respectively, and ec o lexicographically before ed o. 

Define u n = e• 7emn = gn(a'b'c'd)gn(a'c'b'd)gn(a'd'b'c)' Let M be embedded into 
its filter lattice F(M) and u = n•ooUn. Let M' be the lattice generated by a,b,c,d, and u. 
We observe that, for all x 4: y in ( a,b,c,d •, 

(1) x(y+u)•<u. 

Namely, by Claim 2 we have 

x(y + Un+ 1) •< (x + Un+l)(y + Un+ 1) •< e& (x + 7emn+l)(y + 7emn+l ) 
•< H q,e(e-lx + )7e(e-ly + ) •< = eGA mn+ 1 mn+ 1 eC_•5 7emn Un' 

By the (downward) continuity ofF(M) we conclude 

x(y +U):n•oox(y + u n) n•oox(y +Un+l)•<n<•ooUn u- 
By modularity it follows 

(2) (x + u)(y + u) = x(y + u) + u = u, 

i.e. that the sublattice generated by x,y, and u is distributive. Then, since x + y >• u 1 >• 
u by definition, we get 

(3) xu+yu=(x+y)u=u. 

An application of Proposition 2 to M' with S = M 4 (and atoms a,b,c,d), a0 = 0, al = 1, 
and ax = x for x = a,b,c,d yields that u is a neutral element of M' and x • (xu,x + u) 

an embedding of M' into [0M,,U] X [U, lM,]. Since M was assumed to be subdirectly 

irreducible we have either M C [U, lM, ] or M C [0M,,U ]. In the first case by (2) it 

follows u = xy for all x % y in a,b,c,d and, in particular, u = 0 M. 
In the second case we get u = x + y = 1 for all x 4: y in {a,b,c,d}. Now, let v be 

the element corresponding to u in the dual construction. By the principle of duality 

we have either v = x + y = 1 for all x 4: y in { a,b,c,d} or v = xy = 0 for all x % y in 

{ a,b,c,d}. But the latter would imply M • M4, contradicting the hypothesis. 

4. Marginalia. A short proof of the quoted result of Sauer, Seibert, and Wille is 

contained in the following two claims. 

CLAIM 3. Let M be a subdirectly irreducible modular lattice generated by 
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elements a,b,c,d such that ab = ac = ad = bc = bd = cd = 0 and a 4- d = b 4- c = 1. Then 

either a + b= c+ d = 1 ora+c=b+d= 1. 

PROOF. With o•,• C/', such that o•b o = b and fib o = c, an easy induction yields 

(1) ayø•mkYfimn + dyø•mkT•mn = b'),ø•mkT•mn + c7ø•mkY•mn = 7ø•mkY•mn 
(2) 7øqk + '),/51 n = 7ø•rk + 7fir n = 7ø•mk_lTfimn_l 
(3) 7øqkYfiln + 7ø•rkYfirn •> 7ø•mk_17/Smn_l 
(4) •,ø•m k + •,•m n = 1 

(5) (x + 7ø•mk)7•mn • x + 7øSnk_l 7•mn_l for x = a,b,c,d. 

Now, let M be embedded into its filter lattice F(M) and u = n•oo•,ø•mn , v = 1-I •,•m n<• n, 

and M' the sublattice generated by a,b,c,d,u, and v. By (4) it follows that u + v = 1, by 

the Lemma, uv = 0 M, and by (5), x = (x+ u)(x+ v) for x = a,b,c,d. Thus, M is 

embedded into [u, 1] M' X [v,1]M, and either u = 1 or v = 1. 
CLAIM 4. (Pitzer, unpublished) If the hypotheses of Claim 3 and, in addition, 

a + c = b + d = 1 are satisfied then ,),o• is a homomorphism of A• onto M. 

The proof proceeds straightforwardly first showing by induction that the h,øqAn 

are join-homomorphisms, too. The details of both proofs are left to the reader. 

We see that we did not use the fact that FM(J?) is freely generated. We only need 
to know that it is a subdirectly irreducible modular lattice and besides M 4 the only 

homomorphic image of A•,. But this is obvious by the diagrams of both lattices. 

Finally, we remark that the lattices listed in the Theorem are exactly the 

subdirectly irreducible modular 2-distributive (i.e. satisfying w(x + y + z) = w(x + y) + 

w(x + z) + w(y + z)) lattices - M - with four generators - - a,b,c,d. 

The basic tool in the easy proof is the observation that an element of a modular 

2-distributive lattice is neutral if it is neutral with respect to a set of generators. If M is 

not isomorphic to M 4 or any of the S(n,4) then, by the Lemma, we may assume that 

= = = - •u n. By arguments similar to those used in the ab ac ad-- bc bd = cd = 0-n 
proof of the Lemma we get •h,6mn C (0M,1 M} for all 6C A. Because of the n 

Theorem we are left to consider the case that n•o•76mn -- 0 for all 6 C A. Similarily, 
we get that for any triple (n616 C A), •_•'),6mn6 equals 1 or that there is (n•}• • A) 
with e•ZX')'emn6 = 0. In the first case we conclude 0 = 1 by the continuity ofF(M). To 
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treat the second case, one easily shows by induction applied to the sublattice 

generated by a(c + d), b(c + d), c(a + b) and d(a + b), that any modular 2-distributive 

lattice satisfying ab = ac = ad = bc = bd = cd = 0 = •x '•emne is a subdirect product of e 

S(1,4) and S(2,4) -- using the D 2- and M3-Lemma of Wille [5], evidently. 
This generalizes the corresponding result of R. Freese [3] on breadth two 

modular lattices. 

5. The structure of FM(B). According to the Theorem and the remarks 

following it, FM(B) is a subdirect product of the S(n,4). Now, we consider the lattices 

A n and their generatorsa•=a n+m n,b n b n+m n,c n c n +m n, dn dn +mn-In 
A2n we define •n = (a•,a•), •n = (br•,C•)' •n = (c•,b•), and d n = (dn,dn). Obviously, 

•n + •n = ½n + •n = 1 and andn = bnCn = (mn,mn)-- 0A•. Because of 
gn(an,bn,cn,dn) = (0 2,1) and gn(an,cn,bn,dn) = (1,0A2n) these elements generate A2n . 

An 
:n - Thus there is a homomorphism •o of FM(B) onto A mapping x onto x n for x = 

a,b,c,d. One easily checks that any homomorphism of FM(B) onto S(n,4) (there are 
four of them) factorizes through •0. Therefore, FM(B) is the subdirect product of the 

A2n with generators a = (•nln < o•), b = (Bnln < oo), c = (•nln < oo), and d = (•nln < o•). 
To give a more precise description of FM(B) we observe that for any n and k with 

n •< k there are two embeddings '•nk and •rnk of A n into A k with image [mk,mk_ n] 
and [mn, 1 ] respectively, and '•nk x •< •rnkX for all x G An. Let '•n2k and •r2nk denote the 
square maps of A2n in A2k and, for x G •ooA•,xn the n-th component of x. Then n 

L: ={xlx Gn•ooA2 n and, for all n •< k, ,n2kXn < x k •< •r2nkXn } 
is a sublattice of [! A2n containing E = { a,b,c,d,0,1 } and, therefore, FM(B). We write 
•=d,d=a,b=c,•'=b, 0 =l,andl =0. 

CLAIM 5. FM(B) consists exactly of those elements w of L for which there is 

y G E, and even n and x n and z n in An 2 with x n •< (mn/2,mn/2) •< z n, x n •<•n •< Zn, 
n2 k 2 holds for all k •> n. Choosing n minimal, this such that w k = 3' x n + Yk•rnkZn 

representation becomes unique. 

Replacing "square" by "cube" everywhere, the subdirect product over all S(n,4) 
with four generators which split arbitrarily into two complemented pairs can be 
determined in the same way. According to õ4 this is just the 2-distributive lattice 
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FD2(B') freely generated by four elements subject to certain relations which exclude 
those factors S(1,4) and S(2,4) the generators of which do not partition into two 

complemented pairs. 

To prove the claim, we show firstly, that the set of all elements of L which have a 

representation of the required type form a sublattice of L. Since the representation is 

equivalent to its dual, we have to consider joins only. Thus, let w' and w" be given. 

Obviously; w has a representation with y = 1 if and only if there is an r such that w k •> 

(mr,mr) holds for all k. For w = w' + w" this is the case if y' = 1 (or y" = 1) or if 

y',y",O, and 1 are all different. Namely w k•> z k•> (mn,,mn,) and - - with r= 

maxtn ,n I- Wk•> Y (mr,m r) + Y (mr,m r) •> (mr+l,mr+l) hold for all k in the first 
and second case respectively. If y'= y" is different from 0 and 1 then y = y' n = , 

max(n ,n ), x n = x n + Xn, and z n = z n + YnZn yield a representation for w. The case 
y' = y" = 0 is trivial. Thus, finally, we consider y" = 0 and y' 4= 0,1. We choose y = y', 

n = 2max(n ,n ), z n Zn, and x n • Yn such that there is u • Yn(mn/2,mn/2) with 
x n + u = x n + x n. A look at Figure 1 shows that this can be done. This proves that all 
elements of FM(B) have a representation of the required kind since the generators do 

so, trivially. 

To prove the uniqueness we have (after a second look at the diagram of A n) to 

check the uniqueness of y, only. But y has to be 0 (1) if there is an n such that w k = 

rrn2kWn (3,n2kWn) holds for all k •> n and the unique element in E-{ 0,1} for which 
there is an n such that the length of [WkYk,y k] is less than n for all k, otherwise. 

We are left to show that any element of L which has a representation belongs to 

FM(B). This is easy once it is done for all elements w with y G {0,1}. Namely, given w 

with y 4= 0,1 we observe that WnY n + Yn = YnZn + Yn = Zn and define z k = wkY k + Yk 

for k •< n, z• = rrnkZ n for k •> n, x•c = w k for k • n, and x• = 3,nkWn for k •> n. Then 
z' and x' are in L, obviously, and belong to FM(B) by our assumption. Thus, w = x' + 

yz' belongs to FM(B), too. 

As announced, we are going to show that for given N the sublattice of L which 

consists of all w with w k •> (mN,mN) for all k is contained in FM(B). Using the 

polynomials gn as above, we see that this is just the interval [gN(a,b,c,d)gN(a,c,b,d),l ] 

and the direct product of [gN(a,b,c,d),l] and [gN(a,c,b,d),l]. Therefore, we will be 
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done after having showed that e.g. the first factor is generated by the x N= x + 

gN(a,b,c,d) with x C E. This is done by induction on N. Let N>• 1 and w•> 

gN(a,b,c,d) be given. We observe that the second component of any component of w 

equals 1, always. Let g• denote the polynomial dual to gn' Since any element of A n is 

the meet of some y and z with y•> x o+ m n and z•> x o-+ m n for suitable xC 

{a,b,c,d}, there are x and i•j • N such that, with u = x N + g•aN,bN,cN,d N) and v = 
•'N + •,r(aN,bN,cN,d N ), WN = UNVN ' Realizing that, for any k • N, u k_ 1 is the join of 
all elements. covering u k (there is at most one!) and (by the definition of L) Wk_ 1 is a 

join of elements covering Wk, we get u k •> w k and v k •> w k for all k < N. Define z by 

z k = w k for k • N - 1 and z k = WN_ 1 for k •> N - 1. Then z •> gN_l(a,b,c,d) holds and z 
belongs to the sublattice generated by the x N because of the inductive hypothesis and 

the fact that x N'I = x N + gN_l(aN,bN,cN,dN). Then so does w = uvz. 

d o 

Figure 1. The Pitzer4attice 
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