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Definable relations in finite-dimensional
subspace lattices with involution
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In memory of Bjarni Jónsson.

Abstract. For a large class of finite dimensional inner product spaces V ,
over division ∗-rings F , we consider definable relations on the subspace
lattice L(V ) of V , endowed with the operation of taking orthogonals. In
particular, we establish translations between the relevant first order lan-
guages, in order to associate these relations with definable and invariant
relations on F—focussing on the quantification type of defining formulas.
As an intermediate structure we consider the ∗-ring R(V ) of endomor-
phisms of V , thereby identifying L(V ) with the lattice of right ideals of
R(V ), with the induced involution. As an application, model completeness
of F is shown to imply that of R(V ) and L(V ).
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1. Introduction

Translating geometric concepts into algebraic ones is a well established method
since Descartes. For Projective Geometry, Whiteley [11,12] has discussed this
in the context of first order logic. In particular, “geometric configurations”
appear as sets of systems of subspaces, definable in terms of the subspace
lattice. Well known examples are the centrally and the axially perspective
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configurations related to the Arguesian law of Bjarni Jónsson (cf. [3]) as well as
harmonic quadruples and the more powerful quadrangular sextuples of Jónsson
[8].

The Logic point of view also governed the study [6] of complexity of
satisfiability problems in ortholattices of subspaces of finite dimensional real
and complex Hilbert spaces (the structures of finite dimensional Geometric
Quantum Logic): via interpretation of polynomial feasibility problems in one
direction, by non-deterministic Linear Algebra algorithms in the other.

The present note takes up ideas from both approaches considering defin-
able relations on lattices L(V ) (with the induced involution) of subspaces of
(inner product) spaces V over division (∗-) rings F and their coordinate-wise
description. Notice that F is in the signature of rings with involution but no
operation symbol to capture multiplicative inverse. Of course, translating from
F , inversion can be dealt with as a defined operation.

A structure well suited to relate L(V ) with the coordinate domain F is
the (∗-) ring R(V ) of endomorphisms of V : its lattice (with involution) of right
ideals is canonically isomorphic to L(V ). While the translation from L(V ) to
R(V ) is obvious, the converse relies on von Neumann’s [10] Coordinatization
Theory (requiring dimension ≥ 3), based on the concept of frames, refined
to capture relations. Passing from R(V ) to F , sets Φ of n-tuples of endomor-
phisms are associated with sets K of n-tuples of matrices over F via a fixed
basis, but depending only on the isometry type (up to scaling) of that basis.
The corresponding invariance property follows from definability on the side of
R(V ), it has to be required on the side of F (that is, on the side of matrices).
The reverse translation from F into R(V ) proceeds via existential or univer-
sal quantification over systems of matrix units: the ring analogues of frames.
Accordingly, translations come in pairs, one intended to preserve quantification
types Σk, the other Πk.

The crucial observation is that, for any orthogonal basis, one can express
(in terms of the associated frame or matrix units) the quotients of the diago-
nal entries of the matrix describing the form – this generalizes the concept of
“orthonormal frame” from [6]. Definability requires that for some basis these
quotients are defined in F via first order formulas. Moreover to grant, for
any such system of quotients, automorphisms of L(V ) matching the associ-
ated frames, we require that F is commutative or that vectors can be nor-
malized (e. g. in quaternionic Hilbert spaces). The intended preservation of
quantification type becomes possible if the formulas defining the form are in
Σ1 respectively Π1. Our main Theorems 6.2 and 10.4 translate thus definable
n-ary relations in one structure to relations of appropriate arity in another
while preserving their descriptive complexity.

The translations allow to deduce ‘model completeness’ of L(V ) and R(V )
(i. e. quantifier elimination up to one existential block) from that of F ; cf.
Proposition 12.2. They also allow to relate decidability and axiomatizability
of L(V ) and R(V ) with that of F ; see Corollaries 10.5 and 10.7.

A particular feature of the anisotropic case is that any quantifier-free
formula is, within L(V ), equivalent to a positive primitive one (Corollary 12.1);
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this extends to R(V ) with the additional operation of Moore-Penrose-Rickart
pseudo-inversion (Theorem 12.3).

All translations in this note are effective; it is not hard to see that, in the
purely relational setting, these translations can be carried out in polynomial
time – but a detailed discussion shall be postponed to subsequent work.

2. Algebraic preliminaries

Statements presented as “Fact” are well known or obvious; proofs will be
omitted or sketched. In the sequel, let F be a division ring with involution
r �→ r∗ and V a right F -vector space of dimension dim V = d < ∞ and
endowed with a non-alternate non-degenerate ∗-hermitean form 〈.|.〉, that is:
additive in both arguments and

〈vr|ws〉 = r∗〈v|w〉s, 〈w|v〉 = 〈v|w〉∗

as well as 〈v|v〉 	= 0 for some v, and 〈w|v〉 = 0 for all w ∈ V only if v = 0 cf.
[5, Chapter I]. We write |v| = 〈v|v〉 (without taking square roots which may
not exist in F ). A basis v̄ = (v1, . . . , vd) is orthogonal if 〈vi|vj〉 = 0 for i 	= j;
we will speak of a ⊥-basis. Recall that such always exist [5, II §2 Corollary 1]:
any v1 	= 0 can be completed to a ⊥-basis; and one has for such

〈 ∑

i

viri

∣∣
∑

j

vjsj

〉
=

∑

k

r∗
k|vk|sk

with |vk| = |vk|∗ 	= 0; we write |v̄| = (1, |v1|−1|v2|, . . . , |v1|−1|vd|). Observe
that |v̄| determines the isometry type of v̄ up to a scaling.

Up to (isometric) isomorphism the spaces V are the F d with the form

〈r̄|s̄〉 =
∑

k

r∗
kδksk

where δi = δ∗
i 	= 0. Moreover, for any endomorphism f of V there is a unique

endomorphism f∗, the adjoint of f , such that 〈fv|w〉 = 〈v|f∗w〉 for all v, w.
Indeed, if fvj =

∑
k vkakj then b�i with f∗vi =

∑
� v�b�i are determined from

a∗
ij |vi| = 〈fvj |vi〉 = 〈vj |f∗vi〉 = |vj |bji.

We say that f is orthogonal if f∗ = f−1, equivalently, if f is bijective and
〈fv|fw〉 = 〈v|w〉 for all v, w ∈ V .

A ∗-ring is a ring with unit 1 and with an involution r �→ r∗ that is an
anti-automorphism of order 2; 1 and 0 are considered as constants, +, ·, −, ∗

as fundamental operations.
The endomorphism ring of V is also a ∗-ring R = R(V ) with involution

f �→ f∗. It is von Neumann regular : for any a there is b such that aba = a (cf.
[10]). Any right ideal I of R is principal and, if I = aR, then I = abR with
idempotent ab for any b such that aba = a. Observe that for any idempotent
e ∈ R one has

aR ⊆ eR ⇔ ea = a.
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Associating with I the subspace U =
⋃{im f | f ∈ I} of V , one can choose e as

the projection onto U associated with any direct decomposition V = U ⊕ W ;
thus U = im e.

We will consider lattices L with bounds 0 and 1, joins being written as
a+b and meets as a∩b, with meets having preference over joins in notation. We
write a⊕b = c if a+b = c and a∩b = 0; and a⊕⊥ b = c if, in addition, a ≤ b⊥.
An involution on L is a map a �→ a⊥ such that a⊥⊥ = a and a ≤ b if and
only if b⊥ ≤ a⊥. Considering such as an additional operation, L becomes an
involutive lattice, IL for short. It is an ortholattice if a∩ a⊥ = 0. The lattice of
linear subspaces of V with involution U �→ U⊥ = {v ∈ V | ∀u ∈ U. 〈v|u〉 = 0}
forms an IL L = L(V ) which is an ortholattice if the form on V is anisotropic.
Moreover, L(V ) = L(V ′) if V ′ arises from V by scaling.

The right ideals of R form an IL with join I + J , meet I ∩ J , bounds
0 = {0} ⊂ R and 1 := R, and involution

(eR)⊥ = (1 − e∗)R for idempotent e.

This lattice is modular and a complement of eR is given by (1−e)R. Moreover,
an isomorphism onto L(V ) is given by Ω(fR) = im f . We will identify these
two structures under this isomorphism.

3. Preliminaries from logic

We consider first order languages with countably many variables, equality,
and finitely many operation symbols, but no relation symbols. Finite strings
of variables or elements are written e. g. as x̄ and ā, the length being given
by context. We also use matrices X = (xij)ij of variables in an obvious way.
Given a structure A and a formula ϕ(x̄, z̄) in the first order language Λ built
on the signature of A and constants ā from A let ModA(ϕ(x̄, ā)) = {ū ∈ An |
A |= ϕ(ū, ā)}. Th(A) denotes the first order theory of A. A subset M of An is
definable if M = ModA(ϕ(x̄)) for some formula ϕ(x̄) ∈ Λ. The following tool
will later be applied to pass from definitions involving coordinates to defining
formulas in lattices ΛR and ΛL. The formula ρ is meant to capture coordinate
systems.

Fact 3.1. Let G a subgroup of the automorphism group of A and ρ(x̄) and
ϕ(x̄, z̄) formulas in Λ such that

(i) There is ā in A such that A |= ρ(ā).
(ii) For all ā in A with A |= ρ(ā) one has ModA(ϕ(x̄, ā)) closed under the

component-wise action of G on An.
(ii) For all ā, b̄ in A, if A |= ρ(ā) and A |= ρ(b̄) then there is ω ∈ G such that

ωā = b̄.

Then for all ā, b̄ in A such that A |= ρ(ā) and A |= ρ(b̄)

ModA(ϕ(x̄, ā)) = ModA(ϕ(x̄, b̄)) = ModA(∀z̄.ρ(z̄) ⇒ ϕ(x̄, z̄))

= ModA(∃z̄.ρ(z̄) ∧ ϕ(x̄, z̄)).
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Proof. Assume that A |= ρ(ā), ρ(b̄) and consider any ū ∈ ModA(ϕ(x̄, ā)). By
(iii) there is ω ∈ G such that ωā = b̄. By (ii), A |= ϕ(ω−1ū, ā). Applying ω,
it follows A |= ϕ(ū, b̄). In view of (i) this proves that there is M ⊆ An such
that M = ModA(ϕ(x̄, ā)) for all ā with A |= ρ(ā). Also, ⊆ in the second
equality follows while ⊆ in the third is obvious. Finally, to show ū ∈ M for
ū ∈ ModA(∃z̄.ρ(z̄) ∧ ϕ(x̄, z̄)) choose witnessing ā. �

The quantification type Σk or Πk of a formula ϕ(x̄) is considered up to
logical equivalence and cumulative; in particular, ∃ȳϕ is in Σ1 if ϕ is quantifier-
free; and positive primitive if, in addition, ϕ is a conjunction of equations. A
positive Σ1-formula is a disjunction of positive primitives. A basic equation or
basic atomic formula is of the form y = x or y = f(x̄) where f is an operation
symbol.

Fact 3.2. To every quantifier-free formula ϕ(x̄) there is a conjunction of basic
equations, ϕ′(x̄, z̄, ȳ), with new variables z̄, ȳ and a boolean combination ϕ′′(ȳ)
of equations between variables from ȳ such that ϕ(x̄) is logically equivalent to
both

ϕ∃(x̄, z̄, ȳ) ≡ ∃z̄ȳ. ϕ′(x̄, z̄, ȳ) ∧ ϕ′′(ȳ)

ϕ∀(x̄, z̄, ȳ) ≡ ∀z̄ȳ. ϕ′(x̄, z̄, ȳ) ⇒ ϕ′′(ȳ).

In particular, any positive Σ1-formula is equivalent to one where the atomic
formulas are basic equations.

Moreover, ϕ′ is such that satisfying values for z̄, ȳ are given and uniquely
determined by those for x̄.

Proof. With each term t(x̄) one can associate new variables yt and z̄t and a
conjunction ϕt(x̄, z̄t, yt) of basic equations such that t(x̄) = yt is equivalent to
∃z̄t. ϕt(x̄, z̄t, yt) as well as to ∀z̄t. ϕt(x̄, z̄t, yt) (the z̄t capture the intermediate
values when evaluating the term t(x̄)). Thus, t1(x̄) = t2(x̄) is equivalent to
both

∃z̄t1 z̄t2 . ϕt1(x̄, z̄t1 , yt1) ∧ ϕt2(x̄, z̄t2 , yt2) ∧ yt1 = yt2

∀z̄t1 z̄t2 . ϕt1(x̄, z̄t1 , yt1) ∧ ϕt2(x̄, z̄t2 , yt2) ⇒ yt1 = yt2

Now, given quantifier-free ϕ(x̄) replace any equation t1(x̄) = t2(x̄), occurring
in ϕ(x̄) by yt1 = yt2 to obtain ϕ′′ in variables yt. Also, let ϕ′(x̄, z̄, ȳ) the
conjunction of all ϕt(x̄, z̄t, yt) where t(x̄) occurs in ϕ(x̄) (as side of an equation)
and where z̄ comprises all z̄t and ȳ all yt. �

In the following definition k ranges over all integers k > 0.
• We say that a map τ from one language to another preserves type if τ(ϕ)

is (i) in Σk whenever ϕ is; (ii) in Πk whenever ϕ is; and (iii) positive
primitive whenever ϕ is.

• We say that τ shifts type (modulo a formula α) if the following hold: (i)
If ϕ is in Σk (and α ∈ Σ1), then so is τ(ϕ) in case k is odd; otherwise in
Σk+1. (ii) If ϕ is in Πk (and α ∈ Π1), then so is τ(ϕ) in case k is even;
otherwise in Πk+1. (iii) If ϕ is positive primitive, then so is τ(ϕ).
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• A pair τ∃, τ∀ preserves type (modulo a formula α) if τ∃(ϕ) is (i) of type
Σk whenever ϕ is (and α ∈ Σ1); (ii) of type Πk whenever ϕ is (and
α ∈ Σ1); and (iii) positive primitive whenever ϕ is.

We consider also bounded quantifications

∃ȳ. ρ(x̄, ȳ) ∧ ψ(x̄, ȳ) and ∀ȳ. ρ(x̄, ȳ) ⇒ ψ(x̄, ȳ)

where ρ(x̄, ȳ) is a conjunction of equations and no variable from ȳ occurs
bounded in ψ. The bounded quantification type Σb

k resp. Πb
k of a formula with

prenex bounded quantifiers is defined in the obvious manner.

Fact 3.3. Any formula of type Σb
k (Πb

k) is logically equivalent to a formula of
type Σk (Πk).

Qx will denote a quantification where Q stands for ∃ or ∀; also, a block
of quantifications is denoted in the form Q̄ x̄. Such will give rise to bounded
quantifications Q̄τ x̄ where for each xk a binding formula has to be specified.

We say that a structure A is model complete (cf. Exercise 3.4.12d in
[9]) if for any formula ϕ(x̄) there is ϕ′(x̄) in Σ1 equivalent to ϕ(x̄) within A.
By the Tarski–Seidenberg Theorem, this applies to any real-closed field (in the
signature of rings resp. ∗-rings with identity involution), e. g. the field R of real
numbers. It also applies to ∗-fields F = F ∗(i) where F ∗ = {r ∈ F | r = r∗}
is real closed, i 	∈ F ∗, i2 = −1 and (a + bi)∗ = a − bi for a, b ∈ F ∗; e. g. the
∗-field C of complex numbers with conjugation as involution. This provides
axiomatizations of Th(R) and Th(C), given by finitely many schemes. However,
neither theory is finitely axiomatizable.

Observation 3.4. If F is a ∗-subfield of C then any real algebraic number
contained in F is definable in F .

4. Overview

In the sequel, F will be a division ∗-ring, V a vector space of dim V = d over F
and endowed with a ∗-hermitean form as above, R its ∗-ring of endomorphisms,
and L the involutive lattice of (principal) right ideals of R. From Section 8 to
10 we require that one of the following holds.
(A) F is commutative.
(B) V allows normalization: for any v 	= 0 there is r ∈ F such that |vr| = 1.
In case (B), speaking about a basis we require also |v1| = 1. The Condi-
tion (B) applies, for example, to spaces H

d with canonical scalar products, H
the quaternions. In Sections 8 and 10 we require
(C) V admits a ⊥-basis v̄ such that each component αi from α = |v̄| is first

order definable within F by some formula α#
i (ui). Thus, α is defined by∧

i α#
i (ui).

Also, when translating from ring or field language into lattice language (with
or without involution), in order to make use of coordinatization methods, we
have to require
(D) dimV ≥ 3.
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In the sequel, both F and V (vector space plus form) will be arbitrary under
the above restrictions.

We consider the languages ΛF and ΛR in the signature of ∗-rings; ΛL

in the signature of ILs. Any space V has associated R and L with a natural
correspondence between Rn and Ln, for fixed n, given by ū = f̄R, meaning
that, component-wise, uk = fkR. That is

θRL = {(f̄ , ū) ∈ Rn × L. | ū = f̄R}, θLR{(ū, f̄) ∈ Ln × Rn | ū = f̄R}
and thus inducing the maps

θRL(Φ) = {f̄R | f̄ ∈ Φ} ⊆ Ln, θLR(M) = {f̄ | f̄R ∈ M} ⊆ Rn

between the power sets of Rn and Ln. For an isometry type α of orthogo-
nal bases, one can also associate with such Φ and M relations θRαF (Φ) and
θLαF (M) over F , more precisely subsets of (F d×d)n.

Our main objective will be to establish translations (with a focus on
quantification types) between the languages of L, R, and F (denoted by τ with
suitable subscripts) which match defining formulas for relations matched by
one of the above correspondences. These translations depend on dim V and, if
F is involved, have refer to the isometry type (supposed to be definable, due
to condition (C)) of an orthogonal basis. In order to deal with quantification
type Σk resp. Πk, these translations come in pairs τ∃, τ∀, also denoted by τQ,
Q ∈ {∃,∀} (though, translating from ΛL there is no τ∀, cf. Problem 13.1).
They can be viewed as interpretations (cf. [7]), with the exception of the τQ

RL

which are to capture the “many-to-one” relation θRL.
The concept of frame, the lattice version of a coordinate system, is intro-

duced in Section 5 and used to reduce Σ1-formulas to positive primitive ones.
Section 6 gives the translation from ΛL to ΛR. The converse translation in Sec-
tion 7, from ΛR to ΛL relies on Coordinatization Theory. Translation to ΛF

means considering R as a matrix ring and requires reference to a basis repre-
senting its isometry type (Section 8). In order to get a one-one correspondence
(in Section 10), one needs to consider invariance properties of definable sets of
matrices (Section 9). Counterexamples in Section 11 show that quantification
is required when translating from F to L. The special case of anisotropic forms
is dealt with in Section 12.

The results in Sections 6 to 10 remain valid – in simplified versions – if
F is just a division ring, V a vector space, v̄ any basis, R the endomorphism
ring, L the lattice of all linear subspaces of V , isomorphic to the lattice of
right ideals of R (we will indicate where presence or absence of involution does
matter). Here, one uses any systems of matrix units and frames, proofs are
simplified versions of the ones given.

5. Frames

Frames are the lattice analogues of coordinate systems in projective geometry.
Fix d ≥ 1. A frame in a bounded lattice L is a system ā = (aij | 1 ≤ i, j ≤ d)
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of elements such that for pairwise distinct i, j, k (where ai = aii)

1 =
⊕

�

a�, aij = aji, ai + aj = ai ⊕ aij , aik = (ai + ak) ∩ (aij + ajk).

Let ρ(z̄) the obvious conjunction of bounded lattice equations such that ā is a
frame in L if and only if L |= ρ(ā). We always require that the order d of ā is
the height of L, e. g. d = dimV for L = L(V ). Thus, the ai and aij are atoms
and the a′

i =
∑

j �=i aj are coatoms such that
⋂

i a′
i = 0. The frame ā of L(V )

is associated with the basis v̄ of V if

ai = viF, aij = (vi − vj)F for i 	= j.

Clearly, any basis gives rise to an associated frame; and for any frame ā of
L(V ) and 0 	= v1 ∈ a1 there is a unique basis v̄ extending v1 and having ā
associated. Moreover, completing a basis of U to a basis of V one gets the
following fact.

Fact 5.1. For U ∈ L(V ) one has dim U = k if and only if there is a frame ā

such that U =
∑k

i=1 ai.

A frame ā in a lattice with involution is orthogonal or a ⊥-frame if ai ≤ a⊥
j

for all i 	= j. The above remarks on “association” apply to ⊥-frames and ⊥-
bases, analogously. In the context of lattices with involution and fixed dimen-
sion, ρ(z̄) will denote the conjunction of equations defining orthogonal frames
of order d.

Frames allow to derive equivalences of formulas in ΛL, assuming fixed
dimension. With z′

i =
∑

j �=i zj and x̄ = (x1, . . . , xk) define the lattice term

Dk(x̄, z̄) =
k⋂

h=1

d∑

i=1

(
(xh + z′

i) ∩ zi +
∑

j �=i

((xh + z′
i) ∩ zi + zij) ∩ zj

)

Fact 5.2. For any frame ā in L(V ) and any b̄ ∈ L(V )k,

Dk(b̄, ā) =

{
1 if bh 	= 0 for all h ≤ k,

0 if bh = 0 for some h ≤ k.

The claim follows from the fact that, due to the frame relations, ai is
perspective to aj via aij if i 	= j.

Proposition 5.3. (i) Within the classes of all L(V ) (with or without involu-
tion), dim V = d fixed, any Σ1-formula ϕ(x) is equivalent to a positive
Σ1-formula.

(ii) In the presence of involution, given d, for any quantifier-free formula
ϕ(x̄) ∈ ΛL there is a term t(x̄, ȳ) ∈ ΛL such that for any V of dim V = d
one has ϕ(x̄) equivalent to ∃ȳ. t(x̄, ȳ) = 0 in L(V ).

Proof. Of course, we may assume ϕ(x̄) quantifier-free. First observe that for
any u,w ∈ L = L(V ) one has (due to modularity and existence of complements
and frames)

u = w ⇔ L |= ∃y. (u + w) ∩ y = 0 ∧ u ∩ w + y = 1,
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u 	= w ⇔ L |= ∃z̄. ρL(z̄) ∧ z1 = z1 ∩ (u + w) ∧ z1 ∩ u ∩ w = 0.

Thus, any conjunction ϕi(x̄), 1 ≤ i ≤ k, of atomic and negated atomic formulas
is equivalent to a formula ∃ȳi.

∧
j tij(x̄, ȳi) = 0 ∧ sij(x̄, ȳi) = 1 and the latter

to ∃ȳi. ti(x̄, ȳi) = 0 ∧ si(x̄, ȳi) = 1 where ti =
∑

j tij and si =
⋂

j sij . This
proves the first claim.

Assuming the presence of involution, si(x̄, ȳi) = 1 is equivalent to
si(x̄, ȳi)⊥ = 0 and ϕi(x̄) to ∃ȳi. ri(x̄, ȳi) = 0 with ri = ti + s⊥

i . Of course, the
ȳi may be assumed to have no variables in common.

Now, the conjunction ϕ0(z̄) of equations defining frames of order d is
equivalent to ∃y0. r0(z̄, ȳ0) = 0 for some term r0. Then, by Fact 5.2, with ȳ

comprising all the ȳi (that is, ȳ = (ȳ0, ȳ1, . . . , ȳk), one has that
∨k

i=1 ϕi(x̄) is
equivalent to

∃z̄∃ȳ. r0(z̄, ȳ0) + Dk(r1(x̄, ȳ1), . . . , rk(x̄, ȳk), z̄) = 0. �

Concerning the Grassmann-Cayley algebra point of view one has the
following where LGC(V ) denotes the set of all linear subspaces of V endowed
with the ternary relations

j(a, b, c) ⇔ a = b ⊕ c, m(a, b, c) ⇔ a = b ∩ c ∧ b + c = 1

and ΛGC the associated language.

Corollary 5.4. For any fixed d and any Σ1 (positive primitive) formula ϕ(x̄)
in the language of bounded lattices there is a Σ1 (positive primitive) formula
ψ(x̄) in ΛGC such that, for any V of dim V = d, L(V ) |= ϕ(ū) if and only if
LGC(V ) |= ψ(ū).

Proof. In view of Proposition 5.3 and Fact 3.2 we may assume that ϕ(x̄) is
positive quantifier-free with all atomic subformulas being basic (a conjunction
of equations). Thus, it suffices to encode the latter into positive primitive
formulas. Since L(V ) is complemented, this is achieved for x = y + z by

∃u∃v∃w. j(y, u, v) ∧ j(z, v, w) ∧ j(x, y, w)

and dually for x = y ∩ z. �

6. Interpreting lattices in rings

This is the easy part when translating between ΛL and ΛR, not requiring
coordinate systems, whence uniform independent of dimensions.

The basic relation between L and R is given by u = fR. We write ū = f̄R
if this holds component-wise and define for M ⊆ Ln

θLR(M) = {f̄ ∈ R | f̄R ∈ M}.

Translation from L to R relies on the following.
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Fact 6.1. For any idempotents e, f, g in R one has the following.

eR = fR ⇔ ef = f ∧ fe = e

gR = eR + fR ⇔ ge = e ∧ gf = f ∧ ∃r∃s. g = er + fs,

gR = eR ∩ fR ⇔ eg = fg = g ∧ ∃r∃s. (1 − g) = r(1 − e) + s(1 − f).

Also, (eR)⊥ = (1 − e∗)R, 0 = 0R, and 1 = 1R.

Proof. The first claims are obvious. Considering the opposite ring, the right
hand side of the third equivalence amounts to R(1 − g) = R(1 − e) + R(1 − f)
which in turn to gR = eR ∩ fR by [10, Lemma II.2.3]. �

We have to translate any ϕ(x̄) in ΛL into τQ
LR(ϕ(x̄)) in ΛR, Q ∈ {∃,∀},

such that for any f̄ in R

L |= ϕ(f̄R) ⇔ R |= τQ
LR(ϕ(f̄)). (∗)

Let the variables x of ΛR also serve as variables of ΛL; though, for each
x add a specific variable x̂. If ϕ(x̄) is a basic equation, then by Fact 6.1 there
is τ0∃

LR(ϕ(x̄)) in the same free variables x̄ which is positive primitive such
that (∗) holds when substituting f̄ with idempotent fk. Now, given quantifier-
free ϕ(x̄) ∈ ΛL, in view of Proposition 5.3 and Fact 3.2 there is a positive
Σ1-formula ∃ȳ. ψ(x̄, ȳ) with basic atomic formulas, equivalent to ϕ within L.
Translating these basic equations as above, we obtain a positive Σ1-formula
τ0∃
LR(ϕ(x̄)) such that (∗) holds when substituting f̄ with idempotent fk. Finally,

given prenex ϕ(x̄) = Q̄ȳ. ψ(x̄, ȳ) define τ∃
LRϕ as

∃. ˆ̄x
∧

k

xkx̂kxk = xk ∧ Q̄τ ȳ. τ0∃
RL(ψ′(x̄, ˆ̄x, ȳ))

where ψ′ arises from ψ substituting xkx̂k for xk and where quantification Qy�

in Q̄ȳ gives rise to Qy� bounded by y2
� = y�. This is comprised in the following

main result:

Theorem 6.2. If M is definable in Ln (by prenex ϕ(x̄)) then θLR(M) is defin-
able in Rn (by τ∃

LR(ϕ(x̄))). Moreover, τ∃
LR shifts type.

For example, x1 ∩ x2 = 0 translates into

∃x̂1∃x̂2. x1x̂1x1 = x1 ∧ x2x̂2x2 = x2

∧∃y1∃y2. y
2
1 = y1 ∧ y2

2 = y2 ∧ 1 = y1(1 − x1x̂1) + y2(1 − x2x̂2).

7. Interpreting rings within lattices

A subset Φ of Rn determines a subset of Ln, canonically,

θRL(Φ) = {f̄R | f̄ ∈ Φ}.

The objective is to show, by means of a translation, that θRL(Φ) is definable in
L if so is Φ in R. This requires d ≥ 3, since for d ≤ 2, L degenerates to a set with
involution and two constants. Thus, fixed d ≥ 3 is a general assumption for this
section. Also, the translation will depend on d, being uniform otherwise. We
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use concepts from Coordinatization Theory — but proofs are by elementary
Linear Algebra.

The “coordinate systems” for R are systems ē = (eij | 1 ≤ i, j ≤ d) of
∗-matrix units that is elements of R such that (where ej = ejj)

∑d

j=1
ej = idV , e∗

j = ej , ek�eij =

{
ekj if 
 = i,

0 if 
 	= i.

(Since we read from right to left when applying maps we read indices the same
way.)

Observe that V =
⊕⊥

j im ej with dim im ej = 1 and im eij = im e∗
ji = im ei

and that the restriction eij | im ej is an isomorphism of im ej onto im ei and that
eij |

∑
k �=j im ek = 0 whence e∗

ij | im ei an isomorphism of im ei onto im ej and
e∗
ij |

∑
k �=i im ek = 0. The system ē of ∗-matrix units is associated with the

⊥-basis v̄ if

eijvk =

{
vi if k = j,

0 if k 	= j.

Of course, for any ⊥-basis there is an associated system of ∗-matrix units and
vice versa: choose 0 	= v1 ∈ im e1 and vi = εi1v1. As for frames, for systems of
matrix units in R we suppose the order d to be d = dim V .

In order to relate frames to matrix units, recall that for subspaces U,W
of V such that U ∩ W = 0 there is a 1-1-correspondence between linear maps
f : U → W and subspaces X such that X ∩W = 0 and X +W = U +W given
by G(f) = {u − f(u) | u ∈ U}, the (negative) graph of f (as considered by
von Neumann). Under the isomorphism Ω, identifying the right ideal lattice
with the subspace lattice, if U = im ej and W = im ei, where i 	= j, then, for
f ∈ eiRej , Ω((ej − f)R) is the graph of the induced map. This allows to think
of (ej − f)R as a graph. We define Rij = {u ∈ L | u ⊕ ai = ai + aj}.

Fact 7.1. There is a 1-1-correspondence between systems ē of ∗-matrix units
of R and ⊥-frames ā of L given by ai = eiR and aij = (ej − eij)R for i 	= j.
Moreover, for i 	= j, u ∈ Rij if and only if u = (ej − f)R for some (unique)
f ∈ eiRej.

First, we establish a d2-dimensional interpretation of R in L; that is, we
view R as a matrix ring (via a system ē of ∗-matrix units) and capture the
coefficients by lattice elements (via the associated ⊥-frame ā). Indeed, f ∈ R
is uniquely determined by its “matrix coefficients” eifej ; these in turn by the
graphs (ej − eifej)R in case i 	= j while in case i = j one has to choose k 	= j
and to use the graph (ej − ekjfej)R.

Thus, we choose nij uniformly such that nij = i if i 	= j and njj 	=
j. Then, under the correspondence of Fact 7.1 one has an injective map τ
(depending on ā) associating with each f ∈ R a d × d-array τf of elements
τijf of L (the “lattice coefficients” of f)

τijf = (ej − enijifej)R.
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Observe that τijf = τijeifej = τijeif = τijfej and that, for i 	= j, τijf =
(ej − eifej)R while τjjf = τnjjjenjjjf .

A matrix X = (uij)ij ∈ Ld×d is in the image of τ iff uij ∈ Rnijj for
all i, j; indeed, under this assumption, we have uij = (ej − fij)R for unique
fij ∈ enij

Rej and choose f =
∑

ij einij
fij to obtain τf = X.

Further, we have to express the fundamental operations of R (we use the
binary operation of subtraction in place of addition and its inversion) in terms
of the lattice coefficients and the frame. Choose specific variables z̄ = (zij)ij

(where zii = zi) for frame elements. With additional variables x, y define for
pairwise distinct i, j, k the perspectivity terms and further terms tailored to
capture subtraction, involution, and multiplication (where h is minimal such
that h 	= i, j); these terms involve the variables z̄ though not listed, explicitly.

pij
kj(x) = (zk + zj) ∩ (zki + x)

pij
ik(x) = (zi + zk) ∩ (zkj + x)

y �ij x = (zi + zj) ∩ (zh + (zi + zhj) ∩ (y + pij
ih(x)))

x#ij = (zj + zi) ∩ (zi �ij x)⊥

y ⊗ij x = (zi + zj) ∩ (y + x).

Observe that for pairwise distinct i, j, k and f, g ∈ R

pij
kj(τijf) = τkjekif, pij

ik(τijf) = τikfejk

τikg ⊗ij τkjf = τijeigekfej = τijgekf.

and for any i, j

τijg �nijj τijf = τij(g − f), (τijf)#nijj = τjif
∗,

τij0 = aj , τijeij = anijj

whence τij id = τij(
∑

k ek) = anjjj if i = j, aj else. Also observe

τjjf = τnjjjenjjjf = anjj� ⊗njjj τ�jejf for any 
 	= j, njj .

This leaves us to deal with multiplication, mimicking matrix multiplication.
In order to have sums available, define the lattice terms s�

ij(x1, . . . , x�), recur-
sively,

s0ij = zj , s�+1
ij = x�+1 �ij (zj �ij s�

ij(x1, . . . , x�))

to obtain

τij

�∑

h=1

fh = s�
ij(τijf1, . . . , τijf�).

Since τij(gf) =
∑d

h=1 τijgehf , once we express the τijeigehfej in terms of τihg,
τhjf , and the ak�, it is obvious how to construct the required lattice terms. This
requires choices of indices, though, these depend only on equalities between
indices and can be done uniformly.

Assume i 	= j. If h 	= i, j then nih = i and nhj = h whence τijeigehfej =
τihg ⊗ij τhjf . Otherwise, choose k 	= i, j and g′ = eigehk and f ′ = ekhfej ;
then eigehfej = g′ekf ′ whence τijeigehfej = τikg′ ⊗ij τkjf

′; if h = j then
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τikg′ = τijg ⊗ik τjkejk = τijg ⊗ik ajk and τkjf
′ = τjjf if k = njj , τkjf

′ =
p

njjj
kj τjjf else; if h = i then τkjf

′ = aki ⊗kj τijf and, for any 
 	= i, k, τikg′ =
ai� ⊗ik (τlielig ⊗lk aik) where τlielig is τiig if 
 = nii, p�i

niii
τiig, else.

Assume i = j and put k = njj . If h 	= j, k then τjjejgehfej =
τkjekjejgehfej = (akj ⊗kh τjhg) ⊗kj τhjf . If h = j choose 
 	= j, k and observe
that

τjjejgejfej = τkjekjgej�e�jfej = τk�ekjgej� ⊗kj τ�je�kekjfej

= (τkjekjgej ⊗k� aj�) ⊗kj (a�k ⊗�j τjjfej)
= (τjjgej ⊗k� aj�) ⊗kj (a�k ⊗�j τjjfej).

If h = k choose 
 	= k, j to obtain

τjjejgehfej = τkjekjgekfej = τkjekjgekfej�e�j = (τk�ekjgekfej�) ⊗kj a�j

= (akj ⊗k� τj�gekfej�) ⊗kj a�j =(akj ⊗k� (τjkg⊗j� τk�fej�))⊗kj a�j

where τk�fej� = τkjf ⊗k� aj�.
Choose for each variable x ∈ ΛR a d × d-array of variables τ̂ijx in ΛL, all

pairwise distinct. In view of the above, for any equation ϕ(x̄) in ΛR there is
a conjunction σ(ϕ)(X̄, z̄) of equations in ΛL where Xk = (τ̂ijxk)ij such that,
for any ⊥-frame ā of L and f̄ in R

R |= ϕ(f̄) ⇔ L |= σ(ϕ)((τijf)ij , ā). (∗)

Observe that τijf is obtained substituting f into ∗-ring terms (based on a
system of ∗-matrix units and associated ⊥-frame) and so obtaining a lattice
element while τ̂ijx is a lattice variable to denote such element; in particular,
τ̂ijx is NOT a lattice term which would yield τijf if fR is substituted for x.

For example, consider dimension d = 3 and the formula ψ(x, y) given as
x · y = y · x. With the ring variables x, y we have the associated 3 × 3-matrices
X = (xij)ij and Y = (yij)ij of of lattice variables where, for convenience, we
write x = x1, y = x2, and xij = τ̂ijx and yij = τ̂ijy. Recall the variables z̄ for
the 3-frame, not mentioned explicitly. Define n11 = 2, n22 = 3, n33 = 1. Now
σ(ψ)(X,Y, z̄) is the formula

3∧

i,j=1

s3ij(xi ×i1j yj , xi ×i2j yj , xi ×i3j yj) = s3ij(yi ×i1j xj , yi ×i2j yj , yi ×i3j xj)

where y ×ihj x is the lattice term in variables x, y, z̄ given as follows. First,
consider i 	= j. y ×ihj x ≡ y ⊗ij x if h 	= i, j. Otherwise, let k 	= i, j; if
h = j and k = njj then y ×ihj x ≡ (y ⊗ik zjk) ⊗ij x; if h = j and k 	= njj

then y ×ihj x ≡ (y ⊗ik zjk) ⊗ij p
njjj
kj x; if h = i and j = nii then y ×ihj x ≡

(zij ⊗ik (y ⊗jk zik)) ⊗ij (zki ⊗kj x); if h = i and j 	= nii then y ×ihj x ≡
(zij ⊗ik (pji

niii
y ⊗jk zik)) ⊗ij (zki ⊗kj x).

Assume i = j and put k = njj . If h 	= j, k then y×ihjx ≡ (zkj⊗khg)⊗kjx.
If h = j and 
 	= j, k then y ×ihj x ≡ (y ⊗k� zj�) ⊗kj (z�k ⊗�j x). If h = k and

 	= k, j then y ×ihj x ≡ (zkj ⊗k� (y ⊗j� (x ⊗k� zj�)) ⊗kj z�j .

Define σ(ϕ) for arbitrary quantifier-free ϕ replacing any equation occur-
ring in ϕ by the corresponding conjunction of equations; then (∗) holds, too.
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Corollary 7.2. ⊥-frames provide a d2-dimensional interpretation of R in L,
uniformly for all V of dim V = d, as established, above.

In order to capture the relation θRL between rings and lattices we need,
in addition, to express fR in terms of the lattice coefficients of f .

Lemma 7.3. There is a lattice term t((xij)ij , z̄) such for any V of dim V = d
and ⊥-frame ā of L and f ∈ R

fR = t((τijf)ij , ā).

Proof. In defining t we use a ⊥-basis v̄, the associated ⊥-frame ā, and ∗-matrix
units ē, but our definition does not depend on these. Recall the isomorphism
Ω identifying right ideals with subspaces: fR �→ im f ; for readability, we write
ā in place of Ω(ā). For r ∈ F we define

τijr = (vj − vnij
r)F

and observe that

aj = vjF = τij0, anijj = τij1 = (vj − vnij
)F,

τijr = τjnij
r−1 and τijr ⊕ aj = anij

+ aj if r 	= 0,

Ω(τijf) = τijrij where enijifvj = vnij
rij .

Since fR =
∑

j fejR and τijf = τijfej it suffices to consider the case f = fej ,
say for j = 1. We put ni1 = ki, ri1 = ri, and U := Ω(fe1R) = im f =
(
∑

i viri)F . If r� 	= 0 then

U = (
∑

i

virir
−1
� )F =

⋂

1≤i≤d, i�=�

(
τi�(−rir

−1
� ) +

∑

k �=i,�

ak

)
.

Below, we define lattice terms t0(x̄, z̄) such that

t0(τk11r1, . . . , τkd1rd, ā) =

{
1 if r� 	= 0 for some 
,

0 else,

and ti�(x, y, z̄), i 	= 
, such that

ti�(τki1r, τk�1s, ā) =

{
τi�(−rs−1) if s 	= 0,

ai + a� if s = 0.

Thus

U = t0(τk11r1, . . . , τkd1rd, ā) ∩
⋂

i�=�

(
ti�(τki1ri, τk�1r�, ā) +

∑

k �=i,�

ak

)
.

Thus, we have a term t1 to deal with the case f = fe1; similarly, terms tj to
deal with f = fej . The term required in the lemma is then t =

∑
j tj . Still,

we have to establish t0 and the ti�. Let

t0 =
∑

k

((x1 + z1) ∩ zk1 + zk1k) ∩ zk +
∑

i≥2

∑

k

((xi + z1) ∩ zi + zik) ∩ zk

– compare the proof of Fact 5.2. Now define for pairwise distinct i, j, k

tijk(x, y, z̄) =
(
[(x + y) ∩ (ak + ai) + aj ] ∩ (akj + ai) + ak

) ∩ (aj + ai)
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and observe that

tijk(τjir, τjks, ā) =

{
τji(−rs−1) if s 	= 0,

aj + ai if s = 0,

pij
kj((vj − vir)F ), ā) = (vj − vkr)F, pij

ik((vj − vir)F, ā) = (vk − vir)F.

Thus, substituting and applying perspectivity terms, one derives ti� for any of
the cases i 	= 1 	= 
, i = 1, and 
 = 1. �

Define, for the given d ≥ 3, the translation τ0
RL : ΛR → ΛL as follows:

for prenex ϕ(x̄) ≡ Q̄ȳ. ψ(x̄, ȳ) define τ0
RL(ϕ)(x̄, X̄, z̄) as

Q̄τ ȳ. σ(ψ)(x̄, X̄, Ȳ , z̄)

where σ(ψ) is prenex as defined preceding Corollary 7.2, where Xk = (τ̂ijxk)ij

and Y� = (τ̂ijy�)ij , and where quantification Qy� in Q̄ȳ gives rise in Q̄τ ȳ to Qy�

bounded by ∀Y�. y� = t(Y�, z̄) (if Q = ∀) resp. ∃Y�. y� = t(Y�, z̄) (if Q = ∃).

Fact 7.4. For any ⊥-frame ā, f̄ ∈ R, and B̄ given by the Bk = (τijfk)ij in
Ld×d one has R |= ϕ(f̄) if and only if L |= τ0

RL(ϕ)(f̄R, B̄, ā).

Proof. By Lemma 7.3, one has for k = 1, . . . , n

uk = t((τijfk)ij), ā) ⇔ uk = fkR.

The claim follows from condition (∗) satisfied by σ. �

Let ρ0(z̄) the conjunction of equations such that L |= ρ0(ā) if and only if
ā is an ⊥-frame. Define τ0∃

RL(ϕ(x̄)) as

∃X̄.
∧

k

xk = t(Xk, z̄) ∧ τ0
RL(ϕ)(x̄, X̄, z̄)

and τ0∀
RL(ϕ(x̄)) as

∀X̄.
∧

k

xk = t(Xk, z̄) ⇒ τ0
RL(ϕ)(x̄, X̄, z̄).

and then τ∃(ϕ(x̄)) and τ∀(ϕ(x̄)) as

∃z̄. ρ0(z̄) ∧ τ0∃
RL(ϕ(x̄)) and ∀z̄. ρ0(z̄) ⇒ τ0∀

RL(ϕ(x̄)).

Recall Fact 3.3 to obtain the following theorem:

Theorem 7.5. Fix d ≥ 3. If Φ ⊆ Rn is ΛR-definable (by prenex ϕ(x̄)) then
θRL(Φ) is ΛL-definable in Ln (by τQ

RL(ϕ(x̄)) for Q ∈ {∃,∀}). Moreover, the
pair τ∃

RL, τ∀
RL preserves type.

For example, if ψ(x, y) is the formula x ·y = y ·x, considered in the above
example, then ϕ(x) ≡ ∀y. ψ(x, y) translates to τ∀

RL(ϕ)(x) given by

∀z̄(ρ0(z̄) ⇒ ∀X(x = t(X) ⇒ ∀y∀Y (y = t(Y, z̄) ⇒ σ(ψ)(X,Y, z̄)))).

We leave it as an exercise to find a short defining formula for θRL(Φ) where
Φ = {r ∈ R | R |= ϕ(r)}.
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8. Interpretations referring to a basis

Recall that we require condition (A) or (B) as well as condition (C); that is,
in case (A) F is commutative and in case (B) ⊥-bases v̄ = (v1, . . . , vd) with
|v1| = 1 exist and that we consider only such. Thus, in these cases, given a
⊥-basis v̄ and α = |v̄| = (1, |v1|−1|v2|, . . . , |v1|−1|vd|) from Section 2, one has
the well known description of R. Namely,

Ωv̄(f) = (aij)ij where fvj =
∑

i

viaij

defines an isomorphism of R onto the ∗-ring F d×d
α : the matrix ring F d×d

endowed with the involution

A†α = D−1
α A∗Dα

where Dα is the diagonal matrix with diagonal α and A∗ = (a∗
ji)ij the con-

jugate transpose of A. Indeed, in case (A), scaling the form on V to obtain
the space V ′ with form 〈x|y〉′ = |v1|−1〈x|y〉, one does not change adjoints,
that is R(V ) = R(V ′). Thus, there is a conjunction †(ū,X, Y ) (with d × d-
matrices X,Y of variables) of equations such that B = A†α is equivalent to
F |= †(r̄, A,B), provided that |r̄| = α.

Also, assuming (C), there are an orthogonal basis v̄ with |v̄| = α =
(α1, . . . , αd) and first order formulas α#

i (ui) such that for any ri ∈ F one has
ri = αi if and only if F |= α#

i ; then α#(ū) ≡ ∧
i α#

i (ui) defines α.
For F d×d

α one has the canonical ∗-matrix units where eij has 1 in position
(i, j), 0 else; and the isomorphism Ωv̄ matches the given system of ∗-matrix
units with the canonical one.

Now, for any fixed n, component-wise application of the isomorphism
Ωv̄ : R → F d×d

α gives rise to θRv̄F ⊆ Rn × (F d×d)n. In order to see that
definable subsets of Rn are related with such of F d2n, with any variable x in
ΛR we associate a d×d-array τ(x) = (τijx)ij of specific variables in ΛF and will
translate ϕ(x̄) ∈ ΛR into τQ

RαF (X̄) ∈ ΛF where Xk = (τijxk)ij and Q ∈ {∃,∀}.
Via the entry-wise description of operations in F d×d

α any basic ring equation
is translated into a conjunction of equations in ΛF while x2 = x∗

1 is translated
into †(ū,X1,X2), adding in front an existential resp. universal quantifier for ū
which is bounded by α#(ū). Clearly, (for any ⊥-basis v̄ with |v̄| = α and in
case (B) also |v1| = 1) one has

R |= ϕ(f̄) ⇔ F |= τQ
RαF (ϕ)(Ā) where Ak = Ωv̄(fk).

In view of Fact 3.2, this extends, canonically, to a translation τQ
RαF (ϕ) for

quantifier-free formulas into Σ1 resp. Π1 formulas and then for arbitrary prenex
formulas – the bounded Q-quantification for ū to be put in front of the formula.
As mentioned above, in this particular context, basic equations are translated
into conjunctions of equations, Thus, one obtains the following fact.

Fact 8.1. If Φ ⊆ Rn is ΛR-definable (by ϕ(x̄)) within R then θRv̄F (Φ) ⊆
(F d×d)n is ΛF -definable (by τQ

RαF (ϕ(x̄)) within F . Moreover, the pair
τ∃
RαF , τ∀

RαF preserves types modulo α#.
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For example, let d = 3, F = R (or any real closed field) with identity
involution, and α = (1,

√
2,−√

3). Then α is defined by the formula α#(ū)
given as u1 = 1 ∧ u2

2 = 2 ∧ u2 ≥ 0 ∧ u2
3 = 3 ∧ −u3 ≥ 0 where u ≥ 0 is the

formula ∃v. v2 = u. This results in †(ū,X, Y ) as
∧

ij

uiyji = xijuj .

Now, the formula x2 = x∧xx∗ = 0, defining the set of idempotent e such that
eR is co-isotropic, translates to

∃ū. α#(ū) ∧
∧

ij

xij =
∑

h

xihxhj

∧∃(yij)ij .
( †(ū, (xij)ij , (yij)ij) ∧

∧

ij

∑

h

xihyhj = 0
)

alternatively to

∀ū. α#(ū) ⇒ (∧

ij

xij =
∑

h

xihxhj

∧∀(yij)ij .
( †(ū, (xij)ij , (yij)ij) ⇒

∧

ij

∑

h

xihyhj = 0
))

.

The translation from L to F has that to R as an intermediate step. Define
θLv̄F as the relational product θRv̄F ◦ θLR and τ∃

LαF = τ∃
RαF ◦ τ∃

LR : ΛL → ΛF .
Observe that for ū ∈ Ln one has (with Ak = (ak

ij)ij)

θLv̄F (ū) := {Ā ∈ (F d×d)n | Ω(uk) =
d∑

j=1

(
d∑

i=1

via
k
ij)F, k = 1, . . . n}.

Fact 8.2. If M ⊆ Ln is ΛL-definable (by ϕ(x̄)) within L then θLv̄F (M) ⊆
(F d×d)n is ΛF -definable (by τ∃

LαF (ϕ(x̄)) within F . Moreover, τ∃
LαF shifts types

modulo α#.

In the converse direction, let ē the system of ∗-matrix units and ā the
⊥-frame associated with v̄ – and observe that these are also associated with
v̄r for any r 	= 0; in other words, scaling the form with r 	= 0 does not change
the relation of “association”. Let θF v̄R = θ−1

Rv̄F . The basic interpretation of F
in R (giving rise to one in L) is the following fact.

Fact 8.3. e1Re1 is a ∗-subring of R, but with unit e1 and there is an isomor-
phism ωv̄ of F onto e1Re1 such that ωv̄(r)v1 = v1r.

We give a translation of formulas not depending on v̄ so that it can
be used later with varying coordinate systems. Let the Xk = (Xkij)ij be
d × d-arrays of variables, all pairwise distinct, and ψ(X̄) ≡ Q̄ȳ.ψ′(X̄, ȳ) a
formula in ΛF with quantifier-free ψ′, with free variables X̄, and quantified
y� according to the string Q̄ of quantifiers. Consider the y� as variables in
ΛR and choose pairwise distinct new variables xk and zij in ΛR. Translate
ψ(X̄) into τ0

FR(ψ)(x̄, z̄) ∈ ΛR given as Q̄ȳ ψ̂ where ψ̂ arises from ψ′ replacing
any occurrence of xkij by z1ixkzj1, any occurrence of y� by z11y�z11. Observe
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that, in view of Fact 8.3, one has R |= ψ̂(f̄ , ē) if and only if F |= ψ(Ā) where
Ak = Ωv̄(fk).

Fact 8.4. If K ⊆ (F d×d)n is ΛF -definable within F (by prenex ψ(X̄)) then
θF v̄R(K) is ΛR-definable within R (by τ0

FR(ψ)(x̄, ē)) where ē is associated with
v̄. Moreover, τ0

FR preserves types.

For example, consider ψ(X1,X2) given as ∃y1.
∧

ij y1x1ij = x2ij . Then
this translates to ∃y1.

∧
ij z11y1z11z1ix1ijzj1 = z1ix2ijzj1.

Again, the translation from F to L has that to R as intermediate step:
Define θF v̄L = θRL ◦ θF v̄R and τ0

FL = τ0
RL ◦ τ0

FR where τ0
RL is the restriction

to e1Re1 and Rij of the interpretation of R in L (w.r.t. associated ē and ā) of
Corollary 7.2, that is the well known interpretation of F in L. By Fact 7.4 we
conclude the follow consequence:

Fact 8.5. If K ⊆ (F d×d)n is ΛF -definable within F (by prenex ψ(X̄)) then
θF v̄L(K) is ΛL-definable within L (by τ0

FL(ψ)(x̄, ā)) where ā is associated
with v̄. τ0

FL preserves types.

9. Invariance

Clearly, definable subsets of Rn or Ln are invariant under automorphisms. In
order to apply Fact 3.1, we have to choose suitable groups of automorphisms.
In case (B) let F+ = {1} and O+(V ) consist of all orthogonal maps. In case
(A) let F+ the multiplicative subgroup {r | 0 	= r = r∗ ∈ F} of F and O+(V )
consist of all scaled orthogonal maps g: for some r ∈ F+ and orthogonal h

gv = h(vr) for all v ∈ V.

In view of commutativity, g = rh := (r id) ◦ h; equivalently

〈gv|gw〉 = r〈v|w〉 for all v, w ∈ V.

For ⊥-bases v̄, w̄ we write v̄ ∼ w̄ if |w̄| = r|v̄| for some r ∈ F+. Observe that
this relation and the group Q+(V ) are not changed if the form on V is scaled
by an element of F+.

Fact 9.1. (i) O+(V ) is a subgroup of GL(V ).
(ii) For any g ∈ O+(V ), the maps f �→ gR(f) = gfg−1 and fR �→ gL(fR) =

gfR are automorphisms of R and L, respectively. Moreover, g �→ gR and
g �→ gL define group homomorphisms.

(iii) v̄ ∼ w̄ if and only if w̄ = gv̄ for some g ∈ O+(V ).

Proof. Let r, h, g be as above. Then (rh)−1 = r−1h−1, (rh)∗ = rh∗ = rh−1,
and gfR = gfg−1R which yields (i) and (ii). Now, if |w̄| = r|v̄| and r ∈ F+,
define g ∈ GL(V ) by gvi = wi to obtain, for v =

∑
i viri and w =

∑
j visi, that

〈gv|gw〉 =
〈 ∑

i wiri

∣∣ ∑
j wjsj

〉
=

∑
i r∗

i |wi|si = r
∑

i r∗
i |vi|si = r〈v|w〉. �

We say that Φ ⊆ Rn and M ⊆ Ln are invariant if they are invariant under
the component-wise action of the gR resp. gL, g ∈ O+(V ). Clearly, definable Φ
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and M are invariant; if Φ is invariant then so is θRL(Φ) and if M is invariant
then so is θLR(M).

Dealing with the ∗-ring F d×d
α , we define O+

α (F, d) = O+(F d
α), consisting

of the T ∈ GL(F, d) such that T †α = rT−1 for some 0 	= r ∈ F+, and consider
the action A �→ TAT−1 on F d×d. We call K ⊆ (F d×d)n α-invariant if it
is invariant under the component-wise action of O+

α (F, d); right invariant if
(A1T1, . . . , AnTn) ∈ K for all (A1, . . . , An) ∈ K and Ti ∈ GL(F, d); and α-bi-
invariant if both conditions are satisfied, i. e. if (TA1T1, . . . , TAnTn) ∈ K for
all (A1, . . . , An) ∈ K, T ∈ O+

α (F, d), and Ti ∈ GL(F, d).
Of course, given a first order formula, right invariance of the subset of

(F d×d) it defines can be stated by a first order sentence; similarly α-invariance
if α is definable.

Fact 9.2. θLv̄F and θF v̄L induce mutually inverse bijections between the set of
all subsets M of Ln and the set of all right invariant subsets K of (F d×d)n.

Given α, define θRαF (Φ), θFαR(K), θLαF (M), and θFαL(K), respectively,
as the union of the θRv̄F (Φ), θF v̄R(K), θLv̄F (M), and θF v̄L(K) where v̄ ranges
over all ⊥-bases v̄ with |v̄| = α.

Proposition 9.3. Fix a ⊥-basis v̄ and α = |v̄|.
(i) θRv̄F and θF v̄R induce mutually inverse bijections between the set of all

invariant Φ ⊆ Rn and the set of all α-invariant K ⊆ (F d×d)n. Moreover,
for such Φ and K, θRv̄F (Φ) = θRαF (Φ) and θF v̄R(K) = θFαR(K).

(ii) θLv̄F and θF v̄L induce mutually inverse bijections between the set of all
invariant M ⊆ Ln and the set of all α-bi-invariant K ⊆ (F d×d)n; more-
over, for such M and K, θLv̄F (M) = θLαF (M) and θF v̄L(K) = θFαL(K).

Returning to the example of Φ consisting of all idempotent e such that
eR is co-isotropic, consider A ∈ K = θRv̄F (Φ) that is A2 = A and A†αA = 0.
Consider also T ∈ O+

α (F, 3), that is T †α = rT−1 for some 0 	= r ∈ F . It follows
(TAT−1)2 = TAT−1 and (TAT−1)†αTAT−1 = (T−1)†αA†αT †αTAT−1 =
r(T−1)†αA†αAT−1 = 0 showing α-invariance of K. Now, let Φ′ = θLR(M)
where M = {U ∈ L | U⊥ ≤ U} is invariant in L. Thus, K ′ = θLαF (Φ′) is α-
bi-invariant. On the other hand, Φ′ is the union of all eR, e ∈ Φ, whence
K ′ = K GL(F, 3) which is right invariant, obviously. To see α-invariance,
directly, consider AB where A ∈ K and B ∈ GL(F, 3) and T ∈ O+

α (F, 3);
then TABT−1 = TAT−1TBT−1 ∈ K ′ since TAT−1 ∈ K.

Proof. Observe that, by Fact 9.1(iii), wj =
∑

i vitij defines a ⊥-basis w̄ ∼ v̄ if
and only if T = (tij)ij ∈ O+

α (F, d) if and only if w̄ = g(v̄) for some g ∈ O+(V )
with Ωv̄(g) = T . To prove (i) it suffices to observe that, for A = Ωv̄(f), basis
transformation yields T−1AT = Ωv̄(g−1fg) = Ωw̄(f). Concerning (ii), assume
that M is invariant. Thus, with w̄ = g(v̄), Ā ∈ θLv̄F (ū) implies

g(uk) =
d∑

j=1

(
d∑

i=1

wia
k
ij)F
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that is, Ā ∈ θLw̄F (g(ū)). This proves that θLv̄F (M) = θLαF (M). To prove
α-bi-invariance of θLv̄F (M), assume T ∈ O+

α (F, d) related to w̄ and g as above
and observe that TĀ ∈ θLv̄F (ū) due to

g(uk) =
d∑

j=1

(
d∑

h=1

(
d∑

i=1

vit
k
ih)ak

hj)F =
d∑

j=1

(
d∑

i=1

vi(
d∑

h=1

tkihak
hj))F.

The same kind of reasoning applies for the reverse direction, while Fact 9.2
proves that the induced maps are inverses of each other. �

10. Definability

While, according to Section 8, definability in R or L gives rise to definability in
F , depending only on α = |v̄| in view of Proposition 9.3, the converse requires
to capture α in terms of ∗-matrix units respectively ⊥-frames. For the latter,
we combine Corollary 7.2 and 8.3 into the following fact:

Fact 10.1. For any basic ∗-ring operation q(x̄) there is an ortholattice term
q̂(x̄, z̄) such that for any ⊥-basis v̄ and associated system ē of ∗-matrix units
and ⊥-frame ā, and for any i ≥ 2, the set Ri1(ā) = {u ∈ L | u ⊕ ai = a1 + ai}
becomes a ∗-ring under the operations q̂(x̄, ā), and ωi

v̄(r) = (e1 − ei1 ◦ ωv̄(r))R
defines an isomorphism of F onto Ri1(ā).

Recall that in condition (C) we require that there are α#
i (x) ∈ ΛF such

that r = αi if and only if F |= α#
i (r). Then there is α@

i (x) in ΛF such that
F |= α@

i (r) if and only if r = −α−1
i . We say that a system ē of ∗-matrix units

is an α-system if

e1Re1 |= α#
i (e∗

i1ei1) for i = 2, . . . , d;

and a ⊥-frame ā is an α-frame if

Ri1(ā) |= α@
i ((a1 + ai) ∩ a⊥

1i) for i = 2, . . . , d.

Lemma 10.2. Let v̄ a ⊥-basis with associated system ē of ∗-matrix units and
⊥-frame ā. Then, for any α ∈ F d, one has |v̄| = rα for some r ∈ F+ if and
only if ē is an α-system if and only if ā is an α-frame.

Proof. In view of scaling we may assume |v1| = 1. For i > 1 let fi = e∗
i1ei1.

Then, in view of Fact 8.3, fi = e1fie1 = ωv̄(ri) for some ri ∈ F and it
follows ri = |v1|ri = 〈v1|v1ri〉 = 〈v1|fiv1〉 = 〈ei1v1|ei1v1〉 = 〈vi|vi〉 = |vi|; in
particular, e1Re1 |= α#

i (fi) for all i > 1 if and only if F |= α#
i (ri) for all i > 1

if and only if ri = αi for all i > 1 if and only if |v̄| = α.
Concerning the lattice case, observe that the isomorphism identifying

right ideal with subspaces takes ωi
v̄(r) to (v1 −vir)F . Again, denote the image

frame in the subspace lattice also by ā. It suffices to show that (a1 + ai) ∩
a⊥
1i = (v1 + viα

−1
i )F : in other words: 〈v1 − vir|v1 − vi〉 = 0 if and only if

r = −|vi|−1|v1|. The latter is easily verified. �
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Lemma 10.3. For given α such that α = r|v̄| for some ⊥-basis v̄ and r ∈ F+,
the groups of all gR and of all gL, g ∈ O+(V ), act transitively on the set of
all α-systems respectively all α-frames.

Proof. Let ē the α-system associated with v̄. It suffices to consider any α-
system f̄ and to find g ∈ O+(V ) with gRē = f̄ . For that purpose, choose w1

with im f1 = w1F (and |w1| = 1 in case (B)) and complete to a ⊥-basis w̄
associated to f̄ . By Lemma 10.2 we have w̄ ∼ v̄. Hence, gv̄ = w for some
g ∈ O+(V ) and gRē = f̄ . The reasoning for frames is analogous. �

For ψ(X̄) ∈ ΛF and N ∈ {R,L} define τ∃
FαN (ψ) and τ∀

FαN (ψ) in ΛR as

∃z̄. ραN (z̄) ∧ τ0
FN (ψ) and ∀z̄. ραN (z̄) ⇒ τ0

FN (ψ)

where ραR(z̄) and ραL(z̄) are the obvious first order formulas defining the
concept of α-system and α-frame, respectively. Observe that the latter formulas
are in Σk (in Πk, positive primitive) of so are the α#

i .

Theorem 10.4. Assume that one of conditions (A), (B) holds and that (C)
holds, as stated in Section 4 with α defined by α#. Consider the bijections of
Proposition 9.3.

(i) θRαF and θFαR match ΛR-definable Φ ⊆ R(V )n with ΛF -definable and
α-invariant K ⊆ (F d×d)n.

(ii) Let dim V ≥ 3. θLαF and θFαL match ΛL-definable M ⊆ L(V )n with
ΛF -definable and α-bi-invariant K ⊆ (F d×d)n.

Associated translations in (i) are provided by τQ
RαF and τQ

FαR, Q ∈ {∃,∀}
so that the (∃,∀)-pairs of translations preserve type modulo α#. In (ii) the
translations are τLαF which shifts type modulo α# and the pair τ∃

FαL, τ∀
FαL

which preserves types modulo α#. If F is model complete then so is R and, in
case dim V ≥ 3, L.

Observe that, in general, α-bi-invariant K are not definable in our sense.
For example, consider V = R

3 with canonical scalar product and M consisting
of all (ā, (e∗

j − f)R), f ∈ eiRej , such that ejifeji = kej for some k ∈ N where
ā is a ⊥-frame, ē the associated system of ∗-matrix units. Then θLαF (M) is
bi-invariant but not definable. Similarly, one can choose M definable by the
conjunction of infinitely many formulas, requiring ejifeji 	= kej for all k ∈ N.

Proof. Translating ψ(X̄) in ΛF to τQ
FN (ψ)(X̄) in ΛN , N ∈ {R,L}, based on

Facts 8.4 and 8.5, we apply Fact 3.1 with ρ(z̄) given by ραN (z̄) and ϕ(x̄, z̄)
by τ0

FN (ψ)(x̄, z̄). Here, the system of matrix units respectively the frame asso-
ciated with v̄ witnesses condition (i), while (ii) is granted by Proposition 9.3
and (iii) by Lemma 10.3. The converse translations are given by Facts 8.1 and
8.2.

Now, assume F model complete whence the αi defined by Σ1-formulas
α#

i (ui). Translating from ΛR to ΛF , one has τ∃
RαF (ϕ(x̄)) in Fact 8.1 of the

form ∃ū. α#(ū) ∧ ψ(X̄) and for any ⊥-basis v̄ with |v̄| = α one has R |=
ϕ(f̄) iff F |= ψ(Ωv̄(f̄)). By model completeness, ψ(X̄) is equivalent in F to
a Σ1-formula ψ′(X̄), that is R |= ϕ(f̄) iff F |= ψ′(Ωv̄(f̄)). Translating back
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from ΛF to ΛR via Fact 8.4 one obtains χ ≡ τ0
FR(ψ′(X̄))(X̄, z̄) in Σ1 such

that F |= ψ′(B̄) iff R |= χ((ωv̄(b̄), ē) where ē is the system of ∗-matrix units
associated with v̄, Bk = Ωv̄(fk), b̄ a (systematic) listing of all the entries of
the BK , and ωv̄ the isomorphism of F onto e1Re1. The akij are obtained from
fk as ω−1

v̄ (e1ieifkejej1). This allows to rewrite χ to χ′(x̄, z̄), also in Σ1, such
that R |= χ′(f̄ , ē) iff F |= ψ′(Ā) iff R |= ϕ(f̄) (namely, substitute z1izixkzjzj1

for the entry xkij of Xk). In view of Fact 3.1 one gets ϕ(x̄) equivalent in R
to ∃z̄. ραR(z̄) ∧ χ′(x̄, z̄) which is in Σ1. This proves model completeness of
R. The translation τ∃

RL ◦ τ∃
LR (cf. Theorems 6.2 and 7.5) yields then model

completeness of L. �

The translations τ apply also in the case n = 0, providing translations
between the first order theories of F , R, and L. Recall the assumptions of
Theorem 10.4.

Corollary 10.5. Th(F ) is decidable if and only Th(R) is decidable if and only if,
in case d ≥ 3, Th(L) is decidable. The analogous result applies to Σ1-fragments.

Corollary 10.6. Let VF and V ′
F ′ be spaces admitting ⊥-bases v̄ and v̄′ of cardi-

nality d such that there is α#(ȳ) ∈ ΛF defining |v̄| in F and |v̄′| in F ′. Then
Th(F ) = Th(F ′) if and only Th(R(V )) = Th(R(V ′)) if and only if, in case
d ≥ 3, Th(L(V )) = Th(L(V ′)).

Proof. The first equivalence follows from Fact 8.3 in one direction, from
R(V ) ∼= F d×d

|v̄| in the other. The second equivalence follows from Theo-
rem 7.5. �

Corollary 10.7. Let Σ an axiomatization of Th(F ).
(i) An axiomatization of Th(R) is given by τ∀

FαR(Σ) along with the finitely
many axioms requiring that R is a regular ∗-ring of module height d admit-
ting an α-system of matrix units (transferring this concept to abstract
∗-rings).

(ii) In case d ≥ 3, an axiomatization of Th(L) is given by τ∀
FαL(Σ) together

with the finitely many axioms requiring that L is an involutive Arguesian
lattice of height d admitting an α-frame.

Th(F ) is finitely axiomatizable if and only Th(R) is finitely axiomatizable if
and only if, in case d ≥ 3, Th(L) is finitely axiomatizable.

Proof. Consider the ⊥-basis v̄ required in Theorem 10.4 and the associated
α-system ē and α-frame ā. Let R′ be a model of the axioms in (i). The matrix
units ē′ yield a ring isomorphism R′ → F ′d×d for the ∗-ring F ′ = e′

1R
′e′

1

which is a division ∗-ring since e′
1 is a minimal projection. Moreover, since ē′

is an α-system, this isomorphism is easily seen to be an isomorphism R′ →
F ′d×d

α of ∗-rings. That is, up to isomorphism, R′ = R(V ′
F ′) with ⊥-basis v̄′

satisfying the requirements of Corollary 10.6 and ē′ the α-system associated
with v̄′. Then, due to the translation of Σ into the language of R, one has
Th(F ′) = Th(e′

1R
′e′

1) = Th(e1Re1) = Th(F ) and it follows Th(R) = Th(R′)
by Corollary 10.6.
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Assume that Th(R) is finitely axiomatizable but that Th(F ) is not. By
the Compactness Theorem one can replace τ∀

FαR(Σ) in the axiomatization of
Th(R) by τ∀

FαR(Γ) for some finite subset Γ of Σ. On the other hand, since
Th(F ) is not finitely axiomatizable, there are F ′ and ψ ∈ Th(F ) such that
F ′ |= Γ′ ∪{¬ψ} where Γ′ is Γ together with the finitely many axioms granting
that F ′d

α satisfies the hypotheses of Corollary 10.6. If follows Th(R′) = Th(R)
for R′ = F ′d×d

α but τ∀
FαR(ψ) 	∈ Th(R′), contradiction.

The lattice case is shown, similarly: Arguesian lattices of height ≥ 3
with a ⊥-frame are coordinatized by vector spaces (cf. [2, Theorem 13.4]), the
involution is then induced by a hermitean form (cf. [4, §14]). �

11. Counterexamples

Example 11.1. The set M = {u ∈ L | dim u = k} is positive primitive definable
in L, without using involution, but not quantifier-free in the IL L if d ≥ 3;
θLF (M) = {A ∈ F d×d | rk(A) = k} is quantifier-free definable in F .

Proof. The positive claims are obvious (cf. Fact 5.1). Assume a quantifier-
free definition ϕk of dimu = k in the IL L(V ). The involutive sublattice Su

generated by any u consists of 0, u ∩ u⊥, u, u⊥, u + u⊥,1 whence any ϕ(x) is
equivalent to a Boolean combination of x∩x⊥ = 0, x ≤ x⊥, and x⊥ ≤ x. Since
V admits an orthogonal basis, for any 0 < k < d there is uk with dimuk = k
and Suk

the 4-element boolean algebra. In particular, Su1
∼= Su2 with u1 �→ u2.

Thus, both u1 and u2 satisfy ϕ1 and ϕ2. Contradiction. �

Example 11.2. For a field F , the set M of all collinear harmonic quadruples
is positive primitive definable in L without involution but not quantifier-free in
the IL L if d ≥ 3. Also, θLF (M) is quantifier-free definable in F .

Proof. Let ϕ(x̄) express that the x̄ are a harmonic quadruple of points on a line
– referring to points not on the line. Now, the involutive sublattice S generated
by a quadruple of points on a line l is isomorphic to the direct product of a
height 2 IL if l ∩ l⊥ = 0; otherwise, S consist, besides 0,1, only of points on
l and lines through l⊥. Thus, a quantifier-free formula equivalent in L to ϕ(x̄)
can state only some boolean combination of equalities between the xi and their
orthogonals on the line. �

12. The anisotropic case

We now derive some stronger results in case that V is anisotropic, that is, if
〈v|v〉 = 0 implies v = 0. Then L is an ortholattice. Here, F may be any division
ring with involution.

Corollary 12.1. Fix d. For any Σ1-formula ϕ(x̄) there is a formula of the form
∃ȳ. t(x̄, ȳ) = 0 with a term t such that this formula is equivalent to ϕ(x̄) within
L for any anisotropic V of dim V = d.
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Proof. This follows from Proposition 5.3. Here, we can simplify the construc-
tion observing that any equation u = w is equivalent, within L, to t = 0 where
t = (u⊥ ∩ (u+w))+ (w⊥ ∩ (u+w)). And, in view of Fact 5.2, given a frame ā,
we have u 	= w equivalent to D1(t, ā)⊥ = 0. Thus, referring to ā, any conjunc-
tion ϕi(x̄) of atomic and negated atomic formulas is equivalent to ri(x̄, ā) = 0
for some terms ri and

∨k
i=1 ϕi(x̄) to Dk(r1(x̄, ā), . . . , rk(x̄, ā)) = 0. Finally,

reference to ā can be replaced by quantification ∃z̄, bounded by the equation
r0(z̄) = 0 comprising the equations defining a frame. �

Proposition 12.2. For any formula ϕ(x̄) ∈ ΛL there is a quantifier-free formula
ϕ̂(x̄) ∈ ΛL equivalent to ϕ(x̄) in L for any anisotropic V of dim V = 2 over
an infinite field F .

Proof. We show that the class C of all infinite ortholattices of height 2 admits
quantifier elimination. Observe that here both z = x ∨ y and z = x ∧ y are
equivalent to quantifier-free formulas in the language with operation symbols
0,1, only; and the ortholattices L reduce to infinite sets with constants 0,1
and a fixedpoint-free involution interchanging these. In particular, for any
assignments x̄ �→ āi in Li ∈ C of equal cardinality there is an isomorphism
ω : L1 → L2 with ω(ā1) = ā2 provided that these assignments satisfy the
same quantifier-free formulas – choose ω(b⊥) = (a2

i )
⊥ if b = a1

i and match the
remaining pairs of orthocomplements of L1 with those of L2. Thus, (c) of [7,
Theorem 8.4.1] together with the Löwenheim-Skolem-Theorem apply to prove
quantifier elimination. �

In the anisotropic case, R owns also the operation f �→ f+ of Moore-
Penrose-Rickart pseudo-inversion, uniquely determined by well known identi-
ties — we write R+ if that operation is added and Λ+

R for the associated first
order language.

Theorem 12.3. Fix d ≥ 3. For any Σ1-formula ψ(x̄) ∈ Λ+
R there is a term

p(x̄, ȳ) ∈ Λ+
R such that ψ(x̄) is equivalent to ∃ȳ p(x̄, ȳ) = 0 within R+ for any

anisotropic V of dim V = d.

Proof. In view of the ΛR-equations having the pseudo-inverse as unique solu-
tion, we may replace any equation in Λ+

R by a positive primitive formula in
ΛR. Thus, we may assume that ψ(x̄) is a Σ1-formula in ΛR. By Theorem 7.5,
τRL(ψ) is a Σ1-formula in ΛL which, by Corollary 12.1 is equivalent within
L to one of the form ∃ȳ t(x̄, ȳ) = 0. Now, within R+, for any f ∈ R one
has L(f)R = fR and RR(f) = Rf with left projection L(f) := ff+ and
right projection R(f) := f+f and the fundamental operations of L can be
expressed by ∗-ring terms with the additional operations of left and right pro-
jection [1, Proposition §I.3.7]; in particular, they can be expressed by terms of
Λ+

R. Thus, t(x̄, ȳ) translates into a term p(x̄, ȳ) in Λ+
R and ∃ȳ t(x̄, ȳ) = 0 into

∃ȳ p(x̄, ȳ) = 0. �
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13. Open problems

Of course, an interpretation of L within R can also be given considering joins
and meets as smallest upper and greatest lower bounds. Though, this would
not preserve type Π1.

Problem 13.1. Is there a map τ : ΛL → ΛR such that τ(ϕ) is in Π1 if so is ϕ
and τ(ϕ) defines θLR(M) if ϕ defines M?

For anisotropic V , one can replace θLR by a bijection π of L onto the set
P of self-adjoint idempotents of R. If the operation of Moore-Penrose-Rickart
inversion is added to R, the following has a positive answer.

Problem 13.2. Is there a map τ : ΛL → ΛR such that τ(ϕ) is in Π1 if so is ϕ
and τ(ϕ) defines π(M) (within P ) if ϕ defines M?

In the presence of an orthonormal basis v̄, for any ∗-ring term t(x̄) there
are ∗-ring terms tij(X̄) such that Ωv̄(t(f̄)) = (tij(Ā))ij where Ak = Ωv̄(fk).
Thus, in this case Fact 8.1 can be improved by a map τ which preserves types
and quantifier freeness.

Problem 13.3. In the presence of an orthonormal basis v̄, is there a map τ :
ΛL → ΛF such that τ(ϕ) defines θLv̄F (M) if ϕ defines M and such that τ(ϕ)
is quantifier-free if so is ϕ?
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