DIRECT FINITENESS OF REPRESENTABLE REGULAR ∗-RINGS. ERRATUM

CHRISTIAN HERRMANN

Dedicated to the memory of Susan M. Roddy

ABSTRACT. We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a ∗-ring of endomorphisms of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.

0. ERRATUM

There is no proof of Thm 3 since there is no proof of $et = er$ in Lemma 4. Actually, there is a counterexample given is the new paper: Direct finiteness of representable regular ∗-rings: A counterexample.

1. INTRODUCTION

A \ast -ring, that is ring with involution, is called *finite* if $rr^* = 1$ implies $r^*r = 1$. This is a basic notion in the classification of von Neumann algebras; in particular, as shown by Murray and von Neumann, a finite von Neumann algebra admits a finite ∗-ring of quotients. This ring is also \ast -regular and *directly finite*, that is $rs = 1$ implies $sr = 1$. As Ara and Menal [1] have shown, any ∗-regular ring is at least finite, while direct finiteness remains an open question, as stated by Handelman [5, Problem 48]. The present note gives a positive answer for certain [von Neumann] regular rings with involution.

For ∗-rings, there is a natural and well established concept of [faithfull representation in a vector space V_F endowed with a non-degenerate orthosymmetric sesquilinear form: an embedding into the \ast -ring $\mathsf{End}^*(V_F)$ of those endomorphisms of V_F which admit an adjoint. Famous examples are due to Gel'fand-Naimark-Segal (C^{*}-algebras in Hilbert space) and Kaplansky (primitive ∗-rings with a minimal right ideal). For

¹⁹⁹¹ Mathematics Subject Classification. 16E50, 16W10.

Key words and phrases. Regular ring with involution, representation, direct finiteness.

2 C. HERRMANN

∗-regular rings of classical quotients of finite Rickart C ∗ -algebras existence of representations has been established in [8], jointly with M. Semenova. N. Niemann [11, 6] has shown that a subdirectly irredcucible ∗-regular ring is representable if and only its ortholattice lattice of principal right ideals is representable within the ortholattice of closed subspaces of some V_F .

According to joint work with Susan M. Roddy [7], representability of modular ortholattices is equivalent to membership in a variety generated by finite height members. Using ideas from Tyukavkin [12], the analogue for ∗-regular rings was obtained by F. Micol [10]. Here, we rely on the presentation given in [9]: A regular ∗-ring can be represented within V_F , respectively some ultrapower thereof, if and only if it can be obtained via formation of ultraproducts, regular ∗-subrings, and homomorphic images from the class of the $\mathsf{End}^*(U_F)$, U_F ranging over finite dimensional non-degenerate subspaces of V_F . It will be shown that direct finiteness is inherited under the particular construction of [9] which proves the reduction to finite dimensions.

Thanks are due to Ken Goodearl for the hint to reference [4].

2. Preliminaries

When mentioning rings, we always mean associative rings R with unit 1_R , considered as a constant. In any ring, if a has a *left inverse* x, that is $xa = 1$, then a is left cancellable, that is $ay = az$ implies $y = z$. R is directly finite if, for all $r, s \in R$, $sr = 1$ implies $rs = 1$. In such ring, a has a left inverse if and only if a is a unit (and $x = a^{-1}$). The endomorphism ring $\textsf{End}(V_F)$ of a vector space is directly finite if and only if dim $V_F < \omega$. A *-ring is a ring endowed with an involution $r \mapsto r^*$; an element e of such a ring is a projection, if $e = e^2 = e^*$.

A ring R is [von Neumann] regular if for any $a \in R$, there is an element $x \in R$ such that $axa = a$; such an element is called a *quasi*inverse of a. If, for all a, x can be chosen a unit, then R is unit regular. Examples of such are the $\text{End}(V_F)$, dim $V_F < \omega$. A detailed discussion of direct finiteness in regular rings is given in Goodearl [5]. A regular \ast -ring is \ast -regular if $xx^* = 0$ only for $x = 0$.

In a regular ring, any left cancellable a has a left inverse; indeed $axa = a$ implies $xa = 1$. If $xa = 1$ and $aua = a$ with a unit u then $a = u^{-1}$ and $x = a^{-1}$. It follows

Fact 1. In a directly finite regular ring every left cancellable element is a unit – similarly on the right. Every unit regular ring is directly finite.

DIRECT FINITENESS 3

We recall some basic concepts and facts from [9] (here, Λ can be taken the \ast -ring of integers). In the sequel, F will be a division ring endowed with an involution and V_F a [right] F-vector space of dim V_F 1 endowed with a non-degenerate sesquilinear form $\langle . \mid . \rangle$ which is *orthosymmetric*, that is $\langle v | w \rangle = 0$ iff $\langle w | v \rangle = 0$. Such space will be called *pre-hermitean* and denoted by V_F , too. Within such space, any endomorphism φ has at most one adjoint φ^* ; and these φ form a subring of $\mathsf{End}(V_F)$ which is a *-ring $\mathsf{End}^*(V_F)$ under the involution $\varphi \mapsto \varphi^*.$ For $\dim V_F < \omega,$ End $^*(V_F)$ contains all of End $(V_F).$ A [faithful] representation of a $*$ -ring R is an embedding of R into some $\mathsf{End}^*(V_F)$.

Consider a linear subspace U of V_F , $1 < \dim U_F < \omega$. With the induced sesquilinear form, U_F is pre-hermitean if and only if $V = U \oplus$ U^{\perp} ; in particular, there is a projection $\pi_U \in \text{End}^*(V_F)$ such that $U =$ im π_U and such that the inclusion map $\varepsilon_U : U \to V$ is the adjoint of π_U (here, considerd as a map $V \to U$). We write in this case $U \in \mathbb{O}(V_F)$ and say that U is a *finite-dimensional orthogonal summand*. A crucial fact is that V_F is the directed union of the U_F , $U \in \mathbb{O}(V_F)$. Let $C(F)$ denote the center of F and, for $U \in \mathbb{O}(V_F)$,

$$
B_U = \{ \varepsilon_U \varphi \pi_U + \lambda \operatorname{id}_V \mid \varphi \in \operatorname{End}^*(U_F), \ \lambda \in C(F) \} = \{ \psi \in \operatorname{End}(V_F) \mid \psi(U) \subseteq U \ \& \ \exists \lambda \in C(F) \ \psi | U^{\perp} = \lambda \operatorname{id}_{U^{\perp}} \}
$$

 $(\varphi \text{ and } \psi \text{ are related via } \varphi(v) = \psi(v) + \lambda v)$. Thus, B_U is a *-subring of $\text{End}^*(V_F)$ and embeds into $\text{End}^*(W_F)$ for any $W \in \mathbb{O}(V_F)$, $U \subset W \neq U$. In particular, B_U is directly finite. Moreover, B_U is unit regular; indeed, $\chi \in B_U$ is a unit quasi-inverse of $\psi \in B_U$ if $\chi |U$ is one of $\psi |U$ and $\chi|U^{\perp} = (\psi|U^{\perp})^{-1}$ (considering these as endomorphisms of U and U^{\perp} , respectively). We put

$$
J(V_F) = \{ \varphi \in \text{End}^*(V_F) \mid \dim \text{im } \varphi < \omega \}
$$

$$
\hat{J}(V_F) = \{ \varphi + \lambda \text{ id}_V \mid \varphi \in J(V_F), \lambda \in C(F) \}
$$

According to [9, Proposition 4.4] $\hat{J}(V_F)$ is a *-subring of $\textsf{End}^*(V_F)$ and $J(V_F)$ is an ideal of $\textsf{End}^*(V_F)$ closed under the involution. Also, the following holds.

(*) For any finite $\Phi \subseteq J(V_F)$ there is $U \in \mathbb{O}(V_F)$ such that $\varphi =$ $\pi_U \varphi = \varphi \pi_U$ for all $\varphi \in \Phi$.

Thus, $\hat{J}(V_F)$ is the directed union of the B_U , $U \in \mathbb{O}(V_F)$, whence unitregular.

Lemma 2. Every regular $*$ -subring R of $\text{End}^*(V_F)$ extends to a regular $*$ -subring \hat{R} of $\mathsf{End}^*(V_F)$ containing $\hat{J}(V_F)$ and such that $J(V_F)$ is an ideal of \hat{R} .

Proof. $\{\lambda \varphi \mid \varphi \in R, \lambda \in C(F)\}\$ is a regular *-subring R' of $\text{End}^*(V_F)$ and [9, Proposition 4.5] applies to R' . . В последните последните се од 1999 година, на селото на 1999 година, кои 1999 година, кои 1999 година, кои 1
В 1999 година, кои 1999 г

Recall that a [faithful] representation of a \ast -ring R within a prehermitian space V_F is an embedding $\varepsilon: R \to \mathsf{End}^*(V_F)$. It is convenient to consider representations as unitary $R-F$ -bimodules $\frac{R}{F}$ (where the action of R is given as $rv = \varepsilon(r)(v)$ with sesquilinear form on V_F ; that is, a 3-sorted structure with sorts V, R , and F . Considering a $*$ -subring A of R we may add a fourth sort, A , and the embedding map. to obtain $({}_{R}V_{F};A)$. Any elementary extension $({}_{\tilde{R}}\tilde{V}_{\tilde{F}};\tilde{A})$ is again such a structure, that is, a representation of \tilde{R} and a \ast -ring \tilde{A} which may be considered as $*$ -subring of R. It is a *modestly saturated* extension if, for each set $\Sigma(\bar{x})$ of first order formulas in finitely many [sorted] variables and with parameters from $({}_RV_F; A)$, one has $({}_R\tilde{V}_F; \tilde{A}) \models \exists \bar{x} . \Sigma(\bar{x})$, provided that $\Sigma(\bar{x})$ is finitely realized in $({}_RV_F; A)$, that is $({}_RV_F; A) \models \exists \bar{x}.\Psi(\bar{x})$ for every finite subset $\Psi(\bar{x})$ of $\Sigma(\bar{x})$. Such extension always exists, cf. [2, Corollary 4.3.1.4].

3. Main result

Theorem 3. Every representable regular ∗-ring is directly finite.

Proof. We recall the relevant steps of the proof of [9, Theorem 10.1]. Given a representation $\mathbb{R}V_F$ of the regular $*$ -ring R, we may assume that dim $V_F \geq \omega$. In view of Proposition 2, we also may assume that R is a ∗-subring of $\mathsf{End}^*(V_F)$ containing $A = \hat{J}(V_F)$ and having ideal $J(V_F)$. Choose $({}_{\tilde R}\tilde V_{\tilde F}; \tilde A)$ a modestly saturated elementary extension of $(_RV_F; A)$.

Let J_0 denote the set of projections in $J(V_F)$. For $a \in \overline{A}$ and $r \in R$, we put $a \sim r$ if $ae = re$ and $a^*e = r^*e$ for all $e \in J_0$. According to Claims 1–4 in the proof of [9, Theorem 10.1], $S = \{a \in \hat{A} \mid a \sim \}$ r for some $r \in R$ is a regular \ast -subring of \hat{A} and there is a surjective homomorphism $q : S \to R$ such that $q(a) = r$ if and only if $a \sim r$.

Being an elementary extension of A , A is directly finite and so is its subring S. Now, assume $sr = 1$ in R. Consider a finite set $E \subseteq J_0$. According to (*), there is $e \in J_0$ such that $ef = f$ and $er^* f = r^* f$ for all $f \in E$. Take $a = re$ and observe that $af = ref = rf$ and $a^* f = er^* f = r^* f$ for all $f \in E$. Thus, the set

$$
\Sigma(x) = \{ [xe = re] \& [x^*e = r^*e] \& [\exists y, yx = 1] \mid e \in J_0 \}
$$

of formulas with a free variables x, y of type A and R, respectively, is finitely realized in $({}_R V_F; A)$. Indeed, given a finite subset Ψ of $\Sigma(x)$ there is finite $E \subseteq J_0$ containing all $f \in J_0$ which occur in $\Sigma(x)$; choose

e for E as above, g, t, u according to Lemma 4 below, and $x = t+1-q$, $y = u + 1 - g$.

By saturation, there are $a \in \tilde{A}$ and $b \in \tilde{R}$ with $ba = 1$ and $a \sim r$, whence $a \in S$ and $q(a) = r$. Moreover, a is left cancellable in \tilde{R} whence in the subring S and so a unit of S by regularity. Hence, $r = g(a)$ is a unit of R and $s = r^{-1}$ whence $rs = 1$.

Lemma 4. Consider a regular ring R with ideal I such that each eRe , $e \in I$, is unit-regular. Then for any $r, s \in R$ with $sr = 1$ and idempotent $e \in I$ there are an idempotent $q \in I$, $e \in qRq$, and $t, u \in qRq$ such that $ut = q$, $te = re$, and $et = er$.

Proof. Following [3] we consider R the endomorphism ring of a (right) R-module, namely $M_R = R_R$. Observe that r is an injective endomorphism of M_R . Let $U = \text{im } e$, $W_1 = U + r^{-1}(U)$, $W_2 = r(W_1)$; in a particular, these are submodules of M_R and $r|W_1$ is an isomorphism of W_1 onto W_2 . By (the proof of) [4, Lemma 2] there is an idempotent $g \in I$ such that $e, re, se \in S := gRg$. Put $W = \text{im } g$ which is a submodule of M_R , and an S-module under the induced action of S, so that $S = \text{End}(W_S) = \text{End}(W_R)$.

By hypothesis, S is unit-regular whence, in particular, directly finite. Due to regularity of S, for any $h \in S$ and S-linear map $\phi : hS \to W$ there is an extension $\overline{\phi} \in S$, namely $\overline{\phi} |(g-h)S = 0$. Due to direct finiteness, any injective such ϕ has an inverse in S. Also, by regularity, the submodules $W_1 = \text{im } e + \text{im } se$ and $W_2 = \text{im } e + \text{im } re$ are of the form $W_i = \text{im } g_i$ with idempotents $g_i \in S$.

Let $X_i = \text{im}(g - g_i)$ whence $W = W_i \oplus X_i$. Since $r|W_1 : W_1 \to W_2$ is an S-linear isomorphism, according to [3, Theorem 3] there is an S-linear isomorphism $\varepsilon : X_1 \to X_2$. Put $\delta(v) = \varepsilon(v) + g_2(r(v))$ for $v \in X_1$. If $\delta(v) = w \in W_2$ then $\varepsilon(v) \in W_2 \cap X_2$ whence $\varepsilon(v) = 0$ and $v = 0$; it follows that δ is an S-linear isomorphism of X_1 onto $Y \subseteq W$ where $Y \cap W_2 = 0$. Also, $g_2(\delta(v)) = g_2(r(v))$ since $g_2(X_2) = 0$. Define $t \in S$ as $t(v + w) = r(v) + \delta(w)$ for $v \in W_1$ and $w \in X_1$. t is injective whence it has inverse u in S .

An example of a simple regular ∗-ring which is not finite is obtained as follows: Let V_F a vector space of countably infinite dimension, and $R = \text{End}(V_F)/J(V_F)$. Of course, R is not directly finite. Define the involution on the direct product $R \times R^{op}$ by exchange: $(r, s)^* = (s, r)$ to obtain the ∗-ring S. Now, if $rs = 1$ but $sr \neq 1$ then $xx^* = 1$ but $x^*x \neq 1$ in S for $x = (r, s)$.

Problem 1. Is every simple directly finite ∗-regular ring representable?

6 C. HERRMANN

REFERENCES

- [1] Ara, P., Menal, P.: On regular rings with involution. Arch. Math. 42, 126–130 (1984)
- [2] Chang, C.C., H. J. Keisler, H.J.: Model Theory. Third ed., Amsterdam (1990)
- [3] Ehrlich, G.: Units and one-sided units in regular rings, Trans. Amer. Math. Soc. 216 (1976), 81–90.
- [4] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math.Acad. Sci Hungar. 14 (1963), 369–371.
- [5] Goodearl, K.R.: Von Neumann Regular Rings. Krieger, Malabar (1991)
- [6] Herrmannn, C., Niemann, N.: On linear representations of ∗-regular rings having representable ortholattice of projections. arXiv:1811.01392 [math.RA]. https://arxiv.org.abs/1811.01392
- [7] Herrmann, C., Roddy, M.S.: On varieties of modular ortholattices that are generated by their finite dimensional members. Algebra Universalis 72, 349– 357 (2014)
- [8] Herrmann, C., Semenova, M.: Rings of quotients of finite AW[∗]-algebras: Representation and algebraic approximation. Algebra and Logic 53, 298–322 (2014)
- [9] Herrmann, C., Semenova, M.: Linear representations of regular rings and complemented modular lattices with involution. Acta Sci. Math. (Szeged) 82, 395– 442 (2016)
- [10] Micol, F.: On Representability of ∗-Regular Rings and Modular Ortholattices. PhD thesis, Technische Universität Darmstadt (2003). http://elib. tu-darmstadt.de/diss/000303/diss.pdf
- [11] Niemann, N.: On representability of ∗-regular rings in endomorphism rings of vector spaces. PhD thesis Technische Universität Darmstadt (2007)
- [12] Tyukavkin, D.V.: Regular rings with involution. Vestnik Moskovskogo Universiteta. Matematika 39, 29–32 (1984) (Russian)

TECHNISCHE UNIVERSITÄT DARMSTADT FB4, SCHLOSSGARTENSTR. 7, 64289 DARMSTADT, GERMANY

E-mail address: herrmann@mathematik.tu-darmstadt.de