DIRECT FINITENESS OF REPRESENTABLE REGULAR *-RINGS. ERRATUM

CHRISTIAN HERRMANN

Dedicated to the memory of Susan M. Roddy

ABSTRACT. We show that a von Neumann regular ring with involution is directly finite provided that it admits a representation as a *-ring of endomorphisms of a vector space endowed with a non-degenerate orthosymmetric sesquilinear form.

0. Erratum

There is no proof of Thm 3 since there is no proof of et = er in Lemma 4. Actually, there is a counterexample given is the new paper: Direct finiteness of representable regular *-rings: A counterexample.

1. Introduction

A *-ring, that is ring with involution, is called *finite* if $rr^* = 1$ implies $r^*r = 1$. This is a basic notion in the classification of von Neumann algebras; in particular, as shown by Murray and von Neumann, a finite von Neumann algebra admits a finite *-ring of quotients. This ring is also *-regular and *directly finite*, that is rs = 1 implies sr = 1. As Ara and Menal [1] have shown, any *-regular ring is at least finite, while direct finiteness remains an open question, as stated by Handelman [5, Problem 48]. The present note gives a positive answer for certain [von Neumann] regular rings with involution.

For *-rings, there is a natural and well established concept of [faithful] representation in a vector space V_F endowed with a non-degenerate orthosymmetric sesquilinear form: an embedding into the *-ring $\operatorname{End}^*(V_F)$ of those endomorphisms of V_F which admit an adjoint. Famous examples are due to Gel'fand-Naimark-Segal (C^* -algebras in Hilbert space) and Kaplansky (primitive *-rings with a minimal right ideal). For

¹⁹⁹¹ Mathematics Subject Classification. 16E50, 16W10.

 $[\]it Key\ words\ and\ phrases.$ Regular ring with involution, representation, direct finiteness.

-regular rings of classical quotients of finite Rickart C^ -algebras existence of representations has been established in [8], jointly with M. Semenova. N. Niemann [11, 6] has shown that a subdirectly irreducible *-regular ring is representable if and only its ortholattice lattice of principal right ideals is representable within the ortholattice of closed subspaces of some V_F .

According to joint work with Susan M. Roddy [7], representability of modular ortholattices is equivalent to membership in a variety generated by finite height members. Using ideas from Tyukavkin [12], the analogue for *-regular rings was obtained by F. Micol [10]. Here, we rely on the presentation given in [9]: A regular *-ring can be represented within V_F , respectively some ultrapower thereof, if and only if it can be obtained via formation of ultraproducts, regular *-subrings, and homomorphic images from the class of the $\operatorname{End}^*(U_F)$, U_F ranging over finite dimensional non-degenerate subspaces of V_F . It will be shown that direct finiteness is inherited under the particular construction of [9] which proves the reduction to finite dimensions.

Thanks are due to Ken Goodearl for the hint to reference [4].

2. Preliminaries

When mentioning rings, we always mean associative rings R with unit 1_R , considered as a constant. In any ring, if a has a left inverse x, that is xa=1, then a is left cancellable, that is ay=az implies y=z. R is directly finite if, for all $r,s \in R$, sr=1 implies rs=1. In such ring, a has a left inverse if and only if a is a unit (and $x=a^{-1}$). The endomorphism ring $\operatorname{End}(V_F)$ of a vector space is directly finite if and only if $\dim V_F < \omega$. A *-ring is a ring endowed with an involution $r \mapsto r^*$; an element e of such a ring is a projection, if $e=e^2=e^*$.

A ring R is $[von\ Neumann]$ regular if for any $a \in R$, there is an element $x \in R$ such that axa = a; such an element is called a quasi-inverse of a. If, for all a, x can be chosen a unit, then R is unit regular. Examples of such are the $\operatorname{End}(V_F)$, $\dim V_F < \omega$. A detailed discussion of direct finiteness in regular rings is given in Goodearl [5]. A regular *-ring is *-regular if $xx^* = 0$ only for x = 0.

In a regular ring, any left cancellable a has a left inverse; indeed axa = a implies xa = 1. If xa = 1 and aua = a with a unit u then $a = u^{-1}$ and $x = a^{-1}$. It follows

Fact 1. In a directly finite regular ring every left cancellable element is a unit – similarly on the right. Every unit regular ring is directly finite.

We recall some basic concepts and facts from [9] (here, Λ can be taken the *-ring of integers). In the sequel, F will be a division ring endowed with an involution and V_F a [right] F-vector space of dim $V_F > 1$ endowed with a non-degenerate sesquilinear form $\langle . | . \rangle$ which is orthosymmetric, that is $\langle v | w \rangle = 0$ iff $\langle w | v \rangle = 0$. Such space will be called pre-hermitean and denoted by V_F , too. Within such space, any endomorphism φ has at most one adjoint φ^* ; and these φ form a subring of $\operatorname{End}(V_F)$ which is a *-ring $\operatorname{End}^*(V_F)$ under the involution $\varphi \mapsto \varphi^*$. For dim $V_F < \omega$, $\operatorname{End}^*(V_F)$ contains all of $\operatorname{End}(V_F)$. A [faithful] representation of a *-ring R is an embedding of R into some $\operatorname{End}^*(V_F)$.

Consider a linear subspace U of V_F , $1 < \dim U_F < \omega$. With the induced sesquilinear form, U_F is pre-hermitean if and only if $V = U \oplus U^{\perp}$; in particular, there is a projection $\pi_U \in \operatorname{End}^*(V_F)$ such that $U = \operatorname{im} \pi_U$ and such that the inclusion map $\varepsilon_U : U \to V$ is the adjoint of π_U (here, considerd as a map $V \to U$). We write in this case $U \in \mathbb{O}(V_F)$ and say that U is a finite-dimensional orthogonal summand. A crucial fact is that V_F is the directed union of the U_F , $U \in \mathbb{O}(V_F)$. Let C(F) denote the center of F and, for $U \in \mathbb{O}(V_F)$,

$$\begin{array}{lll} B_U &=& \{\varepsilon_U \varphi \pi_U + \lambda \operatorname{id}_V \mid \varphi \in \operatorname{End}^*(U_F), \ \lambda \in C(F)\} \\ &=& \{\psi \in \operatorname{End}(V_F) \mid \psi(U) \subseteq U \ \& \ \exists \lambda \in C(F) \ \psi | U^\perp = \lambda \operatorname{id}_{U^\perp}\} \end{array}$$

 $(\varphi \text{ and } \psi \text{ are related via } \varphi(v) = \psi(v) + \lambda v)$. Thus, B_U is a *-subring of $\operatorname{End}^*(V_F)$ and embeds into $\operatorname{End}^*(W_F)$ for any $W \in \mathbb{O}(V_F)$, $U \subset W \neq U$. In particular, B_U is directly finite. Moreover, B_U is unit regular; indeed, $\chi \in B_U$ is a unit quasi-inverse of $\psi \in B_U$ if $\chi|U$ is one of $\psi|U$ and $\chi|U^{\perp} = (\psi|U^{\perp})^{-1}$ (considering these as endomorphisms of U and U^{\perp} , respectively). We put

$$J(V_F) = \{ \varphi \in \operatorname{End}^*(V_F) \mid \dim \operatorname{im} \varphi < \omega \}$$

$$\hat{J}(V_F) = \{ \varphi + \lambda \operatorname{id}_V \mid \varphi \in J(V_F), \lambda \in C(F) \}$$

According to [9, Proposition 4.4] $\hat{J}(V_F)$ is a *-subring of End* (V_F) and $J(V_F)$ is an ideal of End* (V_F) closed under the involution. Also, the following holds.

(*) For any finite $\Phi \subseteq J(V_F)$ there is $U \in \mathbb{O}(V_F)$ such that $\varphi = \pi_U \varphi = \varphi \pi_U$ for all $\varphi \in \Phi$.

Thus, $\hat{J}(V_F)$ is the directed union of the B_U , $U \in \mathbb{O}(V_F)$, whence unit-regular.

Lemma 2. Every regular *-subring R of $End^*(V_F)$ extends to a regular *-subring \hat{R} of $End^*(V_F)$ containing $\hat{J}(V_F)$ and such that $J(V_F)$ is an ideal of \hat{R} .

Proof. $\{\lambda \varphi \mid \varphi \in R, \lambda \in C(F)\}$ is a regular *-subring R' of $End^*(V_F)$ and [9, Proposition 4.5] applies to R'.

Recall that a [faithful] representation of a *-ring R within a prehermitian space V_F is an embedding $\varepsilon \colon R \to \operatorname{End}^*(V_F)$. It is convenient to consider representations as unitary R-F-bimodules ${}_RV_F$ (where the action of R is given as $rv = \varepsilon(r)(v)$) with sesquilinear form on V_F ; that is, a 3-sorted structure with sorts V, R, and F. Considering a *-subring A of R we may add a fourth sort, A, and the embedding map. to obtain $({}_RV_F;A)$. Any elementary extension $({}_{\tilde{R}}\tilde{V}_{\tilde{F}};\tilde{A})$ is again such a structure, that is, a representation of \tilde{R} and a *-ring \tilde{A} which may be considered as *-subring of \tilde{R} . It is a modestly saturated extension if, for each set $\Sigma(\bar{x})$ of first order formulas in finitely many [sorted] variables and with parameters from $({}_RV_F;A)$, one has $({}_{\tilde{R}}\tilde{V}_{\tilde{F}};\tilde{A}) \models \exists \bar{x}.\Sigma(\bar{x})$, provided that $\Sigma(\bar{x})$ is finitely realized in $({}_RV_F;A)$, that is $({}_RV_F;A) \models \exists \bar{x}.\Psi(\bar{x})$ for every finite subset $\Psi(\bar{x})$ of $\Sigma(\bar{x})$. Such extension always exists, cf. [2, Corollary 4.3.1.4].

3. Main result

Theorem 3. Every representable regular *-ring is directly finite.

Proof. We recall the relevant steps of the proof of [9, Theorem 10.1]. Given a representation ${}_{R}V_{F}$ of the regular *-ring R, we may assume that dim $V_{F} \geqslant \omega$. In view of Proposition 2, we also may assume that R is a *-subring of $\operatorname{End}^{*}(V_{F})$ containing $A = \hat{J}(V_{F})$ and having ideal $J(V_{F})$. Choose $(\tilde{R}\tilde{V}_{\tilde{F}}; \tilde{A})$ a modestly saturated elementary extension of $(RV_{F}; A)$.

Let J_0 denote the set of projections in $J(V_F)$. For $a \in \tilde{A}$ and $r \in R$, we put $a \sim r$ if ae = re and $a^*e = r^*e$ for all $e \in J_0$. According to Claims 1–4 in the proof of [9, Theorem 10.1], $S = \{a \in \hat{A} \mid a \sim r \text{ for some } r \in R\}$ is a regular *-subring of \hat{A} and there is a surjective homomorphism $g: S \to R$ such that g(a) = r if and only if $a \sim r$.

Being an elementary extension of A, A is directly finite and so is its subring S. Now, assume sr=1 in R. Consider a finite set $E \subseteq J_0$. According to (*), there is $e \in J_0$ such that ef = f and $er^*f = r^*f$ for all $f \in E$. Take a = re and observe that af = ref = rf and $a^*f = er^*f = r^*f$ for all $f \in E$. Thus, the set

$$\Sigma(x) = \{ [xe = re] \&. [x^*e = r^*e] \& [\exists y. yx = 1] \mid e \in J_0 \}$$

of formulas with a free variables x, y of type A and R, respectively, is finitely realized in $({}_{R}V_{F}; A)$. Indeed, given a finite subset Ψ of $\Sigma(x)$ there is finite $E \subseteq J_0$ containing all $f \in J_0$ which occur in $\Sigma(x)$; choose

e for E as above, g, t, u according to Lemma 4 below, and x = t + 1 - g, y = u + 1 - g.

By saturation, there are $a \in \tilde{A}$ and $b \in \tilde{R}$ with ba = 1 and $a \sim r$, whence $a \in S$ and g(a) = r. Moreover, a is left cancellable in \tilde{R} whence in the subring S and so a unit of S by regularity. Hence, r = g(a) is a unit of R and $s = r^{-1}$ whence rs = 1.

Lemma 4. Consider a regular ring R with ideal I such that each eRe, $e \in I$, is unit-regular. Then for any $r, s \in R$ with sr = 1 and idempotent $e \in I$ there are an idempotent $g \in I$, $e \in gRg$, and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$ such that $e \in gRg$ and $e \in gRg$ such that $e \in gRg$

Proof. Following [3] we consider R the endomorphism ring of a (right) R-module, namely $M_R = R_R$. Observe that r is an injective endomorphism of M_R . Let $U = \operatorname{im} e$, $W_1 = U + r^{-1}(U)$, $W_2 = r(W_1)$; in a particular, these are submodules of M_R and $r|W_1$ is an isomorphism of W_1 onto W_2 . By (the proof of) [4, Lemma 2] there is an idempotent $g \in I$ such that $e, re, se \in S := gRg$. Put $W = \operatorname{im} g$ which is a submodule of M_R , and an S-module under the induced action of S, so that $S = \operatorname{End}(W_S) = \operatorname{End}(W_R)$.

By hypothesis, S is unit-regular whence, in particular, directly finite. Due to regularity of S, for any $h \in S$ and S-linear map $\phi: hS \to W$ there is an extension $\bar{\phi} \in S$, namely $\bar{\phi}|(g-h)S=0$. Due to direct finiteness, any injective such ϕ has an inverse in S. Also, by regularity, the submodules $W_1 = \operatorname{im} e + \operatorname{im} se$ and $W_2 = \operatorname{im} e + \operatorname{im} re$ are of the form $W_i = \operatorname{im} g_i$ with idempotents $g_i \in S$.

Let $X_i = \operatorname{im}(g - g_i)$ whence $W = W_i \oplus X_i$. Since $r|W_1 : W_1 \to W_2$ is an S-linear isomorphism, according to [3, Theorem 3] there is an S-linear isomorphism $\varepsilon : X_1 \to X_2$. Put $\delta(v) = \varepsilon(v) + g_2(r(v))$ for $v \in X_1$. If $\delta(v) = w \in W_2$ then $\varepsilon(v) \in W_2 \cap X_2$ whence $\varepsilon(v) = 0$ and v = 0; it follows that δ is an S-linear isomorphism of X_1 onto $Y \subseteq W$ where $Y \cap W_2 = 0$. Also, $g_2(\delta(v)) = g_2(r(v))$ since $g_2(X_2) = 0$. Define $t \in S$ as $t(v + w) = r(v) + \delta(w)$ for $v \in W_1$ and $w \in X_1$. t is injective whence it has inverse u in S.

An example of a simple regular *-ring which is not finite is obtained as follows: Let V_F a vector space of countably infinite dimension, and $R = \operatorname{End}(V_F)/J(V_F)$. Of course, R is not directly finite. Define the involution on the direct product $R \times R^{op}$ by exchange: $(r, s)^* = (s, r)$ to obtain the *-ring S. Now, if rs = 1 but $sr \neq 1$ then $xx^* = 1$ but $x^*x \neq 1$ in S for x = (r, s).

Problem 1. Is every simple directly finite *-regular ring representable?

REFERENCES

- Ara, P., Menal, P.: On regular rings with involution. Arch. Math. 42, 126–130 (1984)
- [2] Chang, C.C., H. J. Keisler, H.J.: Model Theory. Third ed., Amsterdam (1990)
- [3] Ehrlich, G.: Units and one-sided units in regular rings, Trans. Amer. Math. Soc. **216** (1976), 81–90.
- [4] C. Faith and Y. Utumi, On a new proof of Litoff's theorem, Acta Math.Acad. Sci Hungar. 14 (1963), 369–371.
- [5] Goodearl, K.R.: Von Neumann Regular Rings. Krieger, Malabar (1991)
- [6] Herrmannn, C., Niemann, N.: On linear representations of *-regular rings having representable ortholattice of projections. arXiv:1811.01392 [math.RA]. https://arxiv.org.abs/1811.01392
- [7] Herrmann, C., Roddy, M.S.: On varieties of modular ortholattices that are generated by their finite dimensional members. Algebra Universalis **72**, 349–357 (2014)
- [8] Herrmann, C., Semenova, M.: Rings of quotients of finite AW^* -algebras: Representation and algebraic approximation. Algebra and Logic **53**, 298–322 (2014)
- [9] Herrmann, C., Semenova, M.: Linear representations of regular rings and complemented modular lattices with involution. Acta Sci. Math. (Szeged) 82, 395–442 (2016)
- [10] Micol, F.: On Representability of *-Regular Rings and Modular Ortholattices. PhD thesis, Technische Universität Darmstadt (2003). http://elib. tu-darmstadt.de/diss/000303/diss.pdf
- [11] Niemann, N.: On representability of *-regular rings in endomorphism rings of vector spaces. PhD thesis Technische Universität Darmstadt (2007)
- [12] Tyukavkin, D.V.: Regular rings with involution. Vestnik Moskovskogo Universiteta. Matematika **39**, 29–32 (1984) (Russian)

TECHNISCHE UNIVERSITÄT DARMSTADT FB4, SCHLOSSGARTENSTR. 7, 64289 DARMSTADT, GERMANY

E-mail address: herrmann@mathematik.tu-darmstadt.de