
DIRECT FINITENESS OF REPRESENTABLE
REGULAR ∗-RINGS. ERRATUM

CHRISTIAN HERRMANN

Dedicated to the memory of Susan M. Roddy

Abstract. We show that a von Neumann regular ring with in-
volution is directly finite provided that it admits a representation
as a ∗-ring of endomorphisms of a vector space endowed with a
non-degenerate orthosymmetric sesquilinear form.

0. Erratum

There is no proof of Thm 3 since there is no proof of et = er in
Lemma 4. Actually, there is a counterexample given is the new paper:
Direct finiteness of representable regular ∗-rings: A counterexample.

1. Introduction

A ∗-ring, that is ring with involution, is called finite if rr∗ = 1 implies
r∗r = 1. This is a basic notion in the classification of von Neumann
algebras; in particular, as shown by Murray and von Neumann, a finite
von Neumann algebra admits a finite ∗-ring of quotients. This ring is
also ∗-regular and directly finite, that is rs = 1 implies sr = 1. As Ara
and Menal [1] have shown, any ∗-regular ring is at least finite, while
direct finiteness remains an open question, as stated by Handelman [5,
Problem 48]. The present note gives a positive answer for certain [von
Neumann] regular rings with involution.

For ∗-rings, there is a natural and well established concept of [faith-
ful] representation in a vector space VF endowed with a non-degenerate
orthosymmetric sesquilinear form: an embedding into the ∗-ring End∗(VF )
of those endomorphisms of VF which admit an adjoint. Famous exam-
ples are due to Gel’fand-Naimark-Segal (C∗-algebras in Hilbert space)
and Kaplansky (primitive ∗-rings with a minimal right ideal). For

1991 Mathematics Subject Classification. 16E50, 16W10.
Key words and phrases. Regular ring with involution, representation, direct

finiteness.
1



2 C. HERRMANN

∗-regular rings of classical quotients of finite Rickart C∗-algebras exis-
tence of representations has been established in [8], jointly with M. Se-
menova. N. Niemann [11, 6] has shown that a subdirectly irredcucible
∗-regular ring is representable if and only its ortholattice lattice of
principal right ideals is representable within the ortholattice of closed
subspaces of some VF .

According to joint work with Susan M. Roddy [7], representability
of modular ortholattices is equivalent to membership in a variety gen-
erated by finite height members. Using ideas from Tyukavkin [12],
the analogue for ∗-regular rings was obtained by F. Micol [10]. Here,
we rely on the presentation given in [9]: A regular ∗-ring can be repre-
sented within VF , respectively some ultrapower thereof, if and only if it
can be obtained via formation of ultraproducts, regular ∗-subrings, and
homomorphic images from the class of the End∗(UF ), UF ranging over
finite dimensional non-degenerate subspaces of VF . It will be shown
that direct finiteness is inherited under the particular construction of
[9] which proves the reduction to finite dimensions.

Thanks are due to Ken Goodearl for the hint to reference [4].

2. Preliminaries

When mentioning rings, we always mean associative rings R with
unit 1R, considered as a constant. In any ring, if a has a left inverse
x, that is xa = 1, then a is left cancellable, that is ay = az implies
y = z. R is directly finite if, for all r, s ∈ R, sr = 1 implies rs = 1. In
such ring, a has a left inverse if and only if a is a unit (and x = a−1).
The endomorphism ring End(VF ) of a vector space is directly finite if
and only if dimVF < ω. A ∗-ring is a ring endowed with an involution
r 7→ r∗; an element e of such a ring is a projection, if e = e2 = e∗.

A ring R is [von Neumann] regular if for any a ∈ R, there is an
element x ∈ R such that axa = a; such an element is called a quasi-
inverse of a. If, for all a, x can be chosen a unit, then R is unit regular.
Examples of such are the End(VF ), dimVF < ω. A detailed discussion
of direct finiteness in regular rings is given in Goodearl [5]. A regular
∗-ring is ∗-regular if xx∗ = 0 only for x = 0.

In a regular ring, any left cancellable a has a left inverse; indeed
axa = a implies xa = 1. If xa = 1 and aua = a with a unit u then
a = u−1 and x = a−1. It follows

Fact 1. In a directly finite regular ring every left cancellable element
is a unit – similarly on the right. Every unit regular ring is directly
finite.
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We recall some basic concepts and facts from [9] (here, Λ can be
taken the ∗-ring of integers). In the sequel, F will be a division ring
endowed with an involution and VF a [right] F -vector space of dimVF >
1 endowed with a non-degenerate sesquilinear form 〈. | .〉 which is
orthosymmetric, that is 〈v | w〉 = 0 iff 〈w | v〉 = 0. Such space will
be called pre-hermitean and denoted by VF , too. Within such space,
any endomorphism ϕ has at most one adjoint ϕ∗; and these ϕ form
a subring of End(VF ) which is a ∗-ring End∗(VF ) under the involution
ϕ 7→ ϕ∗. For dimVF < ω, End∗(VF ) contains all of End(VF ). A [faithful]
representation of a ∗-ring R is an embedding of R into some End∗(VF ).

Consider a linear subspace U of VF , 1 < dimUF < ω. With the
induced sesquilinear form, UF is pre-hermitean if and only if V = U ⊕
U⊥; in particular, there is a projection πU ∈ End∗(VF ) such that U =
im πU and such that the inclusion map εU : U → V is the adjoint of πU
(here, considerd as a map V → U). We write in this case U ∈ O(VF )
and say that U is a finite-dimensional orthogonal summand. A crucial
fact is that VF is the directed union of the UF , U ∈ O(VF ). Let C(F )
denote the center of F and, for U ∈ O(VF ),

BU = {εUϕπU + λ idV | ϕ ∈ End∗(UF ), λ ∈ C(F )}
= {ψ ∈ End(VF ) | ψ(U) ⊆ U & ∃λ ∈ C(F )ψ|U⊥ = λ idU⊥}

(ϕ and ψ are related via ϕ(v) = ψ(v) +λv). Thus, BU is a ∗-subring of
End∗(VF ) and embeds into End∗(WF ) for any W ∈ O(VF ), U ⊂ W 6= U .
In particular, BU is directly finite. Moreover, BU is unit regular; indeed,
χ ∈ BU is a unit quasi-inverse of ψ ∈ BU if χ|U is one of ψ|U and
χ|U⊥ = (ψ|U⊥)−1 (considering these as endomorphisms of U and U⊥,
respectively). We put

J(VF ) = {ϕ ∈ End∗(VF ) | dim imϕ < ω}
Ĵ(VF ) = {ϕ+ λ idV | ϕ ∈ J(VF ), λ ∈ C(F )}

According to [9, Proposition 4.4] Ĵ(VF ) is a ∗-subring of End∗(VF ) and
J(VF ) is an ideal of End∗(VF ) closed under the involution. Also, the
following holds.

(∗) For any finite Φ ⊆ J(VF ) there is U ∈ O(VF ) such that ϕ =
πUϕ = ϕπU for all ϕ ∈ Φ.

Thus, Ĵ(VF ) is the directed union of the BU , U ∈ O(VF ), whence unit-
regular.

Lemma 2. Every regular ∗-subring R of End∗(VF ) extends to a regular

∗-subring R̂ of End∗(VF ) containing Ĵ(VF ) and such that J(VF ) is an

ideal of R̂.
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Proof. {λϕ | ϕ ∈ R, λ ∈ C(F )} is a regular ∗-subring R′ of End∗(VF )
and [9, Proposition 4.5] applies to R′. �

Recall that a [faithful] representation of a ∗-ring R within a pre-
hermitian space VF is an embedding ε : R→ End∗(VF ). It is convenient
to consider representations as unitary R-F -bimodules RVF (where the
action of R is given as rv = ε(r)(v)) with sesquilinear form on VF ; that
is, a 3-sorted structure with sorts V , R, and F . Considering a ∗-subring
A of R we may add a fourth sort, A, and the embedding map. to obtain
(RVF ;A). Any elementary extension (R̃ṼF̃ ; Ã) is again such a structure,

that is, a representation of R̃ and a ∗-ring Ã which may be considered
as ∗-subring of R̃. It is a modestly saturated extension if, for each set
Σ(x̄) of first order formulas in finitely many [sorted] variables and with
parameters from (RVF ;A), one has (R̃ṼF̃ ; Ã) |= ∃x̄.Σ(x̄), provided that
Σ(x̄) is finitely realized in (RVF ;A), that is (RVF ;A) |= ∃x̄.Ψ(x̄) for
every finite subset Ψ(x̄) of Σ(x̄). Such extension always exists, cf. [2,
Corollary 4.3.1.4].

3. Main result

Theorem 3. Every representable regular ∗-ring is directly finite.

Proof. We recall the relevant steps of the proof of [9, Theorem 10.1].
Given a representation RVF of the regular ∗-ring R, we may assume
that dimVF > ω. In view of Proposition 2, we also may assume that
R is a ∗-subring of End∗(VF ) containing A = Ĵ(VF ) and having ideal
J(VF ). Choose (R̃ṼF̃ ; Ã) a modestly saturated elementary extension of
(RVF ;A).

Let J0 denote the set of projections in J(VF ). For a ∈ Ã and r ∈ R,
we put a ∼ r if ae = re and a∗e = r∗e for all e ∈ J0. According
to Claims 1–4 in the proof of [9, Theorem 10.1], S = {a ∈ Â | a ∼
r for some r ∈ R} is a regular ∗-subring of Â and there is a surjective
homomorphism g : S → R such that g(a) = r if and only if a ∼ r.

Being an elementary extension of A, Ã is directly finite and so is its
subring S. Now, assume sr = 1 in R. Consider a finite set E ⊆ J0.
According to (∗), there is e ∈ J0 such that ef = f and er∗f = r∗f
for all f ∈ E. Take a = re and observe that af = ref = rf and
a∗f = er∗f = r∗f for all f ∈ E. Thus, the set

Σ(x) =
{

[xe = re] &. [x∗e = r∗e]&[∃y. yx = 1] | e ∈ J0
}

of formulas with a free variables x, y of type A and R, respectively, is
finitely realized in (RVF ;A). Indeed, given a finite subset Ψ of Σ(x)
there is finite E ⊆ J0 containing all f ∈ J0 which occur in Σ(x); choose
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e for E as above, g, t, u according to Lemma 4 below, and x = t+1−g,
y = u+ 1− g.

By saturation, there are a ∈ Ã and b ∈ R̃ with ba = 1 and a ∼ r,
whence a ∈ S and g(a) = r. Moreover, a is left cancellable in R̃ whence
in the subring S and so a unit of S by regularity. Hence, r = g(a) is a
unit of R and s = r−1 whence rs = 1. �

Lemma 4. Consider a regular ring R with ideal I such that each eRe,
e ∈ I, is unit-regular. Then for any r, s ∈ R with sr = 1 and idem-
potent e ∈ I there are an idempotent g ∈ I, e ∈ gRg, and t, u ∈ gRg
such that ut = g, te = re, and et = er.

Proof. Following [3] we consider R the endomorphism ring of a (right)
R-module, namely MR = RR. Observe that r is an injective endomor-
phism of MR. Let U = im e, W1 = U + r−1(U), W2 = r(W1); in a
particular, these are submodules of MR and r|W1 is an isomorphism
of W1 onto W2. By (the proof of) [4, Lemma 2] there is an idempo-
tent g ∈ I such that e, re, se ∈ S := gRg. Put W = im g which is a
submodule of MR, and an S-module under the induced action of S, so
that S = End(WS) = End(WR).

By hypothesis, S is unit-regular whence, in particular, directly finite.
Due to regularity of S, for any h ∈ S and S-linear map φ : hS → W
there is an extension φ̄ ∈ S, namely φ̄|(g − h)S = 0. Due to direct
finiteness, any injective such φ has an inverse in S. Also, by regularity,
the submodules W1 = im e + im se and W2 = im e + im re are of the
form Wi = im gi with idempotents gi ∈ S.

Let Xi = im(g − gi) whence W = Wi ⊕Xi. Since r|W1 : W1 → W2

is an S-linear isomorphism, according to [3, Theorem 3] there is an
S-linear isomorphism ε : X1 → X2. Put δ(v) = ε(v) + g2(r(v)) for
v ∈ X1. If δ(v) = w ∈ W2 then ε(v) ∈ W2 ∩X2 whence ε(v) = 0 and
v = 0; it follows that δ is an S-linear isomorphism of X1 onto Y ⊆ W
where Y ∩W2 = 0. Also, g2(δ(v)) = g2(r(v)) since g2(X2) = 0. Define
t ∈ S as t(v + w) = r(v) + δ(w) for v ∈ W1 and w ∈ X1. t is injective
whence it has inverse u in S. �

An example of a simple regular ∗-ring which is not finite is obtained
as follows: Let VF a vector space of countably infinite dimension, and
R = End(VF )/J(VF ). Of course, R is not directly finite. Define the
involution on the direct product R × Rop by exchange: (r, s)∗ = (s, r)
to obtain the ∗-ring S. Now, if rs = 1 but sr 6= 1 then xx∗ = 1 but
x∗x 6= 1 in S for x = (r, s).

Problem 1. Is every simple directly finite ∗-regular ring representable?
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