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To Esther 



Preface 

For about a decade I have made an effort to study quadratic forms 

in infinite dimensional vector spaces over arbitrary division rings. 

Here we present in a systematic fashion half of the results found du­

ring this period, to wit, the results on denumerably infinite spaces 

(" NO-forms'''). Certain among the results included here had of course 

been published at the time when they were found, others appear for the 

first time (the case, for example, in Chapters IX, X , XII where I in­

clude results contained in the Ph.D.theses by my students W. Allenspach, 

L. Brand, U. Schneider, M. Studer). 

If one wants to give an introduction to the geometric algebra of 

infinite dimensional quadratic spaces, a discussion of NO- dimensional 

spaces ideally serves the purpose. First, these spaces show a large 

number of phenomena typical of infinite dimensional spaces. Second, 

most proofs can be done by recursion which resembles the familiar pro­

cedure by induction in the finite dimensional situation. Third, the 

student acquires a good feeling for the linear algebra in infinite di­

mensions because it is impossible to camouflage problems by topological 

expedients (in dimension NO it is easy to see, in a given case, wheth­

er topological language is appropriate or not). 

Two more remarks are in order. Since classical Hilbert spaces have 

either finite or uncountable dimensions there will be no overlapping 

with Hilbert space theory here. And, finally, we wish to pOint out that 

we have made no steps to generalize away from vector spaces even in 

cases where such a possibility was in view. 

The manuscripts for the book have been critically read and reread 

by Dr. Werner Bani. He has eliminated a large number of errors. Yet of 

greatest importance to me has been his acute mathematical judgement on 

disputable matters in the texts. I express my warmest thanks to him. 

Zurich, March 1979 Herbert Gross 
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INTRODUCTION 

No one would assert that finite dimensionality is an intrinsic 

feature of the concept of quadratic form. Yet, apart from a very small 

number of results (see References to Chapter XI) there has been, as 

far as we know, only Kaplansky's 1950 paper on infinite dimensional spa­

ces pOinting our way, namely in the direction of a purely algebraic 

theory of quadratic forms on infinite dimensional vector spaces over 

"arbitrary" division rings. Such a theory would, naturally, leave aside 

the highly developed theory of Hilbert spaces and its relatives, Krein 

spaces, Pontrjagin spaces (see [2] for an orientation on these topics) • 

Furthermore, when we speak of infinite dimensional geometric algebra 

we do not, in this book, mean discussion of the ramifications into geo­

metry of hypotheses belonging to set theory nor, reversely, the study 

of axioms forced upon set theory by geometry. We simply mean that the 

(algebraic) dimension of the quadratic spaces is allowed to be infinite. 

Many problems of the finite dimensional setting remain perfectly mean­

ingful and invite an investigation when the finiteness condition is re­

moved. Our results show that it is possible to generalize, without rare­

fying, classical results from finite dimensional orthogonal geometry. 

There are also rather specific problems which call for a bit of 

general theory. As an illustration consider the classification problem 

of hilbertean spaces in the sense of [8] (A nondegenerate quadratic 

space E is called hilbertean if for all subspaces X of E that are 

closed, X = x.L.L (biorthogonal), we have E = X Ell x.L ; loc. cit. p. 177 .) • 

A complete classification would be of some interest to quantum logic. 

Nobody has been able to produce an infinite dimensional hilbertean spa­

ce other than classical Hilbert space (real or complex or quaternionic). 

Under certain additional restrictions it has, in fact, been possible to 

prove that there are none (cf. [3], [5] , [9] in Appendix Ito Chapter I). 
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These proofs resemble "proofs by circumstantial evidence": a number of 

exotic possibilities has to be ruled out in order to ge.t at what looks 

like the probable issue. The elimination requires knowledge about "ar­

bitrary" forms. (Incidentally, either outcome of the classification 

would be exciting: the existence of an infinite dimensional hilbertean 

space other than Hilb~rt space or else the characterization of Hilbert 

space by the property (hilbertean) .) 

Apart from a few glimpses into the uncountable (e.g. in the intro­

duction to Chapter II or in Section 8 of Chapter X) infinite dimension 

in this volume means dimension NO. Our text does not presuppose any 

knowledge about proofs in finite dimensional orthogonal geometry 1 how­

ever, the book is intended for readers who are acquainted with some of 

the classical results. Where should motivation for our endeavor come 

from if not from finite dimensional geometry! For the novice we mention 

that [1] [3] [4] [5] [6] [7] are a few of the excellent texts that treat 

finite dimensional orthogonal geometry. On the other hand, we do assume 

thorough familiarity with linear algebra. On a very few occasions we 

do assume a superficial acquaintance with topology. Besides the charac­

terization of isometry classes of quadratic spaces we have focused our 

main effort in this book onto the characterization of subspacesinquad­

ratic spaces (modulo the action of the orthogonal group associated to 

the space). Problems of this and related kinds are often referred to by 

using the adjective "Witt" (adjectives which cannot be negated should 

be spelled with capital initials). By using the table of contents it is 

easy to locate where what is being proved. 

Needless to say that there is a number of pretty and unsolvedprob­

lems in connection with IltO- forms (let alone the higher dimensions) • 

Perhaps we shall write up a list some day. Here is a sample which I 

found several years ago and which has already puzzled some specialists: 
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Is there any commutative field which admits no anisotropic NO-form but 

which has infinite u - invariant, i.e. admits, for each n E IN' , some 

anisotropic form in n variables? 

* 

[I] E. Artin, Geometric Algebra. Interscience Publ. New York 1957. 

[2] J. Bogn~r, Indefinite inner product spaces. Ergebnisse Band 78, 
Springer, Berlin Heidelberg New York 1974. 

[3] J.W.S. Cassels, Rational Quadratic Forms. L.M.S. Monographs vol. 13 
Academic Press, London New York 1978. 

[4] M. Eichler, Quadratische Formen und orthogonale Gruppen. Grundleh­
ren Band 63, 2. Aufl., Springer, Berlin Heidelberg New York 
1974. 

[5] I. Kaplansky, Linear Algebra and Geometry. Allyn and Bacon, Boston 
1969. 

[6] J. Milnor and D. Husemoller, Symmetric Bilinear Forms. Ergebnisse 
Band 73, Springer, Berlin Heidelberg New York 1973. 

[7] O.T. O'Meara, Introduction to quadratic forms. Grundlehren Band 177 
Springer, Berlin Heidelberg New York 1974. 

[8] V.S. Varadarajan, Geometry of Quantum Theory, vol. 1. van Nostrand 
Princeton 1968. 

Postscript. A fortnight after the above introduction had been 

written Hans A. Keller sent me a detailed description of an infinite 

dimensional hilbertean space different from the classical Hilbert spa­

ces. (Ein nicht - klassischer Hilbertraum, pp. 1-16, letter to the au­

thor dated March 20 1979.) Refer to a forthcoming publication. 



CHAPTER ONE 

FUNDAMENTALS ON SESQUILINEAR FORMS 

Introduction 

Chapter I contains some of the basic concepts and facts upon which 

subsequent chapters are built. The reader will find the terminology and 

notations that are used throughout the text. A number of fundamental 

definitions have been inserted in later chapters; whenever it had been 

possible to introduce a concept right where it is needed without inter-

rupting the flow of ideas we have postponed its introduction. 

On a very few occasions in this book we have made hints about ques-

tions relating to spaces of nondenumerable dimension (and made referen-

ces to the literature; see e.g. the introduction of Chapter II). A num-

ber of references to work on sesquilinear spaces of·uncountable dimen-

sion, upon which we shall not touch, is given in the bibliography at 

the end of this chapter; these are [3] , [10] , [11] , [14] , [16] , [20] , 

[24] , [28] , [37] , [42] . 

1. Orthosymmetric sesquilinear forms 

1.1 The underlying division rings. Let k be a division ring. A 

bijection v : k -+ k is called antiautomorphism if v (0.+6) = v (a) +v (6) 

and v (0.6) v(6)v(a) for all a, 6 E k • If k is commutative then 

the identity map is an antiautomorphism (it may be the only one as is 

witnessed by k = Q ,lR ); if k is skew then there may be none (see 

Appendix 1). All division rings in this book are assumed to admit anti-

automorphisms. Antiautomorphisms permit the convert ion of left vector 

spaces into right vector spaces and vice versa: if E is a k-left vec-

tor space and x E E we set 
-1 

XA := v (A)x and verify all axioms of a 

k-right vector space. For example, the set E* = HO~ CE,k) of all 

k-linear maps f: E -+ k naturally is a k-right vector space under 
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pOintwise addition and multiplication by scalars from k 1 it can be 

made into a k-left vector space by defining Af = fV(A) , i.e. 

( Ai) (x) fIx) • VIA) for all x E E . 

Notation: Sometimes we write AV instead of VIA) , especially so 

if the antiautomorphism is written as A ~ A* or A ~ X . 

1.2 The concept of sesquilinear form. Let v: k -+ k be an anti­

automorphism of the division ring k. With the k-left vector space E we 

associate its dual E* , converted into a left vector space via v as 

explained above. Both spaces being k-left vector spaces it is possible 

to consider linear maps 

~ E ---+ E* • 

Each ~ gives raise to a function ~ E x E -+ k by setting 

(1) ~ (x , y ) ~y (x) 

The map ~ is additive in both arguments1 it is linear in the first 

and v - semilinear in the second argument: 

(i) ~(x+y,z) ~ (x , z ) +~(y,z) 
(x, y , z E E) 

(ii) ~(x,y+z) ~ (x, y) + ~(x,z) 

(iii) ~( A x, y) A~(X,y) 

AV 
(x, y E E A E k) 

(iv) ~ (x, A y) ~ (x, y) 

Any map ~: E x E .-+ k which satisfies the four conditions (i) 

through (iv) is called a sesquilinear form with respect to V (ses­

qui'" = li'" 1 from the Latin) • For fixed (k, v) we let sesqv (E) 

be the additive group of all such forms. If ~ E sesqv (E) and y E E 

are kept fixed then x ~ ~(x,y) is a linear map E -+ k by (i) 

and (iii). By (ii) and (iv) we see that (from E into EO. ) 
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is linear if E* is considered as a left vector space as in 1.1 . Thus 

~ is obtained from ~ : y ~ ~ via (1) • We see that (1) establishes y 

a bijection between the set of linear maps ~ : E -+ E* and the set 

sesqv (E) • 

If V is the identity, which forces k to be commutative, then 

we obtain the concept of bilinear form. 

1.3 Orthosymmetric forms are e: - hermitean. Let ~ E Sesqv (E) • We 

say that the vector x E E is perpendicular - or orthogonal - to the 

vector y E E if and only if ~(x,y) = 0 , and then we write x ~ y 

In this book we are interested only in forms ~ for which ~ turns 

out a symmetric relation, 

(2) x ~ Y <=> Y ~ x (axiom of orthosymmetry) 

Forms with this property are termed orthosymmetric (~- symmetric for 

short). If ~ is orthosyrnmetric and Y C E we define Y~, as usual, 

to be {x E E ~(x,y) = 0 for all 

{y}~ • If Y is a subspace we call 

y E y} ; if Y E E 
~ 

then 
~ 

y is 

Y the orthogonal complement of Y 

in E, or simply the orthogonal of Y in E. We have for all X, Y C E 

(3) 

(4) 

X C Y => Y~ C X~ 

X C (X~) ~ 

from which we conclude 

(5) X~ « X~ )~) ~ 

Indeed, (3) applied to (4) yields ~ in (5); application of (4) to X~ 

gives the converse inclusion in (5). This establishes (5). In the fol­

lowing we shall save on brackets, X~~ = (X~)~ etc. From (3) and (4) 

it follows furthermore that 

(6) ( X + Y ) ~ X~ n Y~ 
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Proof. Since x.L n y.L c x.L we obtain X c x.L.L C (x.L n y.L).L by 

(3) and (4) and, symmetrically, Y c (x.L n y.L).L so that X + Y C 

(x.L n y.l.).L. Therefore, by (3) and (4), x.Lny.Lc{x.Lny.L).L.L c {x+y).L 

On the other hand, X c X + Y so (X + Y ).1. C x.L by (3) and, of course, 

{ X + y ).1. C y.L by symmetry. Thus { X + Y ).1. C x.L n y.L • 

Notice that we cannot prove the dual property II ( X n y).L = x.L + y.L II 

in this style: Interchanging + and n corresponds to switching from 

c to ~ ; but axiom (4) is not immune to turning around c. (In fact, 

the attractiveness of the infinite dimensional theory of forms derives, 

to a large extent, from the fact that this property does not carryover 

from finite dimensional geometry.) We now turn to the assertion in the 

caption. 

Theorem 1. Let ~ E Sesqv (E) be orthosymmetric and assume that 

dim E / E.L > 1 • Then the square 

(7) 

(8) v{e;) • e; 

and ~ satisfies 

(9) ~(y, x) 

-1 
e; A e; 

e;. v (e;) 

e; ~(x, y) v 

2 
v 

1 

is an inner automorphism of k , 

(for all A E k ) , further 

(for all x, y E E ) • 

Proof. Let Eo be a supplement of E.L in E; dim Eo ~ 2 by 

assumption of the theorem. For fixed y E Eo we consider the linear 

-1 maps x t-+ ~ (x ,y) and x t-+ v { ~ (y , x» from E into k • By or-

tho symmetry their kernels coincide so the two functionals are propor­

tional: there is nonzero \.dy) Ek such that ~(x,y) = [v-l{~{y,x»hdY) 

How does \.I depend on y? For y 1 ' Y 2 E Eo we have ~ ( x , Y 1 + Y 2) = 
-1 

[v { ~ ( y 1 + Y 2 ' x ) ) 1 \.I ( y 1 + Y 2) ; on the other hand ~ (x , Y 1) + ~ (x , Y 2 ) 

-1 -1 
[v (~{Yl,x»l\.l{Yl) + [v (~{Y2,x»l\.l{Y2) • Assume first that 

y 1 ' Y 2 E Eo are linearly independent. We assert that \.I (y 1) = \.I (y 2) 
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Indeed, "Te cannot have for otherwise there 

would be a nonzero linear combination nlYl + n 2Y2 ~ E which is impos­

sible since E n E~ = (0) . Hence we can pick x E E perpendicular to 
o 

one of the y's and not perpendicular to the other. Substitutions of 

such x lead to ]l (y 1) = ]l ( y 1 + Y 2) = ]l (y 2) • If, on the other hand 

and are dependent, then we pick z E E 
o 

not on the line 

and conclude ]l(Yl ) = ]lIz) ]l(Y2 ) by the former result. Thus ~(x,y) = 

-1 
[v (~(y,x»]]l for all x E E, Y E Eo Since this equality holds tri-

vially when y E E~ we conclude that it holds for all y E E . Setting 

-1 v 
e: := v(]l ) we obtain (9). Applying (9) twice yields ~(y,x)= e:~(x,y) = 

e:(e:~(y,x)V)V = e:v2(~(y,x»v(e:) for all x, y E E • For arbitrary AEk 

there exist x, y E E with ~(y,x) = A • Choosing A = 1 yields 

1 = e: . v (e:) , hence (8) and 2 -1 
A = e:v (A)e: for all A E k (as asserted 

by (7) ) . This finishes the proof of Theorem 1. 

We call e: - hermitean any sesquilinear form ~ E sesqv (E) which 

satisfies (9); such forms are orthosymmetric, obviously. Furthermore, 

(9) implies (7) and (8). Therefore, instead of speaking about orthosym-

metric forms we may just as well consider e: - hermitean forms attached 

to a structure (k ,v, e:) that satisfies (7) and (8). In particular, 

with each orthosymmetric form (which has dim E / E~ > 1) is associated, 

via Theorem 1, the additive subgroup S of k consisting of the ~-

metric elements, 

(10) S := { ~ E k I ~ e: ~ v } 

and the subgroup T C S of traces, 

(11) T:= { !; + e:!;v I!; E k} 

If the characteristic of k is not 2 then T = S because each symme­

tric ~ is of the form ~ = (~!;) + e:(~~)v ; if the characteristic is 2 
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then the quotient S / T is a crucial object (Chapters VIII, IX , XIV, 

XVI) . We still may have S T in characteristic 2 ; e.g . whenever 

there exists element in the center with + y " (if E;, E S then an y y 

" with " -1 E;, = n + e: n n := y(y+y) E;,) 

Remark 1. Bourbaki ([6] , p. 49), in his definition of e: - hermi-

tean form, stipulates that e: belong to the center of k The antiau-

tomorphism v is then an involution by (7), ,,2 = 1 . We have no need 

to make such an assumption. 

Definition 1. A sesquilinear space is a pair (E, 41) where E 

is a k-left vector space and 41: E x E -+ k an e: - hermitean form in 

the sense of (9). 

If there is no risk of confusion we shall often speak about the 

sesquilinear space E and omit mention of the form; we shall sometimes 

use the terms "space" and "form" interchangeably, e.g. we shall say 

that the form is ~a - dimensional when we mean that the space has dimen­

sion ~a ; etc. 

In euclidean 3 - space (IR ,<1> ) 

3 
1: 

i=l 

, where <I> is the inner product 

xiYi ' the number 41(x,x) is the 

square of the "length" of the vector x (<I> (x,x) is sometimes called the 

norm of the vector x = (xi) ) • Most of the division rings admitted in 

the theory of forms are such that 41(x,x) will not be the square of 

anything in k so that there is no analogue of the classical length. 

Because "norm" has too many meanings already we simply call length of 

x the element llxll : = 41 (x,x) • A vector of length 1 is called a unit 

vector. By II Ell (or 114111 ) we mean the set {llxll 1 x E E \ {a}} of 

lengths of all nonzero vectors, i.e. the set of all elements in k 

that are nontrivially represented by <I> • Notice that 114111 cs as <I> is 

e:-hermitean. Similarly, for F CE a subspace, lIFll:= {lIfll 1 f E F \ {a} } • 
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1.4 Zoology of forms. Let <1>: E x E -+- k be an £ - hermi tean 

form with respect to the antiautomorphism v . If £ = 1 then the form 

is called hermitean. If £ = 1 and v =] (possible only when k is 

commutative) then <I> is called symmetric. If £ = -1 the form is 

termed skew-hermitean; if £ = -1 and v = 1 the form is termed skew-

symmetric. A form <I> which has <I>(x,x) o for all x E E is termed 

alternate; we have: 

If the restriciton of <I> to the subspace X C E is alter-

(12) nate but not identically zero then <I> is skew-symmetric 

on the entire space E; in particular, k is commutative. 

Indeed, pick x, y E X with <I> (x,y) = 1 . Then, for all A E k , 

o = 1/ AX + yl/ o + 0 + A + £ A v • Hence £ = -1 (substitute A = 1 

and therefore AV = A , i.e. v = 1 • 

Alternate forms are skew-symmetric; if char k f 2 then the con-

verse holds true too. As a corollary of Theorem 1 we note 

(13) 
Let <I> E sesq] (E) be orthosymmetric and assume that 

dim E / E.I. > 1 . Then <I> is symmetric or alternate. 

Indeed, if <I> is not alternate, then for some nonzero <I> (x,x) we have 

<I> (x,x) = £ <I> (x,x) by (9), hence £ = 1 • 

1. 5 Scaling of forms. If <I> E sesqv (E) and ].I E k \ {O} then the 

right multiple belongs to 

(14) 

Sesq (E) 
vI 

where 

If, in addition, <I> is £ - hermitean then <1>1 is £1 - hermitean with 

-1 
£1 = £v (].I )].1 • l'1e assert: 
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Let 41 be £ - hermitean. If 41 is not skew - symmetric then 

there are ].ll E k \ {oJ such that 411 = 41].l1 is hermitean; 

if 411 is not symmetric then there are ].l2 E k \ {oJ such 

that 412 = 411].l2 is skew - hermitean (relative to antiauto­

morphisms which differ among themselves by factors which 

are inner). 

Proof. If 41 is not skew - symmetric then there are a, bEE 

with 41(a,b) f -41(b,a) so p:= 41(a,b) + £41(a,b)v f 0 • We have 

£ p V = P and AT: = (p A p -1 ) v defines an involution T: k -+ k re-

lative to which 41 1 : = 41].l1 ].ll = pV , turns out hermitean. Assume 

then that 411 (or any hermitean form) is not symmetric: there are 

a E k with aT f a so 6:= aT - a f 0 • Setting A(]:= 6-1 AT 6 de-

fines another involution of k with respect to which 412 = 4? 1 6 turns 

ou t to be skew - hermi tean . 

The transition from 4? E Sesqv (E) to 4?1 = 4?].l E Sesq (E), 
vI 

with defined by (14), is called scaling. Certain properties are 

immune to scaling, e.g. II 4? is orthosymmetric"; others are not, e.g. 

" 41 (x,x) = 1 has a solution". For the behaviour of S, T in (10) , (11) 

under scaling see Appendix I to Chapter XIV. 

1.6 Existence of £ - hermi tean forms. Let 4? E Sesq* (E) and 

(e l ) lEI be some fixed basis of E. Incidentally, all bases in this 

book are bases in the sense of linear algebra (so-called Hamel bases) 

each x E E is a finite linear combination of some e 
1 

Thus, if an-

other basis (f l ) lEI is introduced, f 
1 

L a lK e K ' then the "matrix" 

A = (alK)l,K E is row - finite: in each II row II all but a finite num-
I 

ber of entries from k are zero (meaning, as usual, that for each 

E I there are finitely many Kl ,··· ,Kn such that a = 0 for all 
lK 

K E I \{K1 '···,Kn } ) . Clearly, such a substitution matrix A need not 
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be column-finite. We abbreviate y := ~(e ,e ) and call C:= (y) E tK t K tKt,K I 

the matrix of the form ~ relative to the basis (e t ) tE I (the hybrid 

quantities of old. See [1], § 10, pp.51). For x = l: ~tet ' y = l: nte t 

two typical elements of E we find, by sesquilinearity, 

(16) ~(x,y ) 

As there are only finitely many nonzeros among ~t' nK the double sum 

in (16) makes sense even if C has infinite rows and columns. If ~ 

is E - hermite an then trc = EC* , 

(17) 

Conversely, we can use (16) , (17) in order to define E - hermitean forms 

on any vector space E over afield (k, *, E) where (7) and (8) hold, 

i.e. (\*) * = E -1 \ E and E* E = E E* = 1 • In this connection the 

following Theorem by Albert is relevant ( [1] , Thm. 19, Chap. X) : 

Let the division ring k be finite dimensional over its cen-

ter. If k admits an antiautomorphism leaving every element 
(18) 

of the center fixed then k admits an involution of the 

first kind (i.e. leaving every element of the center fixed). 

For proofs of this theorem see also [21], [38] • Thus, over such k we 

can define E - hermi tean forms, and then quite a few. (Cf. Appendix I ) 

Definition 2. A basis B = (e t ) t E I of a sesquilinear space 

( E,~ ) is called orthogonal basis if e ~ e for all t + K in I, 
t K 

i.e. if the matrix of the form ~ with respect to B is diagonal. 

If card I ( = dim E ) ~ ~O we sometimes write ~ = (al ,···, an) or 

where a 
t 

and (e t ) t E I is an ortho-~ = ( a l ' a 2 ,... ) 

gonal basis for ~ B is called orthonormal if it is an orthogonal 

basis consisting of unit vectors, i.e. ~(et,eK) <5 (Kronecker). 
tK 
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Definition 3. Let (E,~) be a sesquilinear space and XC E a 

subspace. The radical rad X of X is the subspace X n X~ ; X is 

called non degenerate iff rad X = (0) • 

In particular, E is nondegenerate if and only if E~ (0) , Le. 

the zero vector is the only vector perpendicular to all of E If E 

is nondegenerate we call ~ nondegenerate (since subspaces are always 

equipped with the restricted forms we say that ~ is nondegenerate on 

X iff X is nondegenerate etc.). If C is the matrix of ~ with re-

spect to some basis B then we see that E is nondegenerate if and 

only if C has full rank for any choice of B if finitely many rows, 

say (Y1K)KEI for ,EJ h l ,···,ln } were linearly dependent, 

Le. I: A Y 0 for all reEl and for suitable A (1 E J) not all 
J 1 1K 1 

zero, then I: A e ~ E . The argument may be reversed. Since C is an 
1 1 

e: - hermitean matrix we may furthermore confound left row - rank and 

right column - rank. 

2. Trace - valued forms and hyperbolic planes 

Let ~: E x E -+ k be e: - hermitean with respect to some division 

ring (k,*,e:) A vector x E E is called isotropic iff ~(x,x) = 0 ; 

the space E is called isotropic if it contains a nonzero isotropic 

vector. A subspace X C E is called totally isotropic if X C Xl. ; i. e. 

if ~ vanishes on X x X 

Definition 4. A nondegenerate plane is called hyperbolic if it is 

spanned by two isotropic vectors. 

Thus a hyperbolic plane P always admits "canonical" bases such 

that the matrix of the form takes the shape 

o 

e: 
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we see that IIpll T where T is as in (11). 

Lenuna 1. Let (E,~) be a non degenerate isotropic space over 

(k ,*,e;) • The following are equivalent: (i) E admits a basis consist-

ing of isotropic vectors and each nondegenerate isotropic plane in E 

is hyperbolic; (ii) IIEII C T (T as in (11) ) • 

Definition 5. ([9], § 10). An e; - hermitean form ~ which satis-

fies (ii) in Lenuna 1 is called trace - valued ("for each x there is I; 

such that ~(x,x) = I; + e; 1;*). 

Proof (of Lenuna 1) • Assume (ii). Let ~ (x ,x) = 0 and ~ (x,y) + 0 , say 

~ (x,y) = 1 for given x,y E E • The equation 11,y - I;xll = ~ (y ,y) - (I; + e; 1;*) = 0 

can be solved for I; by (ii) so the plane k(x,y) is hyperbolic. In 

particular, E contains two isotropic vectors x,x' with ~(x,x') = 1. 

If z is any vector we set x" = z - I;x - I;'x'. It is very easy to verify 

that we can solve (by (ii» the equation /Ix"lI=o for I; and 1;'. 

Hence z = I;x + I; 'x' + x" is a sum of three isotropic vectors. Since the 

set of isotropic vectors in E is thus proved to be a set of generators 

we can select a basis of the required sort. This establishes (ii) ~ (i) • 

Assume (i). We have to show that ~(x,x) is a trace for arbitrarily 

fixed x E E • This is obvious for x = 0 • If x + 0 then any basis 

of E will contain a member e with ~(x,e) + 0 since E is nonde-

generate. By (i) we may assume e isotropic so k(x,e) is a nondege-

nerate isotropic plane and hence hyperbolic: there is an isotropic vec-

tor a x + i3 e not on the line (e) , i.e. with a + 0 • This means that 

o -1 IIx + a i3 ell from which we conclude that the equation ~ (x ,x) = 

I; + e; 1;* has the solution I; = _a- l i3 ~(e,x) • This completes the proof 

of the lenuna. 

We shall see that trace - valued forms have a theory which is con-

siderably different from that of non - trace - valued forms. By an earlier 
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remark (made just after (11» forms are invariably trace - valued when 

the characteristic is not 2 or when the center is not left pointwise 

fixed (this takes place when k is commutative and * is not I ). 

If the characteristic is 2 and ~ is symmetric then ~ is trace - va-

lued if and only if ~ is alternate (because zero is the only trace in 

this case). 

Definition 6. A symplectic basis of a sesquilinear space (E,~) 

is a basis {r r' I 1 E I} with 
l' 1 

for all 1 E I and all 

other products between members of the family equal to zero (symplectic= 

intertwined; from the Greek). 

Clearly, if E admits a symplectic basis { r , r' I 1 E I} then E 
1 1 

is the orthogonal sum of the hyperbolic planes P1 spanned by {rl,r~}, 

E = e P1 • Conversely, if E is such a sum and each P1 is spanned by 

the isotropic basis {rl,r~} with ~(rl,r~) = 1 then the family 

{r1 ,r~ I 1 E I} is a symplectic basis. 

The two halves of a symplectic basis of E (if there is such a 

basis) span totally isotropic subspaces, R = k (r 1) 1 E I ' R' = k (r ~) 1 E I ' 

E = R e R' • Notice that by nondegeneracy it follows that R~ = Rand 

R' ~ = R' • 

Notation: It is convenient to write A £ B if in the sum A e B 

we have and B C B~ ; this is in analogy to ~ 
AeB where 

~ 
ACB and 

Remark 2 

and card k > 

in k Pick 

2 
ll* cr f 0 v 

~ 
B C A 

( [41] , Satz 15 

5 • Let a l = II 

v in the prime 

, p.39). Let 

+ ll* , a 2 

field of k 

For 1;1 E k \ {O} a given 

2 
1;2 (v II + cr) + 1;1 a l v = 0 • Then we have 

* be an involution on k 

cr + cr* be nonzero elements 

such that v f 0 
2 

ll+crf , v 

element determine 1;2 from 

0, 
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with Sl + v S2 f 0 , S2 f 0 • Iteration of this procedure (and Sec. 1.5) 

shows: If is an orthogonal basis of the trace - valued 

£ - hermitean form oj> = ( a l , ... , an> and if there exists a pOint f 0 

on the quadric oj> (x,x) = c then there exists a point 

the same quadric with si f 0 for all i = 1, ..• , n . 

3. Positive forms 

n 
x = l: Ce. 

1 J. J. 
on 

If the underlying division ring has the additional feature of ad-

mitting an order structure then we can single out "positive" forms. 

Definition 7. Let oj>: Ex E ->' k be £-hermitean over (k,*,£). 

Assume that k contains a (Hilbert -) ordered subdivision ring (ko '<) 

such that 

(19) 

IIEII C k 
o We say that 

Ilxli . lIyll > 0 <: 0 ] 

is definite [semidefinite] iff 

for all x, y E E \ {a} • 

If oj> is semidefinite and then, for all x E E, II xII is either in-

variably > 0 , or ~ 0 , or < 0 , or S 0 then oj> is called (accord-

ingly) positive definite, positive semidefinite, negative definite, ne-

gative semidefinite. 

Remark 3. A Hilbert ordering on a skew field k (=division ring) 

is defined just as on a commutative field: k = k \ {a} is assumed to 

contain a subset P - whose elements are termed positive - such that 

the following "axioms" hold: for all a, S E P and all y E k either 

yEp or -y E P , a + S E P , a S -1 E P . In other words, P is an 

additively closed multiplicative subgroup of k and of index 2 in k 

If a - S E P then one writes a > S or S < a and the usual laws on 

inequalities can be verified. The reader who is interested in the exi-

stence of such orderings may jump to Section 4 in Chapter XI • 
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Example. Let (ko '<) be some ordered commutative field and a,S 

negative elements of ko ' The 4 - dimensional ko - algebra (akoS) of 

so - called (generalized) quaternions q = So + Sl e l + S2 e 2 + S3 e 3 

( Si E ko ) has the multiplication table 

The assignment q ~ q : = So - Sl e l - S2 e 2 - S3 e 3 is an antiautomor-

phism (called "conjugation" ) One finds that N(q) := qq = qq = 
s2 2 S S 2 2 

Thus N(q) :;; 0 if and only if 0 be-- a Sl - + as S3 q = 2 0 

cause a, S < 0 Therefore each nonzero q has an inverse q -1 -1-= N(q) q . 
and k is a division ring. We now define hermitean forms <I>:ExE --+-

over (k, -,1) . By choosing diagonal the matrix (<I> (e 1 ,eK )) of <I> 

(with respect to some basis (e 1 )I) and with positive diagonal ele­

ments <I>(e 1 ,e 1 ) E ko = S the form turns out positive definite. If 

x = L: ql e 1 is a typical vector we have Ilxll = L: <I> (e 1 ,e 1 ) N (q) :;; 0 iff 

x = 0 

By scaling the hermitean form in the example we get new (£ - her-

k 

mitean) definite forms. There are no other skew examples by the follow-

ing 

Theorem 2. Let <I> be hermitean over the division ring k with 

involution * Assume that k contains a (Hilbert -) ordered division 

subring with 11<1>11 ck 
o 

finite on at least one line then 

. If k is noncommutative and de-

with suitable negative 

a, S E ko and * is the usual conjugation. If * is not 1 but k 

commutative and <I> is definite on at least one line then k 

for some negative y E ko and ( a + b/y) * = a - b/Y for all a, b E k . o 

It is a very easy exercise to prove the assertion in the commuta-

tive case; in the skew situation it follows from a result by Dieudonne 

( [7] , Lemma 1, p. 367 and [8], Sec. 4, p.677) as we shall show. 
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Lemma 2 (Dieudonne). Let (k,*) be a noncommutative involutorial 

division ring with center C . Let [S] be the ring generated in k 

by the subset S of * - symmetric elements. Then either [S] = k or 

else char k + 2 and for suitable a, a E C and * is 

conjugation. 

Remark 4. Notice that in the case of a quaternion algebra k in 

characteristic 2 (Appendix I to Chapter XVI) we have dim C S = 3 

and [S] = k • 

Proof of Theorem 2 in the noncommutative case. There exists 

y E II~II \ {a} For any a E S we have 

Thus S C ko and therefore 

impossible. Indeed, as * 

[S] C ko • We first show that [S] = k is 

is not 1 there exists A + 0 with A* -A 

be negative for all 

finiteness. Hence k 

If we had k = k then II A xII • Ilxll would o 

x E E thereby contradicting the assumption on de­

is a quaternion algebra (~) and * is con­
C 

jugation by Dieudonne's Lemma. Again, since ~ is definite on some li-

ne the term IIq x II = N (q) IIx II o 0 
may not change sign as q ran-

ges in k ; therefore a , a must be negative elements of C n k 
0 

Since k contains N(q) for all q E k ( ko contains N(q) IIxoU 
0 

and is a division ring) it contains in particular C = c2 - c2 • On the 

other hand, ko cannot properly contain C: We have seen that k + ko 

so assume that [ko : C] = 2 , say ko = C (q) • The discriminant of the 

quadratic equation x2 - (q + q ) X + N (q) = 0 (over C for the ele-

ment q is the square of the "pure" quaternion q - q hence equal to 

an invariably negative element 2 2 2 e = a /;1 + a /;2 - a a 1;3 • Hence 

k o 
C (/6) cannot be ordered. Thus we have proved that 

This finishes our proof. 

k = C o 
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Let (k,*,~) be as in Definition 7 and ~: E x E -+ k an 

~ - hermite an form. If there is an orthogonal decomposition 

(20) E 
.l 
Ell E 

such that the restriction of to E x E 
+ + 

is positive definite and 

the restriction to E x E is negative definite then the pair 

(dim E+ ' dim E_) is uniquely determined. Indeed, if E 
.l 

F+ Ell F_ is a 

second decomposition of the same kind and, say, dim F+ + dim E+ ' e.g. 

dim F+ > dim E+ ' then F+ n E_ f (0) which is absurd. This uniqueness 

is known as Sylvester I s law of inertia. The spaces E + ' E in (20) are 

by no means unique." 

Remark 5. The concept of positive form in the sense of Defini-

tion 7 has its legitimation by the positive symmetric forms. In Appen-

dix 1 we present a different kind of order structure which seems parti-

cularly appropriate for the study of forms over noncommutative fields. 

4. Dense subspaces 

In this section (E,~) is an ~ - hermitean space. The map which 

assigns to each linear subspace X C E its biorthogonal, X r+X := x.l.l, 

satisfies all the axioms of a so - called closure operation: (i) X ex, 

(ii) X = X , (iii) if X c Y then X c Y . Hence 

Definition 8. A subspace X of a sesquilinear space E is 

called .l - closed ("orthogonally closed") iff X = x.l.l ; a subspace Y 

is called .l - dense iff its .l - closure is all of E, y.l.l = E (in par-

ticular if E is nondegenerate then Y is.l - dense iff y.l = (0) ). 

In Section 8 below we shall define a topology a(~) that can be 

introduced on any sesquilinear space (E,~) and such that X.l.l is the 

closure, in this topology, of the linear subspace x. Here we show 
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that each infinite dimensional (E,~) contains proper subspaces that 

are ~ - dense. 

Lemma 3. Assume that (E,~) is nondegenerate and of infinite di-

mension. Then there are ~ - dense subspaces Y C E with dim Ely = dim E. 

Proof. Assume that we are given an infinite dimensional subspace 

FeE with the property that F ~ H~~ for all hyperplanes H of F 

It follows that the map which assigns to each x E E the linear map 

f H- ~(f,x) , defined on F, is an epimorphism of E onto F*:= HO~ IF.kl. 

The kernel is F~, thus we obtain dim E I F~= dim F* : a fortiori 

dim E ~ dim F* = (card k)dim F > dim F • Therefore. if we pick a sub-

space FeE with dim E 

H such that H C F C H~~ 

dim F then F must contain a hyperplane 

in particular H~ = F~ • Now we can descri-

be how to find ~ - dense Y C E of large codimension. Since dim E is 

infinite, we may in manv ways decompose E into a direct sum E 

E9 { F 1 I 1 E I} such that card I = dim E dim F for all 1 E I 
1 

There are hyperplanes H1 C F 
l 

with H~ 
1 

F~ 
1 . Set Y := E9 {H 11 1 E Il-

We find dim Ely = E 1 = dim E and 
~ fl H~ = fl F~ = 1 E9 F I~ = E~ = 101 Y = 

I I 1 I 1 I 1 

5. Finite dimensional subspaces 

In this section (E,~) is a nondegenerate e: - hermitean space. We 

establish a small number of very basic facts used extensively but tacit-

ly throughout the rest of the book. The first observation is 

If X C E has finite dim X then E = X E9 X~ if and only 
(21) 

if X is nondegenerate. 

Indeed, if there is such a decomposition then rad X C rad E = (0) by 

the nondegeneracy of E 

of the nondegenerate X 

Assume conversely that el, .•• ,en is a basis 

This means that the homogeneous system of n 
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n 
equations l: 1;. e. J. e. (j = 1, ... ,n) has only the trivial solution 

i=l 1 1 J 

( 1;1' ..• ' I;n) = (0, •.. ,0) . Hence for fixed z E E we can always solve 

the n inhomogeneous equations z - l: I;i e i J. e j (j = l, ••. ,n) for 

the unknowns t' t' Th fEe X + XJ. • '01 ' ••• , 'on· ere ore 

If is an orthogonal family of linearly inde-

(22) pendent isotropic vectors in E there exists an orthogonal 

family Yl' .•. ' Yn in E with <I>(r. ,y.) = 0 .. (Kronecker). 
1 J 1J 

Indeed, if n = 1 this is obvious by nondegeneracy of E Upon induc-

tion assumption we find mutually orthogonal xl' ... ' x n _ l E E such 

that spanned by 

is nondegenerate and (i f j) 
J. J. 

r i ' xi P. J. P. Hence X := Pl EIl ••• EIl Pn - l 1 J 

xJ. n-l 
qualifies for (21) : E = X Ell The vector r : = r - l: <I> (r ,x.) r. 

n i=l n 1 1 

is in ; r is isotropic and nondegenerate, thus there is 

<I> (r'Yn) = 1 ; therefore and for 

i = l, .•. ,n-l . Again by (21) E = P Ell P J. 
n n and once more we apply the 

induction assumption to r rEP J. 1 ' ••• , n-l n to find 

The family (y i) 1:;;; i :;;; n has the requisite properties. 

Combining (21) and (22) we obtain the 

Lemma 4. Let Z be a finite dimensional subspace in the nondege-

nerate £ - hermitean space (E,<I» • If r l , .•• , rm is a fixed basis of 

rad Z and Zo a fixed supplement of rad Z in Z then there exist 

mutually orthogonal vectors Yl , ••. , Ym E ZoJ. with <I>(ri'Yj) 

(Kronecker) , 1 :;;; i,j :;;; m • Thus there is a decomposition 

(23) E k(rl,yl ) 
J. J. 

k(rm,ym) 
J. 

Z 
J. 

E Ell Ell Ell 
0 

Ell 
0 

Indeed, E 
J. 

by (21) is nondegenerate; then we can = Z Ell Z as Z 
0 0 0 

apply (22) to r l , ... , rm in Z J. 
0 
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From (23) we read off: 

If E is nondegenerate and Z C E is finite dimensional 

(24) then dim E / ZJ. dim Z (if E is degenerate we have 

dim E / Z J. ::; dim Z 

Let Z be the span of the linearly independent vectors 

(25) E nondegenerate) and a l , ••• , an E k 

There exists z E E with ~(z,zi) = a i for I::; i ::; n 

Proof of (25). It suffices to prove the assertion for arbitrarily 

fixed basis of Z and arbitrary a i . Use (23). 

Remark 6. If we deal with trace - valued forms then by Lemma I in 

Section 1.2 we can choose the vectors in (22) and (23) to be iso-

tropic. Thus a finite dimensional nondegenerate alternate space is an 

orthogonal sum of hyperbolic planes (choose n maximal in (22) ) • 

Lemma 5. Let F be an arbitrary subspace in the nondegenerate 

space (E,~) • There exists a nondegenerate subspace GeE with F C G 

and dim G / F ::; dim rad F . 

Proof. Let (r1 ) 1 E I be a basis of R:= rad F . If I is fini-

te let where the are as in (23). If 

finite let J be the set of all finite sets of vectors r 
1 

I is in-

card J 

card I dim R Let W be a supplement of RJ. in E By (22) we 

find for each S = {r11 ,··· ,r 1m } E J a set T(S) = {Y1 I'···'Yl m 
} CW 

such that ~(rl·'Yl·) = o .. Let H be the span of the set 
~ J ~J 

U {T(S) I S E J } • We have H CW and dim H ::; dim R. Because l'l" n RJ. = (0) 

it is easy to verify that F $ H is nondegenerate. 
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6. Closed subspaces 

In this section (E, <1» is an E: - hermi tean space. By making use of 

the isomorphism theorem A + B / A "" A / A () B for subspaces A, B C E 

we obtain some basic facts about ol - closed spaces. 

* 

Let UCVCE 

ment X of U in 

be subspaces with dim V / U < 00 • Pick a supple­

V . We have Uol / Vol = Uol / (U + X)ol = Uol / Uol () xol "" 

Uol + xol / xol C E / xol . In particular 

(24) dim Uol / Vol :;; dim X = dim V / U 

dim Uol / Vol :;; dim E / Xol . Hence by 

ted with 

(26) 

< 00 and the argument may be repea­

Vol C uol C E . Threefold repetition yields 

Lemma 6. If U C V C E (E degenerate or not) and dim V / U < 00 

then (26) holds. In particular, if U isol - closed then V is ol - closed 

and dim Uol / Vol = dim V / U 

Indeed, if U = u.Lol then we have equality throughout in (26). If 

we assume E nondegenerate then U = (0) is ol-closed, hence 

Corollary 1. All finite dimensional subspaces in a nondegenerate 

space are ol - closed. 

Corollary 2. If (E,<I» is nondegenerate then the following are 

equivalent: (i) dim E is finite, (ii) X = Xolol for all X C E , 

(iii) if X C E & X + E then xol + (0) • 

Proof. (i) => (ii) by Corollary 1 

(iii) => (i) by Lemma 3. 

(ii) => (iii) is trivial 

Corollary 3. If (E,<I» is degenerate and F is finite dimen­

sional then Folol = F + rad E 
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Proof. EL = rad E is closed, so P + rad E is closed by Lemma 6 

and thus contains pLL . The converse inclusion is obvious. 

Lemma 7. Let (E,W) be an (: - hermitean space (degenerate or not) 

with the property that for all subspaces X we have 

(27) dim E I XL :s dim X 

(this always takes place if E can be decomposed into a direct ortho-

gonal sum of finite dimensional subspaces). Then for all subspaces 

u C V C E we have (26). Thus, if E is nondegenerate we see (choose 

U (0)) that dim V = dim VLL for all V C E ; a fortiori dim W = 

dim E for all L - dense subspaces. 

Example. We shall give an illustration concerning (27). Let k 

be an uncountable commutative field and a, b cardinals with 

I:{o :s 

dim 

1 + 

ses 

v 

a < b :s card k Let V,W be k - vector spaces, dim V = a , 

W b Select subsets I I J ck such that card I = a , card J 

K t 0 for all 1 E I , KEJ Let then (V1 )lEI , (wK) K E J be 

of V and W respectively. We now consider symmetric bilinear 

L "1 V 1 E V has precisely m nonzero coefficients " 1 
then, if 

= b, 

ba-

V L W for at least m different K E J , it follows that v = 0 . This 
K 

simply obtains from the fact that any n x n determinant 

I 
det(~) 

]. J 

is nonzero for different and different 

IT 
i,j 

ticular, V n wL = (0) and, symmetrically, W n VL = (0) • If we assume 

that at least one of the bases (v1 )I' (wK)J is orthogonal, then we 

can verify that (V ffi W I w) is nondegenerate. Thus we may in particu-
o 

lar choose V and W totally isotropic for W E = V ffi W 
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l'1e then have vJ. = V , WJ. = l'1 . Therefore dim E/vJ. > dim V , dim E/WJ. < dim W. 

This illustrates that we can find in the same nondegenerate space (E,~) 

all three cases dim E I xl. ; dim X (On the other hand, (27) may actual­
< 

ly hold in spaces which are very far from admitting orthogonal bases; 

we refer to Example 2 in the next chapter). For a further example see 

the space (FES F* , ~) defined in Remark 9 of Section 8 below. 

If veE is J. - dense and FeE finite dimensional then 
(28) 

(V n Fl.),!, = F 

Indeed, since dim V I V n F.I. dim V + Flo IFJ. ::;; dim E I Flo = dim F < 00 we 

may quote Lemma 6 and obtain dim (V n Fl.) J. I vJ.::;; dim F , i. e. 

dim (VnFJ.)J.::;; dim F since vJ. = (0) • Since Fe (VnFJ.)J. we have 

equality as asserted. 

We now turn to a lemma of eminent utility for geometric construc-

tions. The following situation often occurs. Given n linearly indepen-

dent vectors f l , ... , fn in a space E and scalars a l , ... , an E k 

one should find a vector x inside some prescribed subspace veE 

such that we have 

(29) i 1 , ... , n ) • 

By (25) we know that there always exist x E E which satisfy (29); the 

problem is to pick x in V. We have 

Lemma 8 ([22], Lemma 5, p. 12). Let F be the span of linearly 

independent vectors f l , ... , fn in the nondegenerate €- hermitean space 

(E,~) . Let V be a subspace of E. In order that for arbitrarily 

prescribed a l , ... , an E k there exists x E V with (29) it is neces­

sary and sufficient that vJ. n F = (0) • 
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Proof. Suppose (29) holds for x E V and randomly given <Xl'.··' <Xn. 

A nonzero vector d = E Sifi E v~n F would yield a nontrivial relation 

4> (x,d) = 0 = E <Xi st . Hence we must have V~ n F = (0) • If this is as­

sumed then V + F~ is ~ - dense; but V + F~ modulo the closed F~ is fi­

nite dimensional by (24), hence V + F~ is also ~ - closed by Lemma 6. 

Therefore V + F~ = E • Pick some x in E which has (29) and decompose, 

f = v + f' with v E V, f' E F~ . The vector v responds to the problem. 

We fi'nish this section with a lemma on ~ - closed supplements. Its 

proof uses a technique which is of independent interest. We first for-

mulate our assertion. 

Lemma 9 ( [32] ). Let (E,~) be an e: - hermitean space which admits 

an orthogonal basis, E a subspace and both ~ and 4>: = ~ I Ex E non-

degenerate forms. Let E FeG be a given decomposition of E. Then 

there exists a decomposition E = FoeG with 
~-.a.-

gonal in (E,4») and F E En E F 
o 0 

(the biortho-

Corollary. Let (E,4» be a nondegenerate e: - hermitean space 

which possesses an orthogonal basis. If the subspace GeE admits a 

totally isotropic supplement it admits a totally isotropic ~ - closed 

supplement. 

Indeed, if F is totally isotropic in Lemma 9 then so is F~~ 

and hence F as well. 
o 

In order to prove Lemma 9 we first establish another lemma. 

Lemma 10 ( [32] ). Let H be a linear subspace of E and (e l ) 1 E J 

a fixed basis of E. With x E E associate the finite set M(x) 

hEJI~ +0 
1 

in the representation x = E ~ e }. Then 
J 1 1 

H possesses 

a basis (h K ) K E I such that for all K E I we have M(h) ¢ 
K 

U M (h ) I 1 E I \ {K} } • 
1 
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Proof (Lenuna 10). Adjoin a new index o to the index set J, 

J o :=' J U {oJ and wellorder J o such that 0 is the first element. 

Define a map ~ : E -+ Jo as follows: with each nonzero x E H asso-

ciate the largest index in M(x) ; furthermore ~(O) = 0 and, if 

x ~ Hand H(x) n ~ (H) f ¢ , then let ~ (x) be the largest index in 

M (x) n ~ (H) , otherwise (Le. if M (x) n ~ (H) = ¢ ) let ~ (x) o • 

We first observe that for each x E E there is x' E E with 

x' _ x (mod H) and ~ (x') . If ~ (x) = we may of course choose 

x' = x ; if ~(x) f then there is Yl E H with ~(x) 

can determine a scalar Al such that ~ (x) ~ M(x - AIY l ) i.e. we 

shall have ~ (x - AIY l ) < ~ (x) . The step may be repeated. Since there 

are no infinite descending sequences in J we arrive at 
o 

- AnYn) = 0 after a finite number of steps. 

Next we show: for each K E ~(H) and K f 0 there is z E H with 

~ (z) = K and M (z) n {l E ~ (H) I 1 < K } = ¢ . Indeed, H = { Y E H I ~ (Y) < K } 
K 

is a linear subspace of H. Let z' E H with ~(z') = K . By what we 

have just proved there is z EH with z:= z' (mod HK) and M(z) n~(HK)= ¢, 

and we have ~(z) = ~(z') = K . For each K E I := ~(H) \ {oJ define 

A : = { Y E H I ~ (Y) = K , 1 ~ M (Y) 
K 

for all 1 E ~ (H) and 1 < K } . A f ¢ 
K 

by what we have shown. Pick one h 
K 

from each A 
K 

to obtain the fami-

ly (hK) K E I . There remains to show that (h K) K E I is a basis of H. 

It is obvious that (hK)KE I is linearly independent since each 

h 
K 

has some e 
10 

in its representation h 
K 

which does not 

show up in the representations of all the other h . Let then 
1 

H o 
be 

the span of (h K) K E I ' Ho C H . For x E H there exists x' E H with 

x' := x (mod Ho) and M(x') n ~ (Ho) = ¢ If we had x' f 0 then 

~(x') E M(x') and thus M(x') n~(Ho) M(x') n~(H) f ¢ 

Thus x' = 0 , i.e. x E H . This establishes Lemma 10. o 

contradiction. 
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Proof (Lemma 9). Here we let (e l ) 1 E J be an orthogonal basis of 

E , (f K ) K E K a basis of F and H: = F.1.1 n G • We choose a basis 

of the kind constructed in the previous proof: (h l ) lEI 

ll( H \{O}) I C J v * M (h) for all v E I and v + 1 
1 

• We now set 

f' := f - E A h with A determined such that ¥(e,f ') = 0 for 
K K 'K 'lK V K 

all vEl (this is possible since ~ (ev,fK ) + 0 for finitely many v 
.1.1 

only). Let F be the span of the f ' • We have E = F E9G , F cF 
0 K 0 0 

.1-.1-
There remains the assertion on FEE n E 

0 

.1-.1- .1 .1- .1E.1E HE We have F C FEE n E F CF E so F C F 
0 

, 
0 0 

, 
0 0 

.1E.1E .L.lE .1.1 .1.1 .1-.1-
F n E C F n E = F C F Let x E FEE n E but assume 

0 0 0 
. 

0 

x * F Decompose x = y + z , y E F , 
0 0 

z E G , z + 0 . As z E H \ {a} 

we have II (z) = 1 E I (for some 1 i , i.e. ¥ (el ,z) + 0 On the 
0 0 0 

other hand, ¥ (el , f ') = 0 for all K E K (by construction of the f K'). o K 
.1-.1- .1-.1-

Thus Z * FEE A fortiori Z * FEE n E contradicting the choice o 0 

.1E.1E n E of x Therefore z = 0 , i.e. Fo Fo as asserted. 

7. Isometries between sesquilinear spaces 

Let ~: E x E ->' k , ~ : E x E ->' k be e: - hermi tean forms over 

(k,*,e:) • The spaces (E,~) and (E,~) are called isometric iff there 

is a k - linear bijection cp : E - E satisfying ~ (cpx,cpy) = ~ (x,y) 

for all x, y E E; cp is called an isometry. If it is clear from the 

context what the forms are we may simply say that E and E are iso-

metric (notation E e. E ) . If E e.E we also say that the two spaces 

are of the same isometr:i t:il2e or that they belong to the same isometr:i 

class. 

Consider a family F = (f')l E I of linearly independent vectors 

in E and let F = (f,) 1 E I be an analogous object in E. On says 

that F and Fare congruent if 

(30) ~(f , f ) 
1 K 
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If we let F and F be the linear spans of F and F 1> , ~ 
o 0 

the restrictions to F x F and F x F of 1> and ~ respectively, 

then it is obvious that the assignment f t----+ f 
1 1 

induces an isometry 

of the spaces (F,1>o) , (F,~o) . Conversely, each isometry between ses­

quilinear spaces maps the bases of one space onto congruent bases of 

the other. 

The isometries ~ : E -+ E of (E,1» onto itself form a group 

under composition, called the orthogonal group of the sesquilinear 

space (E,1» . A collection of objects that characterizes the orbit of 

a subspace F (in the set of subspaces of E) under the the action of 

the orthogonal group is called a complete set of orthogonal invariants 

of F; these invariants determine the position of F inside E up to 

isometric automorphisms of E. 

Remark 7. There is an enormous literature on the orthogonal groups 

in the finite dimensional case. As a first orientation the reader may 

consult [9] , [33] . There is a zoology of groups that runs parallel to 

that of forms (symplectic groups, unitary groups, ... ); for lack of 

results in the infinite dimensional case we do not need it here. (In-

vestigations into the infinite dimensional case are e.g. [18] ,[19] ,[31], 

[36] ; the matter will not be pursued in this book.) 

The most fundamental theorem in the theory of finite dimensional 

sesquilinear forms is Witt's theorem. It will frequently be used in 

subsequent chapters. In order to state it we introduce 

Definition 9. Let (E,1» be an £-hermitean form over (k,*,E:) 

and T = { s + £ s* I s E k the additive subgroup of traces in k • The 

linear subspace E* := x EEl 1> (x ,x) E T} is called the trace - va-

lued part of E 
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Lemma 11. Each element ~ of the orthogonal group of the nonde-

generate space (E,<I» leaves pointwise fixed. 

Proof. maps hence E.L 
* 

onto E.L 
* 

Let 

and x E E . As ~x - x invariably belongs to E* we have 

o = <I>(~z,~x - x) <i>(z,x) - <I>(~z,x) = <I>(z-~z,x), i.e. z-~zEradE= (0). 

Theorem 3 ("Witt"). Let (E,<I» be a nondegenerate e: - hermitean 

space. An isometry ~o : F -+ F between finite dimensional subspaces 

F , FeE can be extended to an element of the orthogonal group of 

(E, <I» if and only if the following condition is satisfied 

(31) 
F n E*.L = F n E*.L and ~ 0 : F -+ F leaves 

F n E*.L pOintwise fixed. 

Corollary ("Cancellation Theorem"). Let (E,<I» be a nondegenera-

te e: - hermitean space. If E is decomposed, E = F E9 F.L G E9 G.L with 

F , G finite dimensional isometric subspaces of E* ' then F.L ~ G.L . 

The proof of Theorem 3 is given in Chapter XV where the topic is 

treated in a broader context. Here we shall make a few comments. 

First, if forms are assumed trace - valued, i.e. E = E* ' then (31) 

is vacuous and the assertion of the theorem is classical. (Generalizing 

away from finite dimensional E as long as dim F is kept finite is a 

triviality in the trace - valued situation.) 

Second, if forms are not trace - valued the result appears in [35). 

The special case where dim E / E* = 1 is assumed had been treated in-

dependently in [34) and by the author. For further details, e.g. when 

F C E* is assumed, see Chapter XV • 

Third, in the case of trace - valued spaces Theorem 3 and its cor-

lary are equivalent statements. In fact, Lemma 4 in Section 5 immediately 
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reduces the extension problem to the cancellation problem. This is not 

so in the general case. 

Forth, the above corollary on cancellation is identical with Kap-

lansky's Lemma 2 in [22]; his (purely computational) proof is that 

fast that we believe every student of the field should know it. It runs 

as follows (cf. [23] pp. 34-38): Choose congruent bases in F and G 

and join them with bases of F~ and G~ in order to obtain two bases 

of E. We get two matrices M, N of <Ii which split, M = [~ ~) , N = [~ g) 
and which are congruent under some matrix P, pO M P N, where 

pO := tr(M*) . Split P into the same size blocks, P [Wy Xz) and ex-

pand pO M P to get WO A W + yO BY = A , WO A X + yO B Z 0, 

XO A W + ZO BY = 0 , XO A X + ZO B Z = C . For arbitrary U (same size as 

A ) one then checks the identity: 

C + X O R X 

where R: = UO AU - (00 WO + :n) A (W U + 1) 

The problem is to find U such that R = 0 (for then Band C will 

be congruent, i.e. F~ ~ G~ ). Now it is obvious (by an induction argu-

ment) that the corollary has to be proved only when F cannot be fur-

ther (orthogonally) decomposed into proper subspaces. In other words, 

A is 1 by 1 or else A is [~~) and (k,*,£) = (k,l,-l) and thus 

k commutative. If A is 1 by 1 and not W = 1 = -1 then one of the 

equations W U + I ± U can be solved for U and R is zero; if, on 

the other hand, W 1 -1 then R = UO A + AU + A and this can be 

made zero by the very assumption on trace - valuedness of the subspace F. 

In the 2 by 2 case left we may first dismiss the possibility of alter-

nate E , for then F~ '" G~ simply by equality of dimensions (Remark 6 

in Section 5) • Thus we are left with char k = 2 We first note that 

L O A L = A for any 2 by 2 matrix L with determinant 1 We can get 
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R = 0 by solving L U = W U + 1 for U; and solution is impossible 

only when W + L is singular for every such L. But there is always 

L among [~~), [~ i) , [i ~) , [~ ~) , [i ~) , [~ i) to make W + L non-

singular. 

Fifth, there do exist infinite dimensional trace - valued spaces 

such that the cancellation theorem holds for arbitrary dimension of F; 

i.e. cancellation is possible (unconditionally) just as in the finite 

dimensional case. These are the "generic" spaces in [18]; the cancella-

tion property is verified in [40] . 

Example. Let k be commutative and of characteristic 2 and 

<I> = < 1) ED < 1) ED < 1) Thus, if e l , e 2 ' e 3 is an orthonormal basis we 

can introduce the new basis to get an iso-

metry 
l. l. l. < 1) ED < 1) ED (1) ::, < 1) ED H , H a hyperbolic plane. The assignment 

<:Po : e l f--+ e l + e 2 + e 3 violates (31) because contains 

but not e l . Hence there is no extension of <:Po and, in particular, no 

cancellation. 

We finish this section with a concept closely related to that of 

isometry: 

Definition 10. Let (E,<I» and (E,~) be sesquilinear spaces 

over division rings k and k The two spaces are called similar iff 

there exists an isomorphism K k --+ k of division rings and a K - se-

milinear bijection <:P : E --+ E and some fixed nonzero ex E k ("multi-

plyer for <:p") such that for all x,y E E we have - K 
<I> (<:px,<:Py) = <I> (x,y) . ex ; 

<:p is called similitude. 

If (E,<I» and (E,~) are similar, then each similitude <:P: E --+ E 

induces a bijection $ between the sets L(E) , L(E) of linear sub-

spaces in E and E respectively; in fact, q; is a lattice isomorphism 
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because it obviously respects the operations sum and intersection. Fur-

thermore, ~ respects the orthogonality relations ~ given on L(E), 

L(E) by ~ and ~ . However, interest is directed in the opposite di-

rection: If, for any nondegenerate (E,~), (E,~) of dimensions at 

least 3 over division rings k and k , there exists an "ortho - iso-

morphism" ~ between the lattices L (E), L (E) then $ must be in-

duced by a similitude ~ , in particular, (E,~) and (E,~) are simi-

lar. This follows easily from the First Fundamental Theorem of Projec-

tive Geometry ( [2] , p. 44 ). For the discussion of a related consequence 

of the Fundamental Theorem see Theorem 1 in [15] . 

Remark 8. It is not difficult to arrive at the appropriate ver-

sion of Theorem 3 for similitudes. Let (E,~) and (E,~) be nondege-

nerate sesquilinear spaces over k and k respectively. If ~ : F -+ F 
o 

is a similitude relative to a fixed isomorphism K: k -+ k and with 

multiplyer a between finite dimensional subspaces FeE, FeE then 

there exists an extension ~ : E -+ E of that is a similitude re-

lative to K and with multiplyer a if and only if the following are 

satisfied: There exists at least one similitude ~ : E -+ E relative 

to K and with multiplyer a and and ~o 

coincides with ~ on F n E*~ . (Apply Theorem 3 to the isometry 

F -+ (~-l F) .) 

8. The weak linear topology a(~) on (E,~) 

Let K be a topological division ring and E a K- vector space. 

A topology T on E is called a vector space topology if the two com-

position laws (x,y) f-+" x + Y , (;\,x) ....... A x from E x E and K x E 

into E are continuous ( E x E and K x E carrying the product topo-

logies). Since then, for fixed bEE the map x 1-+ b + x is a homeo-

morphism of E into itself we obtain a neighbourhood basis for b 
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simply by translating a neighbourhood basis ~(O) of the origin to 

b + ~(O) = { b + U I U E ~(O) } 

The only vector space topologies which we shall consider here are 

linear vector space topologies in the sense of Lefschetz ([27] ,Chap.II, 

§ 25). This means the following additional features: 

1. The division ring carries the discrete topology. 

2. There is a neighbourhood filter consisting of linear subspaces. 

We shall not by definition require that linear topologies be hausdorff. 

Thus, if ~={U Ia.EA} 
a. 

is any filter basis consisting of linear 

subspaces in E we gain a linear topology T on E by declaring 

b + ~ to be a neighbourhood basis ~(b) of bEE This topology is 

hausdorff iff n U 
a. 

(0) • Each neighbourhood b + U of bEE is 

both open and closed; hence if T is hausdorff then E is totally 

disconnected. Finite dimensional (E,T) are discrete if hausdorff; 

thus the concept is of interest only in the infinite dimensional case. 

A linear vector space topology T is induced - as is every topology 

of a topological group - by a uniform structure on E, a basis 

{Na. I a. E A} for a uniformity being given by Na. = { (x,y) E E x E I x - Y E Ua.} 

Thus it will make sense to talk about Cauchy filters, completions etc. 

Let us look for a linear topology T on sesquilinear spaces (E,~) 

that makes ~ separately continuous, i.e. makes continuous, for all 

Y E E , the maps x ~ ~(x,y) , x ~ ~(y,x) • Let y be fixed. Since 

~ (0, y) = 0 and {O} is a 0 - neighbourhood of 0 E k there must be a 

0- neighbourhood U of 0 E E with ~(U,y) c {o} , i.e. U c yl. 

Hence we see that the neighbourhood filter ~(O) for T must contain 

at least all orthogonals yl. (y E E) if T is to render ~ sepa-

rately continuous. But T is separately continuous if we let 
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{y~ly E E} be a subbasis for m(O) • Hence, the T thus defined is 

the coarsest such topology. 

Definition 11. Let (E,<I» be an £ - hermitean space (degenerate 

or not). The linear topology on E which has all linear subspaces ~ y 

( y E E as a subbasis of a neighbourhood filter of 0 E E (equiva-

lently: which has all orthogonals F~ , where F runs through the fi-

nite dimensional subspaces of E, as a 0 - neighbourhood basis) is 

called the weak linear topology a (<I» associated with (E,<I» Thus, 

a (<I» is hausdorff if and only if <I> is nondegenerate. 

The first observation of interest is 

(32) The a (<I» - closure of a linear subspace X C E is X~~. 

Proof. Let X be the a (<I» - closure of X. We have X ~ X~ by 

separate continuity. Conversely, to see that X~~ C X let z E X~~ and 

F~ be a typical a (<I» - neighbourhood. For fl , ••• , fn a basis of a 

supplement F of X~ n F in F we let a. = <I> (z ,f i ) , 1 :;; i :;; n 
0 1 

Trivially X~ n F (0) so, by Lemma 
0 

8, there is xl E X with 

~ ~ ~ <I>(xl,f i ) = a i . In other words, z-xl E Fo .Because z~X and xl~X 

we have in fact that z - xl E F~ • Therefore (z + F~) n X f ¢ ; z is 

an accumulation pOint of F 

If Y C E is a subspace and f: Y -+ k a a (<1» - continuous li-

near function into (the discrete) k then the kernel X = ker f is 

a - closed. Assume that f is not identically zero, thus Y = X ffi (y) , 

fly) 1. There exists z E X~ \y~ , say <I>(y,z) = 1 • We see that the 

map x f->- <I> (x, z) is a (<I» - continuous on E and extends f to all of E. 

What we have seen can also be put as follows: if X is a ~ - closed 

subspace of E and y ~ X then there exists a ~ - closed hyperplane H 

with X CHand y f H (namely z~). Finally, this can also be 
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expressed as follows 

(33) If F = F~~cE then F n {H I HH H ~ F & dim E/H = 1 } 

We see that the injection E -- E* = HO~ (E,k) which sends a vector y 

into the linear map x ~ ~(x,y) is onto the supspace E' C E* con-

sisting of all a (~) - continuous functionals on E . 

The next observation of interest is 

(34) If ~ is nondegenerate and (E,a (~» complete then dim E < ex> • 

Proof. Endow the algebraic dual E* = HO~ (E ,k) = II k 
I 

card I = 

dim E) with the product topology 7f of the discrete topology on k . 

Consider the mapping fjl : E ---->- E* defined by x f--4 ~ (. ,x) = (~(el ,x) )lEI 

where (e 1 ) 1 E I is some fixed basis of E fjl is injective because 

~ is nondegenerate. From the definition of the topologies it is imme-

diate that fjl is homeomorphic onto the image; fjl is in fact a dense 

embedding (for, density is here tantamount to Lemma 8). Hence E ~ E* 

if E is complete. 

Remark 9. It may very well happen that (E,~) contains an infi-

nite dimensional subspace which is complete under the topology induced 

by a(~) . Let us give an example. The algebraic dual F* of a k-left 

vector space may be turned into a left k - space by means of an involu-

tion v : k ---->- k of the underlying division ring k (cf. Sec. 1.1). 

Hence we may form the direct sum E = F e F* and define a hermitean 

form ~ on E by 

~(f+f' ,g+g') := g'(f) + v(f'(g» 

for all f, g E F and f I , g I E F* • Here the subspace F* is complete 

under the topology a(~) restricted to F* (cf. [26], § 10.10); this 

is not difficult to verify. 
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We always have a(<I>I Hx H) ;;:; a (<I» IH for H a subspace of (E,<I» . 

(Strict inequality is witnessed by H = F* in the above example (Re-

mark 9).) Equality holds only when trivially so: 

(35) a (<I» IH if and only if H + H~ E • 

Proof. We begin by noting that the assertion can be reduced to 

the case of nondegenerate <I> Hence a (<I» is hausdorff and so is 

a(<I» IH . If we assume equality of the two topologies on H then 

a (<I> I H x H) is hausdorff and thus <I> I H x H nondegenerate, H n H~ = (0) 

Let E H €a G for some supplement G with H~ C G We show that 

G C H~ Let g E G and consider g~ n H which is, of course, a (<I» IH -

closed and thus a(<I>I HxH ) -closed: there must be h E H with h~ n H = 

g~ n H . Hence H~ contains a suitable linear combination ah + g . If 

g were not in H~ then a f 0 and h E H~ + G = G , thus hE G n H = (0) , 

contradiction. Hence G C H~ and E = H + H~ • 

Lemma 12. Let V, V be subspaces in the nondegenerate sesquili-

near space (E,<I» • If there is an isometry ~ : V ~ V which is a ho-

meomorphism with respect to the topologies a (<I» Iv and a (<I» IV then 

we have dim (rad V) ~ / ( V + V~) 

Proof. We first show that 

(v ) 
lEI 

be a basis of V and 
1 

of vectors in E \ (V + V~) such 

dim (rad V) ~ / ( V + v~ ) • 

dim E/V + V~ 

v := ~v A 
1 1 

that the v~n 
1 

- -~ dim E/V + V . Let 

minimal family (e K) K E K 

V and the e ~ n V 
K 

( lEI, K E K) add up to a subbasis of the zero - neighbourhood filter 

of a(<I» Iv is a basis of a supplement of V + V~ in E. ~ maps all 

eK~ n V into a system S of a(<I» lv-open neighbourhoods which, to-

gether with all - ~ -
v n V 

1 
form a subbasis for the zero - neighbourhood 

filter of a(<I» Iv . Since the elements of S are a(<I» Iv - closed hyper-

planes of V they must be of the form x~ n V • 
1 
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As S is minimal all these vectors X 
1 

span a supplement of - -.! 
V+V 

in E. Hence dim E/ (V + V.!) = dim E/ (V + V.!) . Now we can arrange it so 

that certain among the e 
K 

span a supplement of V + V.! 

Since cp is an isometry we shall have rad vee.! n V 
1 

in (rad V).! • 

if and only if 

rad V ex.! n V 
1 

Le. x E (rad V).! . Thus e 
1 1 

t-+ X 
1 

maps a supplement 

of V + V.! in (rad V).! into a supplement of 

Hence the assertion. 

- -.! 
V+V in - .! (rad V) . 

Corollary. The existence of a cp as in Lemma 12 implies that for 

closed V, the dimensions of quotient spaces of neighbouring elements 

in the lattice generated by V under the operations +, n , .! (taking 

the orthogonal) 

E 

(rad V).! 

(0) 

coincide with the corresponding cardinals for V except, of course, 

Lemma 12 is the natural background for Allenspach's Theorem 4 in 

Section 5 of Chapter X . 

Remark 10. It is a little hard for the beginner to visualize the 

linear topology cr(~) . Nevertheless, since topology is such a sugge-

stive language, it sometimes helps to find and to motivate proofs if 

.! o.! is remembered as the closure of the topology. Here is a simple 

example of what we mean. Let F, G , H be.! - closed subspaces in a non­

degenerate space (E,~) with F cHand such that G.! + H.! = E . 
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We assert: if G + H is.L - closed then F + G is.L - closed. A proof for 

this can be figured out but it will hardly be straight forward. Provi­

ded one knows that "G.L + H.L = E" simply means that (J (~) I G + H is the 

product topology of (J(~) IG and (J(~) IH (Theorem 2 in Chapter X) then 

the proof of the assertion becomes natural and easy. Similar remarks 

could be made on other occasions. Section 7 of Chapter X is a good ex­

ample of a topologically motivated deduction of algebraic results. 

9. Orthostable lattices of subspaces 

An abstract lattice is a partially ordered set (V,~) such that 

each set {a,b} C V possesses a least upper bound (supremum) c and 

a largest lower bound (infimum) d (standard notation c = a Vb, 

d = a A b ). Example 1. V is the set L(E) of all linear subspaces 

of a vector space E and ~ on V is ~; it follows that X V Y = X + y 

and X A Y = X n Y for all X, Y E L (E) • Example 2. V is the set 

L .L.L (E) of all .L - closed subspaces of a nondegenerate sesquilinear 

space (E,~) and ~ on V is again ~ ; it follows that here X V Y 

( X + Y ) .u and X A Y = X n Y Most of the lattices of interest to us 

are complete which means that arbitrary sets of lattice elements pos­

sess suprema and infima (this is the case in the two examples above). 

A lattice is called modular if it satisfies the 

modular law: a ~ c = > (aV b) A c 

it is called distributive if it satisfies the stronger 

distributive identities: (a V b) A (a V c) 

(aAb) V (aAc) 

a V (b A c) 

a V (bAC) 

a A (b V c) 

(Actually, the two distributive identities are equivalent in any lat­

tice, if one holds for all terns a, b , c then so does the other. This 

does not mean that they are equivalent for fixed elements a, b , c .) 
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Both of the above lattices L(E) and L~~ (E) fail to be distributive 

(unless, of course, dim E = 1 ). L(E) is modular; on the other hand, 

L~~ (E) is modular if and only if dim E is finite by the Theorem of 

H.A. Keller ([12], [25) ) . In a lattice which fails to be modular the 

concept of a modular pair is of interest. This topic is taken up in 

section 3 of Chapter X • 

Definition 12. The lattices (V,~) and (0 ,~) are isomoq~hic , 

and the map cp : V -+- V is an isomoq~hism, if cp is a bijection such 

that x ~ y in V iff cpx ~ cpy in V The lattices (V,~) , (0 ,~) 

are antiisomorphic (or dually isomorphic), and T : V -+- V is an anti-

isomorphism (or dual isomorphism), if T is a bijection such that 

x ~ y in V iff TY ~ TX in V; if in particular (V,~) = (V,~) 

and T .is an antiisomorphism with 
2 

~ = identity then T is called 

polarity. 

The assignment X ~ X~ is a polarity in the lattice L~~(E) of 

Example 2 . If the space is anisotropic, then this polarity is a so-

called orthocomplementation in the lattice. We shall make no use of 

this particular kind of polarity. 

If (E,~) is a sesquilinear space then X r+ X~ is an antitone 

mapping ~: L(E) -+- L(E) • We shall be interested in the sublattice 

V of L(E) orthostably generated by a family (V1)1 E I of subspaces 

of E. By this we mean the smallest sublattice V of L(E) that con-

tains V for all 1 E I and which contains along with each element X 
1 

its orthogonal X~ Sometimes it is convenient to formally require 

that the spaces (0) and E are elements of V also. 

In the case where (E,~) is finite dimensional, the concept of 

orthostably generated sublattice of L(E) reduces to the concept of 

sublattice because of the rules (X n y)~ = X~ + y~ , (X + y)~ = X~ n y~ , 
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both of which hold when dim E is finite. Thus, the lattice V = V(Fl)lEI 

orthostably generated by the family (Fl ) lEI simply is the sublattice 

.L 
in L (E) generated by the two families (F t) lEI' (F l ) lEI· 

Example 3. The lattice V = V(V) orthostably generated by one 

single subspace V of a nondegenerate sesquilinear space (E,~) is 

finite and distributive. It consists of the following fourteen elements 

(the proof is straight forward): (0), V n V.L , (v n v.L).L.L , v.Lnv.L.L, v.L , V , 

V + (V n v.L) .L.L , V + (v.L nv.L.L) , V + v.L , v.L.L ,. V.L.L + V.L , (V + v.L).L.L, (V n V.L).L , E 

A diagram is given in Section 2 of Chapter V below. Since V is the 

union of two chains it is easy to see that the distributive identi-

ties are satisfied (because there are always two comparable elements 

among a, b , c in the identities). It is a good exercise for the be-

ginner to figure out examples where all fourteen spaces in the above 

list are different. The lattice appears in [22] . If we have two gene-

rators, then the lattice orthostably generated will, in general, be in-

finite and nondistributive. Of this treat the following two examples. 

Example 4. In [4], p. 64 it is shown that the "free" modular 

lattice with four generators is infinite by making use of the fact that 

the harmonic net generated by a complete quadrangle is infinite. The 

four generators may be picked as lines Ul , U2 ' U3 ' U 4 in the vector 

space E = lR 3 . Let then E* : = Homk (E ,k) be the algebraic dual and 

define a symmetric non degenerate bilinear form ~ on E $ E* as ex-

plained in Remark 9 of Section 8, namely ~ (e + e I , f + f I ) fl(e) +e'(f), 

where e, fEE and e I, fIE E* . In E E9 E* consider the two sub spa-

ces Ul E9 U4° U2 E9 U3° where, for X C E , we set Xo:= X.L n E* = 

{f E E* I fIx) 0 for all x EX} • With respect to ~ we find 

(Ul E9 U4o).L = ut n (U4o).L = (E E9 UlO) n (U4 E9 E*) U4 E9 Ulo, (U2 E9 U3o).L 

Therefore, the orthostable lattice V generated in the 
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6 - dimensional space (E: E9 E*, q,) by the two subspaces Ul E9 U 4° , U2 E9 U3° 

contains U3 E9 U2° , U4 e Ulo • Hence, by the previous remark on Ul , U2 ' 

U3 ' U4 ' it will be infinite (watch the "components" in E of the four 

particular lattice elements Ul e U; , ... ). If we allow for infinite 

dimensions of (E,q,) then we can give examples of orthostable latti-

ces V with two generators such that V has infinite chains. Here is 

an example due to my former student Vinnie Miller. 

Example S. Let (e i) i E IN be a basis of the k - vector space E, 

k a commutative field. Define a symmetric form q, on E x E as fol-

lows: q,(ei,e i ) =1 for i=in(n+l),nE1N 

q, (e2i + 1 ,e2j + 1) = q, (e i + j + 1 ,e i + j + 1) for i, j E IN • Set 

F :=k(e2i-e2i+l)i2:0' G :=k(e2i+l-e2i+2)i~0 (thus 

and dim E / Fe G 1). One verifies that Flo = k(e2i ) i 0: 0 

o other-

and 

FnG= (0) 

l. l. l.n l. G = k (e2i +1) i ;: 0 (thus (F + G) = F G = (0) so q, must be non-

degenerate). Define recursively A := F 
o 

and, for s E IN , A4s + 1 = 

l. 
A4s nF, A4s + 2 = A4s + 1 + F , A4s+3=A4s+2nG, A4s + 4 

l. 
A4s +3 + G • 

It is routine to verify that for all s E IN we have 

k ( e 2 (i + s) - e 2 (i + s) + 1 ) i 2: 0 

Thus we get the infinite and properly descending chain Al:::l AS :::l A9:::l ••• 

in the lattice V (F ,G) l. - stably generated by F and G Notice that 

both F and G are l. - closed. Furthermore so 

G n(F+Fl.) = G, whereas GnF + GnFl. = (0) • We see that V(F,G) 

is not distributive. 

Definition 13. Let (V,~) be a lattice and l. V ->- V an anti-

tone map ( x ::> Y => yl. ::> xl. such that 

(36) ( x E V ) • 
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If we call x closed, if x ~ 
~ 

y we say that x and y 

are perpendicular (notice that x ~ y~ is a symmetric relation). Let 

(VI'~I) be a second lattice equipped with an antitone ~l: VI -+ VI 

and satisfying (36) • Then (V,~,~) and (VI'~I'~I) (or simply V and 

VI if there is no risk of confusion) are ortho - isomorphic, and 

tp : V -+ VI is an ortho - isomorphism iff tp is a lattice isomorphism 

with ~l 0 tp = tp o ~ . We recall that, from (36) , it follows that 

~~~ ~ and (x Vy)~ = x~ A Y ~ for all E V (cf. the proof x x x,y 

of (6) in 1.3 ) 

The answer to the following question is overdue by now: Why are we 

interested in orthostable sublattices of L(E) when E is a sesquili-

near space? Suppose that - for some reason - we wish to classify, say, 

pairs of subspaces F, G in E modulo the operations of the orthogo-

nal group of E. In different terms, given a second pair F, G , we 

are to decide whether there exists an isometry tp : E -+ E with tpF = F 

and tpG = G Assume that there is such a tp • Since it respects the 

form on E it will not only send F in F, G in G ,F n G in F n G 

etc., it will send F~ into F~, F~ n G into F~ n G , etc. In short, 

tp will induce a lattice isomorphism tp : V(F,G) -+ V(F,G) between the 

lattices orthostably generated by the pairs. This produces a host of 

"obvious" invariants of the pair F, G or, more correctly, invariants 

of the orbit of the pair under the action of the orthogonal group (on 

the set of pairs of subspaces). In other words, we get obvious (=neces-

sary) conditions for such a tp to exist. Besides the lattice V(F,G) , 

which is an invariant attached to the pair F, G , let us mention a few 

other typical invariants as will turn up again and again. Foremost 

among these are the dimensions of the quotient spaces X / Y defined 

by neighbouring elements Y C X in the lattice, the cardinals dimX/Y 

are not changed under tp (we call them indices). 
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Further invariants are the isometry classes X of the elements 

X E V(F,G) • These invariants reveal little about how X is immersed 

into E . An invariant of X that is sensitive to the "surrounding" 

space is, e.g., the subset n {II X n F.l II I FeE & dim F < "'} of the 

underlying division ring (such invariants might be called "arithmeti­

cal" in contrast to the above "cardinal" invariants and "metric" inva­

riants). There is no limit to dreaming up invariants. However, the uti­

lity of a characterization theorem depends entirely on the choice of 

the invariants. It should be possible to handle the invariants in appli­

cations and they should permit insight. 

It is plausible that a thorough knowledge of the lattice V(F,G) 

would shed light on the problem of classifying pairs (classification 

has been possible, thus far, for special classes of pairs only, say for 

disjoint, modular and dual modular pairs. Cf. Chapter VI ) . 

Chapters IV , V , VI , VII, VIII, IX and XVI are motivated by the plan to 

use lattices as the principal guide on our expeditions. We hasten to 

add that the idea to proceed along this line is quite easy to have. But 

as easy as it is to make such a plan as difficult it is to actually 

carry it out. 

Whereas the lattice L.l.l(E) has - at least in the case of an an­

isotropic space E - been the object of study (see Chapter 11.14 on 

ortholattices in [4]), it appears that lattices equipped with just an 

anti tone mapping .1 satisfying (36) have received no attention worthy 

of note. Our results on the classification of subspaces in a sesquili­

near space bear out, however, that the contemplation of L.l.l(E) and 

sublattices of it are of little use, even in very special circumstances. 

On the other hand it becomes clear, that lattice theoretic results on 

lattices with anti tone .1 would be susceptible of application in view 

of Chapter IV below. 
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We terminate with a very interesting result on lattices and forms. 

Remarks on a representation theorem. In this short remark we 

shall freely use the terminology in Maeda's book [30] . The object of 

discussion is the following 

Representation Theorem ("Birkhoff - v. Neumann"). Let L be an 

irreducible, complete AC-lattice of length ~ 4 equipped with a pola­

rity ~: L -+ L • Then there exists a division ring k with an anti­

automorphism * , a k-vector space E and an orthosymmetric sesquili-

near form 1> : Ex E -+ k relative to * such that (L,~) is ortho-

isomorphic to the lattice L ~~ (E) of ~ - closed subspaces in (E,1» 

The assertion of the theorem coincides with Theorem (34.5) in [30] 

or Theorem 4.4 in [29] if "polarity" is replaced by "ortho - complemen­

tation" (One has to pay heed to certain differences in terminology; 

cf. Remark (8.20) in [30]). In order to obtain the above sharpened 

version one merely needs to generalize, say, Theorem 5.1 in [29] to 

the case of polarities in lieu of orthocomplementations. This is not 

difficult (as a matter of fact, an assumption on anisotropy of the form 

is alien to the issue at hand). A different proof may be modelled on 

Maeda's account of (34.5) where the required form is defined "locally". 

(The principal ingredients in the above representation theorem are the 

result proved in the Appendix of [5] to the effect that polarities of 

L(E) , for finite dimensional E, are induced by sesquilinear forms 

(cf. Prop. 1 p.102 in [2]) and, on the other hand, the Representation 

Theorem for DAC - lattices proved in Chapter VII of [2] (cf. p. 302) ) • 

By the results proved in [17] it is furthermore possible (see [13]) 

to formulate, in lattice theoretical terms, conditions on the lattice 

in the above Representation Theorem which are necessary and sufficient 
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in order for (E,~) in the theorem to turn out "euclidean" to turn 

out "preeuclidean"] • Here (E,cp) is termed euclidean iff E splits 

into an orthogonal sum of finite dimensional subspaces1 (E,CP) is called 

preeuclidean iff (E,CP) is a subspace of some euclidean space. 

* 
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APPENDIX I 

A DIVISION RING WHICH ADl-1ITS NO SESQUILINEAR FORMS 

AND A REMARK ON BAER ORDERABILITY 

Introduction 

We reproduce here a classical example of a g-dimensional division 

algebra k over 0 ([2J pp. 73-75). Any antiautomorphism of k must 

leave the center 0 pOintwise fixed, hence there are none by Brauer-

group theory. However, this can directly be established as we shall 

see below. By a slight variation of the construction we obtain an 

example used by Holland in [4J to exhibit some features of Baer order-

ability. As we believe this concept to be of importance to the theory 

of quadratic forms we shall draw up a docket on the matter. We could 

have shortened our description by quoting various standard theorems 

of Algebra (such as the Skolem-Noether theorem) as we have done in 

other appendices. However, by keeping computations elementary here we 

intended to offer to the beginner some examples of skew fields (other 

than Hamilton's quaternions) which he can actually handle knowing basic 

facts about field theory only. 

* 

1. Dickson's Example. Consider in C the cubic extension K of 

o defined by the polynomial 

(1) f(X) = x 3 + x2 - 2X - 1 . 

It is irreducible over 0 for, if it has a decomposition it has a 

linear factor and hence a root r = ~ EO, n, m relatively 2rime. 
m 

Because the coefficient of x3 is 1 substitution shows that r must 

be in Z. Since all coefficients are integral r must divide the 

constant term. But f(±l) f 0 • 
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If 8 f 1 is a 7th root of unity in ~ 

o then we consider the numbers 

(2) u := 8 + 8 6 v w 

We have u + v + w -1 A short calculation shows that 
2 

2 + u v , 
2 2 

2 
2 v + W W + U ; furthermore uv = u + w vw u + v 

uw v + W By adding the last three equations we obtain uv + vw + wu = 

-2 Finally (u+w)w + 2 (v+w) + (u+2) = 1 Thus uvw = = uw w = u , v , 

w in (2) are the three roots of f in (1). 

We define a ~-linear automorphism a: K ~ K by setting a(u) = v , 

a(v) = w, a(w) = u and we find for N(A) := A.a(A) .a2 (A) where A 

xu + yv + zw is a typical element of K (x,y,z E ~) , the expression 

(3) N 
333 222 222 x + Y + z - 4(x z+y x+z y) + 3(x y+y z+z x) - xyz 

Let k be a 3-dimensional K-right vector space with basis {aO,al ,a2 } . 

We define a multiplication on K by first defining it for basis vectors 

and then extending it to arbitrary vectors. The 

plied according to the table 

a o a l a 2 

a O a O a l a 2 

a l a l a 2 2aO 

a 2 a 2 2aO 2a l 

a. 
1 

are to be multi-

For arbitrary A E K we set down the further rules (aiA)ao = (aiaO)A , 

morphism operating on K as defined above. Arbitrary vectors in k 

are now multiplied distributively. One checks that an associative ring 

is obtained. It has a unit element I, namely 1 = a O ; if we write a 
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instead of then 
2 

a and a 3 = 2 . What we have defined here 

is the so-called crossed product of the (normal) extension K of 0 

with its Galois group 
2 

{1,0,0 } • (Here the Galois group is cyclic; 

standard notation for k is (K/O,0,2).) k is obviously an algebra 

of dimension 9 over the field O. 

What is the center of k? Let x E k ..... 0 . The field 0 (x) c k 

is not all of k as k is not commutative. Therefore [o(x) :oJ = 3 

Hence Q(x) is maximal as a commutative field contained in the 0-

algebra k Hence x cannot commute with all elements of k . Thus 

the center of k is o. 

Finally we show that k is a division algebra over o. It 

suffices to show that every nonzero element x in k admits a right 

inverse. This in turn will follow if we can show that left multiplica-

tion xL: ~ ~x~ in the K-right vector space k is an injective endo­

morphism. Now it is very easy to compute the mat~ix of xL relative 

to the basis 1 , a , a 2 . Setting we find 

Ao 20(A2 ) 202(Al)1 

(4) det(xL) det Al o (A o ) 2 20 (A 2 ) N(A O) + 

l A2 o (AI) 02(AO) 

We can show that det(xL) is nonzero by a "parity check" as follows. 

First we may assume that AD ' Al ' A2 have integral components with 

respect to the basis {u,v,w} of K. Secondly, by multiplying x 

from the left, if necessary, by a suitable power of 
-1 

a we may 

achieve that AD = xu + yv + zw has not all its components x, y , z 

even. A direct inspection of (3) now shows that N(A O) is odd in this 

case. Thus by (4) 
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(5) (mod 2) 

and so is an automorphism. Q. E. D. He have shown that k is 

a 9-dimensional division algebra over its center Q. 

2. There is no antiautomorphism. Let j: K + k be any injective 

homomorphism; T:= joaoj-l is then an automorphism of the subfield 

j(K) c k . By the Skolem-Noether theorem this automorphism is induced 

by an inner automorphism of k, i.e. there exists x E k such that 

(6) for all t; E K . 

We can establish the existence of such an x directly as follows: 

Suppose we have two elements a, S E k which have the same irreducible 

cubic polynomial h E Q[Y] . We want to show that there is y E k such 

-1 
that y ay = S . Let h(Y) y3 + ry2 + sY + t. Then 0 = h(a) - h(S) 

Set y 

a 2 + as + S2 + r(a+S) + s . We have ay = yS . If Y + 0 we are done. 

If y o we can interchange the roles of a and S to get a y' 

with Sy' y'a . If y' + 0 we are done. If y' o then y = y' 

which means that as Sa i.e. S E Q(a) . In that case we insert an 

intermediate element 0 which has h as its minimal polynomial over 

~ and which is not in Q(a) By the foregoing a and 0 are then 

conjugate and so are Sand 0 and hence we are done. There are such 

o : Pick some y E k 
-1 

with y ay + a . Then for all natural n , m 

and n + m we have 
-1 -1 

(y+n) a(y+n) + (y+m) a (y+m) . Not all of these 

conjugates of a are in Q(a) . This establishes (6). 

If we particularize j in (6) to the embedding K c k then we 

already know that we can choose x = a in (6) because t;a = aa(t;) by 

the construction of k . By the extension theorem just proved we can 

also extend an arbitrary j: K + k to an inner automorphism of k, 
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-1 
y ~y = j(~) for suitable y E k and all ~ E K . Substitution into 

(6) shows that ay and yx differ only by a factor Z which is in 

K . Thus, if we pass to the determinants of the K-endomorphisms k + k 

induced by the left multiplications we find det(xL) = det(aL) ·det(zL) 

2N(z) by (4). We have proved: 

for each injection j: K + k and x E k with (6) 
(7) 

we have det(xL) = 2N(A) for some A E K 

Direct inspection of (3) shows that ([2J, p. 75) 

If 0 f A E K then N(A) r,s,tEE 
(8) 

and s, todd. 

The conjunction of (7) and (8) exhibits a quality of non-symmetry 

of k, or rather, of non-antisymmetry. Assume by way of contradiction 

that *: k + k were an antiautomorphism. Since a-l~a = a(~) for all 

~ E find 
-1 

a(O* i.e. 
-1 

qualifies for in (6) K we a*~*a* = , a* x 

if j is the restriction of * to K Hence det(xL) is of the 

-1 
shape described in (7) for x = a* But a and a* have the same 

minimal polynomial over 0 and hence they are conjugate by what we 

have proved further up; consequently det(at) = det(aL ) = 2 . This 

means that 
1 
2 

-1 
(= det(at » is of the shape 

as described in (8), a flagrant nonsense. 

2N(A) where N(A) is 

Thus we have shown that Dickson's 9-dimensional algebra k over 

o admits no antiautomorphism whatever. Hence we can define no sesqui-

linear forms over k . In the next section we shall see that a small 

change in the construction allows for antiautomorphisms. 
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3. Modifxin~ Dickson's examEle. We keep working with a 7th root 

of unity 8 + 1 in C and let 8 + 8 2 + 8 4 We find 
2 + w w := w 

2(86 + 8 5 + 8 4 + 8 3 + 8 2 + 8 + 1) - 2 -2 ; thus w is a root of 

g(X) x2 + X + 2 E flex] The other root of g is 

w* -w - 1 

where * is complex conjugation in C hence * is an automorphism 

of the quadratic extension 

Z := fl(w) • 

The cubic f in (1) remains irreducible over Z. Thus with u as 

defined in (2) we define 

K := Z (u) Z(u,v,w) 

and we have [K:Z] = 3 Now we define k as a K-right vector space 

spanned by a basis a O 1, a l = a 2 
a 2 = a and with a multipli-

cation almost identical with that in Dickson's example. We merely re­

place "a3 = 2" by 

(9) 
3 a y where y := 

Here a: K ~ K remains just as before/it sends u, v ,w into 

v , w ,u respectively. We obtain a 9-dimensional algebra over the 

center Z 

Is k a division algebra? Again, it suffices to show that 

if is the endomorphism ~ ~ x~ in the K-right 

vector space k and x + 0 is in k. Dickson's argument that 

followed (4) above can be reproduced by making use of the fact that 

the ring R:= Z[w] = {n+mw I n,mEZ} is euclidean and has Z as its 

field of quotients. Indeed, let for a = n + mw ERial be its usual 
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2 
complex norm, lal 2 ~ (n+mw) (n+mw*) ~ n - nm + 2m 

2 
For nonzero 

b E 
-1 

which is in Z Then pick a , R compute ab ~ r + sw t ~ 

E R with Ip-rl 
1 

Iq-sl 
1 

and, if (r ,s) happens to p + qw ,;; - , ,;; -
2 2 

be the center of some square in the tessellation of the plane C by 

E XL, require furthermore that (p-r) (q-s) ~ +1 (only the vertices 
4 

in the southwest or northeast of the squares are eligible). We then 

invariably have la-tbl 2 ~ IbI 2 Iab- l -tI 2 < Ibl 2 . Thus R is euclidean 

and has unique factorization into primes in R. E.g., 

2 ww* 

is the decomposition of 2 into prime numbers in R . Call an element 

r ~ n + mw E R even if w is a factor in r Thus if r is even 

then wlr win thus ww*ln 
2 

(by taking norms in C and thus so 

21n in Z The argumentation can be reversed and we see that 

(10) win + mw in R ¢=¢ 21n in z . 

In other words R/wR ~ Z/2Z . Hence we are able to repeat the parity 

check in the formula for det(xL ) for which, this time, we obtain 

(11) 
det(xL ) ~ N(A O) 

2 
Y (AOo (AI) a (A2) 

After some simple normalizations we may assume that the components of 

the Ai are all in R and, furthermore, that x, y , z in A ~ o 
xu + yv + zw are not all even elements in R. Now, if we had that 

o then we would obtain the following congruence in R, 

o (mod w) . 

Hence N(AO) - 0 (mod w) But from (3) we see that N (AO) -

3 3 3 2 2 2 
'" 1 (mod w) since at least x + y + z + x y + y z + z x + xyz one 

of x , Y , z is odd in R 
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We have established that k is a 9-dimensional division algebra 

over its center Z. And this time there exists an antiautomorphism! 

We define 

(12) a* 
-1 

:= a 
2 1 a .-

y 

and extend * by additivity and anticommutativity to all of k, 

(13) '* ,* * + '*a*2 1\0 + I\la 1\2 

(recall that A* is the complex conjugate of A E K ) . It is not 

difficult to verify that (12) and (13) define an antiautomorphism of 

k • Furthermore (x*)* = x for all x E k . Notice that the involution 

* does not leave the center pointwise fixed (of that kind there still 

can be none). 

We end this section by the following remark ([4J). If x = 
2 

AO + aA l + a A2 E k then an easy computation shows that the coefficient 

of 1 = aO in xx* is AOAO + cr 2 (A l )cr 2 (A l )* + cr(A 2 )cr(A 2 )* • Therefore, 

an equation of the type 

(14) xx* + yy* + ••• o 

in k yields an equation AOAO + cr 2 (A l )cr 2 (A l )* + cr(A 2 )cr(A 2 )* + 

~O~O* + cr2(~ )cr2(~ )* + cr(~ )cr(~ )* + ••• 0 in K C C Because such 1 1 2 2 

an equation in C entails AO = Al = A2 

see that (14) implies 

(15) x y o • 

4. Baer ordered *-fields. The crossed product 

... = 0 we 

w 
(K/Z, cr, w*) con-

structed in the previous section was presented in [4J to exhibit some 

salient features of Baer orderability; Holland calls Baer-ordered an 

involutorial division algebra (k,*) that contains a subset IT with 
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the following properties 

(i) TI c S := {I;Ek I 1;*=1;} 

(ii) 1 E TI , 0 f II 

(iii) ]I +It c n 
(iv) prrp* c TI for all p + 0 

(v) -TI UTI = S,{O} 

If A, ~ E S then one defines A > ~ if A - ~ E II etc. The notion 

was articulated by Baer in [1, Chapter IV, Appendix 1, p. 127-128J . 

Orderability in this sense is an adequate concept if one wishes 

to talk about positive hermitean forms. In the commutative situation 

the concept had been put to use by Prestel in [7J, [8J; for a survey 

in the commutative case one should consult [6]. 

A Baer ordered (k,*) is called archimedean when O.s A < 1 for 
n 

all n = 1, 2, ••. implies A = 0 • The following characterization 

is proved in [4J. 

Theorem [4J. An archimedean ordered *-field is *- and order iso-

morphic to a subfield of the real numbers R , the complex numbers ~ 

or the real quaternions H . 

Since all semiorderings on algebraic number fields are orderings 

in the usual sense by a result of Prestel ([7J Korollar 1.5) the theorem 

has. the following 

Corollary [4J. Other than a quaternion algebra, no finite dimen-

sional noncommutative *-field central over an algebraic number field 

admits an ordering in the sense of Baer. 

From this result it follows directly that the 9-dimensional *-field 

k central over the algebraic number field Z , as detailed in the 
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previous section, admits no ordering in the sense of Baer. On the 

other hand, we have seen that k is formally real in the sense that 

LXi xi = 0 implies xi = 0 . Thus formal reality does not, as in the 

Artin-Schreier Theory, imply orderability. (Orderability does, of 

course, imply formal reality by properties (ii) and (iv).) See also 

Section 5 in Appendix 1 to Chapter II where an example of a noncommu­

tative involutorial division ring is given that is formally real and 

Hilbert ordered. 

We refer to another example in [4] of a Baer ordered field (k,*) 

(loc. cit. pp. 215-219 ). It is of interest to us because it provides 

a noncommutative field, other than quaternions, that admits positive 

hermitean ~O- forms and is such that we are able to give a reasonable 

classification of ~-dense subspaces (along the line of Chapter XII.8 

below) . 

We terminate this section by pointing out that in [5] Baer order­

ings have been put to use in the problem of classifying the infinite 

dimensional hermitean spaces E that possess the following property 

on subspaces X C E : 

(16) X then X EB X~ E . 

This problem has turned out to be surprisingly difficult. Although no 

orderings or topologies are involved in (16) progress has been made so 

far only under additional provisos involving orderings or Baer order­

ings. See [3] and [9] where the same problem is investigated. 

See furthermore the postscript added to the introduction of the 

book on page 3 • 

* 
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CHAPTER TWO 

DIAGONALIZATION OF ~O-FORMS 

1. Introduction 

In this chapter we shall prove that ~O-dimensional sesquilinear 

spaces are orthogonal sums of lines and planes and we characterize the 

cases where a decomposition into mutually orthogonal lines is impossible. 

The problem of "normalizing" bases brings us to stability and the be­

ginner is confronted with the first Ping-Pong style proof with its 

characteristic back-and-forth argument (Theorem 2). These matters are 

basic and their knowledge is tacitly assumed in the rest of the book. 

Diagonalization of forms in dimension ~O is a simple affair. 

However, in order to grasp just how exclusive the property of admitting 

decompositions into orthogonal summands of small dimensions (i.e. 

smaller than that of the entire space) really is, the presentation of 

some examples from the uncountable is enlightening. Here they are. 

Example 1. Let k be an uncountable field of any characteristic 

and (e 1 )lEI the basis of a ~l-dimensional k-vector space. We define 

a symmetric form by setting ~(el,eK) = X{l,K} where the family X{l,K} 

is algebraically independent over the prime field in k. (E,~) turns 

out nondegenerate and in [8] we established that it enjoys the following 

outlandish property on subspaces X C E : 

(1) dim X ~ ~O dim X.L s: ~O • 

In particular, we see from (1) that (E,~) possesses very few ortho­

gonal splittings, 

(2) E dim X < 00 or dim X.L < 00 • 
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Needless to say that there can be no orthogonal decomposition of (E,t) 

into finite dimensional subspaces. Incidentally, by using this construc-

hibi 2Nl d . .. f h tion one can ex t non egenerate symmetr1c "1- orms over t ~ 

field C which are ~ isometric, surprising since there is but 1 

isometry class in each dimension s NO . (Remark: One can construct 

spaces with (1) over finite and countable fields also; however, a little 

more imagination is needed being that short of scalars. See [1].) 

Example 2. Let J be a well-ordered set of cardinality Nl ' 

I := J x ~, (e1)lEI the basis of a vector space E Order I lexico-

graphically, (~,m) s (v,n) iff ~ < v or else ~ = v & m s n • W.e 

equip E with the symmetric bilinear form t defined by 

= { : 

if (~,m) s (v,n) 
t(e(~,m),e(v,n» 

if (~,m) ~ (v,n) 

Set 

- e 
(~ ,m+l) 

We see that we have secured dual systems: t (e ,h ) = /) 
1 k 1K (Kronecker) 

for all 1, K E I • Observe that the hK span a proper subspace of 

E • The existence of such a dual system provides for many properties 

shared by spaces with orthogonal bases. Thus, we see that here or tho-

gonal decompositions abound; e.g., 

(3) for all 1 E I 

In sharp contrast to Example 1 we see furthermore equations such as 

dim X = dim X~~, dim E/X~ = dim X to hold for arbitrary subspaces 

X (use (3». Yet E admits no orthogonal basis ([2], pp. 36-37). 

Example 3. Let (E,t) be a nondegenerate space which is spanned 

by an uncountable orthogonal basis (e1)lEI. Let E be the hyperplane 
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1 E I • This hyperplane admits no 

orthogonal decomposition into finite dimensional subspaces, in spite of 

the fact that it appears as a subspace in a space with such a decomposi-

tion ([7], Satz 1 p. 105). In this respect it radically differs from 

the first two examples which both cannot appear as subspaces in or tho-

gonal sums of finite dimensional spaces. 

~. The three examples invite for an investigation into the 

existence of orthogonal bases when dimensions are uncountable,or of 

embeddability into spaces admitting such bases. This is beyond the 

scope of this book, and we refer to [2, 3, 7, 9, 10, 14]. My discover-

ing Example 3 gave the motivation to look for a theory. E. Ogg - then 

a student in my algebra class - after listening to the topological 

setting of the density theorem for irreducible modules, came up with 

the startling idea to use the countable analogue of the weak linear 

topology of the sesquilinear form in order to attack the existence 

problem on orthogonal bases. It was a marvellous idea [14]. For a 

survey on the emerging theory one should consult [3]. 

* 

2. Diagonalization 

Our starting point is the following fundamental 

Theorem 1. Each sesquilinear space of dimension at most NO is 

a direct orthogonal sum of lines and planes. 

Proof. Let EO be a supplement of E~ in the sesquilinear space 

E (dim E ~ NO) We shall construct a decomposition of EO into mutu-

ally orthogonal lines and planes and join it with any direct decomposi­

tion of E~ into lines in order to get a decomposition of E of the 

required sort. The proof is modelled on the well-known Gram-Schmidt 
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orthogonalization process ([5J, [15J). 

For the construction we need a countable family (ei)iEI of 

generators of EO (e.g. a basis of EO). Choose the index set I 

to either be IN or a finite initial segment of IN. We show how to 

get a family (Fj)jEJ' for some J C I , of nondegenerate lines and 

planes F. 
J 

in such that, for all m E I , we have 

(4) if i < m 

For any such family the subspace ~ F. contains all generators el.' 
jEJ J 

and therefore is the entire space Eo; thus Eo= ~ F. then is a de­
jEJ J 

composition of EO of the required sort. 

How shall we define a family of such F. ? If the first generator 
J 

eO is not isotropic we let FO be the line (eO) ; if eO happens 

to be isotropic then there is x E EO not perpendicular to eO (be-

cause EO is nondegenerate) and we let FO be the span of eO and 

x (it is nondegenerate). Assume that for some m E I (e.g. m = 0 

we have defined mutually orthogonal nondegenerate lines and planes 

FO , Fl , ... , F such that (4) holds. The sum 5 := FO ~ ... ~ F m m 
.1 

is nondegenerate and of finite dimension so EO = 5 ~ 5' If 5' = (0) 

we let J = {O, •.. ,m} and we are through. Assume that 5' + (0) whence 

m+l E I and em+l = s + s' for some s E 5 , s' E 5 ' If s' 0 

we let Fm+l be any anisotropic line or hyperbolic plane in 5' if 

s' + 0 but isotropic then there is x E 5' not perpendicular to s' 

and we let Fm+l be the span of s' and x; finally if s' is not 

isotropic then we let Fm+l be the line (s') . In sum, we see that 

we can extend the sequence FO ' ... , Fm by a further nondegenerate 

(line or plane) Fm+l , perpendicular to FO ' ..• , Fm ' such that 

(4) holds again with m+l in lieu of m. In other words, the step 
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can be repeated, and at most card I times so if I is finite; if 

I = IN then we can procure in this fashion, say by Zorn's lemma, a 

denumerable sequence (Fi)iEIN such that for each m E IN condition 

(4) is satisfied. This terminates the proof of Theorem 1. 

The following corollaries to the theorem give precise information 

as to when a space is an orthogonal sum of lines, i.e. admits an or tho-

gonal basis. 

Corollary 1. If (E,W) is nondegenerate and finite dimensional 

then the following are equivalent: (i) there is no orthogonal basis 

in E, (ii) W is alternate. 

Proof. The implication (ii) ~ (i) is obvious. Assume that W 

is not alternate. By Theorem 1 E = nJ. 
ED F. , 

i=l ~ 
dim F. ~ 2 • Planes which 

~ 

are not alternate split off a nonisotropic line so that we may assume 

all planes Fi to be alternate. If there is none we are done. Other­

wise the field is commutative and W skew-symmetric on E . As W is 

not alternate it follows that the characteristic is 2 

be one of the anisotropic lines and {Y2'Y3} a basis of an alternate 

plane F W(Y2'Y3) = 1 Set eL = W(Yl,Yl ) The basis {el ,e2 ,e3 } 
n 

of Fl Eh F defined by e l = Yl + eLY3 , e 2 = Yl + Y2 + eLY3 , e 3 n 

Yl + Y2 is orthogonal. By repeating the procedure we introduce an 

orthogonal basis in E • We have thus shown that not(ii) ~ not (i) 

Corollary 2. Let (E,W) be nondegenerate and ~O-dimensional. 

There is no orthogonal basis for E if and only if we are in one of 

the following two situations (1) W is alternate, (2) W is skew-

symmetric but not alternate (hence the field commutative and of charac-

teristic 2) and E* is .I.-closed and dim E/E* is finite (here E* 

is the subspace of all isotropic vectors) • 
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Proof. A) We begin by showing that there can be no orthogonal 

basis if we are in one of the two situations. This is obvious if ~ 

is alternate. Assume therefore that we are in case (2). As E is non-

degenerate and dim E/E* < 00 (by assumption) we must have dim E*~<oo 

A fortiori R:= rad E* is of finite dimension and thus there is a 

J.. 
metabolic decomposition E = (REBR') EB 

see that E* = R EB (E O)* We read off 

abbreviated X~ n E as x~O . Since o 

EO . Since E* C R~ = R EB EO we 

E*~~ = REB (E )*~O~O where we o 
E* = E*~~ in case (2) we see 

~ ~ 

that (EO) * 0 0 = (E O)* , Le., (EO)* is an orthogonally closed subspace 

of (EO'~O)' ~O:= ~IEoxEO . Since rad(EO)* = (0) and dim(E )*~O :s; o 
dim E*~ < 00 we see that 

~ 

(E ) * EB (E ) * 0 o 0 
is closed and dense in 

i.e. 

Suppose by way of contradiction that E admits an orthogonal basis 

(ei)iEiJ' Each element of some arbitrary fixed basis of 
~ 

(REBR') Ell (E )* 0 o 
is a finite linear combination of some e i . Hence there is N E N 

such that we have for all i > N 

~ 

e. E (REIlR' Ell (E )* O)~ 
l 0 

In particular, e i is isotropic for i > N . But this is impossible 

for members of an orthogonal basis of a nondegenerate space. Thus there 

is no orthogonal basis in the second case. 

B) Assume conversely that there is no orthogonal basis and that 

E is not alternate. By Theorem I the space E is an orthogonal sum 

of lines and planes. Nonalternate planes admit orthogonal bases; hence 

there must be alternate planes in the decomposition. Therefore ~ is 

skew-symmetric on E . As ~ is not alternate (by assumption) we must 

J.. 
have characteristic 2 . There is a decomposition E = EI EB E2 where 
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El admits an orthogonal basis (ei}iEIl and E2 is an orthogonal 

sum of alternate planes P. 
] 

If Il were infinite then there would 

be enough e i to delegate a different e i to each of the Pi. In 
.L 

e i e Pi we could introduce orthogonal bases - as we had done in the 

proof of Corollary 1 - and thus procure an orthogonal basis for E • 

Contradiction! Therefore dim El < 00 • Because E2 C E* this means 

dim E*/E2 ~ dim E/E2 = dim El < 00 hence E* 

is closed. Furthermore, dim E/E* ~ dim E/E2 

is ~-closed because E2 

dim El < 00 • This shows 

that we are in case (2) of Corollary 2. Q. E. D. 

Corollary 3. In a trace-valued sesquilinear space (l)f d.i:metlis.!:on:$i ~O 

wl).ich is not alternate every subspace admits an orthogonal basis. 

Proof. If (E,~) possesses a subspace without orthogonal basis 

then (by Corollaries 1 and 2) ~ must be skew-symmetric on all of E 

artd hence alternate if ~ is assumed trace-valued. 

Since nondegenerate alternate planes are hyperbolic we have the 

following immediate consequence of Theorem 1: 

Corollary 4. A nondegenerate alternate space of dimension .s; ~O 

is an orthogonal sum of hyperbolic planes. 

3. Stability (Definition) 

We turn to the existence of normalized orthogonal bases in non-

degenerate ~O-dimensional spaces (E,~) • We assume in the first place 

that the forms are symmetric and that the characteristic of the under-

lying field k is not 2. (E,~) will then admit orthogonal bases. 

* 
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If k possesses square roots Ai for each length ~(ei,ei) 

where (ei)iEI is an orthogonal basis then we can, of course, intro-

duce the orthonormal basis o .. 
1J 

(Kronecker) • 

If k contains an element a which is not a square, then we can de-

fine symmetric forms of arbitrary finite dimension admitting no or tho-

normal bases: Simply let the matrix M of ~ with respect to some 

basis be diagonal and, say, M = diag[a,l,l, ... ,lJ • If M' is the 

matrix with respect to some other basis then detM' = a(detA)2 where 

A is the substitution matrix; thus M' = diag[l,l,l, ... ,lJ is im-

possible. Contrary to what one would expect we shall see that in dimen-

sion ~O the following does occur: there are fields k which do not 

have square roots for all elements and yet each ~O-dimensional (non­

degenerate) symmetric form ~ admits an orthonormal basis. As an 

illustration of how such a thing can come about we establish the follow-

ing closely related fact ([4J Thm. 8.1 p. 567): 

Each positive definite Q-space of dimension 
(5) 

~O admits an orthonormal basis. 

The proof will rest on the classical fact that each indefinite Q-form 

in 5 variables has a nontrivial zero ([13]; [16J Thm. 22, p. 41). 

In particular, if ~ is any positive definite form in 4 variables and 

a E Q is positive then represents a because is inde-

finite (specifically, each positive a is a sum of 4 squares). From 

this it is obvious that each ~O-dimensional positive definite Q - space 

has liE II Q+ (the positive rationals) and thus enjoys the following 

property (cf. 1.4 in [6J 146-147) 

(6) 
For each a E IIEII and each finite dimensional subspace 

FeE there exlsts nonzero fEF.I. with ~(f,f) =a 
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Proof of (5). Assume that we have determined an orthonormal system 

, fm in the positive definite ~-space (E,~) (dim E = ~o) • 

be the first member of some (previously fixed) countable set 

.L 1.. 
of generators of E not contained in the subspace S := (fO) EB ... EB (fm) 

Thus, if we decompose e r = x + y, xES, Y E S~ then y + 0 • We 

shall show how to find a 4-dimensional space F C S~ spanned by an 

orthonormal basis fm+l ' fm+2 ' fm+3 ' fm+4 and such that y E F . 

We shall then have e r EI~i=m+4 (f i ) .In 

numerable sequence (fi)N such that 

this fashion we can obtain a de-

~(f. ,f.) = 0 .. and the subspace, 
~ J ~J 

:(fi ) contains a set of generators for E, i.e. is all of E; (fi)N 

is then an orthonormal basis for E 

In order to find F we first use the fact that each 4-dimensional 

~-space H spanned by an orthonormal basis contains a vector hI of 

prescribed positive length a l := ~(y,y) • Complete hI to some ortho­

gonal basis hI' h2 ' h3 ' h4 of H and set a i := ~(hi,hi) , i 

2,3,4 • Obviously, if in the subspace S~ n y~ of E we can find any 

three mutually orthogonal vectors g2 , g3 , g4 with ~(gi,gi) = a. 
~ 

(i = 2,3,4) then the subspace F of S~ spanned by y , g2 , g3 , 

will admit an orthonormal basis. Are there such gi ? Why, this is ob-

vious by (6) because a i E ~+ UEU: just pick g2' g3 ' g4 of the 

requisite lengths in turn in (S+(y»~, (s+(y)+(g2»~' 

(s+(y)+(g2)+(g3»~ respectively. This establish (5). The decisive 

property (6) used in the proof warrants the following 

Definition 1. A nondegenerate ~0-dimensiona1 sesquilinear space 

(E,~) is called stable in itself, or just stable for short, if it 

satisfies (6). Observe that the defining property (6) can be rendered 

equivalently as 

(7) n{UF~U I FeE & dim F < dim E} • 

g4 
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Cf. the definition in VII.4. 

Examples. 1) Over any given division ring (k,E,*) we can de-

fine stable E-hermitean forms. For a E S := {sEk I ES*=S} we let 

(a, ... ) be the orthogonal sum of ~O copies of the E-hermitean line 

(a) • Then every orthogonal sum 

a stable space. 

~~(a, ... ) , where an card I s ~O ' is 

2) Each nondegenerate trace-valued E-hermitean ~O-form ~ that 

possesses infinite dimensional totally isotropic subspaces is stable 

with 

(8) 

Here T = {S+ES* I sEk} is the additive subgroup of traces in k 

dim F 

rad(F~) • 

Hence F~ contains hyperbolic planes and therefore IIF~II = T • In Sec-

Indeed ( let W c W~ C E and dim W = ~O . If FeE has finite 

then dim (FlflW) is infinite for Fl any supplement in F~ of 

tion 1 of Appendix 1 we have listed large classes of commutative fields 

k such that each nondegenerate symmetric ~o-form over k is stable. 

3) We have just proved that definite forms over ~ in dimension 

~o are stable. 

4. A stable form is determined by the elements it represents 

The following theorem brings out a salient feature of stability. 

The structure (k,E,*) is kept fixed and we discuss the stable E-

hermitean ~O-forms admitted by it. 

Theorem 2 ([12], Thm. 1.1). A stable E-hermitean space (E,~) 

is determined up to isometry by the subset !lEU of k 
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In order to prove Theorem 2 we shall use a strategy different from 

that in the proof of (5). Instead of trying to construct, in each space, 

an orthogonal basis which exhibits a special arithmetic feature, we 

shall directly set up an isometry between any two stable spaces E, E 

with IIEII = !!EII • We shall give the proof at a leisurely pace because 

the arguments will be used in condensed style over and over again in 

this book. 

Proof. Let E, E be stable with IIEII = IIEI! • Let (ei ) iElN ' 

(ei)iElN be any countable sets of generators for E and E respec­

tively. Our objective is to construct nested sequences F 0 C F 1 C F 2 C ••• 

and FO CFl CF 2 C •.• of finite dimensional nondegenerate subspaces 

and a sequence of isometries ~i: Fi + Fi such that the following 

holds: (i) UF. = E,VF. = E, (ii) 
~ ~ 

extends 

Then we can define an isometry ~: E + E simply by defining ~x as 

where j is any natural number with x E F. 
J 

We may start with F = (0) = GO and ~O: 0 t-+ 0 Assume that 0 

we have constructed F. , F. , ~i for 0 s; i s; m . Let e be the 
~ ~ r 

first generator not in F We shall try to pick finite dimensional m 
x C FL C pL .i 

nondegenerate isometric spaces , X such that e EF EeX m m r m 

We then set Fm+l := F Ee X and extend ~m to Fm+l by joining ~m m 

with any isometry lj/: X + X , ~m+1 (f+x) = fIImf + lj/x (f EFm' xE X) 

This will be the (m+1)st construction step. In the (m+2)nd step 

we pick the first generator e s not contained in Pm+l and we repeat 

the procedure with reversed sides: we try to pick isometric nondegener-

- -1 .L ate finite dimensional spaces Y CFm+l ' Y CFm+l such that 
_ - .1 -
e s E Fm+l Ee Y; 

we then set Fm+2 := Fm+l ffi Y, Fm+2:= Fm+l Ee Y and extend ~m+l 

to Fm+2 by joining ~m+l with any isometry Y + Y • This bouncing 

back and forth between E and E is necessary to make sure that both 

unions ~Fi ,~Pi will exhaust the entire spaces. 
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It is sufficient to carry out the (m+l)st step. Since E = 

F $ F~ we decompose e 
m m r 

x + y (x E F , Y E F~) • We have y f 0 
m m 

If a := <l.i(y,y) is nonzero we let X = (y) Because a E IIEII 

nlIF~11 where F runs through all finite dimensional FeE there 

is y in F~ with <l.i(Y,y) = a Set X = (y) . Then y I-+- Y defines 
m 

an isometry ~: X + X and we are done in this case. Assume then that 

a = 0 . If E should be alternate, ~E~ = {a} ~E~ ,then E is 

alternate too. It is clear that y is contained in a hyperbolic plane 

X C F~ and we may let X be any hyperbolic plane in the alternate 
m 

space X ~ X obviously. If E is not alternate then, by stabil-

ity, is not alternate and y is contained in a nondegenerate plane 

X that admits an orthogonal basis xl' x 2 • By stability and IIEII = 

IIEII and 

with ~(X2'X2) = <l.i(x2 ,x2 ) . Hence the plane X:= k(x l ,x2 ) is isometric 

to X. This terminates the proof of Theorem 2. 

Remarks. (j) We know that IIEII Ql+ = IIEII for arbitrary positive 

definite ~o-dimensional ~-spaces E, E Thus it follows by Thm. 2 

that any such E is isometric to a space E spanned by an orthonormal 

basis. This establishes anew - but in a different vein - property (5). 

(jj) Equality (7) remains perfectly meaningful if we let dim E 

be uncountable. Theorem 2 continues to hold for uncountable dim E 

and with stability interpreted via (7), provided E is assumed to 

split into an orthogonal sum of finite dimensional subspaces. Partial 

isometries between any two such stable spaces E, E ,with IJEIl = IIEII , 

are defined only on orthogonal summands.of dimensions smaller than 

dim E = dimE . They can be extended by adding ~O suitable dimensions 

at a time in such a fashion that the domain of the extended isometries 

again turn out to be orthogonal summands in E and E respectively 

(we satisfy some kind of union-of-chains condition). It is clear that 
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by picking up all F t ' FK of some previously fixed orthogonal split-

tings, E = ~.1F E 
t t' 

$.1F (dim F and dim F finite) we can sweep 
K K t K 

out E and E by a nested sequence of partial isometries and thus 

procure an isomerty E ~ E . 

Corollary. Let E be of dimension ~O' nondegenerate, trace­

valued. If E contains an infinite dimensional totally isotropic sub-

space then it is an orthogonal sum of hyperbolic planes. 

For certain investigations we need rather special stable spaces, 

which we define now. 

Definition 2. A nondegenerate ~O-dimensional sesquilinear space 

(E,~) is called strongly (weakly) universal if for all nondegenerate 

infinite dimensional subspaces F we have IIFII = IIEII (IIEII c 

IIFII u - IIFiI ) • 

A weakly universal space is always trace-valued because it must 

be alternate when the characteristic is 2 by the following 

Theorem 3. a) If (E,~) is strongly universal and not alternate 

then it is anisotropic and an orthogonal sum of lines (a) for a 

any fixed element of IIEII. b) If (E,~) is weakly universal and 

a E liE II - {O} then there is an orthogonal ±a- basis (e i ) , i.e. 

A proof can easily be devised along the line of that of assertion 

(5); it will not be written out. 
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5. Quasistability 

This important concept is due to Maxwell [12J. 

Definition 3. A nondegenerate ~O-dimensional sesquilinear space 

E is quasistable if it is the orthogonal sum of a finite dimensional 

space and a space that is stable (in itself). 

Example. All (nondegenerate) symmetric ~O-forms over 0 are 

quasistable. Indeed, since any such ip: Ex E .. 0 admits an orthogonal 

..l. 
basis E splits, E = E+ ffi E_ , where ip is positive definite on E+ 

and negative definite on E If one of the indices n+:= dim E+ ' 

n := dim E is zero, then the form is definite and stable by (5). If 

both dimensions are infinite then ip is stable by the corollary to 

Theorem 2. Hence we are left with infinite n+ and finite nonzero n 

- or the other way round - and then ip is quasistable. This proves the 

assertion. The important thing is that we can still introduce canonical 

bases. Consider, as an example, the quasistable O-space 

(-2) 4 (1, ••. ) . 

We chop off a 4-dimensional orthogonal summand (1,1,1,1) from the 

stable summand E+ = (1, ... ) fixed in the above decomposition, E+ 
~ ~ 

(1,1,1,1) ffi El • The indefinite form (-2) ffi (1,1,1,1) represents all 

of 0 by Meyer's result mentioned in the remark following (5). Thus 

there is a vector of length -lor, for that matter, any previously 

fixed negative rational, which can be completed to an orthogonal basis, 

1-
(-2) ffi (1,1,1,1) 

Because the "indices" n+, n_ are invariants all Cl i must be posj­

tive; thus, if we join (Cl2 ,Cl 3 ,Cl 4 ,Cl5 ) with El we do get something 

positive definite, i.e. something which again admits an orthonormal 
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J.. 
basis, (a 2 ,a3 ,a 4 ,a5 ) $ E1 ~ (1, ... ) • The result of the manoeuvre is 

the isometry 

J.. J.. 
(-2) $ (1, ... ) ~ (-1) $ (1, •.. ) 

over (l If n is greater than 1 then the procedure can be re-

pea ted n times. Thus we have established the following companion 

to (5) (cL ell] Thm. 4 p. 6) : 

Each nondegenerate Q- space of dimension 
(9) 

NO admits an orthogonal :!:l - basis. 

Remark. The example illustrates the utility of the concept of 

quasistability. For "suitable" fields, such as Q, one can prove the 

existence of canonical bases for quasistable forms even when these 

forms fail to be stable. The first steps in this direction are found 

in [11]; the clear distillate of a number of investigations into the 

classification of NO-forms by various authors is contained in [12]. 

This and further results that have emerged are the topics of Chapters 

VII and XI below. Notice that the case of symmetric quasistable forms 

leaves really only two options for k, to wit, k either formally 

real or else of characteristic 2, by the following observation: 

If k is a commutative nonformally real field 

of characteristic not 2 then each quasistable 

(10) symmetric space over k is an orthogonal sum 

of hyperbolic planes (and thus, in particular, 

a stable space). 

Indeed, this follows immediately from the corollary to Theorem 2. 
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6. Weak stability 

As our results in Chapters VII and XI show the following weakening 

of quasistability is justified (cf. the definition in VII.4). 

Definition 4. A nondegenerate~o-dimensional sesquilinear space 

(E,~) is called weakly stable in itself, or just weakly stable for 

short, if r\{IIF.l.11 I F CE & dim F < dim E} =: IIElloo is nonempty. 

Lemma. Assume that (E,~) has dim E = ~o . If the characteristic is 

not two then the following are equivalent: (i) the space (E,~) is weakly 

stable, (il) (E,~) admits an orthogonal summand that is stable in itself. 

In characteristic two weak stability of E is easily seen to be 

equivalent with {a} C IIElioo ' i.e. with the existence of an infinite 

dimensional totally isotropic subspace in E • aore can be said when 

{a} + IIElloo ; cf. Chapter VII • 

The proofs are left to the reader; there are no snags. 

7. A lemma on supplements 

Let (E,~) be a nondegenerate sesquilinear space of dimension 

~o and X cY CE infinite dimensional subspaces; G is a supplement 

of X in Y, H is a supplement of Y in E, a and S are ar-

bitrary in /lEII" {o} if such there are. The following lemma mentions 

various possibilities as to how G and H may be chosen. (For a typi-

cal application see the proof of the theorem in XII.9.) 

Lemma. (i) If dim x/(x.l. nx ) is infinite then G and H may 

be chosen with G.I. H 

(ii) If x.l. (0) and ~ is not skew symmetric then G and H 

may be chosen nondegenerate and with G.I. H • 
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(iii) If ~ is anisotropic and strongly universal then we may 

choos~ G ~ Hand G, H spanned by orthogonal bases (gi)I' (hj)J 

respectively with ~(gi,gi) = ex, ~(hj,hj) = S (i E I, j EJ) 

(iv) If X~ = (0) and ~ is strongly universal then we have the 

same conclusion as in (iii). 

(v) If ~ is trace-valued and X contains an infinite dimen-

sional totally isotropic subspace W with W n (X nx~) = (0) then we 

may choose G e H totally isotropic. 

Proof. (i) Assume that we have found finite dimensional spaces 

Gn ' Hn C E satisfying the following induction assumption: 

GnCY, GnnX = (0) , Hnny = (0) , Gn~Hn ' GnnY~ = (0) , HnnX~= (0). 

We may start with G 
n Hn = (0) • Let z be a prescribed vector with 

z E Y z f X Ee G 
n 

There exists x E X with x + z E H~ Set G' = G e (x+z) . We have n n n 

to deal with the possibility that G' n y~ + (0) • In that case 
n 

x + z E G + Y~ . We first claim that 
n 

(G' + H ) ~ n X <F G + Y~ (c G + X~) 
n n n n 

Indeed, an inclusion would mean that dim xl (X n X~) < co , contradicting 

assumption (i). Hence we may pick t E (G' + H )~ n X with t f G + Y~ 
n n n 

~ Set Gn+l = Gn e (x+z+t) Gn+l n Y = (0) • If, on the other hand, 

x + z f Gn + Y~ we set Gn+l = Gn e (x+z) • We then proceed to con­

struct Hn+l::J Hn such that Ye Hn+l contains a prescribed vector 

z' f Y EeH As before, there is y' E Y such that the space H' 
n n 

H e (y'+z' ) is to Gn+l (we have just proved that ~ 
~ Gn+l n Y = (0» • n 

If H' n X~ + (0) we proceed as before: there is t' E (G +H')~ n Y , 
n n+l n 

t' f H + X~ and we set Hn+l = Hn Ee (y'+z '+t') J otherwise we set n 
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Hn+l = H~ • We have now constructed Gn+l , Hn+l satisfying the in­

duction assumption and such that X ~ Gn+l , Y ~ Hn+l contain the 

prescribed vectors z, Zl • In this manner we find sequences (Gn ) , 

such that. X + G and Y + H , where G :=VG , H :=VH ,~con-
n n 

tain previously fixed base.s of supplements of X in Y and Y in E 

respectively. Furthermore G J. H • This proves (i). 

(iii) If dim Ely = dim Y/X is infinite then G, H as con-

structed in the previous proof admit bases of the requisite shape by 

strong universality. 

Assume then that, say, dim Y/X is finite. Y is nondegenerate 

and of dimension ~O so it has orthogonal basis (gi) with 

~(gi,gi) = a • Hence there is a finite dimensional supplement GO 

of X in Y spanned by some of the gi • If dim ElY is infinite 

we may proceed just as in the proof of (i) and construct G = GO ' 

H = UHn • This time we start the recursive construction with the 

pair GO' HO = (0) then admits a basis of the required sort. 

We are left with the situation where dim ElY is finite as well. 

Assume then that we have found some finite dimensional Hn spanned 

by an orthogonal basis (h j ) with ~ (h.,h.) = 6 , H n Y = (0) , 
J J n 

H .L GO • We show that if Y ~H + E we can yet find another vector 
n n 

y ~ Y ~ H with ~(y,y) 6 and y E (GOE9Hn ).L . (Repetition of the 
n 

argument dim ElY times will provide the requisite basis, H = UHn 

Now (GO~n).L admits an orthogonal basis whose members y satisfy 

~(y,y) = 6 • Hence we are stuck only when 

eyES H 
n 

.) 

If this takes place then YESH 
n 

is .L-closed. Furthermore (Y ESH ).L C 
n 

(Y ES H ).L = 0 as ~ is anisotropic. Hence 
n 
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y $ Hn E. This proves (iii). 

(iv) Let us keep the notations in the proof of (i). We shall in-

dicate the modifications needed here. Suppose we have found finite di-

mensional Gn , Hn C E satisfying besides the former induction assump­

tions the further requirement that 

Gn ' Hn are nondegenerate. 

We had shown that we can find vectors u EX, v E Y such that G' = 
n 

Gn $ (z+u) H' 
n 

Hn $ (z'+v) satisfy the old induction assumptions 

in lieu of Gn , Hn 

If now G' should be degenerate then its radical R is one-di-
n 

mensional. There exists a vector 

erwise RC H' and so H' n Y. f n n 

infinite we can escape from X 

1 E Y n H'~ 
n 

with 1 f R.L (for oth-

(0) , contradiction) • If dim Y/X is 

if (G' $ (1)) n X f 0 we switch from 
n 

1 to l' where 1 - l' E (G'$H'$(l))~ n Y and 1 - l' f X $ G' • We 
n n n 

have shown: if dim Y/X is infinite we can find Gn+l ~ Gn which is 

nondegenerate and satisfies Gn+l C Y, Gn+l n X = (0) , Gn+l ~ H~ • 

Provided that dim Ely is infinite as well then a nondegenerate space 

Hn+l ~ H~ can be found such that 

tion assumptions. G := UG , 
n n 

Gn+l and 

H := VH 
n n 

Hn+l satisfy the induc-

are infinite dimensional 

and nondegenerate and admit bases of the required form by strong uni-

versality. If, say, dim Y/X is finite we find a GO just as in the 

proof of (iii). If dim Ely happens to be infinite we construct a non-

degenerate H := UH 
n n 

as we have just explained in detail. We are 

left with the case where dim Ely is finite as well. We proceed as in 

the proof of (iii). This terminates the proof of (iv). 

(ii) The proof of this assertion is actually "contained" in the 

reasoning given in the proof of (iv). We leave it to the reader to 
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write out details. 

(v) Again we consider ascending sequences G ,H • This time 
n n 

we stipulate that they satisfy besides the old induction assumptions 

(spelled out at the beginning of the proof of (i» the additional re-

quirement 

(G + H ) n x.1 
n n 

(0) 

First we find (just as in (i» a vector u E X such that the spaces 

G' := 
n 

Gn + (z+u) , H 
n 

satisfy besides the old conditions the further 

stipulation 

z + U .1 G + H 
n n 

vle then consider an auxiliary supplement Xl of xn x.1 in X such that W C XI 

Now X n (G' EDH).1 
1 n n 

contains a nondegenerate subspace with finite 

dim Xl/XO. Hence Xo n W f (0) and so, by trace-valuedness, Xo con-

tains hyperbolic planes. Thus there exists t E X n (G' + H ).1 with 
n n 

<P(t,t) = - <P(z+u,z+u) 

perpendicular to H 
n 

G; := Gn e (z+u+t) is totally isotropic and 

Some further manipulations are needed when 

(Gil EDH ) n x.1 is not (0) • Assume therefore that we had z + u + t E n n 

G + H + x.I. . Because the inclusion II (G"+H )'& n W c G + H + x.1 II 
n n n n n n 

contradicts the fact that W n (X nx.I.) = (0) we may pick w E 

(G"+H ).1 n W w 4: G + H + x.1 . Switching from Gil to G"':= 
n n '~n n n n 

Gn Gl (z+u+t+w) gives Gil. C (G"').1 and 
n n 

we have shown that we can find Gn+l such that Gn+l , Hn satisfy all 

our induction assumptions again and furthermore z E XEDGn+l . Similar­

ly we find a Hn+l . In this fashion we secure a sequence of totally 

isotropic spaces G ED H 
n n 

such that the spaces 

are supplements of X and Y in Y and E respectively. This termi-

nates the proof of (v). 

The proof of the lemma is thus complete. 
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APPENDIX I 

A FEW EXAMPLES OF "SUITABLE" FIELDS 

Introduction 

Beginners are usually at a loss when they should produce examples 

of division rings which exhibit certain arithmetic features. For their 

convenience we have assembled here a number of examples. In the first 

three sections we stay commutative. The fields in the first four sec­

tions are such that all nondegenerate symmetric (hermitean) ~O-forms 

turn out stable or quasistable. Since so much in this book depends on 

stability of some sort or another it is important to ascertain that 

examples abound. Everywhere enough hints and references are given so 

that the student can find his own way into the literature. Only in Sec­

tion 5 did we give proofs. There we describe a Hilbert ordered non­

commutative involutorial division ring which allows for anisotropic 

hermitean forms of arbitrary (finite or infinite) dimension. 

1. Commutative nonformally real fields (characteristic + 2) 

In this section we shall list some commutative fields k which 

enjoy the following property ([6J pp. 5, 6): 

(0) 

There is a natural number m(k) , depending on the field 

k only, such that each symmetric form over k in m+l 

variables has a nontrivial zero. 

We assume throughout that the characteristic is not 2 unless explicite­

ly stated otherwise. 
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1.1 Nonformally real fields k with finite multiplicative group 

k/k2 (= the nonzero elements modulo square factors) • These fields 

are called Kneser fields (notice that char k f 2 is assumed) . 

Here we have 
. ·2 

m(k) = \k/k \ ; for an elegant proof due to H. Kneser 

see [7]. Examples are: algebraically closed fields (\k/k2 \ = 1) ; 

finite fields (\k/k2 \ = 2) ; if k is any example and K:= k«X» 

is the field of all formal Laurent series a xr + a x r +l + ... (rElZ), 
r r+l 

under the usual series addition and series multiplication and with 

coefficients from k , then K is another example and \K/K2\ = 

2\k/k2\ ; this shows that there are examples with arbitrarily prescribed 

order \k/k2\ (notice that this order is necessarily a power of 2 be-

cause each element of the group has order 2). 

Further examples are the fields k which are complete under a 

discrete rank 1 valuation wand with finite residue class field K 

(of arbitrary characteristic). Here \k/k2\ = 4 (card K)w(2) . For a 

proof see [12, Thm. 63:9, p. 163] . In particular, \k/k2\ 4 for 

the p-adic completions k n when p f 2 and \k/k2\ = 8 for 
p 

Additional examples are provided by maximal algebraic extensions 

of any algebraic number field (= finite extension of ill) in its p-adic 

completions for p any finite spot. These are instances of so-called 

Hilbert fields investigated in [3]. 

Remarks. (i) The behaviour of fields with finite k/k2 under 

field extensions has been investigated in [5 pp. 298-307J; for more 

comprehensive results consult [8 pp. 202-203; see in particular the 

proof of Thm. 3.4, p. 202, for a well motivated proof of our Lemma 2 

in [5 p. 298]]. 
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(ii) The following question is natural: Let K be a finite ex-

tension of k If k/k2 is finite, is K/K2 necessarily finite? In 

[5 J this is answered in the affirmative when [K:kJ = 2 In a letter 

to the author Pfister [15 J proved that K/K2 is infinite when K = 

Q(12) and ~ is the quadratic closure of Q. For generalizations 

of this result see [8 Thm. 2 and Cor. 3 p. 219J. 

1.2 The Ci-fields. The study of these fields was started in 

[9J. Improvements are contained in [11]. For further developments and 

references see [17] and [lOJ (not listed in [17J). 

A field k of arbitrary characteristic is said to have property 

Co if every f E k [Xl' ... ,Xn ] which is nonzero and homogeneous of 

degree d , with n = d > 1 has a nontrivial zero. For natural i > 

we say that k has property C. if for each pair (d,n) of natural 
1 

0 

numbers ;;, 1 with n > d i every f E k [Xl' ... 'Xn J which is nonzero 

and homogeneous of degree d has a nontrivial zero in k Theorem: 

Let k have property C. 
1 

if K is an algebraic overfield of k 

then K is Ci ; if K is a transcendental extension of k of trans­

cendence degree r then K is Ci +r (Thrn. 2a, p. 238 in [llJ). 

We are, of course, interested in the case v,i th d = 2 . As an 

illustration we nention the following corollary of the above theorem. 

Corollary: Let k be any function field in r variables over a 

finite constant field. Since k is every symmetric form in 

more than 2r +l variables has a nontrivial zero. (For r = 1 this is 

a classical result of Hasse theory; cf. Thrn. 66:2, p. 188 in [12].) 

In analogy to Lang's theory Pfister defines a field K to be C~ 
1 

if any system of r quadratic forms over K in n common variables' 

has a nontrivial simultaneous zero in K provided that n > r.2 i . 
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He proves the following Theorem: Let p be a prime, let K be a p-

field, let fl, ... ,fr be forms of degrees dl, ... ,dr over K in n 

common variables. Suppose n > rand p t dl, ... ,dr Then the system 

fl = ... = fr = 0 has a nontrivial solution in K . (Here K is 

called a p-field if all finite extensions of K have p-power degree.) 

Corollary: A p-field with p f 2 is a C6 -field ([16]). 

\'iTe terminate this cursory enumeration by referring to Remark 2 

in Appendix 1 to Chapter XVI where an entirely different sort of fields 

with property (0) is mentioned. 

* 

2. Commutative formally real fields 

If a field k satisfies (0) in the previous section then each 

nondegenerate symmetric form in m(k) variables represents 1. There 

can be no instance of a formally real field k with this property 

because k admits negative definite forms. Thus, a natural modifica-

tion of (0) for formally real fields is as follows ([6] p. 6). 

(1) 

There is a natural number m' (k) , depending on the 

field k only, such that each nondegenerate symmetric 

form over k in m' variables represents 1 or -1 

(or both) . 

By Hasse-Hinkowsky theory we know that iD satisfies (1) with m' (0)=4 • 

By Hasse-Minkowsky theory it follows further that e.g. each irreducible 

polynomial f E iD[X] of odd degree and with only one real root 5 E ffi 

yields a formally real field 0(5) with property (1) and m' = 4. 

(See e.g. [12] Thm. 66:1.) 
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Nondegenerate symmetric t{0 - forms over fields with (1) turn out 

quasistable and are therefore easy to classify. Each nondegenerate sym-

metric form '¥ in, say, m' variables will represent a or -a (consider 

the form 
1 
a'¥ and apply (1». In particular a (nondegenerate) t{0- form 

will represent a or -a (or both) for a arbitrary in k \ {a} • 

Formally real fields with (1) admit, nota bene, at most one order-

ing, because for each a either a or -a is a sum of m' squares. This 

is not, however, crucial for quasistability: our lemma in XI.8 gives 

a handy criterion for fields with more than one ordering to be such 

that all nondegenerate t{0 - forms turn out quasistable. For further ex­

amples of real fields of interest in this connection refer to XI. 3 . 

* 

3. Commutative fields in characteristic 2 

Any commutative field k with char k = 2 has a known classifi­

cation of the symmetric t{0- forms over k when the degree [k:k2] of 

k over its subfield of squares is finite (Lemma 4 (v) in VII.8) • It 

is not difficult to produce examples of such fields. If k itself is 

finite or if k is algebraically closed then [k:k2] 1 obviously. 

If Xl' ... 'Xn are algebraically independent over k and k is the 

rational field k(Xl, ..• ,Xn ) then [k:k2] [k:k2] ·2n (because a 

basis for k over k 2 is provided by the elements 
El a·x l 

where E. = 0,1 and where a runs through a k 2-basis of k ) . Thus 
J 

we have examples with [k:k2] any prescribed power of 2 (notice that 

[k:k2] invariably is a power of 2 if finite because all elements of 

k are quadratic over the subfield k 2 ) . On the other hand, finite 

algebraic extensions will not alter this degree. Let k be a finite 
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algebraic extension of k. We can express as 

and as [k:k][k:k2 ] ; because 
-2 2 - - -2 

[k :k ] = [k:k] we find that [k:k] = 

Hence any algebraic function field k in n variables over 

a finite (or algebraically closed) constant field has [k:k2 ] = 2n 

Observe that - -2 2 
[k:k ] ~ [k:k] for arbitrary algebraic extensions k 

of k by what we have proved; < is witnessed by the transition to 

the algebraic closure of k . 

* 

4. Involutorial division rings 

suitable for isotropic hermitean forms 

One can contemplate division rings (k,*) which satisfy a prop-

erty entirely analogous to (0); we merely replace "symmetric" in (0) 

by the adjective "hermitean". One possibility to construct such (k,*) 

is to start out with a suitable commutative field kO (such as 

described in Section 1) and then pass to a quaternion algebra k over 

kO if such there is. k may then be equipped with the usual con­

jugation ~ ~ ~ or with an involution * of the kind 

~* 
- -1 

a'~'a 

for some fixed quaternion a E k . (These make up all possible involu-

tions that leave the center fixed; in fact, one can always choose a 

such that a = -a . See [1], Thm. 11, p. 154. Notice that the "norm" 

N: 1; ~ 1;1;* derived from * is not multiplicative if * is not con-

jugation.) As an illustration we shall give one example; we leave all 

proofs as exercises. 

Example. Let kO be a commutative field of characteristic not 

2 in which -1 is a square and where the multiplicative group of non-

zero elements modulo square factors has finite order n. Assume that 
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kO admits a quaternion division ring k over kO . (Take e.g. kO = 

where p ~ 1 (mod 4) ; cf. Sec. 1.1.) Let *: k + k be an arbitrary 

involution that leaves the center fixed. Then each hermite an form over 

(k,*) in n 2 + I variables has a nontrivial zero. 

Remark. One can modify the previous example so that involutions 

are obtained which do not leave the center fixed (cf. Thm. 21, p. 161 

in [1]). More generally, the following result can be established. 

Theorem. Let (k,*) be any involutorial division ring (of 

arbitrary characteristic) of finite dimension over its center C . Let 

S = {sEk I s*=s} be the set of symmetric elements and Co := C n S . 

If there is some fixed mEN such that each symmetric form in m + 1 

variables over Co is isotropic then there exists m' E N such that 

each (trace-valued) hermitean form in m' + I variables over k' is 

isotropic. 

A crude estimate of m' in the theorem is m' = (m+l)n where 

n = [T:C01; we hasten to add that this is not the most economic choice 

(compare with the above example) . 

* 

5. A formally real involutorial division ring 

If *: k + k is an involutory antiautomorphism of the division 

ring k then (k,*) is called formally real if an equality ~xixi 0 

implies x. = 0 
1 

for all i . If * is the identity, and hence k 

commutative, then we get the usual concept of a formally real field. 

Owing to the formal reality of ffi we thus see that Hamilton's real 

quaternions E are a formally real field with respect to the usual 

conjugation. We point out that (k,*) may very well be formally real 

but (k,o) , where aO = ~a*~-l for some fixed nonzero ~ , need not 
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be formally real. 

In this section we present with some detail a formally real 

division ring (k,*) which admits an ordering in the sense of Hilbert 

(see XI.4), i.e., the positive elements of k form an additively 

closed subgroup of index 2 in the multiplicative group of k. Our 

example is a subfield of Hilbert's famous ordered skew field. However, 

we do not know whether the involution can be extended to Hilbert's 

field. 

5.1 Ore rings. An integral domain R is called right Ore ring 

if aR n bR of {O} for a, b E R := R ...... {O} • Each right Ore ring can 

be embedded in a "field of fractions" as follows. Define an equivalence 

relation on R x R as follows: (a,b) ~ (c,d) if and only if 

bd'=db' & (b' ,d' ER) entails ad' = cb' . The equivalence classes 

can be added and multiplied as follows: (a, b) + (c, d) : = (ad' +cb' , bd ' ) 

with bd' = db' ; (a,b) (c,d) := (ac" ,db") with bc" = cb" . The 

inverse of (a,b) is (b,a) (for a of 0) One checks that everything 

is well defined and the set of classes is a division ring. It is de­

noted by RR. 

An integral domain R which is not right Ore contains elements 

a , b with aR n bR = {O} . It follows that the elements anb (n = 

0,1,2, ... ) are right linearly independent, hence R contains right 

ideals of arbitrary rank. In particular, every right Noetherian integral 

domain is a right Ore ring. 

If a right Ore ring is also a left Ore ring (Ra n Rb of {O} for 

a , b E R) then there are two fields of fractions, the right field of 

fractions RR as described and - with the obvious changes - a left 

field of fractions RR. Straight forward verification shows that 



91 

and are isomorphic under the map 
(2) 

R x R 3 (a,b) ~ (d,c) E R x R where ad bc. 

5.2 Involutions. If 0: R ~ R is an involution of the right Ore 

ring then 0 can be extended to an involution of the division ring 

([4]) • 

R· 
R 

Proof. Since aR n bR + {a} if and only if Ro(a) n Ro(b) + {a} 

we see that a right Ore ring with involution is always a left Ore ring 

as well. We consider the two fields of fractions R· R 
and RR . If 

(a,b) = (c,d) E RR then bd' = db' and ad' cb' for suitable 

b' , d' E R and therefore o(d') o(b) o(b' )o(d) and o(d') o(a) 

o(b') 0 (c) with o(d') ,o(b') E R In other words, (o(b) ,o(a» 

(D'(d),o(c»in RR . Thus the assignment (a,b) ERxR ... 

(o(b) ,o(a» E R x R is a bijection between the equivalence classes 

of R x Rand R x R and thus a map of RR onto RR; we call it 

~ . Substitution of the definitions yields ~«a,b)+(c,d» = 

~«a,b» + ~«c,d» and ~«a,b)' (c,d» = ~«c,d»~«a,b» • Thus 

~ is an antiisomorphism of RR onto RR. Combination with (2) yields 

the desired extension of 0 to RR: 

(3) 
c 
d 

with o(a)d o(b)c • 

5.3 The example. We see that all we need in order to have an 

ordered division ring with involution is an ordered Ore ring R with 

an involution (" ~ > 0 ~ ab > 0" extends the ordering of R to 
b 

RR ). We construct one as follows. 

In the polynomial ring 4l[x] we define an injective homomorphism 

by setting Er.x 
i 

E2 i r.x w: ... 
~ ~ 

i 
Let then t be a new indeterminate; 

we consider the set R of all polynomials f Ea.ti with coefficients 
~ 
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a. E ~[x] . A noncommutative multiplication between f, g E R is 
J. 

defined by 

(4) 

In particular tx = 2xt in R. Addition is defined as usual. R is 

an integral domain. Q[x] is noetherian and so is R by the Hilbert 

basis theorem just as in the commutative case. So R is right Ore by 

5.1. Since ~ is ordered ~[x] is ordered by defining f > 0 iff 

the coefficient of the lowest term in f' is positive. An ordering of 

R is obtained from that of ~[x] by the same procedure. Final~y we 

obtain an involution a of R by setting 

(5) 

We find a (f+g) = a(f) + a(g) , a(fg) = a(g)a(f) , a 2 = 1 . Thus we 

have shown that for this particular polynomial ring R the involutorial 

division ring (RR' a) admits an ordering in the sense of Hilbert ([4]). 

5.4 Formal reality. By an induction on n one proves, by using 

the left Ore condition, the following "common denominator theorem" 

for RR in 5.3 : 

(6) 
For Al, ••. ,An E ~ there exist r, tl, .•• ,tn E R 

-1 
such that Ai r ti (ls:is:n) • 

We are now able to establish 

(7) If o o (all i) • 

Assuming that not all Ai in (7) are zero we study the typical 

in that sum. By (6) 

j k 
I:ajkx t (a jk E C 

denominator, Ai 

we assume that all 

and depending on 

Ai are polynomials ~ = 

i ) : write the Ai with common 

a -1 a -1 a 
EAi Ai r (I:~i~i) (t" ) = 0 
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implies l: 
a = 0 Let be the smallest exponent j + k with l1 i l1 i . n i 

a jk f 0 in the polynomial l1i and n the smallest among the finite-

ly many n i . Thus by the definition of n : 

there is a triple (i,j ,k) with j+k = n and 
(8) 

a jk t 0 in l1i 

The sum s(2n) of terms of "weight" 2n in a 
l1 i l1 i is s(2n) 

l: 
2 (n-j) (n-j , ) 

a. J,n-j aj',n_j' 
xn +j - j ' t n- j +j ' where the sum extends 

all j, j , with 0 ,;; j ,;; n and 0 ,;; j' ,;; n Now 0 l: 
a = over . = l1 i l1 i 

l: s (2n) + s \'lhere all nonzero monomials in s have an exponent > 2n 

Therefore, l: s(2n) = 0 and, if we collect the coefficient of xntn, 

n (n-j) (n-j) 2 
we see that j~O 2 aj,n_j = 0 . Thus aj,n_j = 0 for all 

j = O,l, ••• ,n and all 11 contradicting (8). 

5.5 Summary. We have shown that there exist noncommutative in-

volutorial division rings (k,*) which are formally real and which 

admit an ordering ,;; in the sense of Hilbert. Owing to the formal 

reality we can define anisotropic hermitean forms ~ = l: ~i~i over 

such (k,*) . Such forms will, however, be indefinite with respect 

to ,;; For, as k is skew, there exist a with a f a* ; say a < a* . 

Thus if S:= a - a* then SS* < 0 . On the other hand, if y is 

symmetric, then yy* y2 > 0 • Thus the anisotropic ~ changes sign 

on every I-dimensional subspace. 

For an account on Ore rings, based on the work in [13] and [14], 

one may consult [2]. 

* 
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CHAPTER THREE 

WITT DECOMPOSITIONS FOR HER1lITEAN ~ -FORMS o 

1. Introduction 

Forms are E-hermitean; if CI. f--+- (1*- is the antiautomorphism 

of the underlying division ring ~le let T .= {CI. + ECI.*ICI. E k} be the 

additive subgroup of "traces" in k. Traces are symmetric elements of k 

but the converse does not hold when the characteristic is two. 

* 
Isotropic vectors play a distinguished role in the theory of forms and 

so do totally isotropic subspaces in a sesquilinear space. The theorem 

on Witt decompositions is an eminent tool in the classical theory of 

finite dimensional quadratic spaces. Results on Witt decompositions of 

infinite dimensional spaces E turn out to be of equal prominence for 

the handling of totally isotropic subspaces. Let us first give a defi-

nition. 

For a non-degenerate sesquilinear space and R C R~C E a 

totally isotropic subspace vie say that E admits a metabolic decompo-

sition for R if E contains an orthogonal family of planes 

Pi = k(ri,ri) such that their sum possesses an orthogonal supplement in 

E and R is the span of the . If we let 

ri we have in particular a decomposition 

.L 
(0) E=(REDR')EDEo 

R' be the span of the 

Since E is non-degenerate all planes Pi must be non-degenerate and 

thus 
~ 

R = R ED E o 
and R~~ R in (0). We see that a metabolic decompo-

sition of E for R forces R to be ~-closed (Remark: if the totally 

isotropic R is not ~-closed one will use metabolic aecompositions for 

the totally isotropic R~~ and then study the location of R within 

R~~). We say that E admits a Witt decomposition for the totally iso-

tropic R if there is a metabolic decomposition with all Pi hyperbolic 
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planes. In particular R' may then be chosen totally isotropic in (0). 

In fact, we can equally define a Witt decomposition of E (for R) by 

requiring the existence of a decomposition (0) with R' some totally 

isotropic space: If E is non-degenerate and R' totally isotropic 

then it follows from (0) that R = R~~ and that therefore R e R' is an 

orthogonal sum of planes Pi as specified. If the form on E is trace­

valued (always the case when char k + 2) then the planes Pi are in­

variably hyperbolic and one need not distinguish between metabolic de-

compositions and Witt decompositions. 

In this chapter we are interested in the existence of Witt decompo-

sitions. Kaplansky has shown ([3J, p.13,Thm.7) that ~-closed totally 

isotropic R C E always admit metabolic decompositions when dim E ~ ~o' 

The short proof of this fact will be reproduced below (Theorem 3 ). By 

what we have said before this answers the question of Witt decompositions 

for trace-valued forms. When char k = 2 then forms need no longer be 

trace-valued and the problem becomes considerably more difficult. We 

shall solve here the general problem by giving appropriate conditions 

for Witt decompositions to exist. This settles the issue in countable 

dimensions. 

2. The lattice that belongs to the problem 

For X any subspace of the non-degenerate E-hermitean space 

(E,~) we let x* be the linear subspace {x E xl ~(X/X) E T}. Obviously 

X* = X n E* To E* belong in particular all isotropic vectors of E, 

e.g. E*~ n E*~~ C E* , so that the radical 

being equal to the closed radical of E*~ • 

E*~ n E* is ~-closed 

If E possesses a Witt decomposition (0) for the totally isotropic 

~ubspace R then we read off that 

~ 
(1) 

(2) 

R + E* = E 
~ 

(R n E*)~ 
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Observe that R = R~~ by (1) and (2): R~~ n E*~ (0) by (1) and 

R + E*~ is closed by (2) and thus contains 

Theorem 1. Assume that R C R~ C E satisfies (1) and (2). Then the 

lattice V(R,E*) orthostably generated in the lattice L(E) of all sub-

spaces in E by Rand E* looks as follows 

E* 

R 

(0) 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
x~ 17 16 15 11 14 10 5 4 3 2 5 3 4 2 4 2 1 0 

The proof of the theorem is left to the reader. In contrast to dis-

discovering the diagram it is routine to verify its correctness by making 

use of the modular law etc. 

The interesting point about this lattice is that it looks just as 

it ought to look if E had a Witt decomposition for the subspace R. 

Indeed, if (0) is assumed with a totally isotropic R' then it is very 

easy to jot down V(R,E*) • This fact motivated our search for a proof 
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of sufficiency of (1) & (2). OUr result is the following 

Theorem 2. (Witt decomposition). Let R be a totally isotropic 

subspace in the non-degenrate £-hermitean space E over the division 

ring k Assume that dim E ~ ~O . Then (1) and (2) are necessary and 

sufficient in order that E possesses a Witt decomposition with respect 

to R 

Remarks 1. Whenever ~ is trace-valued, E* = E ,then condition 

(1) is empty and (2) reduces to R = R~~ so that we obtain Kaplansky's 

result of unconditional existence of Witt decompositions for closed 

totally isotropic subspaces in trace-valued spaces. 

2. Let ~ be symmetric, E spanned by an orthonormal basis, 

dim E = ~O k algebraically closed and char k = 2 . Then E* is 

a hyperplane with E*~ (0) No maximal (with respect to C 

totally isotropic R C E satisfies (1) & (2) whereas all finite di-

mensional totally isotropic R C E do satisfy (1) & (2). Hence the 

spaces R admitting a Witt decomposition are not inductively ordered. 

3. There are examples where either of (1) and (2) fails but not the 

other; there are also examples where (1) and (2) hold and all eighteen 

elements of the lattice are different spaces. 

3. Metabolic decompositions 

We reproduce the anounced result of Kaplansky (Thm.7 in [3], p.13; 

cf. [1], p.78, exercise 13). 

Theorem 3. Let E be a non-degenerate sesquilinear space of 

countable dimension and a ~-closed subspace. Then E admits 

a metabolic decomposition 

~ 

(3) E = (!~k(ri,ri» e EO 

Proof. We construct such a decomposition recursively. 
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Suppose we have constructed finite dimensional non-degenerate 

subspaces S,T with the following (induction) properties 

S .1 T 
.1 

T C R 

Let (ei)I be some fixed basis of E and e 
n 

its first member not 

contained in S + T We shall determine spaces K L C (S + T).l 

such that S' := S $ K and T' := T $ L will again satisfy the in-

duct ion assumptions (with S' T' in lieu of S T ) and such that 

that en E s' + T' . In this fashion we achieve a decomposition (3) 

with EO := U T 

Since E = (S + T) + (S + T).l we may decompose e 
n 

and "adjoin" only the component y.l S $ T to the space S + T in the 

following construction step. 

.1 
Y E Case 1: R (S + T) is non-degenerate and thus contains ---

y' with ~(y',y) = 1 Set S' S $ k(y,y') T' = T How large 

can (S' + T') n R get? Let d s+)..y+)..'y'+t E S'+T' be an element 

of the intersection. Since E T' C .1 
and d E RC .1 

t T R T we find 

o = ~(d,T) = 0 + 0 + 0 + ~(t,T) so t o as T is non-degenerate. 

Hence 0 = ~(d,y) = 0 + )..·0 + )..'·1 • Therefore d - )..y 

k(rl, ••. ,rm) by induction assumption. We see that (S' + T') n R 

k(rl, ••• ,rm,y) . The remaining induction assumptions are obvious in 

this case. 

R . Notice that y ~ R + S + T (indeed, by 

modularity, ((R + S + T) n T.l) n R.l (R + S) n R.l R + S nRc R) 

Therefore, and by .l-closedness of R + S + T (R + S + T).l q: l 
Pick a vector t E (R + S + T).l with ~(t,y) f 0 If Y is iso-

tropic we set T' = T $ k(y,t) otherwise simply T' = T $ k(y) ; in 

both cases S' = S It is not difficult to again verify the induction 

assumptions. 
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Case 3: y E E _ R.L • Notice that y fI. R.L + S + T 
.L 

R + S 

Therefore, and by the closed-

ness of 
.L 

R + S + T , we can pick a vector r E (R.L + S + T).L _ / 

We set S' = S $ k(r,y) T' = T , and easily verify all induction 

assumptions. 

Corollary 1: If the space E in Thm.3 is trace-valued then there 

is a Witt decomposition for every .L-closed totally isotropic R • The 

orbit of R in L(E) under the orthogonal group of E is therefore 

characterised by dim R and the isometry class of 
.L 

R 

For the proof of Theorem 2 we need a lemma to which we now turn. 

4. A lemma on orthogonal separation of totally isotropic subspaces 

The proof of the following lemma is valid for arbitrary character-

istic. We shall need it when char k = 2 For characteristic not 2 

there are much more general results in this direction (Chapter VI) • 

Lemma 1. Let (E,<I» be non-degenerate and R,S totally isotropic 

subspaces with R .L S dim E ~ ~O . There exists an orthogonal de-
l 

composition E = El $ E2 with RC El and S C E2 if and only if 

(R + S).L.L .L.L .L.L .L .L 
= R + S and R + S E 

Proof. The necessity of the two conditions is obvious. For the 

proof of the converse we may assume without loss of generality that R 

and S be closed. We choose a metabolic decomposition of E with 
.L 

respect to R, E = (R $ R') $ EO and let Sl be the projection of 

S onto EO As R + S = R + Sl is closed we obtain that Sl is 

closed; so there is a metabolic decomposition of EO for Sl Thus 

there are mutually orthogonal planes (i E I) and 

( j E J) with R the span of the r. and Sl the span of the s. 
~ J 

and 

(for R' the span of the r! and S' 
1 

the span of the s! ) we have a 
~ J 
t, .L 

decomposition E = (R $ R') (Sl $ Si) ~ El . Without loss of generality 



102 

~(ri,ri) = 1 = ~(Sj,sj) for all i E I and j E J • 

For each j E J there is x. E R such that the family 
J 

(j E J) spans S Since by assumption R~ + S~ is 

all of E we have in particular R' C (R + Sl + Si + El ) + S~ S' + S~ 
1 

In other words, for each i E I, there exists some Yi E Si such that 

y. = LB. S' • It follows that 
~ ~ m 

which 

shows that matrices and are both row- and column-finite. 

If we let R" be the span of the ri + Yi (i E I) then we have that 

R + R" ~ S + El • Does there exist an orthogonal projection of Si on-

to R + R" ? We see that s~ + L~' r ~ R + R" 
J In n 

if and only if 

o . Since (Bni ) is column-finite we can solve for 

~in and get finite sums L~. r • Hence R + R" 
~n n admits an orthogonal 

supplement that contains S . QED. 

5. Reducing the proof of Thm.2 to the case of a non-degenerate E* 

We call S the radical E*~ n E* of E* 

Le~ R C E be the subspace of Theorem 2 and assume (1) and (2). 

We have Rand S • Furthermore R ~ S as R C E* C S~ 

and by (1) we get 
~ ~ ~ 

R + S ~ R + E* = E • Thus in order to show that 

the pair R,S qualifies for the lemma there remains to prove closedness 

of R + S We choose some fixed metabolic decomposition for R, 

~ 

(4) E = (R tB R ') tB EO ( • ~o ~ n 
notat~on: X := X EO 

Intersection with E* of both sides in (2) gives us the equality 

R + S = (R~ n E*)~ n E* , hence by (4) R + S = [(R + EO) n E*]~ n E* 

[R + (EO) ]~ n E* = R + rad (EO) Since EO is an orthogonal summand 

in E the closure of the space rad (EO) can be computed in EO with 

respect to ~IEO x EO • By the remark made at the beginning of Sec.2 

rad (EO) is therefore closed and hence the sum R + rad (EO) 

in view of the splitting (4). We have thus shown that 

is closed 
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(5) R + S = R + rad (EO) = (R + S)LL 

Incidentally, we have also seen that (2) implies 

(6) 

which has a natural interpretation: The right hand side in (6) is the 

closure of R C E* with respect to the restriction ~* := ~IE* x E* • 

A subspace X C E* closed with respect to ~* will, of course, contain 

the radical of the space E*, SeX Hence the conclusion (6) of (2) 

forces the closure of R in (E*,~*) to be as small as it can possibly 

be. In particular, 

(7) if rad E* = (0) then R is closed with respect to ~* • 

Since Rand S qualify for the lemma there is a splitting 
L 

E = E2 $ E3 with R C E2 and S C E3 • E3 has a metabolic decomposi-

tion for S • Relabeling summands we thus have a decomposition 

(8) 
L 

E = (S ED S·) $ El , ReEl (notation: xLi := XL n El 

By using (8) and the fact that 
L 

E* C S S ED El ' and hence 

S ED Ei ' it is easy to justify the following 

E* 

Conclusion. Let ~l be the restriction of ~ to El x El • If 

El admits a Witt decomposition with respect to R then so will E. 

Since E* 
1 

is non-degenerate and since it follows from (1) and (2) that 

h (1) RL1 E* E d (2) R + EiL1 = (RL n Et)L1 we ave 1 + 1 = 1 an 1 ~ it 

therefore suffices to prove Theorem 2 under the assumption that E* is 

non-degenerate. 

6. Discussion of properties (1) and (2) when E* is non-degenerate 

The following result is the fundament of the proof in the next 

section. 

Lemma 2. Let dim E ~ NO and assume (1) ,(2) and E*L n E* = (0). 

Let A,B C E be finite dimensional non-degenerate subspaces with the 
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following properties: 

Then we have 

(1) 

(II) 

A ~ B, A e: E* A is hyperbolic with A n R a 

maximal totally isotropic subspace of A , 

B e: R~ , B n (R + E*~) = B n E*~ . 

for every d E A~ n E* there exists e E E* n 
such that d + e E (A + B) 

~ 

for each z E (A + B)~ there exists 

x E ~ n (A + B)~ E E* n (A + B)~ R , Y with 

~ 
R 

z = x + y 

Proof. Let G be a supplement of E* ~ E*~ in E. (1) says 

that we may pick G e: R~. By (7) there is a metabolic decomposition 

of E* with respect to R since A is the sum of finitely many 

hyperbolic planes k(ri,ri) (i = l, ••• ,m) with r i E R we can use A 

as an initial stump of a metabolic decomposition of E 

E* 
(9) 

~ 
A ~ EB~ 

i>m 
E (E* ~ E*~) ~ G G e: R~ , R = ~ k(r i ) 

What does now condition (2) mean for (9)? We have R~ = R E9 H ~ E*~ ~ G 

so by (2) R + E*~ = (R~ n E*)~ = (R ~ H)~ = R ~ E*~ ~ (H ~ G) n H~ 

Therefore 

(10) (H EB G) n H~ (0) 

Let (b j ) be a basis of a supplement of B n (R E9 E*~) in B. 

Be: ~ 
=R~ HEB E*~ E9 R G ; so we break the accordingly b. into 

J 

components, b. r. + h. + e. + gj and let C be the span of all 
J J J J 

projections h j + gj (they are linearly independent). Thus C e: H ~ G • 

We try to pick the required vector e E H, hence it will have to 

i.e. ~(e,h. + g.) ought to have pre-
J J 

scribed values. We can certainly find a vector e' in E which has 

the required angles with C • Since C is finite dimensional C~ + H 
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~ ~ ~~ 
is closed and so by (10) C + H = (C + H) 

Hence we decompose e' , e' e' , + e E 

~ 
B n E* by the assumption of the lemma 

d + e is orthogonal to all of B 

may start out with vectors x E R~ 
1 

This 

~ 
C + H 

and d 

proves 

(C n ~ ~ 
H ) (O)~ E 

Since B n (R + E*~) 

E E* we see that 

(I) . To prove (II) we 

virtue of (1). There is r ERn A such that xl + r ~ A Set c = 

We have d, c E A~ since d + c E A~ by 

assumption. By part (I) there exists e E E* n R~ with d + e E (A + B)~. 

With x := d + e and y:= C - e we satisfy (II). 

By the lemma we have one half of the following 

Corollary. Let R C E be totally isotropic, dim E ~ ~O and A , 

B as in Lemma 2. Then (1) & (2) is equivalent with the validity of 

(I) & (II) for all A, B 

To show the remaining (easy) half of the corollary one chooses 

A = B (0) to obtain (1) from (II). Hence we may use a decomposition 

(9) and set A = (0) in order to obtain (10) from (II). But (10) and 

(2) are equivalent if (1) holds. 

7. Proof of Theorem 2 when E* is non-degenerate 

Assume that dim E ~ ~O and E* n E*~ = (0) and, furthermore, 

that (1) and (2) holds. 

We build up a Witt decomposition for R recursively. Assume that 

we already have determined finite dimensional non-degenerate subspaces 

A , BeE with 

A ~ B , A C E* , A hyperbolic and An R a maximal 

(11) totally isotropic subspace in A , B 
~ 

C R 

B n 
~ 

(R + E* ) = B n E*~ 

Let (e i ) be a fixed auxiliary basis of E and e the first 
r 
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member not in A + B . We shall determine finite dimensional subspaces 

x, y C (A + B)L such that Al := A ~ X , Bl := B ~ Y will again satisfy 

(11) and have e r E Al + Bl In this fashion we obtain a decomposition 
L 

E = (R + R') ~ EO ' R ~ R' C E* . Although the plan of the proof is 

quite obvious there will be a number of details to pay attention to. 

As E = (A + B) + (A + B)L we may decompose e 
r 

and adjoin its 

component z in (A + B)L to the space (A + B) • We shall distinguish 

between three major cases just as in the proof of Thm.3. 

Case 1. z E R _ {O} . Since E* A + (AL n E*) is non-degenerate 

we find d E E* n AL ~ith ~(z,d) 1 By (I) of Lemma 2 there is 

e E E* n RL such that e + d E (A + B)L Hence k(z,d + e) is a 

hyperbolic plane in (A + B)L • If we set A' := A + k(z,d + e) and 

B' := B then we have z E A' + B' and all induction assumptions are 

easily seen to hold again. 

Case 2. z E RL ...... R . It follows that 

(12) Z~R+A+B 

It may happen that z E B + R + E*L , Z = b + r + e' (b E B, r E R, 

e' E E*L) • It then follows that r L A + B If r + 0 then by 

Case 1 there is a hyperbolic plane k(r,r') L A + B • What do we then 

know about z-r? Since rLB we have z-r L B as z-r E B+E*L also 

z - r LA. Since k(r,r') C E* n BL we have z - r L k(r,r') In 

total we have z - r E (RL ~ R) n (A + k(r,r') + B)L which shows that 

with z - r we are still in Case 2. what we have shown is that (in the 

present case) 

(13) 

If z 

if z happens to be in B + R + E*L then without loss 

of generality z E B + E*L 

Now if z is non-isotropic we set A' := A and B' := B + (z). 

is isotropic then bY (12) we may pick z' E (R+A+B)L 
L 

--- Z • 
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We set A I : = A and B I : = B ED k (z , Z I ) 

Let us verify the induction assumption on B' n (R + E*~) in this 

last case. For a typical vector q of this intersection write q:= b + 

AZ + ~Z' = r + e ' (bEB , rER r e·IEE*~ Z is isotropic (hence in 

E*) and multiplying it with r + e ' therefore yields 0 = ~ • Hence 

AZ E B + R + E*~ so AZ = b l + e" (bl E B, e" E E*~) by (l3). Since 

b + AZ E R + E*~ we obtain b + b l E (R + E*~) n B = E*~ n B by 

induction assumption. Therefore q:= b + AZ = (b + b l ) + e" E E*~ 

Ergo q E B' n E*~ • The remaining induction assumptions are readily 

seen to hold. This terminates Case 2. 

Case 3. Z ~ R~ • By (II) of Lemma 2 Z = x + y for some 

x E R~ n (A + B)~ and y E E* n (A + B)~ Since Z ~ R~ we have 

y ~ R~ and thus we find r ERn A~ with ~(r,y) 1 so that k(r,y) 

is a hyperbolic plane in (A + B)~ Set A' := A $ k(r,y) , B' := B • 

If x happens to be zero then we are done: Z E A' + B' and all 

induction assumptions are easily seen to hold. If x f 0 then the vector 

zl := x - ~(x,y)r is in R~ n (A' ~ B')~ and thus qualifies either for 

Case 1 or Case 2 so that by some additional steps we may adjoin zl to 

A' + B' • This terminates Case 3. 

The proof of Thm 2. in the case of non-degenerate E* is thus 

complete. By Sec.S this proves Theorem 2 in full generality. 

8. Some general remarks on the proof of Theorem 2 

We see fit to include a comment on the rationale behind the proof 

of Theorem 2 as against some proofs given in later chapters. Note first 

the following obvious consequence of Theorem 2: 

(14) 

Let R be a totally isotropic subspace of the non-degenerate 

g-hermitean space E(dim E ~ ~O) with (1) and (2). Then the 

orbit of R (under the orthogonal group of E) is character­

ized by the cardinal dim R and the isometry class of R~ 
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Assuming that we had a direct proof of (14) could we then obtain 

Theorem 2 as a corollary? Given a ~-closed R c R~ c (E,~) we certainly 
~ 

have a metabolic decomposition E = (R $ R') ~ EO Define a new form 

~ on E x E by setting ~ identically zero on R' x R' and have it 

coincide with ~ on R x R, R X R' , R x EO' R'x EO and EO x EO 

The space (E,~) is non-degenerate and Witt decomposed with respect to 

R • Obviously, if (E,~) does admit a Witt decomposition for R then 

(E,~) and (E,~) are isometric. Conversely: provided that (E,~) , as 

defined, turns out to be isometric to (E,~) then it follows without 

further ado from (14) that (E,~) admits a Witt decomposition with 

respect to R We would have liked to present a proof of Theorem 2 

along this line instead of directly setting up the required decomposition 

as we have done in the present chapter. In fact, all the many normal 

forms effected in subsequent chapters are obtained by applying the 

strategy just outlined, to wit, 

1. characterize orbits by certain invariants ("uniqueness"), 

2. construct a specific normal form with prescribed invariants, 

in order to conclude that in all instances we can exhibit a normal form. 

We have not succeeded in finding such a proof of Theorem 2 in the general 

case. However, when dim SIT is finite then there is such a proof [2J; 

it will be given in Chapter VIII as a special case of a more general 

result. (The finiteness assumption on dim SIT implies that (E,~) is 

quasistable in the sense of Chapter VII if it contains a totally iso-

tropic R • If, in addition, R satisfies (1) and (2) then we are also 

able to establish the isometry (E,~) ~ (E,~).) 

For further remarks on decomposition theorems in general see 

[4J, 5-6. 
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CHAPTER FOUR 

ISOMORPHISMS BETWEEN LATTICES OF LINEAR 

SUBSPACES WHICH ARE INDUCED BY ISOMETRIES 

1. Introduction 

Let E be a vector space over the division ring k and L(E) the 

lattice of all linear subspaces of E . If E is a vector space over 

the division ring K and T: L(E) + L(E) a lattice isomorphism then 

by the Fundamental Theorem of Projective Geometry ([lJ p. 44) T is 

induced by a semi1inear map T: E + E if we assume that dim E ~ 3 • 

that 

L (E) 

Here we shall investigate questions of the following kind. Assume 

T: V + ii 

and L (E) 

is a lattice isomorphism merely between sub1attices of 

respectively but assume E and E 

degenerate (orthosymmetric) sesqui1inear forms 

equipped with non­

and ~ respectively. 

Then ask: is T induced by a similitude T: E + E ? 

It is not to be expected that these problems have an easy and uni­

form answer. We shall start out with the special case of alternate forms 

and look for T: V + ii which are induced by isometries. The result is 

Theorem 1 below. If there are "enough" isotropic vectors available in 

E and E then our construction holds also for nona1ternate forms. Our 

main result is Theorem 2 in Section 8. Chapters V, VI and VIII bring 

applications to this result. Of course we restrict ourselves here to 

countable dimensions ([4J, p. 3 contains a nice example in arbitrary 

dimensions) • 

2. The kind of lattices admitted 

If T: V + V is induced by an isometry T: E + E i.e., XT 

{Txix E X} for all X E V , then T extends to all of L(E) and 

obviously commutes with orthogonal complementation. Therefore, it is 
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natural to restrict our attention to orthostable lattices: 

(0) E V and E E V and if X E V then X~ E V • 

Furthermore, if it is induced, then L must preserve rank, in particu-

lar it must preserve indices, i.e. dimensions of quotient spaces y/X 

for neighbouring elements X ~ Y of V. Since L when it is in-

duced - also extends to a lattice isomorphism between the complete or tho­

stable lattices generated by V, V in L(E) and L(E) respectively 

it is appropriate to assume at the outset that V is complete as a sub-

lattice of L(E) • Indeed, easy examples show that, in general, the 

indices of V will not determine the indices in the complete sublattice 

generated by V. As we assume that dim E ~ ~O all chains in V will 

be denumerable so that it is sufficient to check V for being a 0-

lattice in the sense that every denumerable subset has an infimum and 

a supremum (see also Section 7 below). 

+ 

Definition. An element D of a lattice V is called compact if 

+ A n 

for an arbitrary family of A E V 
1 

for finitely many among the A 
1 

implies that 

A complete lattice is 

called algebraic (or compactly generated) if every element is the join 

of compact elements. An element D E V is called join-irreducible if 

D = A+B, A E V, B E V implies that D = A or D = B ; it is called 

join-prime if D ~ A+B, A E V, B E V implies D ~ A or D ~ B • 

We now put down the conditions on the lattice V which make 

possible the geometric constructions in this chapter. They are: 

(1) 

(2) 

join-irreducible compact elements are join-prime, 

compact elements are joins of join-irreducibles. 

We shall often have to deal with finite lattices V satisfying 

(1) and (2). The adjective "compact" is then redundant and by (1) & (2) 

every element of V is a join of join-prime elements. Hence V must be 
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distributive by the following 

Lemma 1 ([5J). A lattice in which every element is a (finite or 

infinite) join of jOin-prime elements is distributive. 

Proof. We first show that a ~ b+c implies a ~ (aAb) + (aAc) 

in such a lattice. Indeed, let X(a) be the set of all join-prime 

elements ~ a. a E{xlx E X(a)} by assumption. If a ~ b+c then 

x ~ a ~ b+c for all x E X(a) hence x S b or x S c and thus x S 

(aAb) + (aAc) • Ergo a = Ex ~ (aAb) + (aAc) as asserted. Now if our 

lattice were not distributive it would contain a five element non­

distributive sublattice ~ or a five element nonmodular lattice 

~ both not enjoying the property just established. 

However, the same conclusion holds for the nonfinite case as well. 

We shall list the pertinent results here. 

Lemma 2 ([5J). Let L be an algebraic modular lattice and c a 

compact element of L which is a join of join-irreducibles. Then c is 

a join of join-irreducible compact elements. 

For a proof we refer to [5]. Clearly, by the two lemmas every al-

gebraic modular lattice with (1) and (2) is distributive. 

A lattice is called completely distributive if (for I, J + il ) 

the following identity holds, 

In [6J (Statement 3.2 page 320) the following result is proved: 

Lemma 3. An algebraic lattice is completely distributive if and 

only if each compact element is a join of join-prime compact elements. 

Hence we see, by Lemma 2 and 3, that modular algebraic lattices 

with (1) and (2) are even completely distributive. We said before that 
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we would stick to complete sublattices of L(E) • Now L(E) is clearly 

algebraic and in order to round off our digression on lattices we shall 

prove 

Lemma 4. A complete sublattice S of an algebraic lattice L is 

algebraic. 

~. For c E L define a = A{x E six ~ c} • If c is compact 

in L then a is compact in S Furthermore if a ESc L is a join 

of compact elements c 1 in L then c ~ a and so e ~ a • Since 

thus a ~ r:C1~ r:a1 ~ a we obtain 

1 1 

a = Ea 
1 

We summarize: The lattices V which we are going to deal with in 

this chapter, to wit, complete sublattices of L(E) that satisfy (1) and 

(2), are completely distributive. Conversely, each completely distrib-

utive complete sublattice of L(E) satisfies (1) and (2). 

3. Statement of Theorem 1 and an outlay of its proof 

No assumption is made on the characteristic of the field. 

Theorem 1. Let E be an alternate space with dim E ~ ~o and 

V ,V orthostable complete sublattic~of the lattice L(E) of all 

subspaces of E • Assume that T: V ~ V is a lattice isomorphism which 

commutes with orthogonal complementation and which preserves indices. 

In order that T be induced by an isometry T: E ~ E it is sufficient 

that V satisfies (1) and (2). 

In order to prove this theorem we are going to construct by in­

duction two ascending chains Wo ~ WI ~ W2 ~ ••• , Wo ~ WI t;; W2 ~ ••• 

of finite dimensional subspaces of E and a sequence of isometries 

Ti : Wi ~ Wi such that Ti +l is an extension of Ti • We shall arrange 

for l)wi and l) Wi to be all of E so that the Ti define an 
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isometry T: E + E • Furthermore the Ti are going to be "compatible" 

with the given lattice isomorphism T: A ~ A (A E V , A E V) : 

(3) for all A E V • 

If such sequences Wi' Wi exist at all then there will be many 

possibilities of selecting them. We try to construct them in such a 

manner that the following distributivity holds for arbitrary families 

of elements A E V : 
1 

(4) n(W. + A) 
1 ~ 1 

W, + (lA 
~ 1 1 

and, of course, the corresponding property for each Wi of the second 

sequence. 

In order to describe this construction it is sufficient to discuss 

the ith step. If we drop subscripts we are left with the following task. 

4. The construction problem 

We are given finite-dimensional subspaces W, WeE and an 

isometry T: W + W with 

(3' ) 

(4' ) 

(4' ) 

T(W n A) 

o (W + A l ) 

Q (W + Acr) 

(for all A E V) 

where (A l ) , (Acr) are arbitrary families in V and V respectively. 

There is furthermore given a vector x E E , W One then has to (I) 

specify in E a finite dimensional subspace WI ~ W~ (x) , (II) con-

struct a subspace WI such that T extends to an isometry TI : W + 
I WI 

and, (III) verify that WI , WI , TI satisfy again (3') , (4') , (4') • 

We shall now adduce some equalities for dimensions of spaces that 

will show up in the course of subsequent constructions. These equalities 
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are consequences of (3') and the properties of T • For A E V let again 

A E V be the image of A under the given lattice isomorphism T: V ~ V . 
We have 

(i) For all A E V: dim A/A n W.L dim A/A n it 

Proof. A/(A n w.L) ~ (A + w.L)/w.L • Since for .I.-closed V we have 

dim U/V = dim v.L/u.L we obtain dim A/(A n w.L) = dim W/W n A.L and 

dim W/(W n A.L) • The lattices are ortho-

stable so 
.I. 

A E V , A.1 E V and, since T: W ~ W satisfies (3'), we 

have W/W n A~ ~ w/W n A~ Therefore (i). 

(ii) For all A, AO E V with AO ~ A 

dim«AO+W) n A)/AO • 

Proof. By (3') (W n A)/(W n AO) -;; (W n A)/(W n AO) so 

(AO + (WnA»/AO -;; (AO + (WnA»/Ao hence (ii) by modularity. 

(iii) For all A, AO E V with AO ~ A : 

dim ( (AO +W) nA) / ( (AO +W) nA) n vi = dim ( (AO +W) nA) / ( (AO +W) nA) n W.L. 

Proof. By (3') T maps (A~ n W) n (W n (W n A).L) onto the anal­

ogously built space so the quotient space W/A~ n W n (WnA).L is isomorphic 

to W/A~ n W n (W n A).L . Denominators are .I.-closed so dim(w.L+Ao+(WnA»/ 

w.L dim(W.L+Ao+(WnA»/~ 

(iv) For all A, AO E V with AO ~ A : 

dim A/(AO + W) n A = dim A/(AO + W) n A 

Proof. T preserves indices by the assumption of Thm. I so 

dim A/AO = dim A/AO • From this and (ii) we get (iv) by a simple sub-

traction. 

(v) For all A, AO E V with AO ~ A : 

dim A/ ( (AO +W) nA) nw.L = dim A/ ( (AO +W) nA) n~ 
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Proof. Combine (iii) and (iv). 

From (i) and (v) we obtain the important equality 

(5) for all A, AO E V with AO <;;; A we have 

.I. .I. 
dim(AnW )/«Ao+W)nA)nW 

- -.I. - - - -.I. 
dim(AnW)/«AO+W)nA)nW 

Remark. In Section 7 below we shall somewhat relax the assumption 

on completeness of V For AE: V we let then AO be the sum in E 

of all proper antecedents of A in V AO = E{Z E VIZtA} Define 

AO := E{ZT E Viz C A } 
f AO and AO need not be lattice elements. 

Nevertheless, if we assume that T preserves the dimensions of quotients 

dim A/AO' for A E V and AO ' AO as defined then 

(5) still holds on the basis of (3') alone: W n AO is still mapped onto 

W n AO under T as can be seen by considering a vector of the inter-

section, etc. 

5. Solution of the construction problem in the irreducible case 

Let x, W be the objects mentioned in the above construction 

problem. Define M(x,W) := {Z E vlx E W+Z}, M is a closed sublattice 

of V by (4') (it contains inf M whenever M S M and, as it clearly 

is a filter, it is a principal filter. We let D = D(x,W) be its 

generator. D is compact, obviously. 

In this section we shall assume that D is join-irreducible/hence 

D will be join-prime by (1) of Section 2. This property will, however, 

only be used at the end when discussing the validity of the induction 

assumptions (4'), (4') after the construction step. 

We have x E W+D . Without loss of generality xED . We set 

Wl = W ~ (x) which takes care of (I) in the construction problem 

formulated in the previous section. We turn to (II). We have to pick 
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x E E and set WI = W ~ (x) Where should we pick x so that (3') 

continues to hold for WI ' WI ? 

Let DO := ~{Z E viz ~ O} • We have DO + 0 for otherwise 0 = 

+ Zn by the compactness of o , thus n = 1 , and so OeD 
t 

contradiction. Thus xED and x $ W + DO • It is therefore certainly 

necessary to select x such that 

-(6) xED 

holds. Suppose we pick x such that (6) holds. If we let M(x,W) be 

the filter associated with the pair x, W (defined in analogy to 

M(x,W) at the beginning of this section) then the first half of (6) 

tells that 0 is an element of M(x,W) and the second half tells that 

DO is not. Since 0 covers DO (Le. - c -
DO + X + 0 is not satisfied 

by any X) we see that (6) implies 

(7) o is the generator of the filter M(x,W) 

In other words, , maps M(x,W) onto M(x,W) ; this makes it very 

plausible that x has the correct order theoretic ubiety relative to 

the lattice V We now have to turn to metric requirements imposed on 

the choice of x 

Let F be a supplement of W n O~ in Wand spanned by a basis 

f l , f 2 , ... , f Then Tf l , Tf2 , ... , Tf span a supplement F of n n 

W n -~ D in W by (3') • Since -~ 
D n F = (0) there exists y E D that 

has the requisite products 4> (Y,Tf.) 4> (x,f i ) (1 ~ i S n) . We next 
~ 

convince ourselves that we can move y into 0 .... (DO + W) t in case we 

should have y E DO + W , by adding a suitable "correction" t to y . 

We shall specify such a t now. 
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Assume then that y E D n (DO + W) DO + W n D , say y 

Let G be a supplement of W 
-~ 

n DO in W spanned by a basis 

gl' g2' ... , gr . We can find dO E DO with ~(dO'T-lgi) = ~(do,gi) 

(i = 1, 2, ... , r) The vector Xo := -1 _..J. 
-x + dO + T W is in w by 

(3'). Also by (3') Xo $ W + DO • Therefore, dim(Dn~)/((Do+W)nD)n~ + O. 

Hence we conclude by (5) that there exists a vector tED n W~ with 

t ¢ DO + W . This is what we were looking for. Set x = y + t and define 

WI := W ~ (x) . Extend T to WI by sending x into x 

We are left with the task (III) in the construction problem of 

Section 4. Let us consider (3') and A an element of V. If A E M 

then DCA and thus DcA by (7). Therefore, x E A and we find 

WI n A = (WnA) ~ (x) , WI n A = (WnA) ~ (x) . If, however, D ¢ A then 

D ¢ A by (7) and WI n A = W n A, WI n A = W n A . In both cases 

Tl (WlnA) = WI n A 

In order to verify (4') let (At)I be an arbitrary family of 

elements in V If we should have that A E M for all t then 
t 

~ (WI+At ) r;I (W+At ) and similarly for the A by (7 ) so we may 
t 

quote the induction assumption. Assume therefore that AO ¢ M for at 

least one subscript o E I . Let then d = w + A x + a 
t t t 

(tEl) be a 

vector of the intersection A $ M 
].l 

for some ].l E I 

then A].l = AO for otherwise we could solve for x and obtain 

x E W + (AO+~) so AO + A].l EM; this is a contradiction since we 

assume in this section that D is join-prime (i.e. M is a prime 

filter). Thus for all ].l E I with A ~ M 
].l 

and therefore 

d-Aox E r;J (W+At ) = W + Q At • As the other inclusion Q (WI +At ) ~ 

WI + G) At is trivial we have established (4'). To verify (4') is 

mutatis mutandis the same. 
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We have shown: if D is jOin-irreducible then the construction 

problem can be solved. Let us turn to 

6. Solution of the construction problem in the reducible case 

(end of the proof of Theorem 1) 

We keep the notations of the previous section and assume that 

D(x,W) is join-reducible. By the fundamental assumption (2) therefore 

D(X,W) Dl + .,. + Dn (n>l) for finitely many jOin-irreducibles 

Choose a representation where n is minimal and write x as 

a sum of components xi E Di • If we let Dll := D(XI,W) then DII C D 

and Dll + D2 + ••. + Dn E M(x,W) • Therefore, DII + D2 + + D n 

Dl + + D and by modularity Dll + DI n (D + •. '+D ) Dl We 
n 2 n 

conclude that Dll Dl by the join-irreducibility of Dl and by 

the minimality of n . This tells us that D(Xl,W) is irreducible and 

that we may therefore by the previous section "adjoin" xl to W, 

WI := W ~ (xl) and Wl := W ~ (xl) . Our argument can be repeated to 

show that D(Xr,Wr _l ) = Dr (l~r~n) so that by a n-fold application 

of the solution in the previous section the construction problem is 

solved in the present case. 

7. Remarks on the case of not complete sUblattices 

At the end of Section 4 we have shown that (5) holds even if V, V 

are not complete sublattices but satisfy 

(*) for all A E V 

If, in addition, we assume that V satisfies the descending chain con-

dition (DCC) then it is possible to maintain the proof of Sections 5 and 

6. Conditions (4) and (4') have to be replaced by the corresponding con-

ditions on finite families. M(x,W) of Section 5 will still be a sub-

lattice of V. By DDC we have an induction principle: if a subset N 
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of V is such that it must contain X provided it contains all proper 

antecedents of X then N is all of V. Hence in solving the con-

struction problem in Section 5 we may assume it to be solvable for all 

instances with generators D smaller than D(x,W) . This makes the 

transfer of the vector y in Section 5 practically trivial. We summa-

rize: 

Theorem 1'. Let E be an alternate space with dim E ~ ~O and 

V ,V orthostable sUblattices of L(E) Assume that T: V + V is a 

lattice isomorphism which commutes with orthogonal complementation and 

which preserves indices in the strong sense of (*) above. In order that 

T be induced by an isometry T: E + E it is sufficient that V satis-

fy (1) and DCC. 

It is not necessary to require (2) since in a lattice with DCC 

each element is the join of finitely many join-irreducibles. 

8. Nonalternate forms : Theorem 2 

The problem formulated in the introduction to the chapter becomes 

considerably more difficult if the form is not alternate. Results in 

Chapters XII and XIII show the complexity of the question for ortho­

stable lattices as simple as f 
Nevertheless a very useful theorem can be extracted from the proof 

of Theorem 1 for certain nonalternate forms. We continue to assume that 

the lattices satisfy conditions (1) and (2). (Nondistributive lattices 

are investigated in Chapter VIII for sesquilinear and in Chapter XVI for 

quadratic forms.) We now turn to the description of the additional dif-

ficulties that arise. 

In what follows ~: E x E + k is a nondegenerate g-hermitean form 

with respect to some antiautomorphism K : k -4 k of the division 
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ring k; dim E = ~O • We consider the additive subgroup T:= {~+E~*I~Ek} 

of k and for each subspace X c E we set 

X*:= {x E xl~(x,x) E T} . 

X* is the trace-valued part of X and, obviously, X* = X n E* . When 

~ is not trace-valued, possible only when char k = 2 , then each iso­

metry of E respects the operation X ~ X* . It is therefore natural 

to require that the lattices V and V contain the element E* and, 

as a matter of course, that the lattice isomorphism ,: V + V satisfy 

(8) ,(E*) E* • 

V and V will then be stable under the operation X * X* and the 

latter commutes with , . We assert 

Theorem 2. Let (E,~) be a nondegenerate E-hermitean space of 

dimension ~O and ,: V + V a lattice isomophism between complete sub­

lattices of L(E) (the lattice of all subspaces of E). Assume that 

V and V are orthostable and that , commutes with orthogonal com-

plementation and satisfies (8) and preserves indices (dimensions of 

quotients of neighbouring elements in the lattices). In order that , 

be induced by an isometry of E it is sufficient that V, V satisfy 

(1) and (2) and the following condition (C) on their jOin-irreducible 

compact elements Y (we set rad Y:= YnY~ ) : 

(C) 

(i) dim Y/rad Y < 00 => lIylI = {O} = Ily'll • 

(ii) dim Y/rad Y & Y = Y* => Y contains an infinite 

dimensional totally isotropic subspace V with 

V n rad Y (0) and similarly for y' 

(iii) dim Y/rad Y & Y + Y* => IIYII = lIy'li and for all 

finite dimensional FeE we have II YnF~ II = II yll , 

Ily'nF~1I = Ily'll . 
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Remarks. 1. If char k + 2 then (iii) is vacuous; furthermore 

there is an impressive list of fields k with antiautomorphism K 

such that there is precisely one isometry class of nondegenerate E­

hermitean ~O-forms over k. Since each such form admits a symplectic 

basis we see that (ii) is automatically satisfied. Hence (i) is the 

only restriction in these cases. 

2. For special lattices one can give better results. E.g. if V 

is the lattice {(O)CO~Co O~~CE} then every T: V ~ V which is 

orthostable and preserves indices and has 11011 = lIoTIl is induced by 

an isometry T of E (see [3], Sec. 2.5 for a proof). From this follows 

anew the .result that every totally isotropic ~-closed subspace in a non­

degenerate space (E,~) admits a metabolic decomposition no matter 

what the form or the field (as long as dim E ~ ~O) • 

9. Proof of Theorem 2 

If Y satisfies (ii) of (C) then for each finite dimensional 

FeE the space Y n F~ contains hyperbolic planes so that II YnF~ II T • 

By Section 2 we know that every element X E V is a jOin of join­

irreducible compact elements Y, X = LY, hence we have by (ii) and 

(iii) of (e) that 

(9) IIxll = IIxTIl (mod T ) for all X E V • 

In order to use the scheme of the proof of Thm. 1 we only have to 

arrange (in Section 5) for x to satisfy the additional requirement 

(10) ~(x,x) 

besides condition (6) and the condition 

(11) ~ (x,TW) ~ (x,w) for all w E W • 
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All this concerns (II) of the construction problem in Section 4. 

We keep the notations of Sec. 5. In particular DO is the join of 

all proper antecedents of D E V • We have to show how to satisfy (10) 

when D is join-irreducible. In this case DO is the immediate ante­

cedent of D. 

~. dim D/DnD~ < ~ • By (Ci) of the Theorem both x and x 

are isotropic and (10) holds. 

Case ii. dim D/DnD~ ~ and D = D* • First pick some x E DT 

with (6) and (11) (such x exist by the arguments of Sec. 5). Now, if 

DIDO should be finite dimensional, then I/D~nF~1/ = T by (Cii). Hence 

there is - T - - ~ 
Z E DO n (W+(x» with ~(z,z) = ~(x,x) - ~(x,x) ; x + Z 

then satisfies (6), (10) and (11). If, on the other hand, dim DIDO is 

infinite then we pick such a z in DT ; then x + z satisfies (10) 

and (11) but may violate (6) • Suppose we had x + Z E W + DT 
0 

. It will 

be easy to manoeuvre the vector out of W + DT 
0 

since this latter is 

of infinite codimension in DT . Let S be a supplement of D n 
~ 

D in 

D that contains a subspace V as specified in (Cii) of Thm. 2. The 

- - ~ space Sl:= S n (W ~ (x+z» must contain hyperbolic planes as its 

radical is finite dimensional. Therefore, the isotropic vectors s of 

Sl generate the trace-valued Sl. For infinitely many s we have 

s * W + D~ since otherwise dim DIDO would be finite. For each such 

s, x+z+s satisfies (6), (10) and (11). 

Case iii. dim D/DnD~ = ~ and D + D* • First pick some Xo E DT 

with (6) and (11). By (Ciii) there is z E DT n (w+(xo»~ with 

~(z,z) = ~(x,x) - ~(xO,xO) (by (Ciii) the set I/DI/ is closed under 

addition and as D + D* we must have char k = 2 ,hence I/DI/ is an 

additive subgroup of k) so x := Xo + z satisfies (10) and (11). We 
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claim that it has to satisfy (6) • For, assume that x w+d O E W+D~ 

<jl(dO,d O) E T By (9) we may pick a vector dO E DO with <jl(dO,d O) -

Set 
-1 

y E and <jl(y,y) <jl(}{,x) y := T w+d O ; W+DO - mod T so x-y E D* 

Since D* C DO in the present case we obtain x = (x-y)+y E W+DO ' 

contradiction. 

The proof of Theorem 2 is therefore complete. 

10. Remarks on the method 

The method used to prove theorems 1 and 2 can often be applied to 

situations where not all join-irreducible compact elements of the 

lattice V satisfy condition (C) of Section 8. This possibility stems 

from the fact that we need not start the recursive construction of the 

sequences (Wi)i' (Wi)i ' Ti : Wi + Wi with Wo = (0) = Wo in order 

to make the scheme of Sec. 3 work. In order to get off ground we may 

start with any finite dimensional Wo ' Wo such that there is an iso­

metry TO: Wo + Wo with 

(12) TO: WOnA + WOnA for all A E V 

(13) n (WO+A ) 
1 1 Wo + 0 Al (Al E V) 

(14) (l (WO+A ) Wo + (~YAl (A E V) 
1 1 1 

The idea behind many applications of our method is to arrange the 

choice of the initial triple (WO' WO' TO) in such a way that the 

compact join-irreducible elements Y which do not satisfy condition 

(C) are excluded from the role as generators of the filters M(x,Wn ) 

associated with the construction problem in Sec. 4. We formulate this 

stratagem as 
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principle I. Let (E,~) and T: V ~ V be as in Theorem 2. 

Assume that there are finite dimensional spaces Wo ' Wo C E and an 

isometry TO: Wo ~ Wo which satisfy (12), (13), (14) and the following 

condition 

(15) 

if Y is a join-irreducible compact element in V 

which does not satisfy condition (C) of Sec. 8 then 

there exists a subspace H C Wo which is a linear 

supplement in Y of the immediate antecedent YO 

of Y. 

Then TO can be extended to an isometry of E which induces the 

lattice isomorphism T • 

A typical application of this principle will be contained in the 

study of totally isotropic subspaces in Chapter VIII. In that chapter 

we shall also formulate a second principle which allows us to deal with 

situations where the lattices V, V are not distributive. It is based 

on the same idea as Principle I. The range of applications is thereby 

greatly increased. 

We conclude with a remark. The formulation of principles such as 

the'ones mentioned is certainly useful for the conveyance of certain 

general ideas that concern proofs which,by necessity, are loaded with 

details. However, according to needs, the strategy as exhibited may be 

varied in countless ways. In specific situations subtler observations 

can be made than is possible in a model situation as described in Thm. 2. 

* 
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CHAPTER FIVE 

SUBSPACES IN TRACE-VALUED SPACES WITH MANY ISOTROPIC VECTORS 

1. Introduction 

The classical Theorem of Witt says that any isometry TO: F + F 

between finite dimensional subspaces F, F of a non degenerate trace-

valued space (E,~) can be extended to an isometry T: E + E ([4], 

Satz 4 and Anmerkung p. 31). 

If dim F is not restricted then this assertion becomes sub-

stantially false. Here is an illustration. If dim E is infinite and 

non degenerate then it contains subspaces F f E with F~ = (0) . If 

we assume that dim E is countable then a simple recursive argument 

will show that F splits, F U $ V , in such a fashion that U~ = V 

-).*v 

(uEU, vEV) for suitably chosen ). in the field k. If char k f 2 let 

). = 1 • If char k = 2 we have to assume that the involution * of k 

is of the "second kind", i.e. there is an element Il in the center with 

Il* f Il 1 we then set 
-1 

A = Il Il* is then an isometry and it can-

not be extended to any proper overspace of F in E • 

Thus it may well happen that a specific isometry TO between F 

and F cannot be extended to E whereas some other isometry Tl : F + F 

does have an extension. In other words we have here two different prob-

lems. 

Problem 1. For given F, FeE list necessary and sufficient 

conditions for an isometry T: E + E to exist with TF = F • In other 

words, give complete sets of invariants for the orbits of subspaces 

under the orthogonal group of E • 
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Problem 2. Describe conditions which are sufficient for a given 

isometry TO: F ~ F to admit an extension to all of E. 

Remark. In finite dimensions Witt's Theorem is equivalent with 

the apparently weaker statement "If F, F are isometric then they be-

long to the same orbit". For the last statement obviously implies the 

Cancellation Theorem. Hence in order to extend a given TO: F ~ F one 

.I. • 
(TOFO) • S~nce there simply decomposes rad and has 

.I. 
F = FO ~ F FO ; 

are Witt decompositions of 
.I. 

FO for rad F and of (TOF 0).1. for rad F 

it is evident that TO can be extended to E . 

We consider two extreme situations of Problem 1. In this chapter 

we solve it for spaces which contain "sufficiently" many isotropic 

vectors. In Chapters XII and XIII we investigate it for definite spaces 

over ordered fields. Of Problem 2 we treat in Chapter X. 

2. Classification of a single subspace 

The non degenerate sequilinear form ~: E x E ~ k is assumed to 

be trace-valued and dim E = ~O • No assumptions on the field are made. 

* 

A nice application of Theorem 2 in Chap. IV is to the lattice V 

orthostably generated by a single subspace veE 

E 

.I. 
(radV) 

(radV)H 

radV 

(0) 
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V(V) is distributive and has 14 elements ([3J). All indices that can 

be read off from the above lattice occur among the following seven: 

(1) 

dim[rad V] , dim[V/rad V] , dime (rad v)LL/ rad V] , 

dime vL /rad (VL)] , dime rad (VL )/(radV) u] , dime (VL +VU) / (VL +V) ] , 

dim[(rad VL)L/(~+~L)] 

Remark. In the case of an ~O-dimensional E we have 

dim[E/(rad V)L J = dim[rad V] and dim[(rad V)L/(V+VL)LL] = 

dim[rad(VL)/(radV)u J -. For E of larger dimension dim[E/(rad V)L] 

and dim[(rad V)L/(V+VL)LL] have to be added to the above seven in 

order to obtain a complete list of indices. It is not difficult to con-

struct examples where all these indices are nonzero. 

Theorem 1 ([1]). Let V, V be isometric subspaces of E which 

satisfy the following conditions 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

L 
V and 

-L 
V are isometric, 

dim[(rad v)LL/ rad vJ = dim[(rad V)LL/rad V] , 

dim[rad(VL)/(rad V)LL] = dim[rad(VL)/(rad V)LL] 

dim[vLL/(V+rad(VL»] = dim[vLL/(v+rad(VL»] , 

dime (rad (VL) ) L / (VL +VU)] = dime (rad (VL) ) L / (VL +VLL) ] 

There exists an isometry of E which maps V onto V whenever the 

following (sufficient) conditions are satisfied: 

(vi) if dim V/rad V is infinite then V contains an infinite 

(vii) 

Proof. 

dimensional totally isotropic W with W n rad V = (0) , 

is infinite then 
L 

V contains an 

infinite dimensional totally isotropic W with 

W n rad(VL ) = (0) • 

We first consider the possibility that dim V/rad V is 

finite. Let Va be a supplement of rad V in V. Since V;; V by 
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assumption there is a supplement rad V in V which is 

isometric to Va E and by Witt's Theorem of the 

finite dimensional case (here we use trace-valuedness of E) we get 

.L 
Va -

-.L 

Va One easily verifies that the assumptions of the theorem on 

V and V in E imply the corresponding assumptions on rad V , rad 

in 
.L 

and Va 
-.L 

Va respectively. Hence the argument does in fact reduce 

the problem to the case where dim V/rad V = a . A similar argument 

applies to 
.L 

V so that we may assume without loss of generality that 

V 

dim V/rad V , dim v.L/rad(v.L) E {a, ~o} • We may, of course, also assume 

that dim V , dim V are infinite by Witt's Theorem. Hence each Y 

among the join-irreducibles in V (the elements labelled in the diagram) 

has dim Y/rad Y E {a, ~o} . Thus we see that condition (C) of Theorem 

2 in Chap. IV Sect. 8 is satisfied. Since V is finite and distributive 

we may quote Thm. 2 to finish our proof. 

Corollary 1. Let E be a trace-valued sesquilinear space with 

contains an infinite dimensional totally isotropic subspace. Then for 

each n E IN the set of .L -dense subspaces V with dim E/V = n forms 

a single orbit under the orthogonal group of E . 

Proof. V and V are non degenerate if .L-dense and contain 

infinite dimensional totally isotropic subspaces if dim E/V , dim E/V 

are finite. Hence any such V, V are isometric because they are hyper-

bolic. We may now quote the above theorem. 

A particularly nice application is obtained if we consider alternate 

forms. Isometries Ve: V and 
.L 

V ~ 

dimensions, to wit indices, 

-.L 
V can be expressed in terms of 

dim(rad V) = dim(rad V) , dim V/rad V = dim V/rad V 
dim v.L/rad V.L = dim V.L/rad V.L , dim(rad v.L) = dim(rad V.L) . 
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Because (vi) and (vii) of the theorem are empty in the alternate case 

we see that the indices of V(V) fix V in E up to metric automor-

phisms of E: 

Corollary 2. If E is alternate then the set of indices of V(V) 

is a complete set of orthogonal invariants for the orbit (under the 

orthogonal group of E) of the (arbitrary) subspace V. 

Corollary 2 becomes false if dim E > ~o ; a counterexample is 

given in [2) (Sec. VI, pp. 131-134). See also [0) for the uncountable 

situation. The special case of a ~-dense V in Corollary 2 was trea-

ted by Kaplansky ([3) , Theorem 6. See also question 3 on p. 16 ) • 

3. An application to Witt decompositions 

Let R be the radical of a subspace veE . Does there exist an 

orthogonal decomposition 

(2) 

If R is ~-closed the answer is positive since then E has a metabo-

lic decomposition for the subspace R, E (R E!) R ') ~ E2 ; therefore 

V c R~ = R Ell E2 and thus V = R E!) (V n E2 ) 

We shall now prove that there is a decomposition (2) even when 

R f R~~ provided that conditions (vi) and (vii) in Theorem 1 are ful-

filled. (Bani pOinted out that this proviso is unnecessary; see the 

postscript p. 135 .) 

Theorem 2. Let (E, <1» be of dimension ~o' trace-valued and non 

degenerate. Let V RO E!) Vo be a subspace that satisfies (vi) and 

(vii) in Theorem 1 and has RO C rad V • There is another decomposition 

V = F E!) G with F C rad V , dim F = dim RO and G isometric to Vo 

such that E splits as follows: E = El ~ E2 ' FeEl ' G C E2 . 
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Corollary. Let (E,~) be as in the Theorem and RO the radical 

of a subspace V C E that satisfies (vi) and (vii) in Theorem 1. There 

always exists a Witt decomposition of E for the totally isotropic 

.1..1. 
space RO 

Proof 

E = (F.L.L lll 

E 

of the Corollar~. 

R') 
l. 
III E2 and V = 

Vo any supplement of RO in 

By Thm. 2 we have a Witt decomposition 

F @G , F C RO , G C E2 , G ~ Vo for 

V . Therefore F = RO 

Proof of the Theorem. There is no problem when dim RO is finite 

so let dim RO = ~O . There is a Witt decomposition 

R = rad V . Let VI be a supplement of R in V 

.1..1. , ) l. 
E = (R III R @ EO ' 

The projection V2 

of the space Vl(CR.L.L$ EO) onto EO is injective and, of course, 

isometric to VI . Set V := R ED V2 . We have rad V = rad V , further-

.I. .I. n .I. (R.L.L$ EO) 
n .I. .1..1. n .I. .1..1. n V.I.) = more V = R VI = VI = R + (EO VI) = R + (EO 2 

-.I. 
Hence the lattices V(V) and V(V) (Sec. 2) have all irreducible = V . 

elements in common except possibly for V, V • We may quote Theorem 1: 

Thereis an isometry T of E which maps V onto V . Thus we may 

assume from the outset that VI C EO for a suitable Witt decomposition. 

It remains to locate RO in the space E' := R.L.L $ R' • The ortho­

stable lattice generated by R C E' is the chain (0) C R C R.L = 

= R.L.L C E'. dim R.L.L/R fixes R in E' modulo metric automorphisms 

(Theorem 1). One can easily give canonical bases: If E' is spanned 

by a symplectic basis {ei , ei}iE~ and R by all ei-el then we have 

an example with dim R.L.L/R = 1 • The external orthogonal sum of C 

copies of this kind yields an example with dim R.L.L/ R = C • By the 

uniqueness just mentioned (Theorem 1) all instances are of this kind, 

i.e. there always are symplectic bases in E' which exhibit R in this 

way (cf. the following section). In the same manner one can give an 

example where R = F $ RI , dim F = dim RO (= ~O) , dim Rl = dim R/RO 
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and where F and RI can be "separated" in E' , 

have proved Theorem 2. 

To round off the picture we contrast the Corollary with 

If for each supplement Vo of rad V in V there is a 

(3) splitting 
.L 

E = EI ED E2 with rad V C EI and Vo C E2 

then dim V/rad V is finite. 

Proof. Assume that dim Vo is infinite. We can pick a sequence 

(gi)iE~ in Vo of linearly independent vectors that converges to zero 

with respect to the weak linear topology cr (tP) . We complete it to a 

basis (ei)iE~ of Vo . For r a fixed nonzero element of rad V the 

family (ei+r) rEiN spans another supplement VI of rad V in V . The 

gi + r converge to r , i.e. r E ~J." VI . Since rad V f1 J.J. 
VI + (0) 

the space E cannot split in the required fashion, obviously. 

4. Remarks on canonical bases 

In explicit calculations it is often advantageous to introduce 

canonical bases. We shall give two examples of what we mean. 

Example 1. Let E be spanned by an orthogonal basis (ei)~. 

The hyperplane V = k(ei-eO)~ has 
J. 

V = (0) • Assume that V contains 

an infinite dimensional totally isotropic subspace and char k + 2 • 

Then if V is any other hyperplane in E with 
-J. 
V (0) there is 

Theorem I an isometry T: E ... E with TV V If we set E:\ = Tei 

see that (ei)~ is an orthogonal basis of E such that (e i -eO) ~ 

spans V: All J.-dense hyperplanes in E can be exhibited by intro-

ducing a basis of this type. 

The same argumentation shows that if V has VJ. = (0) and 

dim E/V = Of, + 0 then E is an orthogonal sum of ~ copies E 
1 

of 

by 

we 

E 
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and V is an orthogonal sum of OJ, hyperplanes VeE 
1 1 

.I. 
V 

1 
(0) • 

Whenever the "arithmetical" situation is such that we can apply 

the "uniqueness" theorem of the previous section then we can also intro-

duce bases of the space which "exhibit" the subspace in some standard 

fashion. 

Example 2. The same idea applies to situations where we can apply 

Theorem 2 of Chap. IV. Let J C IN and 'f'i: Ii ... J (iE1N) be a family of 

epimorphic maps where {I. Ii E IN} is a partitioning of IN with 
l. 

card Ii = IN. Let E = (R Q3R') i EO be a Witt decomposition of E 

for the totally isotropic subspace Rand (ri)iEJN' (ri)iEJN' (ei)iEJ 

bases of R, R' , EO respectively with ~(ri,rj) = I , ~(ei,ei) + 0 

and all other products zero. 

Let W be the span of all families of vectors 

, ... 

It is routine to verify that 

(4) 
.I. 

W (0) , W n R.L (0) , 

in other words, the .L-stable lattice V 

W is 

.1 
W+R=E, 

V(R,W) generated by Rand 

W 

Assume e.g. that the field is algebraically closed and ~ is 

symmetric, then Theorem 2 of Chap. IV can be applied to V and any 

V =V(R,W) where W satisfies (4). In other words, each .L-dense 
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supplement W of R~ in E is spanned in the above fashion. 

* 
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postscript. This concerns the corollary to Theorem 2 on page 132. 

By refining our method in Chapter IV W. Bani has been able to eliminate 

(vi) and (vii) from the corollary so that there always exists a decom­

position (2) (p. 131). See his forthcoming paper "Inner product spaces 

of infinite dimension; on the lattice method". 



CHAPTER SIX 

ORTHOGONAL AND SYMPLECTIC SEPARATION 

1. Introduction 

When one has to handle two mutually perpendicular subspaces F and 

G in a sesquilinear space (E,~) it is often a great advantage if E 

splits orthogonally such that F and G are contained in summands, 

(0) E 

If this happens then we say that F and G can be orthogonally 

separated in E • From (0) we read off that 

(1) 

(2) 

(F+G)U 

J. J. 
F + G 

J.J. J.J. 
F + G 

E . 

Orthogonal separation presents no problem if dim E is finite. Here we 

shall treat the case of trace-valued spaces in dimension ~O • We shall 

prove that (1) & (2) is sufficient for a splitting (0) to exist 

provided that there are enough isotropic vectors available in E • This 

proviso is not due to the fact that our proof will be via Theorem 2 of 

Chap. IV; if isotropic vectors do not abound then (1) & (2) actually 

ceases to be sufficient for the existence of a splitting. ([2] contains 

an example; for further details see the postscript on p. 150 ) 

The problem of orthogonal separation is equivalent to the following 

problem if the characteristic is not two: Let TO: H ... H be a metric 

involution (T~ = 1) on the subspace H of E ; does TO admit an 

involutory extension T to all of E ? The answer is positive if and 

only if F:= Ker(T O - 1) and G:= Ker(TO + 1) can be orthogonally 

separated in E • 

As remarked our proof will be by Theorem 2 of Chap. IV. In the next 
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section we compute the lattice V(F,G) generated by an orthogonal pair 

F ,G that satisfies (1) and (2). In order to separate F and G in 

E we shall construct an isometric space E with subspaces F, G that 

are separated in E and such that there is a lattice isomorphism 

T: V(F,G) + V(F,G) which sends F in F and G in G and which 

qualifies for Theorem 2: if T is induced by T: E + E then T- l will 

transport the splitting of E into a splitting that separates F and 

G in E • The proof will make it evident that a fully worked out dia-

gram of the lattice V(F,G) is indispensable both for finding and for 

grasping the arguments. 

In the last section we treat an analogous problem termed symplectic 

separation. It has a geometric reformulation quite similar to that of 

orthogonal separation and will be needed in Chapter X. 

2. On the lattice V(F,G) of an orthogonal pair 

Let V(F) and V(G) be Kaplansky's lattices orthostably generated 

by F and G respectively in the lattice L(E) of all linear sub-

spaces of E (Chap. V Sec. 2). Decompose V(F) = ]1 U F1 where 

(3) 

]1 := {Folol, F+rad(Fol), rad(Fol), F+(rad F)olol, (rad F)ol.L ,F, 

rad F, (O)} 

Fl := {Fol, F+Fol, Folol+Fol, (F+Fol)olol, (rad F)ol, E} 

]1 is the principal ideal generated by Folol in V(F) ; Fl is the 

principal filter generated by 
ol 

F • Let be the analogous 

decomposition of V(G) • Then the following lemma is very easy to prove. 

Lemma 1. Let V(F,G) be the orthostable lattice generated in 

L(E) by a pair F, G of subspaces of E . If F and G are ortho-

gonally separated in E then V(F,G) is the set ] U F where 
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(4) 1 := {Xl + X2 !Xi E 1i (i=1,2)} 

F := {Yl n Y2 !Yi E F. (i=1,2)} 
~ 

In particular card V(F,G) ~ 82 + 62 = 102 • Furthermore V(F,G) is 

distributive. There are examples where all 100 elements are different. 

We now prove 

Theorem 1. Let (E,~) be a nondegenerate sesquilinear space of 

arbitrary dimension. If two subspaces F,G C E , F~G , satisfy (1) and 

(2) then the lattice V(F,G) is distributive and V(F,G) = 1 U F • 

~ l(Distributivity). We first show that the lattice generated 

in L(E) by V(F) U V(G) is distributive whepever F~G. By Theorem 

6 of [5] and symmetry it is sufficient to verify that (B+B') n c 

= (BnC) + (B'nC) for all B,B' E V(F) and all C E V(G) . Since F~G 

we have Y ~ F~ ~ G~~ ~ X for all X E 12 ' Y E Fl • This and the 

symmetric fact we express by 

(5) 

The only elements in V(F) which are not join-irreducible are Zl = 
When 

i 3, 4 we obtain the distributivity of 

larity. The same works for i = 1, 2 and 

that Y F~ n Y for Y E 12 therefore 

~~ ~ 

Z4 = F + F 

Zi 0 Y using (5) and modu­

Y E F2 • Finally (5) implies 

[F+(FnF~)u] n ~ (FnF~)u ~ ~~ 

zlny F n y n y C (Fny) + [(FnF) ny] , 
z2ny [F+ (F~nFu)] n ~ n 

~ n F~~ n (Fny) + [ (F~nFu)ny]. F y F Y C 

This proves our contention bearing in mind the distributive inequality. 

We see in particular that the set 1 U F is a sublattice of L(E) • 

2 (Orthostability of 1 U F ). We prove th~t 

(6) 
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First we remark that by (2), (5) and modularity 
.I. .I. .1..1. 

Xl = Xl n (F +G ) = 

.I. .1..1. .I. (.1..1. .1..1.).1. 
F + (XlnG ) = F + Xl +G so that (taking orthogonals) we obtain 

(7) ( .1..1. .1..1..1..1. .1..1. 
Xl +G) n F 

Now we turn to (6). Since F.I..I.+G.I..1. is closed by (1) we may write 

(X~.I.+X~.I.).I..1. = (X~.I.+x~.I.).I..1. n (F.I..I.+G.I..I.) ~ (X~.I.+G.I..I.).I..1. n (F.I..I.+G.I..I.) = 

[(X~.I.+G.I..I.).I..1. n F.I..I. J + G.I..1. (the last equality by modularity). Hence by 

(7) we see that 
.1..1. .1..1..1..1. .1..1. .1..1. 

(Xl +X2 ) ~ Xl + G • By a symmetric argumentation 

also 
.1..1. .1..1..1..1. .1..1. .1..1. 

(Xl +X2 ) ~ X2 + F • Thus ( .1..1. .1..1.).1..1. 
Xl +X2 ( .1..1. .1..1.) n (.1..1. .1..1.) 

~ Xl +G X2 +F 

.1..1. .1..1. = Xl + X2 which establishes (6). 

Let us now prove orthostability of J U F • Since J.I. c F is 

trivial it remains to show that 

(8) 

As a consequence of (6) we see that (8) holds for all cases 

with Xi E J i • Direct inspection shows that all Yl E Fl which are 

not of this shape are of the kind 

(9) 

By (5) and modularity we obtain for such a Yl and for 

that E J . If 

of shape (9) as well then the calculations immediately reduce to the 

case just treated. 

is 

As J U F is a lattice and orthostable it is the lattice V(F,G) • 

The proof of Theorem 1 is thus complete. 

Remarks. 1) In [4J we have computed the orthostable lattice V(F,G) 

of an orthogonal pair under conditions considerably more general than 

(1) and (2). First of all the lattice V generated by V(F) U V(G) 
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(no ~-stability assumed) is distributive and has at most 258 elements 

under the sole assumption that F ~ G • In order that V or a small 

extension of it be orthostable it is necessary to introduce some re-

strictions such as we have here by dint of (1) and (2). Proofs can be' 

formulated in any modular lattice with an antitone mapping ~ . 

2) The crucial point in the above proof is (6). With a knack for 

topological arguments one might reason as follows. The assertion cer-

tainly holds for and is the 

closure of Xl + X2 with respect to the weak linear topology o(~) on 

E • Since is closed we have that is the closure 

of Xl + X2 with respect to the restriction 0 1 = oIF~~+G~~ . But (2) 

tells that is the product topology of 01 ~~ and 01 ~~ . Since 
F G 

Xl C F , X2 C G we conclude (6). 

3) Theorem 1 was first proved in [1] by setting up recursively an 

orthogonal splitting (0). The fruitfulness of the method applied here 

is based on a reversal of steps. First lattices are computed and then 

general theorems on induced lattice isomorphisms are applied. 

For the discussion of orthogonal separation we need only consider 

the case of ~-closed subspaces F and G. The lattice V(F,G) then 

looks as follows 
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G+G 

F 
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E 

(0) 

l. 
:= GnG 

G 

The orthostablelattice of a pair F l. G with Fl.l. F, 

Gl.l. = G , (F+G)l.l. = F + G E 

3. Orthogonal separation in trace-valued spaces 

Fl. 

In this section (E,<l» will be nondegenerate, trace-valued and 

of dimension ~O • 

* 

We now prove the following 

Theorem 2 [(l)J. Assume that the subspaces F, GeE satisfy 

(1), (2) and F l. G . In order that F and G are orthogonally sepa-

rated in E , i.e. that there is a decomposition (0), it is sufficient 

that the following condition holds 
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If dim X/rad x is infinite for ~ one of 

F , G ( (F+G)~ then X contains a totally 

isotropic subspace V with V n rad X = (0) 

Proof. We examine fi~st the possibility of simplifications. In the 

statements (1), (2) , (10), "F~G" we may replace F and G by F~~ and G~~ 

without falsifying them. Hence if we prove the theorem for ~-closed F 

and G we can, in the general case, separate F~~ and G~~ But there-

by we separate F and G. Thus we may and shall assume that 

(11) F G • 

Furthermore we want to have 

(12) dim F dim G = ~o . 

If it should happen that dim F is finite we write F = rad Fe FO . 

FO can be chopped off from E being nondegene~ate and of finite dimen­

sion. Assume thus FO = (0) • If rad F = (f) is l-dimensional pick 

f' E G~" (G t9 (f»~ (the set is not empty as G G~~ ) so that the 

decomposition E = k(f,f') e k(f,f')~ separates F and G in this 

case. An inductive argument takes care of the case where 1 < dim F < 00 • 

G can be treated similarly; hence (12) is in force. 

~: F and G totally isotropic. The lattice V(F,G) reduces 

to E 

G~ 

F 
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Case Ia: dim(F+G)~/~+G = 0 . Consider two hyperbolic spaces 

El FeLl' E2 = G ~ L2 with ~o the dimension of all four totally 

isotropic spaces F , G , Ll , L2 Let E be the orthogonal sum 

.J. 
El $ E2 . E and E are both hyperbolic and hence isometric. There 

is an obvious lattice isomorphism V(F,G) .... V(F,G) which, by Theorem 2 

of Chap. IV, is induced by an isometry T that sends F on F and G 

on G. The decomposition E = T-l(El ) ~ T-l (E2 ) separates F and G. 

Case Ib: dim(F+G)~/F+G = n < 00 • This can be reduced to the 

previous case by chopping off a linear supplement of F+G (=rad«F+G)~» 

in (F+G)~. Observe that conditions (1), (2) can always be "transferred" 

to the reduced situation. 

Case Ic: dim(F+G)~/F+G ~O. Here we pick spaces as follows. 

El (F $ Ll ) ~ Hl ' E2 = (G $ L2 ) ~ H2 where F , G , Ll ,L2 are as 

in Case Ia and where Hl , H2 are hyperbolic and of dimension ~O • 

Again we form the orthogonal sum - - ~ -
E = El $ E2 • Since (10) holds we see 

again that V(F,G) and V(F,G) qualify for Theorem 2 of Chapter IV. 

We conclude as in Case Ia. 

Case II: F is totally isotropic. The lattice V(F,G) reduces to 

E 

~ 
R 

(R+S)~ 

G~ 

(R+G)~ 

G 

(R := FnF~ , S := GnG~) 
S R 

(0) 
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If dim G/S is finite we fall back into Case I by chopping off a 

finite dimensional orthogonal summand U of E with R , S c U 
.I. 

Assume therefore that dim G/S = ~O • If dim (R+G).I./ R+S should happen 

to be finite we can reduce the problem to the situation where (R+G).1. = 

R + S by chopping off a finite dimensional subspace of E and proceed 

as follows. Let El := F a> Ll , E2 := (8 Ii!l L2 ) ~ H2 where F , S , Ll 

L2 are totally isotropic, dim F = dim F , dim S dim (rad G) , Fa> Ll 

and S $ L2 nondegenerate, H2 hyperbolic and of dimension ~ . We 
0 

set G := S $ H2 and obtain an obvious lattice isomorphism T: V (F,G) 

, 

.... 

V(F,G) that preserves indices and qualifies for an application of Theorem 

2 of Chapter IV. We are left with the case of an infinite dim(R+G).I./ R+S . 

Here we may choose El as in Case Ia and for E2 we simply take a copy 

of E with G playing the part of G. Setting E 

again a suitable isomorphism T: V(F,G) .... V(F,G) 

Case III: F/rad F and G/rad G are infinite dimensional. Hence 

we have dim X/rad x = ~O when X = G.I. , (R+G).1. , F.I. , (F+S).1. • Hence 

(C) of Theorem 2 of Chapter IV is satisfied by dint of (10) for these 

particular join-irreducible X 

We now specify F , G c E In case dim (F+G).1. /R+S is zero we let 

(R a> Ll ) 
.I. 

El a> FO E2 (8 a> L2 ) ~ Go where R , 8 , Ll L2 are 

totally isotropic, R a> Ll , 8@ L2 nondegenerate, FO , GO hyper-

bolic spaces. We let the dimension of all spaces be ~O . Setting E = 

El ~ E2 we can again define a lattice isomorphism T: V(F,G) .... V(F,G) 

that preserves indices and sends F into F = R $ FO etc. We quote 

Theorem 2 of Chap. IV to finish the proof in this situation. The case 
.L 

of finite dim(F+G) /R+S is reduced to the case just treated by 

chopping off a suitable finite dimensional subspace of E. If, on the 

other hand, dim (F+G).I./ R+S in infinite matters are even simpler. Let 

El ' E2 be each a different copy of E with F playing the part of 
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F in El and G playing the part of G in E2 . Setting E = El ~ E2 

we can draw the same conclusion as before. The proof of the theorem is 

thus complete. 

Remark. Let F, GeE be a "disjoint" pair, F n G = (0) . Then 

by t:he corollary in Chap.X,Seo.3 (1) and (2) are equivalent with F, G 

being a dual modular and a modular pair in the lattice L~~ (E) of~-

closed subspaces of E (By a Theorem of H.A. Keller is modular 

if and only if dim E is finite [6J, [3J.). Still, as the above proof 

makes evident, arguments for proving Theorem 2 cannot be kept "inside 

4. Symplectic separation in trace-valued spaces 

In this section (E,~) will be nondegenerate, trace-valued and 

of dimension ~O unless specified otherwise. "A J\ B" denotes a direct 

sum A $ B of totally isotropic spaces A, B that is nondegenerate. 

* 

If F and G are totally isotropic subspaces of E then we say 

that they are symplectically separated in E if there exists a Witt 

decomposition E = (W ¥ W') ~ EO with Few and G c W' . If such 

is the case then, obviously, (1) and (2) hold. Moreover, we can prove 

the following companion to Theorem 1: 

Theorem 3. Let (E,~) be a nondegenerate sesquilinear space of 

arbitrary dimension. If two totally isotropic subspaces F, GeE 

satisfy (1) and (2) then the lattice V(F,G) orthostably generated 

by F and G is distributive and V(F,G) is the set J U F where 

J := {Xl+X2IXiEJi (i=1,2)}, F:= {YlnY2IYiEFi (i=l,2)} , 

J l := {F~~, F+(F~~nG~), F~~nG~, F+(FnG~)~~, (FnG~)~~, F, FnG~, (O)} , 

Fl := {G~, F+G~, F~~+G~, (F+G~)~~, (GnF~)~, E} , 
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and )2 ' F2 are obtained from )1 ' Fl by interchanging F and G. 

In particular card V(F,G) ~ 82 + 62 = 102 • 

Thus we see - just as in the orthogonal case - that V(F,G) of a 

pair with (1) and (2) looks as it ought to look if the pair is to be 

separated (if F and G are symplectically separated then it is quite 

easy to see that V(F,G) is the set ) U F ). The proof of Theorem 3 

is mutatis mutandis the proof of Theorem 1 (cf. Remark 1 in [4]) and 

will not be written out here. We shall need only the case where (11) 

holds. Here is the diagram: E 

G 

(0) 

The orthostable lattice of a pair F, G with 

F.LF , G.LG , F.L.L= F, G.L.L= G, (F+G).L.L=. F+G, F.L+G.L= E 

As is to be expected we can prove that (1) and (2) are sufficient 

for a pair F, G of totally isotropic subspaces to be symplectically 

separated whenever the "arithmetical" situation is such that Theorem 2 

of Chap. IV can be applied. 

In the orthogonal case of the previous section we have used the 

given spaces F, GeE to construct a separated situation F GeE 

with naturally isomorphic lattices V(F,G) , V(F,G) • We could do the 
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same over again or leave it as an exercise. However, we intend to illus-

trate the possibility of a different attitude towards the lattice. 

Namely, we shall try to build it up from simpler lattices by taking 

orthogonal sums. To this end we start with 

Example 1. 
~ 

Let A = ~ k(ri,ri) be an orthogonal sum of hyper-
~ 

bolic planes and E = A ~ (a) an overspace with the line (a) isotropic; 

let the product between a and all r i be equal to 1 and all prod­

ucts of a with ri be zero. Set F:= k(r2i)iE~ , G := k(r2i)iE~ • 

The orthostable lattice V(F,G) looks as follows 

E 

1 
G~ 

F~ 

F 

By taking an orthogonal sum of ~ ~ ~O copies of such spaces we 

obtain exactly the same diagram but with dim E/(F~+G) ~. Still, by 

taking the orthogonal sum of such a space ~ copies of the original 

one) and a similar object which is obtained by taking ~ copies of the 

original one but with roles of F and G interchanged we obtain a 

lattice V(F,G) which looks as follows 

G~ 

F~ 

(0) 
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Example 2. Let E = (L & L') ~ (M i M') Eh (N & N') and put 

F := L ~ M , G := M' ~ N' V(F,G) looks as follows: 

J. 
G 

J. 
F G 

F 

Example 3. By adding an orthogonal summand P to the space in 

Example 2 and by leaving F and G unchanged, we obtain instead of 

the above lattice the following one 

J. 
F dim(F+G)J. jR+S 

G 

F 

It is furthermore easily seen, that by taking an orthogonal sum of 

a space El as given by Example 1 and a space E2 as given in Example 

2 provides us with a pair F, GeE whose lattice V(F,G) looks 

just as the general case We allow also one of El , E2 to be (0) • 

Let us verify that there are enough "parameters" to adjust all 

indices to the indices prescribed by the given V(F,G) There is only 

one critical situation: Superposition of two examples El and E2 

yields a space which has 
J. 

dim (F+G) jR+S = NO due to the "infinite cube" 

in Example 1 (unless we let El be (0». Now, if in the lattice put 
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before us n = dim(F+G)~/R+S is finite then (since n = dim(F+G+(F+G)~V 

~+G) the space F+G+(F+G)~ is ~-closed and therefore equal to (R+S)~ 

Hence we are in the situation of Example 3 which does allow for pre-

scribed finite "height" of the cube. Thus, by means of the given examples, 

we can produce a separated pair which gives a lattice that is naturally 

isomorphic to the lattice of the pair in Theorem 3. It is now not too 

difficult a matter to apply Theorem 2 of Chap. IV in order to obtain 

the following 

Theorem 4 ([lJ). Assume that the totally isotropic subspaces 

F , GeE satisfy (1) and (2). In order that F and G are symplectic-

ally separated in E, i.e. that there is a Witt decomposition E = 
o ..I. 

(W @ W') $ EO with FeW, G c W' , it is sufficient that the following 

condition holds 

If dim(F+G)~/rad((F+G)~) is infinite then (F+G)~ 

(12) contains a totally isotropic subspace V with 

vn rad((F+G)~) = (0) . 

* 
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Postscript (concerning orthogonal separation). The paper mentioned 

in the postscript on page 135 contains a criterion for orthogonal sepa-

rability in positive definite spaces over ffi. Furthermore, it is shown 

that condition (10) in Theorem 2 (p.141) is superfluous provided that 

one of the subspaces to be separated is totally isotropic. 



CHAPTER SEVEN 

CLASSIFICATION OF HERMITEAN FORMS IN CHARACTERISTIC 2 

1. Introduction 

All forms considered in this chapter are E-hermitean forms over a 

field k of characteristic 2 equipped with antiautomorphism ~t-+ ~*. 

In k we consider the additive subgroups S := {a E kJa = Ea*} and 

T := {a + Ea*Ja E k} of "synunetric" elements and of "traces" respecti­

vely. The factor group SIT is a k-left vectorspace under the composi­

tion A (o+T) = AOA* + T (0 E S,A E k) • A: S + SiT is the canonical 

map. 

In this chapter we classify in dimension No a kind of sesqui­

linear forms termed weakly stable. Let us say a word about the philoso­

phy behind this classification. As we have pointed out earlier (in Chap. 

II}it is not necessary for No-forms that they represent all (or nearly 

all) elements of the base field k in order to have a trivial classi­

fication. In contrast to the finite dimensional situation it suffices 

for this that the elements a E k which ~ represented are being re­

presented "often". In view of recursive constructions in the realm of 

the countable "often" means that there should be vectors with inner pro­

duct a in the orthogonals of all finite dimensional subspaces. Spaces 

(or forms) with this kind of homogeneity were called stable in Chap. II. 

Now a sesquilinear space (E,w) qualifies as weakly stable if E con­

tains some No-dimensional subspace F with a stable restriction of 

w to F. How can such a stable subspace help to make classify all of 

(E,W) more easy? It will help because in most cases we shall have 

T c IIFII which means that vectors with prescribed traces as inner pro­

ducts are "freely" available in E. Because for all vectors. x,y we 

have that w(x+y,x+y} equals w(x,x} + ~(y,y) modulo T weak stabili­

ty amounts to a certain mobility when trying to break a space into 
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simpler pieces. 

This program had been carried out in [2] for symmetric bilinear 

forms over fields with finite degree [k:k2] • The assumption on the 

field forced all forms over k to be quasistable in the sense of [3]. 

Quasistable forms are special weakly stable forms (cf. the definition 

in section 4 below); they are treated in [3]. 

For the discussion of the classical situation in finite dimensions 

the reader should consult [4]. 

2. Multiples of rigid spaces 

Let (E,~) be a non degenerate sesquilinear space. We shall ab­

breviate ~(x,x) as I/xl/ and call cp the linear map 

x >-+ 1/ xl/-= 1/ xl/ + T 

from E into SIT ("value map"). For F a subspace of E we set 

I/FI/= {I/fl/lf E F, {On and F. := {f E FII/fl/ E T} • F. is a linear sub-

space of F and dim F/F. ~ dim SIT 

Definition. F is called rigid if F. = (0) 

The orthogonal group of a rigid space reduces to the identity (hence 

the terminology) since any non trivial isometry x~ x, would produce 

some non zero x + x' with inner product a trace. Rigid spaces are 

easily checked for isometry: We have E ~ E if and only if the value 

spaces in SiT are equal, CPE cpE and the bijection --1 -cp Q cP : E ... E 

happens to be an isometry (in fact the unique isometry). We shall con-

sider rigid spaces as building blocks and not analyze them any further • 

.L 
In our first theorem we discuss spaces of the shape 2A:= A $ A 

where A is a rigid space of dimension ~ ~o An equation 

A = <al ,a2 , ••• > will mean that A is spanned by an orthogonal basis 

(ai)J with I/ail/= a i for all i 
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Theorem 1. Let A <a l , ••• > and B = <8 1 , ... > be rigid spaces 

over k of dimensions < ~o • In order that there exists an isometry 
.L .L 

A \9 A ~ B \9 B it is necessary and sufficient that the families (~i)' 

(Si) are "dual" in the vector space SiT, Le. that there exists a 

matrix (Aij ) over k such that 

(1) invertible and both row- and column-finite 

Clearly, if A and B are of finite dimension then the condition 

on the families (~i) , (Si) is satisfied if and only if they span the 

same value spaces in SiT ; if in addition the forms are symmetric the 

condition reduces to the equality II A II II B II 

Proof of the necessity of (1). Let I be an initial segment of ~ 

and ai' b i (i E I) orthogonal bases in A and B respectively 

with lIaili ai' IIbili = 8 i • Choose congruent bases ai, bi in copies 

of A and B respectively. Since we assume A ~ A ~ B ~ B we have 

equations 

for some invertible row-finite matrix [~i) . Since orthogonal matrices 

with respect to orthogonal bases are both row- and column-finite we get 

the asserted relation by applying the linear map ~ to both sides of 
A A 

one of the above equations, 8 i = E(Bij + cij)a j • 

We now turn to the converse assertion of the theorem. The l-dimen-

sional case A = <a> , B = <8> is very easy. By assumption we have 

a + 8 = ~ + E~* E T • We choose a new orthogonal basis al,ai 

(2) 

-1 
a l a + ~a (a+a') 

-1 -1 
ai = a + (~a +8a ) (a+a') 

Since lIalll = lIal'lI = lIall + ~ + E~* we have <a,a> ~ <8,8> • 

.L 
in A$A 

The next lemma still deals with a rather special case; it is, how-

ever, the key to the general situation. 
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Lenuna l. Let Y'Yo'Yl'···'Yn E S and assume that in SIT the 

element Y is in the span of Yo'···'Yn but not in the span of 
.1 

'V .1 

Yl'···'Yn . Then <y,y> ~ <Yl'···'Yn > = <Yo'Yo > $ <Yl,···,Yn > 

n 
Proof of the lenuna. By assumption Y A OYOA~ + l:A.y.A~ 

1 l. l. l. 
+ l' for 

suitable A. E k with A f 0 and l' E T . Set Y = Y + l' so that 
l. 0 

<Y,Y> = <Y,Y> by the one dimensional case just treated. Let 

eo,e~,el,···,en be a diagonal basis in <yo'Yo > $ <Yl, ••• ,Yn > with 

inner products as indicated. Introduce a new orthogonal basis by 

(3 ) 

where 

f 
0 

f' 
0 

f. 
l. 

= soeo + (So Ho) e~ 

A e' 
o 0 

si(eo + e~) 

-1 -1 
s1 := Yo AO AiY i 

n 
+ l: Aie i 

1 
n 

+ l: Aie i 
1 

+ 

and 
- -1-1 

So := YA~ Yo 

.1 

so <Yo'Yo > $ <Yl, ••• ,Yn > 
'1. __ .1 'V 

= <Y,Y> $ <Y , ••• ,y > • Since <Y,Y> = <y,y> the proof of the lenuna 
1 n 

is complete. 

Proof of the theorem (sufficiency of (1». Assume first that 

dim A is finite and that we have constructed an orthogonal basis 

(ei ) in A such that for a congruent basis in a copy of A we have 

.1 

(4 ) (e i ) $ (ei) ~ <Si,f\> for all i < r 

We shall show that we can find another orthogonal basis (f i ) in A 
.1 

'V 
such that (f i) $ (f ~ ) = <Si,Si> for all i ~ r+l We have 

l. 

a. = l:B .. 11 e .11- for an invertible matrix over k . Hence by (1) the 
l. l.] ] 

element Sr+l is in the span of the II eill-, Sr+l = n ill eill-. By rigi­

dity and by (4) we may assume that Ar+l f 0 • We now apply the lemma 

with Sr+l and lIer+lli in the roles of Y and Yo respectively 

and with the lIeill (i E I' {r+U) in the role of the Yl, ••• ,Yn • 

More precisely, we introduce an orthogonal basis (f i ) in A such 
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.L 

that (f r +l ) E9 
.L 

<Sr+l,Sr+l> E9 

(f~+l) ~ (f l ) ~ ... ~ (fr ) ~ (fr +2) ED··· appears as 

E9.L <11f.11> 
i~r+l .L 

Therefore the basis (f i ) of A has the required properties. If we 

repeat this step at most dim A times, at each step introducing a new 

orthogonal basis in A, then we can arrive at a basis of A which 

shows that 
.L 'V.L 'V 

AE9A=E9<S.,S.>=BE9B. 
I .L .L 

Assume then that dim A is infinite but that we are in the rather 

special situation where there exists a partitioning I = U I with all 
r r 

I finite and such that 
r 

(5) for all i E Ir we have Si 
(r) -

l: A .. a. . 
. EI .LJ ] 
] r 

(r E lU) 

with all (A~~)) invertible matrices over k. We then have 
.LJ 

by the finite dimensional case and thus again 

.L 

B E9 B • To be in the situation of (5) means 

that the matrix in (1) appears as diagonal if partitioned into 

suitable blocks of finite sizes. Such a special N x ~matrix is called 

a diagonal string. Now every invertible both row- and column-finite 

matrix is a finite product of invertible diagonal strings, in fact, a 

product of two invertible diagonal strings ([lJ, [5J) so that a chain 

of isometries leads again to the desired isometry 
.L 'V .L 

A E9 A = B E9 B • This 

remark finishes the proof of Theorem 1. 

As a consequence of Thm. 1 it is possible to give simple conditions 

ou rigid spaces A,B which are necessary and sufficient for multiples 

nA and nB to be isometric (l~n~~o) • We shall defer the formulation 

of these conditions to the end of the next section. For the issue of 

our chapter we need only the case n = 2 treated in Thm. 1. 

3. The relation 'V on the forms of countable dimension 

Every non degenerate space (E,~) of dimension < ~ admits o 
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almost orthogonal bases, i.e. bases (ei)iEI such that the associated 

inner product matrix is both row- and column-finite. We claim that if 

(f i ) iEI is another such basis in E then (for all iEI) e, 
~ 

LAi,f, 
j J J 

with (Aij ) an invertible I x I matrix over k that is both row-

and column-finite. Indeed, let M be the inner product matrix of (ei ) 

and N the inner product matrix of (f i ) • We certainly have 

(A, ,) and M = ANA tr • A 
~J 

e = i 
for a row-finite matrix has 

a (unique) row-finite (two-sided) inverse, M and N are row- and 

column-finite and have (unique) row- and column-finite(two-sided) in-

verses (as can be seen by choosing one of the two bases a union of an 

orthogonal and a symplectic system). Therefore the product N-IA-IANAtr 

exists and is associative and hence Atr = N-IA-IM • Thus Atr is 

row-finite and so A is column-finite. 

Definition. Let E and E be non degenerate spaces over k of 

dimension ~ No • We set E ~ E if and only if for some (and hence for 

all) almost orthogonal bases (ei)iEI' (fi)iEI of E and E respec­

tively there exists an invertible row- and column-finite I x I matrix 

(Aij ) 

(6) 

over k such that 

L Ai' CPf, 
j J J 

(for all i E I) ~ 

here cP is the value map x_lIxll-= IIxll + T introduced in section 2. 

~ is an equivalence relation on the class of all non degenerate k-

spaces of at most countable dimension. Theorem 1 may be formulated 

as 

(7) if E and E are rigid then if and only if 

E ~ E 

Thus if e.g. E = <111 ,112 , ••• > is rigid then the space 

E := <111 ,11 2+ 111 ,113+ Ill' ••• > is rigid as well and has the same value 

space as E , CPE = cpE ~ yet E and E are not isometric since ob-
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viously not E ~ E • A generalization of Theorem 1 is given by the 

following corollary announced at the end of the last section. 

Corollary. Let A and B be rigid spaces and 1 < n < ~ • In 
- 0 

order that 
~ 

nA = nB the following condition is necessary and sufficient: 

A ~ B if n is finite and odd, A ~ B if n is finite and even, 

CPA = CPB if n = ~ o 

Proof. If n is finite and odd then we use the fact that 

(8) 
1. ~ 1-

<S> ~ <S,S> <S> $ P , P hyperbolic. 

Indeed, if b l ,b2 ,b3 is an orthogonal basis with IIbili = S we intro­

duce a new basis b~ = b l + b 2+ b 3 ' bi = S-l(bl + b 2), bj = b 2+ b 3 and 

see that (8) holds. Thus if A = <a l ,a2 , ••• > then since 

~ .I. ~ 
(2r+l)A ~P$A= 

o 

[(2r+l)AJ* ~ [(2r+l)AJ~ and an analogous isometry for (2r+l)B. 

Since any isometry u ~ V maps onto we obtain the asserted 

isometry 
~ 

A = B from (2r+l)A ~ (2r+l)B and, of course, the converse 

implication as well. 

If n = 2r then by (8) 

r > 1 since Thm. 1 takes care of the case r = 1 • Hence 
~ .1..1. 

nA = ~oP ~ A $ A • The assertion that A ~ B is proved by (13) below. 

If n = ~ then from ~ A ~ $.I.<a.,a., ••• > ~ ~ B ~ $<S.,S., ••• > 
o 0 i ~ ~ 0 i ~ ~ 

follows $cp<a. > 
i ~ 

it follows that 

= $ cP<S.> , Le. 
i ~ 

II~ All = II~ BII o 0 

CPA = CPB • Conversely, from CPA = CPB 

since the two multiples are stable we 

conclude from this that 

Assume that 

FeE we set 

4. Weakly stable spaces 

(E,<I» is non degenerate and of dimension 

IIFlloo:= n {II FnX.I. II I X c E and dim X < dim E} 

~ • For o 

The sets II FII and IIFlloo are obviously orthogonal invariants attached 
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to the orbits of F under the orthogonal group of E. If IiFIi",i fI\ 

then IIFII"" is an additive subgroup of k, if IIFII"" ~ {a} then E con-

tains for every non zero an ~o-dimensional subspace 

'" G = <0.,0., ••• > with E = G EB G.l and thus we have TC 1I~1i"" C IIFII"" • We 

define 
F"" := {f E Fillfil E IIFIi",,} 

If T C IIFII then F 
"" 

is a subspace of F • 
"" 

Lemma 2. If T C IIFlico then F n .1.1 
F. F 

"" 
~. Let f E F 

"" 
and a finite dimensional XCE be given. 

Since IIfll is in II FII co there exists fl E F n x.l n f.l with 

• Thus and we see that the translate f + X.l 

(weak linear neighbourhood of f) meets F •• Hence 
.1.1 

f E F_ • Conversely, 

let f E F n F.l • .l E and X be as before. There is a vector y F. (de-

pending on X) such that f - Y E x.l • Since T C IiFlico there is 

z E Fco n X.l n (f_y).l with Ilzll lIyll + p(f,y) + p(y,f) E T The vector 

f - Y + z is in x.l and has inner product IIfll • Since X was arbi­

trary this shows that IIfll EIiFII"" Le., f E F"" • 

If T ~ IIFllco = {a} then the set F is not, in general, a linear 

subspace of F. Here we have 

Lemma 3. Let IIFllco '" fI\ • We have T ~ IIFII"" if and only if ~ is 

not symmetric and F has a decomposition of the following kind: 
.1.1 .1 

F = (FOF.l) EB H ~ (R$R') EB G where H is hyperbolic and finite dimen-

sional, (FOF.l) e R is totally isotropic and infinite dimensional, 

(R'+ G). = G. , R' + G is anisotropic (and hence dim H = 2dim(F./F.nV.l~ 

with V any maximal totally isotropic subspace of F, is an invariant 

of F). In particular, if T ~ IiEII"" = {a} then E is of the shape 

'" .1 .1 E = 2· (inf. dim. rigid) e (fin.dim.hyperb.) EB (anisotropic). 

~. Assume that F admits a decomposition as indicated and let 

y E IIFII • There exists x E F 0 H.l with IIxll = y and y E F 0 H.lO x.l 
co 
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with Ilyll = Y ; so Ilx+yll = 0 • Write x + y = f + r + r'+ g (fEFnF.L, 

rER, r'ER', gEG) ; IIx+yll = 0 = <I>(r,r') + <I>(r',r) + IIr'll + Ilgll so 

Iir'+gli E T • By assumption therefore r' = 0 hence g = 0 as G is 

anisotropic. We have shown that x = y mod(FnF.L) ~ R Express analo-

gously x = fo + ro + r~ + go and pick z with II zll = y in 

F n H.L n r'.L n g.L n x.L • Since x _ z mod(FnF.L)~ R we must have 
o 0 

go = 0 , furthermore, for r l the component in R of the vector z , 

0 <I> (z ,r~) =<I>(rl,r~) + 1ir'11 
0 

. So <I>(rl,r~) is constant for all 

z E n H.L n 
.L 

n x 
.L 

II zll By choosing suitably F r' with = y z we see 
0 

that IIr'lI 0 : Ergo r' = 0 and we have 11 Ft, c {a} 
0 0 

Assume conversely that T '1 II FII 00 t- ¢ (Since 0 E II Ft the form 

cannot be symmetric and II FII = {O} ). Let F be a supplement of 
00 0 

in F and L a maximal totally isotropic subspace of 

There is (see Chapter III) a decomposition F 
o 

.L 
(r.GiL') Qj Fl • Let 

F 
o 

B 

be the projection onto L' of (L'+ F l )* • If B were of infinite 

dimension, then one could construct an infinite sum S of pairwise 

orthogonal hyperbolic planes in Fo' in fact, one can arrange for S 

to be an orthogonal summand of E But this is a contradiction as 

Hence the number n:= dim B is finite and precisely n 

.L 
hyperbolic planes can be chopped off, Fo = H e Hl,dim H 

.L 
2n , H 

hyperbolic. Hl can now be decomposed as Hl = (R @ R') @ G , R C L , 

(R'+ G)* = G* • This is the required decomposition of F. The proof 

is thus complete; it also proves 

.L 
Lemma 4. If IIFII = ¢ 

00 
then F ~ 2· (fin.dim.rigid) ~ (fin.dim. 

.L .L 
hyperb.) ~ (fin.dim.totally isotropic) ~ (anisotropic). 

However, we shall not pursue the spaces E with empty IIElloo any 

further. 

Definition. Assume that (E, <1» is non-degenerate and dim E = ~ • 
o 

A subspace F is called weakly stable in E if II FII 00 t- ¢ • F is 
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called stable in E if IIFII = IIFII 
"" 

and it is called quasistable ([3]) 

J. 
in E if F Fo ~ Fl with dim Fo finite and Fl stable in E 

If (F1)lEJ is a family of subspaces stable in E and if for at 

least one 1 E J we have Tell FII then the sum E Fl 
J 

is stable in 
1 

E • E"" invariably is the largest subspace stable in E. An easy re-

cursive argument shows that 

(9) If 

by 

T c IIEII"" 

IIEII"" and 

then the isometry class of 

dim (E nEJ.) . 
"" "" 

is characterized 

5. Fitting together stable and rigid spaces 

Let A be a non-degenerate stable space and B, C rigid spaces 

with disjoint value-spaces in SiT, ~B n ~c = (0) . We wish to extend 

the given forms (on A,B,C) to all of the vector space E = A ~ B ~ C 

in such a way that we shall have 

AJ. = Band 
J. 

B A • 

As all spaces considered here are of dimensions < ~o this is possible 

if and only if dim B and dim C satisfy 

dim B < "" = dim CO. 

If dim B is finite then we have no choice but to form the external 
J. 

orthogonal sum E A~ B If dim B ~ then we may partition an 
0 

orthogonal basis B of B into dim C many infinite subfamilies B 
y 

and likewise an orthogonal basis A of A into dim C many infinite 

subfamilies Ay • If C = (Cy) is an orthogonal basis of C then we 

let the inner products of c 
y 

with all members of A U B be 1 and 
Y Y 

set zero all other products between members of different bases A,B,C. 

This will give us AJ. Band BJ. = A in E = A ~ B ~ C • Obviously 

E"" A. Although there are,of course, other possibilites of extending 

the given forms to A $ B ~ C when dim B is infinite we shall in-

variably end up with the same isometry class by the following 
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Theorem 2. Assume that (E,~) is weakly stable and that span E"" 

is non degenerate. Then we have T C IIEII",,(in particular span E"" = Eoo ). 

The isometry class of E is determined by the collection of the follow-

ing invar iants: II Ell 00 the isometry class of the rigid space El. , the 
"" 

isometry class of an arbitrary supplement of E 
"" 

in E that contains 

(every supplement of E 
00 

is rigid). 

~. Lemma 3 (Section 4) shows that we cannot have II Ell = {O l;i T 
'" 

when span Eoo is non degenerate. Let then E be another space with 

the same invariants. Let W : S + S be an isometry between supplements 

of 

As 

E and E 
00 00 

in E and E respectively, and 
.I. -.I.-

E"" C S , E"" C S • 

.I. ~ -.I. 
Eoo - Em we have,by rigidity, that W maps El. onto -.I. 

E We now 
00 00 

show that the restriction W : o of can be extended to an 

isometry 
'V 

E E. 

Assume that we have constructed finite dimensional spaces W, W 

and an isometry WI El. $ W + El. $ W which extends ,I. and such that 
"" 00 0/ 0 

(10) (El.~ W) n E 
00 00 

w n E • 
00 

We now extend ~l on El. $ W $ (x) 
00 

for arbitrarily prescribed x E E. 

CASE I: x E E , (EJ.EIl W) • Since W n El. = (0) there is x E E 
00 00 00 00 

with ~(x'Wlwi) = ~(x,wi) for all members Wi of a basis of W. 

Since E is stable in E , we find e E WJ. n xl. n E with 
00 "" 

II ell IIxll + IIxll E IIElioo. ~l is extended by sending x into x + e 

The induction assumptions (10) are easily seen to hold again for 

WEll (x) in lieu of W . 
CASE II: x E E +(El.EIl 

00 00 
W) . This brings us back to case I. 

CASE III: x (j Eoo+ (El.EIl W) Let S be a supplement of 
.I. . E 00 0 

S and set S 
0 ljiSo . We decompose x = e + e'+ s according to 

E E Ell El. ~ So· Without loss of generality e = e'= 0 , i.e. 00 00 

s E S Set - WS Eoo f x = s := . In we choose an element with 0 

in 
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II sll + II 5+£11 E II Ell • We extend 
00 

~l on E~ ~ W ~ (s) by sending x = s into x := 5 + £ + g To 

finish the step let us compute (E~ ~ W + (x)) n E 
00 

. Assume that 

- - A (5+f+g) (e -.I. - W) + w + is in the intersection E E e E oo,w . Hence 

-.I. 
AS E ~W A 'f E + E If 

00 00 
0 we can find, by CASE II, a vector 

sEE + E.I. ~ W with II slll 1. 00 00 
11511 • Therefore IIs l + sll ETc II Ell 00 which 

means that s = sl mod Eoo But this is impossible in the present case. 

Therefore A = 0 and thus (E~ ~ W ~ (x)) n Eoo (E.I.~ W) n E • In the 
00 00 

present case it is trivial that (E.I. ~ W ~ (x)) 
00 

(E.I. ~ l'l) n E • This 
00 00 

proves that the induction assumptions (10) are again valid after exten-

ding ~l' 

We can therefore extend ~o to all of E and the proof of the 

theorem is complete. 

6. The classifiaction of weakly stable spaces 

We have already investigated two special cases of non degenerate 

weakly stable spaces E. Theorem 1 in Section 2 treats the case where 

is totally isotropic and satisfies 
.I. 

E = E 
00 00 

Theorem 2 in the pre-

vious section discusses in detail the case where Eoo is non degenerate. 

The next theorem shows that it is possible to break the general case 

into these two special cases. Thus we shall then be able to fuse theo-

rems 1 and 2 (Scholion). 

Theorem 3. Let E be weakly stable, non degenerate and of dimen-

sion ~ 
0 

. If T c IIEt then the isometry class of E is characterized 

by the collection of the following invariants of E , (i) the "- class 

of E , (ii) the isometry class of 
.I. 

R where R := Eoo n E~ . If 
T Cf IIEt then the same statement holds provided R is defined to be 

the radical of the span of the set Eoo • In either case, if dim R is 
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finite then the invariant (i) may be replaced by the invariant (i') 

~. We shall first discuss the case where T C IIEII"". Clearly 

an isometry E + E maps R onto 
.1 

R , R onto -.1 
R and it induces a 

relation E ~ E • Assume conversely that E has the same invariants 

(i) and (ii) as E. The spaces Rand Rare .1-closed by lemma 2 so 

we may quote lemma 1 and obtain decompositions 

(11) E 

.1 _ _ .1 _ 
(R $ R') e L , E = (R Ell R') Ell L 

Since R Ell L R Ell L the spaces Land L (or, for that 

matter, any supplements of R,R in R.1, R.1 respectively) are isometric. 

Furthermore R' and R' are rigid for, if we had a non zero element 

in IIR'II n T then we could specify a hyperbolic plane P not in R.1 

which is a contradiction as P would also belong to E"" (recall that 

we are in the case where T C IIEII",,) • 

Let (ri)iEr be an almost orthogonal basis in R' and (ri)iEr 

a congruent basis in a copy of R' and ri,ri (i E r) analogous ob­

jects in E . Let (R.j)jEJ be an almost orthogonal basis in Land 

CIj)jEJ a congruent bas~s ~n L . From the assumpt~on that 

E ~ R' ~ R' ~ L ~ E ~ R' ~ R'~ E we obtain equations 

where are both row- and column-finite. Set 

ri (i E r) span a supplement R" of 

R.1 in E. Further, since (Cij ) is column-finite we see that 

R. j E (R $ R") + (R Ell R").1, in other words, R Ell R" admits an orthogonal 
.1 

supplement in E, E = (R Ell R") "" L We now have 'II 1. as the 

r" 
i 

that 

form an almost orthogonal basis with cpr'~ 
~ 

(Bij ) is invertible. Clearly ·CPR" C CPR' 

EBijCPri for we claim 

and CPE = CPR" + CPL C 

CPR' + CPL • To obtain equality, CPR" = CPR' , and thence invertibility it 

suffices to show that CPE = CPR' Ell CPL • Assume by way of contradiction 
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that the sum is not direct, say u E R' , vEL with lIull = IIvll F 0 • 

Then lIu+vll ETc IIEII"" so u + vEE C RL 
"" 

but v E RL and u f/ RL , 
contradiction. We have, in effect, proved the following when T C IIEII"" 

(13) If E 'V E then R' 'V R' for suitably chosen supplements R' , R' 
of 

L (E n EL)L -L R := and R respectively. 
"" "" 

Since RIO 'V R' is seen to hold we may quote Thm. 1 in order to obtain 

an isometry (R $ R") 'V (R ~ R') • Since 
'V _ 

Ll = L we have an isometry 
'V 

E = E as asserted by the theorem. 

If T 1- II Ell "" and R, R are the radicals of the spans of the sets 

E"" ,E"" respectively we reach the same conclusions by using Lemma 3 of 

Section 4 and Theorem 1. 

Obviously, if dim R is finite then without assuming (i) we ob-

tain (12) with Bij of finite size and (Cij ) row- and column-finite 

provided we have IIEII = IIEII • This completes the proof of Theorem 3. 

We shall now summarize our results by combining Theorem 2 (Lemma 3, 

Section 4 respectively) with theorem 3 in the following scholion. Since 

all supplements of the radical F n FL of a subspace F are isometric 

we may without any risk of confusion speak of the isometry class of ~ 

non degenerate part of F. 

Scholion. Let (E,~) be weakly stable, non degenerate and of di-

mens ion ~ and set R:= E n EL 
o "" "" 

We distinguish between the two 

cases 

If T C IIEII then the isometry class of E is characterized by 
"" 

the set of the following invariants of E: (i) the 'V class of E 

(if dim R is finite II Ell suffices), (ii) IIEt, (iii) the isometry 

class of the non degenerate part of EL , (iv) the isometry class of 
"" 

anyone supplement X of E 
co 

in RL such that R + X ~ E: . The classes 

in (iii) and (iv) are classes of rigid spaces. 
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If T 'l- II Ell", then the isometry class of E is characterized by 

the collection of the following three invariants: (j) the ~ class of 

E , (jj) the isometry class of the non degenerate part of (span E ).1. 
'" 

which is anisotropic, (j jj) the natural number n = dim 
.L 

(E*!(E*nV» 

where V is any maximal totally isotropic subspace of E E splits 
.I. 

off an orthogonal sum H of n hyperbolic planes, E = H ~ El and 

El is uniquely determined by the invariants (j) and (jj) of E; fur­
l. 

ther more El ~ 2 • (inf.dim.rigid) ~ (anisotropic) so that the set 

If E is quasistable we always have T c IIEII 
'" 

and finite dimen-

sion of R = E n El. • Thus 
'" '" 

.I. .I. 
E + E = R 
'" '" 

and the invariant (iv) in the 

scholion is trivial. Thus 

Corollary ([3J). If E is quasistable then the isometry class of 

E is characterized by II Ell , IIEII", ' the isometry class of the (finite 

dimensional rigid) non degenerate part of 

Remark. In the case where Tell Ell", the following diagram helps 

to locate the roles of the invariants (i), (ii), (iii), (iv) in the 

scholion; it gives the sublattice (in the lattice of all subspaces of 

E) generated by the space E* under the operations +, n , orthogonal 

complementation. 

E 

E 
'" 

(0) 
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7. Representatives 

Ifa weakly stable space E has T c IIEII then it 
'" 

can be decom-
~ 

E~= REB posed as E (REBR')EB (A EB BEB C) where E REB A and 
co '" 

~~ 
Because E E we have C = (0) in case dim B is finite (e.g. 

co co 

whenever E is quasistable) . In other words 

(14) If dim E~/E n E~ 
'" co '" 

is finite then the two isometry classes of 

(iii) and (iv) in the scholion coincide. 

Are there any other relations among the invariants (i), (ii), (iii), 

(iv) of the scholion? There is the trivial condition that the set II Ell 

given by (i) contain the set IIEII", as given by (ii) as well as the 

analogous IIEII-sets belonging to the objects in (iii) and (iv). As to 

(ii) it is obvious that the inverse image in Sunder -: S ~ SIT of 

any subspace Y C SiT of dimension < ~o may serve as II Ell • Assume 
co 

then that this set and the other invariants of the scholion are pre-

scribed and are such that the relations we have listed are satisfied. 

We set A:= EB~ <a,a, ••• > if Y f (0) and A an orthogonal sum of 
a,Ey 

~o hyperbolic planes if Y = (0) • We pick Band B EB C of the 

B. 

types prescribed by (iii) and (iv) of the scholion and extend the forms 

onto all of ,AEB B EB C in the manner explained in Section 5. From the 

~ class given in (i) we get in particular the prescribed value space 

CPE • Choose a rigid space R' with cpE = CPR' EB cP (A 31 B 31 C) and define 
~ ~ 

E : = R' $ R' EB (A EB B EB C) 

R' can be chosen such that E drops into the prescribed ~ class. 

E has now all the prescribed invariants. 

The corresponding discussion when T". II Ell '" is yet easier and is 

left to the reader. 

8. Suitable fields for weak stability 

If we demand that ~ non degenerate ~o-forms over a certain field 
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k be weakly stable then k is such that all such forms are even 

quasistable by the following 

Lemma 5. If in the following statements on k the word "space" 

means a non-degenerate k-vector space (E,~) of dimension N then 
o 

all five statements are equivalent. 

(j) All k-spaces are weakly stable; 

All k-spaces E are weakly stable and have T c IIElioo 

All k-spaces are quasistable; 

(j j) 

(j jj) 

(jv) All k-spaces contain non zero isotropic vectors; 

(v) dim SIT is finite and there is only one trace-valued k-space 

up to isometry. 

Proof. (jjj) ~ (j) is trivial. (j) # (jv) because for anisotropic 

k-spaces E we have IIE1100= ¢ • (jv) ~ (jj) because of Lemma 3 (Sec­

tion 4). (jj) ~ (v): Assume (jj). As (jj) * (j) is trivial we also have 

(jv). Afortiori there are no rigid k-spaces, in other words dim S/T< 00. 

Furthermore, if IIEII C T then (by (jj» E = E and E is an or tho-00 

gonal sum of hyperbolic planes. 

(v) = (jjj): If (v) holds then dim E/E* < 00 for all k-spaces E 
~ 

Hence we can find decompositions E = El ~ E2 with dim El = No and 

IIElll C T By (5) El is an orthogonal sum of N hyperbolic planes 
0 

which shows that T C II Ell 00 and E is a linear subspace. As the non 00 

degenerate part of 
~ 

is E rigid it is of finite dimension so that 00 
~ ~ 

E + E = R 00 00 where R = E~ n E 00 00 We have decompositions (cf. (11» 

where E and where R' 00 

is rigid. Therefore dim E/El< 00 and El is stable in E Q.E.D. 
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CHAPTER EIGHT 

SUBSPACES IN NON-TRACE-VALUED SPACES 

1. Introduction 

All spaces considered in this chapter are of denumerable dimension 

and E-hermitean over a field k of characteristic 2 equipped with an 

antiautomorphism ~ ~ ~* • With k is associated the k-vector space 

SiT (S:= {aEk I a=Ea*} and T:= {a+Ea* I aEk} the additive sub­

groups in k of symmetric elements and traces respectively); ~: E ~ SiT 

is the k-vector space homomorphism which sends x E E into the coset 

w(x,x) + T • It is invariably assumed in this chapter that 

(0) dimk SiT < ~ • 

This will enable us to make the most of stability and quasi-stability 

(Chapter VII). For example, the isometry class of a nondegenerate quasi­

stable space (E,W) is determined by the isometry class of E*~ and 

the subspaces ~E and ~E*~~ in SIT (This follows from the corollary 

to the scholion in VII.IO.). Here we set again X* := {xEX I w(x,x)ET} 

and have, by (0), that dim X/x* ~ dim SiT < ~ for all subspaces Xc E 

In particular E*~ and ~X will always be finite dimensional. We also 

recall that E*~ is left pOintwise fixed under any metric automorphism 

of (E,W) • 

* 

In this chapter we show how to put to use the results of Chapters 

IV and VII for the classification of subspaces in the unwieldy situation 

of non-trace-valued forms. We do this by discussing in detail the case 

of totally isotropic subspaces. Other cases may then be attacked in a 

similar fashion provided that the task of readying the indispensable 

lattice has been accomplished (see [lJ[2J). 



170 

Although the aim of this chapter is to a large extent the conveyance 

of a method the main result is of independent interest. Theorem 2 and its 

Corollary 1 in Section 7 give a complete characterization of the orbits 

of totally isotropic subspaces by means of invariants that can actually 

be handled in practical applications. 

37 

2. The lattice of a totally isotropic subspace (dim SiT < 00) 

38 39 

27 

6 

V(R,E*) orthostably 

g·enerated by E* and the 

totally isotropic sub­

space R C E (with 

dim E/E* $ dim SiT < 00) 

8 

2 

1 
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1 (0) 15 Rl.* 29 E*l.l.nRl.*l.*l. 

2 RnE*l.* 16 Rl.*+E*l. 30 Rl.*l.*l. 

3 R 17 E* 31 E*+E*l.l.nRl.*l.*l. 

4 Rl.l. nE*l.* 18 E*+E*l. 32 'E*+Rl. *l. *l. 

5 R+Rl.l.nE*l.* 19 E*l.l.nRl.*l. 33 E*l.l.nRl. 

6 Rl.l. 20 Rl.*l. 34 E*l.*l.nRl. 

7 E*l.* 21 Rl.*+E*l.l.nRl.*l. 35 E*+E*l.l.nRl., 

8 E*l. 22 Rl.*+Rl.*l. 36 E*+E*l.*l.nRl. 

9 R+E*l.* 23 Rl.*l.l. 37 E*l.l. 

10 R+E*l. 24 Rl.*l.l.+E*l. 38 E*l.*l. 

11 Rl.l.+E*l.* 25 E*+E*l.l.nRl.*l. 39 Rl. 

12 Rl.l.+E*l. 26 E*+E*l.l.nRl.*l.+E*l. 40 E*+Rl. 

13 Rl.*l.* 27 E*+Rl.*l.l. 41 E*l.l.+Rl. 

14 Rl.*l.*+E*l. 28 E*+Rl.*l.l.+E*l. 42 (RnE*l.*)l. 

43 E 

The nice diagram is reproduced from [3J. We shall construct examples 

where all 43 elements are different spaces (a division ring with 

dim SiT ~ 8 is needed for this to be possible) • 

The utility of the diagram is greatly increased by a table for the 

operation l. in V(R,E*) : 

X 1 2 4 3 5 6 7 8 9 11 10 12 13 19 14 20 15 23 16 24 

Xl. 43 42 41 39 38 37 34 33 30 24 29 23 20 19 

17 25 27 31 35 37 18 26 28 32 36 38 21 29 22 30 33 34 39 40 41 42 43 

8 7 14 13 12 11 6 4 2 1 
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3. Remarks on the verification of diagrams 

Although the diagram for V(R,E*) in the previous section is still 

modest in size it is complex enough to require a systematic verification. 

And verified it must be! For, it has not been devised for purposes of 

illustration or for interrupting the monotony of the text; the diagram 

is a tool without the help of which we could not have delved into our 

problem. 

It is for the sake of the novitiate that we adduce some hints for 

this verification (to find the diagram is another matter) • 

~, we convince ourselves that the partial order depicted by 

the unlabelled diagram - call it V - is a lattice. The legend then 

sponsors a map v: V ~ L(E) into the lattice of all subspaces of the 

vector space E (it sends the element 7 of V into E*~* E L(E) , etc.). 

This map V must be shown to be a lattice homomorphism and its image 

in L(E) stable under ~: L(E) + L(E) • This is accomplished as follows. 

Second, verify that v respects the ordering by checking all pairs 

of neighbouring elements in V • For example, we have 22 $ 26 by V 

do we have R~* + R~*~ C E* + E*~~ n R~*~ + E*~ for the images under 

v ? As an illustration let us verify this in detail. 

Since R~* C E* (trivially) it suffices to show that R~*~ is 

contained in the space E*~~ n R~*~ + E*~ = (E*~+R~*)~ + E*~ (which is 

~-closed because dim E*~ $ dim SiT is finite). We try to establish the 

converse inclusion for the respective orthogonals; as both spaces are 

~-closed this will be equivalent to the former inclusion. We thus wish 

to show that (E*~+R~*)~~ n E*~~ C R~*~~ • Since dim E*~ is finite we 

have (E*~+R~*)~~ = E*~ + R~*~~ and, by using modularity, our assertion 

translates as E*~ n E*~~ + R~*~~ C R~*~~ • We have reduced the problem 
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to proving that 

(1) 

This is easily done. R belongs to E* and afortiori R c (rad E*)~ • 

Thus rad E* C R~ . Since rad E* = rad (E*~) we are done. Most of the 

remaining seventyfive checks for inclusion will be seen to be quite 

trivial. Having in this fashion settled the inclusions one is in a 

position to turn to the next step. 

Third, verify that the map v respects joins. For example, the 

element 20 of V is the join of 19 and 8; do we have (E*~~nR~*~)+E*~ 

R~*~ for the images under v? One inclusion is trivial and, by ~-

closedness, we may turn to the corresponding orthogonals and establish 

(E*~+R~*)~~ n E*~~ C R~*~~ . But this was verified in the example under 

step 2 above. In this fashion one checks all jOins of pairs of elements 

(423) in V • There are, in principle, checks to be made. However, the 

work is cut down drastically by observing that it suffices to establish 

that each join-irreducible element gives the correct join with each 

other element. 

~, verify that v respects meets. This step is very similar 

to the preceeding one (the steps may be interchanged). It suffices to 

show that each meet-irreducible element gives the right meets with all 

other elements (in the image of v). Having already done the joins, the 

checking of meets can sometimes be simplyfied by writing elements as 

suitable sums of other elements. 

When the last two steps have been accomplished then we know that 

v is a lattice homomorphism, i.e. the labelled diagram gives the 

correct joins and meets. There remains the last step. 
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Fifth, check orthostability. Since (x+y)~ = X~ n y~ only jOin-

irreducible elements have to be looked at. For example, where is the 

orthogonal of R~*~*~ (number 30)? Looking at a metabolic decomposition 

for R~~ , E = (R~~~R') ~ E ,we see that R~*~* = R~~ ~ E*~o* 
o 0 

Hence 

(as Eo is nondegenerate). We answer our question simply by saying that 

30~ = 13 

4. Totally isotropic subspaces: the indices 

Let (Rt,Et)tEI be a family where, for all tEl, E t is a non-

degenerate E-hermitean space over k and R 
1 

a totally isotropic sub-

space of E • If 
1 

R the subspace 

(R l ,E l ) • A pair 

pairs (Rl,El ) 

E2 + E2 

E is the (external) orthogonal 

l:R then we call (R,E) the sum 
1 

(R,E) is called reducible if it 

(R2 ,E2 ) such that E* = Ei + E2 

sum of the E 
1 

of the pairs 

is a sum of two 

and El + Ei , 

In the next section we shall list certain irreducible pairs. 

In a later section we shall prove that arbitrary pairs are sums of 

and 

such. Here we shall introduce the indices of a pair needed further on. 

Let R C R~ C E and, as usual, E be nondegenerate. Let further-

more M be a supplement of E*~* in E*~ and N := R n E*~ R n E*~* 

Since M is nondegenerate and of finite dimension we have E M + M~ ; 

M~ admits a metabolic decomposition with respect to N . As R C E* C M~ 

and R C N~ we have therefore a decomposition as follows: 

(2) E* N ~ E~ 

R N 



175 

Because every metric automorphism of E leaves E*~ pointwise fixed 

we shall have to assume that 

(3) R n E*~* = R n E*~* 

i.e. N = N if the totally isotropic R is to belong to the orbit of 

R • Therefore, it may be assumed that M = M and N' = N' in a de-

composition for R analogous to that in (2). We see that the discussion 

about R in E is shifted entirely to the discussion about Ro:= 

Eo n R in Eo • In other words, it suffices to consider the case of a 

pair (R,E) that satisfies 

(4) E*~ and R n E*~ (0) • 

Assuming (4) the lattice V(R,E*) is as follows: 

E 
42 

E*~~ 

37 

41 

35 

d 

e 

3~ 
R~ 

33=34 



176 

Let (x/y) be the dimension of the quotient space X/Y where 

X,Y carry the numbers x and y respectively in the legend to the 

diagram in Section 2. We then define indices by 

(5) 
a := (3/2) I b := (6/5) I C := (4/2) I d := (7/4) I e := (13/11) I 

6 :=(15/13) I 9 :=(19/13) I h :=(23/15) I .i.. :=(37/35) • 

If (4) is not assumed we have to add the following 

(6) m := (8/7) dim M yt := (2/1) dim N • 

One then proves the following equalities for arbitrary (R,E) I 

dim E < NO I 

(17/15) a I (33/29) e I (39/34) d I (43/42) yt • 

The eleven cardinals introduced in (5) and (6) are obvious in­

variants of the orbit of R under the action of the orthogonal group 

of E. By modularity all dimensions of quotients of elements in 

V(R,E*) can be expressed by these eleven cardinals a I b I ••• I .i.. I 

m I yt (If the dependence on the pair (R,E) is to be exhibited we 

write a(R) I b(R) I etc.) 

We have the following relations among the indices: 

Lemma 1. (i) C + d + e + 9 + h + .i.. + m + yt ~ dim SiT < 

(ii) a < => b C e .i.. 9 zero 

(iii) 6 < 00 => h zero 

(iv) 6 < & T {o} ~ 6 is even 

In order to prove the lemma we need the following fact: 

Lemma 2. Let R C R.I. cE I E nondegenerate , dim E ~ NO If 

dim R is finite then E admits a Witt-decomposition for R if and 
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only if R n E*~ (0) 

The easy proof is by induction on dim R and is left to the 

reader. 

Proof of Lemma 1. (i) dim E/E* ~ dim SIT • 

(ii) If a < 00 then dim R = a + n < and R = R~~ . Hence 

b + c is zero. Furthermore, as space 29 is ~-closed and of codimension 

a in space 31, we must have 31~~ = 31 • The ~-table in Section 2 gives 

3l~~ = 37 so e + ~ is zero. In order to compute 9 one may, by de-

composition (2), assume that (4) holds. Since then R n E*~ = (0) we 

~ 

may quote Lemma 2 and assume a decomposition E = (RffiR') ffi Eo with 

R ffi R' C E* • In this setting it is easy to check that the spaces 14 and 

20 coincide, i.e. 9 = 0 . 

(iii) Since 20 is ~-closed and of codimension 6 in space 22 we 

obtain here 22 = 22~~ = 30 • Thus h is zero. 

(iv) Let us use a metabolic decomposition E = (R~~ffiR') ~ Eo for 

R~~ . We find 6 = dim E~/rad E~ so that 6 is the dimension of a non­

degenerate trace-valued E-hermitean space. If T = {O} ,i.e. k commu-

tative and the form symmetric, then such spaces are sums of hyperbolic 

planes. Hence the assertion. 

The proof of Lemma 1 is thus complete. By Theorem 1 in Section 6 

below we see that the lemma lists all relations to which the indices 

are subjected. 

5. Totally isotropic subspaces: the irreducible objects 

~. Let E be a hyperbolic plane and R an isotropic line in 

E . The pair (R,El has a = 1 and all other indices zero. 
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2.:1. Let E be an orthogonal sum of hyperbolic planes k(ri,ri) , 

i E IN . Let R be the span of all r. + ro The pair (R,E) has 
1 

b 1 and all other indices zero except for a. which has to be NO 

by Lemma 1. 

5.3. Let E be an orthogonal sum of hyperbolic planes k(ri,ri) , 

i E IN , and a space {a,a} where a E S,T Let R be the span of all 

r i + z where 0 + z is an isotropic vector in {a,a} • The pair (R,E) 

has c = 1 and all other indices zero except for a. which is NO by 

Lemma 1. 

5.4. R:= (0) C E := {a,a} with a E S\T gives a pair with 

d 1 and all other indices zero. 

5.5. Let E be an orthogonal sum of metabolic planes k(ri,ri) ;" 

(~ ~) , i E IN and a E S\T , and a plane {a,a} . Let R be the span 

of the r. • The pair (R,E) has e = 1 and all other indices zero 
1 

except for a. which has to be NO by Lemma 1. 

~. If T = {O} we let E be a hyperbolic plane, if there is 

Y E T\{O} we let E = {y} set R = (0) in either case. The pair 

(R,E) has 6 = 2 or 1 and all other indices equal to zero. 

~. Pick a E S'T and let E be an orthogonal sum of metabolic 

planes k(ri,ri) as in 5.5 and a line {a} • Let R be as in 5.5. The 

pair (R,El has 9 = 1 and all other indices zero except for a. which 

has to be NO by Lemma 1. 

5.8. Here is an example with h = 1 and all other indices zero 

except for 6 which has to be NO by Lemma 1: E {a,a, ••• } and 

R = (0) with a E S'T • Here the nondegenerate part of 15 is hyperbolic. 

In view of 5.6 we are therefore left with the possibilities of an an-
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isotropic space 15. Let (ei)ifN be an orthogonal basis of an arbitrary 

anisotropic trace-valued space Eo. Let E = Eo 9 (a) where all 

products ~(ei,a) = 1 and a:= ~(a,a) E S'T For R:= (0) C E we 

find h = 1 and 15 = Eo . Our list is yet too small: Later on we shall 

need enough irreducible pairs to enforce isometries E ~ E when the 

pair (R,E) is given and the pair (R,E) is to be an orthogonal sum 

of irreducible pairs from the list such that (R,E) coincides with 

(R,E) indexwise. This presents no problem if dim R is infinite for 

then we have stability. If dim R is finite we are at a loss with our 

examples since e.g. a space with h 2 need not be an orthogonal sum 

of two spaces with h = 1 • Because it would be very awkward to formally 

exclude the case with finite dim R we have no choice but to include 

here, in one lump, all irreducible pairs «0) ,E) when E is an­

isotropic, E*~~ = E and h = dim E/E*~~ < 00 • 

~. Let E be a sum of metabolic planes as in 5.5 and let R 

be as in 5.5. The pair (R,E) has ~ = 1 and all other indices zero 

except for a which has to be ~O by Lemma 1. 

5.10. For a E S\T set R:= (0) C E := (a) • Here m = 1 and 

all other indices zero. 

5.11. For a E S\T set E := (a,a) and let R be the isotropic 

line in E . Then n = 1 and all other indices are zero. 

We summarize by giving the following table of irreducible pairs 

(R,E) constructed above: 
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a. b c d e n 9 h -i. m n E* dim R dim E 
(a.+n) 

1 1 E=E*J.J.=E* 1 2 

2 ~O 1 E=E*.I.J.=E* ~O ~O 

3 ~O 1 EfE*J.J.=E* ~O ~O 

4 1 EfE*J.J.=E* 0 2 

5 ~O 1 E=E*J.J. fE * ~O ~O 

6 1,2 E=E*J.J.=E* 0 1,2 

7 ~O 1 E=E*J.J. fE* ~O ~O 

8 ~O 1 E=E*J.J. fE* 0 ~O 

9 ~O 1 E=E*J.J. tE* ~O ~o 

10 1 EfE*J.J.= (0 0 1 

11 1 EfE*J.J.=E* 0 2 

Notice that in all cases E* is either J.-closed or J.-dense (or 

both). Examples 1, 2, 6 are trace-valued. If we are not in the symmetric 

case (T = {oJ) an element y E T'{O} enters the description of 

Example 6. In the remaining examples 3, 4, 5, 7, 8, 9, 10, 11 invariably 

dim E/E* 1 ; in their description enters the "parameter" (l E S ..... T • 

If (l is varied in S ..... T we obtain different irreducible pairs. Their 

isometry types correspond uniquely with the different lines in the k-

vector space SIT. If we vary y in T ..... {O} and (l in S,T we get 

all the building blocks needed to build an arbitrarily given pair (R,E) 

Of this we shall treat in the next two sections. 
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6. The invariants of a totally isotropic subspace 

The k-vector space homomorphism ~: E + SiT with 

X'" oI>(x,x) + T 

induces a map L(E) + L(S/T) and a lattice homomorphism which we call 

cp too, 
V(R,E*) + L(S/T) • 

We are particularly interested in the image of the lattice V(R,E*) in 

Section 1 because the image lattice ~V(R,E*) is an obvious invariant 

of the orbit of R under the action of the orthogonal group. In order 

to obtain a diagram of the most general homomorphic image of V(R,E*) 

we simply contract the diagram in Section 2 "along the direction of E*" 

(as if we were to push together the bellows of a camera). The result is 

cpE 

Yl 

41 

d 

cpE*.L 
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Referring to the above diagram we introduce subsets 

(7) M G H E J v c N 

of S in the following way. Let M be any set of m elements 

~(e,e) E S where e runs through an orthogonal basis of a supplement 

M of E*.L* in E*.L • (We consider rigid spaces as "building blocks" 

here and do not analyze them any further.) Similarly, let G be a set 

of elements ~(e,e) , where e runs through an orthogonal basis of a 

supplement G of R.L*.L* + E*.L in R.L*.L ; card G = 9 • In other words, 

we are going to elect the rigid spaces M and G as members of a 

certain collection of invariants; the spaces M and M+G are the 

isometry classes of the "nondegenerate part" of the spaces E*.L and 

R.L*.L . The remaining sets H, E , J , V , C , N are arbitrary subsets 

of S such that the images in SIT span - in turn 

15~ in 23~, of 29~ in 33~, of 33~ in ~E*.L.L 

in ~R.L = 39~ , of 41~ in 42~ , of 42~ in ~E • 

a supplement of 

37~ , of 34~ 

Let then (R,E) be an arbitrarily given pair and (7) the subsets 

associated with it. We wish to define a sum (R,E) of irreducible pairs 

from the list in Section 5 which has the same indices and the same in­

variants (7) as (R,E) and such that an isometry E ~ E maps R n E*.L 

onto R n E*.L We start by taking a sum of m 

as described in Section 5.10 where the parameter 

copies of (R10,E10 ) 

a runs through M 

Let (R(M) ,E(M» be the resulting pair. Similarly we build pairs 

(R(G) ,E(G» , •.. , (R(N) ,E(N» by taking orthogonal sums of pairs of 

the kind described - in turn - in Section 5.7, 5.8, 5.5, 5.9, 5.4, 5.3, 

5.11. In each sum we let the parameter a used in the description of 

the irreducible pairs run through the corresponding sets (7). In 5.8 

we have, in the situation of finite dim R , to select an irreducible 

example with the correct space IS, i.e. with 15 isometric to the 
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corresponding subspace of E There is no problem with dim(rad 15) 

'" '" dim 13 = n + e + d + e + b + a If we add up everything, (R,E) := 

~ J.. '" 'V 
(R(M) ,E(M» $ ..• $ (R(N) ,E(N» we have a pair (R,E) whose lattice 

'" 'V ~V(R,E*) coincides with the lattice ~V(R,E*) in SiT of the given 

pair. (To this one only has to remark that the union MUG U ••• U N 

has an image family under ~ that is linearly independent in SiT so 

'" that E* is the sum EE* of all the E used in the construction of 
1 1 

the sum; all indices then behave additively.) By adding to the pair 

(~,~) a sum of a(R) copies of the irreducible pair in Section 5.1 

we can furthermore adjust the invariant a to the given a(R) • 

Similarly we adjust b by adding b(R) copies of the pair described 

in Section 5.2 Call (R,E) this final sum and observe that it has E 

isometric to E • This follows at once from the scholion in VII.6 when 

dim R = ~O : since T C IIElleo = II E*.LJ. II the invariants Ii Ell and IlE*.LJ.1I 

are made up of full equivalence classes of SiT so that they, together 

with M, fix the isometry class of E according to the scholion • 

We summarize: 

Theorem 1. Let E be a nondegenerate e-hermitean space of 

dimension ~ ~o and R c R~c E . Then there exists an orthogonal sum 

(R,E) of irreducible pairs as listed in Section 5 such that the follow-

ing hold. 

(8) 

(i) E and E are isometric under an isometry which maps 

R n E*~ onto R n E*~ • 

(ii) a(R) = a(R) , b(R) = b(R) 

(iii) R~* and R~* are isometric. 

(v) There is a lattice isomorphism T: V(R,E*) ~ V(R,E*) 

which sends R in R and renders commutative the 

diagram: 



184 

V(R,E*) V(R,E*) 

L(S/T) 

Remark 1. Statements (i) to (v) contain some redundancy. If, 

instead of (v), we only know that the lattice ~V(R,E*) is identical 

with the lattice cpV(R,E*) then we have equality of all corresponding 

indices, except for a , b and 6 . But a , b and 6 are taken care 

of by (ii) and (iii). We see that there exists an index preserving 

lattice isomorphism T with ~ = ~.T . 

Remark 2. Let us look at the irreducible pairs in Section 5 once 

more. The trace-valued types in 5.1, 5.2, 5.6 are irreducible in the 

strict sense that they cannot be further decomposed into summands 

+ «0) ,(0» • On the other hand, arbitrary sums of such pairs are 

irreducible by our definition (at the beginning of Section 4) because 

E = E* • Since the indices not a, b , 6 are finite we have 

(9) 
For given (R,E) there is a sum (R,E) of finitely 

many irreducible pairs that satisfies (8) in Theorem 1. 

Obviously, the summands in (9) are not - and cannot be - uniquely 

determined. 

Remark 3. Let in L(S/T) be given any sub lattice W of the 

shape depicted by the diagram at the beginning of this section. It is 

now clear that by introducing supplements between suitable pairs of 

neighbouring elements in W we can arrive at sets M, G , .•• , N 

(as in (7» which in turn can be used for the construction of a pair 

(R,E) as in the proof of Theorem 1. We list this result as a 
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Corollary. For any sublattice W in L(S/T) of the shape 

we can define a nondegenerate E-hermitean space (E,~) with the 

following property. E contains a totally isotropic subspace R such 

that ~V(R,E*) = W • By adding to (R,E) pairs of the kind described 

in Section 5.1, 5.2, 5.6 we can furthermore alter the isometry type 

of R~* and enlarge the cardinals a(R) , b(R) • In particular, we 

see that there are no other relations between the invariants a(R) , 

b(R) , 6(R) ,~V(R,E*) than are listed in Lemma 1. 

Remark 4. Notice that if (i) in (8) holds then each isometry 

E ~ E will map R n E*~ onto R n E*~ • 

We are now ready to insert the keystone. 

7. The decomposition theorem 

In order to prove that the pair (R,E) in Theorem 1 - or in (9) -

is equivalent to the pair (R,E) , i.e. in order to construct an 

isometry E ~ E which maps R onto R we have to make the following 

incisive assumption:. 

(10) 

If dim R~*/rad(R~*) is infinite, then R~* 

contains an infinite dimensional totally isotropic 

subspace disjoint from the radical. 
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~. Condition (10) says that in the case of an infinite index 

6 the space 13 possesses a quasistable supplement F in 15. As 

15 C E* the space F is then a sum of hyperbolic planes. There are 

fields (k,*,£) such that there is only one isometry class of trace-

valued £-hermitean spaces in dimension ~O hence in these cases (10) 

is automatically satisfied. Condition (10) is not only natural in the 

light of methods introduced in Chapter IV. Assuming (10) is a necessity 

if we wish to prove a general result to the effect that the indices and 

the lattice cpV(R,E*), in SIT, of value-spaces constitute, essentially, 

a complete set of invariants for the pair (R,E). In the absence of 

isotropic vectors the arithmetical properties of the field play a 

sensitive part in the characterization of spaces (see Chapters XI, XII, 

XIII). On the other hand, it may be possible to omit (10) in special 

cases such as treated in Theorem 3 below. 

Theorem 2. Let E and E be £-hermitean k-spaces, nondegenerate 

and of dimension ~O Assume that k has finite dim SiT . Let R C E 

and R C E be totally isotropic subspaces such that conditions (8) are 

satisfied. In order that there is an isometry E ~ E which maps R 

onto R it is sufficient that (10) is satisfied. 

~. Since we can write down decompositions of the kind (2) for 

both R and R and since E*.1. ~ E*.1. , R n E*.1. ~ R n E*.1. under 

isometries of the whole sEaces E and E we can conclude that (4) , 

and the corresponding equality for (R,E) , may be assumed without loss 

of generality. (Chopping off isometric finite dimensional orthogonal 

summands is awkward since the "Cancellation Theorem" does not hold when 

E f E* .) Condition (8) is inherited in the reduced situation. This 

verification and similar ones below are left to the reader. Although 

such calculations may be not difficult they are by no means to be 

neglected. 
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We are thus in the situation of the diagram in Section 4. This 

diagram and the ~-table of Section 2 will be used freely in what follows. 

We start out by considering 

Case a = 6~0. Corresponding to (7) let G, a , e , I , 0 , C 

be supplements in turn - of 13 in 19 ,of 15 in 23 of 29 in 

33 ,of 35 in 37 ,of 33 in 39 ,of 41 in 42 • We show that we 

can arrange it such that the six spaces are pairwise perpendicular. Let 

us start with C at the top of the diagram. Pick a preliminary D. 

We shall change 0 mod 15 • Suppose the first member xl of an orthogonal 

basis of 0 is not orthogonal to a basis (y.) of C. Since C n l5~= 
~ 

(0) we can find tl E 15 with ~(tl'Yi) = ~(xl'Yi) for all Yi • We 

replace xl by xl+tl • We then treat the next element x 2 of the 

basis of 0: we find a vector t2 E 15 such that x 2+t2 is ortho­

gonal to all of C and xl+tl • In this fashion we find a space 0 1 = 0 

(mod 15) with Dl~C • We may have altered the isometry class of 0 by 

swiching to 0 1 , but ~(xi,xi) = ~(xi+ti,xi+ti) mod T • In view of 

(10) we can find in (C+Dl)~ n 15 an orthogonal family sl' s2 ' ••• 

such that the system Xl + tl + sl ' x 2 + t2 + s2 ' .•• is congruent 

to the original system , ... . Call the span of the new 

system. Now we adjust I to the space C+D 2 by modulating it modulo 

15 • In this fashion we can work our way down to H. Dropping subscripts 

which may have accumulated we assume that C ,0 , ••• ,H are pairwise 

orthogonal and of prescribed isometry class. What can be done about G? 

Since l3~ n (C+D+I+e) = (0) we can, by the same procedure, achieve 

G ~ C + 0 + I + e by changing it modulo 13 • As G + 13 c l3~ we do 

not thereby change the isometry type of G. Since invariably G~H we 

have what we wanted. By such changes modulo 15 we can furthermore 

achieve that any of the sets H, E , J , V ,C as introduced in (7) 

are "realized" by an orthogonal basis of H, e , I , 0 ,C respectively. 
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This remark allows to arrange for isometries H ~ H e ~ e , etc. 

We now set Wo := C ffi D ffi I ffi e ffi H ffi G and define Wo analogous­

ly. Let To: Wo + Wo be the obvious isometry which sends C into C 

etc. (Notice that G ~ G by virtue of (iv) in (8).) Now we may quote 

Principle I: the only jOin-irreducibles in the lattice which will enter 

the recursive construction of the required isometry are 17, 15, 13, 8, 

6, 4, 3 • The last five are totally isotropic and thus qualify for 

condition C mentioned in (15) of Principle I in IV.IO. Furthermore 

space 17 qualifies for C(ii) because E* contains the infinite di­

mensional Rand R n E*~ = (0) ; finally 15 qualifies for C(ii) 

by virtue of assumption (10) made in Theorem 2. The proof of Theorem 2 

is thus complete in this case. The next case will be the 

Case a = ~O and 6 = O. As in the previous case we want to 

define as an orthogonal sum of supplements C , D , I , ... , G 

of prescribed isometry type. We start out with a fixed C and change 

I modulo 17 17 = E* contains a totally isotropic subspace of in-

finite dimension and is therefore an orthogonal sum of hyperbolic planes 

and a finite dimensional radical; therefore, we can arrive at a supple-

ment II isometric to I and orthogonal to C We then change D 

and e modulo 15; as 6 = 0 we have 15 c 15~ and we can again 

arrange it such that we do not thereby change isometry classes. H = (0) 

by Lemma 1 in Section 4. By a similar procedure we can achieve that 

C , D , I , e are isometric to C , D , I , e . We are left with G 

which we change modulo 14. Then we can apply Principle I of IV.IO. 

Case a = ~O and 6~. We can reduce this case to the previous 

one. Let F be a supplement of 13 in 15 and Eo:= F~ • Since F 

is trace-valued and E is quasistable (dim SiT < 00 and T C IIEIU 

we obtain from the Corollary to the Scholion in VII.6 that E ~ E • 
o 
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Hence the isometry E ~ E implies that Eo ~ Eo if E := pJ. for F 
o 

any supplement of 13 in 15 . Since F and P may furthermore be 

assumed isometric by assumption of the theorem we only have to study 

the pairs (R,Eo ) , (R,Eo ) which brings us to the first case. 

Case d < ~. By Lemma 1 in Section 4 the diagram looks now as 

follows 

E 

RJ.=39 

d 

33=29 

h 
E* 21 

d 

d 
R 

(0) 

Since dim E = NO we have 6 = NO so (10) is in force. We can now 

.1 _.1-
arrive at W := D E&H~W := D E& H as in the first case and quote 

0 0 

Principle I of IV.lO. This terminates the proof of Theorem 2. 

Corollary 1. Let E be a NO-dimensional nondegenerate g-hermitean 

space over a division ring with dim SiT finite. Let R be a totally 

isotropic subspace. If (10) holds then (R,E) is a sum of finitely 

many irreducible pairs from the list in Sec. 5. The following objects 

constitute a complete set of orthogonal invariants for the orbit of R 

under the action of the orthogonal group of E: 
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(j) The cardinals a(R) := dim R/(RnE*~) 

b(R) := dim R~~/R+R~~nE*~* , 

(jj) the (totally isotropic, finite dimensional) 

subspace R n E*~ C E , 

(11) (jjj) the isometry class of the (finite dimensional) 

nondegenerate part of R~*~ (a rigid space), 

(jv) the isometry class of the nondegenerate part of 

R~* in case its dimension 6 is finite, 

(v) the lattice ~V(R,E*) in the k-vector space SiT. 

Remark. One can now discuss various special cases. For example, 

if the form is symmetric then k is commutative and SIT naturally 

isomorphic to the k 2-vector space k • If E is stable (precisely the 

case when E is a countable orthogonal sum of spaces {a,a, ..• } and 

hence E*~ 0) then the orbits of totally isotropic subspaces Rare 

completely characterized by their indices ((5) and (6) in Section 4) 

and the isometry class of the finite dimensional (rigid) nondegenerate 

part of R~*~ • This isometry class can nicely be described by Milnor's 

Clifford determinant so that R is characterized up to metric auto­

morphisms of E by eleven cardinals and an element of the Clifford 

algebra associated with the quadratic map A ~ A2 (of the k 2 vector 

space k into k 2). Hence we have the 

Corollary 2. Let E = {l,l, •.• } be symmetric over a commutative 

field of characteristic 2. There are ~O different orbits of totally 

isotropic subspaces under the action of the orthogonal group of E. 

Each orbit is completely characterized by the indices defined by the 

lattice in Section 2. The set of all maximal totally isotropic subspaces 

decomposes into two orbits. 
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8. On closed totally isotropic subspaces 

If we assume that in the diagram of Section 2 we have that (cf. 

(5), (6)) 

(12) b c 9 o 

then the lattice V(R,E*) reduces to 

E 

Y! 

R.l 

d 

E* 

Y! 

(0) 

In this case we can obtain the conclusion of Theorem 2 without 

having to assume (10): 

Theorem 3. Let E be a ~O-dimensional nondegenerate £-hermitean 

space over a division ring with dim SIT finite. Let R, R be in­

finite dimensional totally isotropic subspaces which satisfy (12), i.e. 

R = R.l.l , R.l*.l = R + E*.l (always the case when E* is .l-closed) and 

analogously for R In order that there exists an isometry E ~ E 

which maps R onto R the following are necessary and sufficient. 
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Remark. The necessity of (j) & (jj) is obvious. In order to make 

easy the comparison between (j) & (jj) and the invariants (11) of Cor.l 

we first remark that ~V(R,E*) in L(S/T) is identical with ~V(R,E*) 

if and only if the chain in L(S/T) 

(0) c ~R~*~~ c ~R~*~~ + ~E*~ c ~R~ c ~E*~~ + ~R~ c ~E 

is identical with the corresponding chain defined by R. This follows 

from the above diagram. Secondly, from (jj) we obviously get an isometry 

R~* ~ R~* • However, by making use of metabolic decomposition of E for 

Rand R respectively we see that from (jj) we get an isometry 

(13) 

Therefore, the two chains are seen to coincide and thus 

(14) ~V (R,E*) ~V (R,E*) 

Our proof will make it clear that it is (13) which replaces assumption 

(10) and the invariant (jv) in Theorem 2. (rn the setting of Thm. 2 

(13) is an immediate consequence via stability.) 

Proof (of Theorem 3) 1. If we write down decompositions of the 

kind (2) both for Rand R we see (by the assumptions of the theorem) 

that we may assume without loss of generality that (4) holds and the 

corresponding equalities for (R,E) as well. We are thus once more in 

the situation of the diagram in Section 4 (with b = e = e = 9 = 0 by 

assumption of the theorem). 

2. Let D := E*~ and D' be a supplement of space 33 in 39 • 

D ffi D' is nondegenerate by looking at the diagram (reason as follows 

if necessary: D' is rigid so any vector d of the radical of D ffi D' 

belongs to D As d E 7 c 11 = 33~ the element d would be ortho-

gonal to all of 39 33 ffi D' ; hence d E 39~ n D 6 n D = (0». 
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Let D:= E*~ and D' be a supplement of 33 in 39 By (14) we may 

choose <pD' <pD' • Furthermore, by changing D' modulo 13 we can en-

force that D' ~ D' . Thus D $ D' ~ D $ D' ; let El and El be the 

orthogonals of the two sums in E and E respectively. 

-~ -.1 
D = D $ El therefore El ~ El 

because D and D are the radicals of the two isometric spaces. 

3. Let El , El be as at the end of the previous step. There are 

metabolic decompositions 

(15) 

Since e = 0 we find that E* 
2 

is ~-dense. Furthermore 

30<P = 30<P = <pE 
2 

Yet we cannot conclude that E2 ~ E2 by a stability 

argument since we won't have Tell E211 , "E 2 " (both spaces can be an­

isotropic because we do not assume (10)). However, by taking orthogonals 

in the spaces at the end of step 1 we find that 

(16) 

and, of course, an analogous expression for R~*~~ . Since D $ R 

rad(R~*~~) by (16) we can conclude from (13) that 

(17) 

Since thus (jj) is inherited by (R,E l ) 

a reduction to the case where b = e = d = e 

on we drop the subscript 1 in "El" , "El" . 

4. (17) and the fact that E = E*~~ 
2 2 

(R,E l ) we have achieved 

9 = m Yl = 0 . From now 

can be used to elaborate on 

the metabolic decompositions (15). We shall make use of the following 

simple fact 
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Lemma 3. Let E be a ~O-dimensional nondegenerate ~-hermitean 

space over k with E = E*~~ • Let (A j )j6N be any family of elements 

Aj E II Ell ,T • Then E has an orthogonal basis (ei)iEN such that for 

each Aj there are infinitely many ei' among the with 

Proof of Lemma 3. Assume that have been determined. 

Let A E II E II '- T be prescribed. There is x E E with o 

Since E* is ~-dense it is met by the translate 

there exists such that Xo + em+l E E* • 

Hence ~(em+l,em+l) = A (mod T) • It is clear that a systematic scheme 

can be devised such that each Ai will infinitely often show up when 

carrying through a Gram-Schmidt orthogonalization process for E 

Q.E.D. 

Let then R ffi R' in (15) be the orthogonal sum of the metabolic 

(jEJ) • We have ~R' + ~R~ = ~E • We show how to 

arrange it such that ~R' equals a previously fixed supplement S of 

~E • Since 

cr. E S , 
J 

~~(rj,rj) 

Aj E ~E2 

E S + ~E2 = ~El we have ~~(rj,rj) 

(jEJ) • We now quote Lemma 3 and may 

assume that E2 has an orthogonal basis ~ where for each plane P j 

k(r.,r~) with A. f T there is a different member 
J J J 

!II with 

~(e., , e.,) = A. (mod T) • For each plane P. with 
J J J J 

we carry 

through a change of basis in the 3-dimensional space P j ffi (e j ,) 

according to the schema 

k(rj,rj) ~ (e j ,) = k(rj,rj+ej ,) ~ (ej,+~(ej"ej,)rj) • 

We obtain thus a new metabolic decomposition E = (REBR") iJj E' with 
2 

~E2 = ~E2 and ~R" c S (and hence equality). We may therefore assume 

that in (15) the spaces ~R' and ~R' c SIT are prescribed supple-

ments of ~E2 and ~E2 in ~E = ~E respectively. 
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5. Let I and I be supplements of 35 in 37 = E and 35 

in E respectively with ~I = ~I • By what we said at the end of the 

previous step there exist metabolic decompositions (15) with 

(18) ~R' ~I 

Because dim R is infinite the spaces R ffi R' and R ffi R' are stable, 

hence by (18) they are isomorphic. In view of (17) we have reduced the 

problem to the case E R ffi R' , E R ffi R' , Le., 

b c. = d e = 6 = 9 = h = m n = 0 

E*J.J.=E 

-t 

E* 
a 

R=RJ. 

a=~o 

(0) 

We choose supplements I, I of E* in E and E* in E respective­

ly; they can be changed mod E* , if necessary, to achieve I ~ I . If 

we let To be any isometry between I , I we may quote Principle I of 

IV.10 and obtain an isometry E ~ E which maps R onto R. This 

finishes the proof of Theorem 3. 

9. The case of Witt decompositions reviewed 

Let again R be a totally isotropic subspace in a E-hermitean 

nondegenerate space (E,~) • Assume dim R to be infinite. We fix some 

metabolic decomposition of E, 

(19) E (RJ..1. ffi R') Et Eo 

for the totally isotropic R.I..1. and define a new form ~ on E x E 

as follows: Set ~ identically zero on R' x R' and let ~ coincide 
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with ~ on R~~ x (R~~$ R' $ Eo) and (R' ffi Eo) x Eo • (E,o/) 

degenerate and Witt decomposed for R~~ 

is non-

We continue to assume that the division ring has finite dim SIT . 

Hence both (E,~) and (E,o/) are quasistable. Their isometry classes 

are characterized by the isometry classes of E*~ and by ~E , ~E*~~ 

in SiT. We can prove equality of these invariants if (E,~) satisfies 

(20) R~ + E* E 

(21) R~~ + E*~ 

Lemma 4. Let dim SiT < and assume that R in (E,~) satisfies 

(20) and (21). Then the space (E,o/) defined above by means of the de-

composition (19) is isometric to (E,~) . 

Proof. We show that all the pertinent invariants can be expressed 

in (Eo'~) of (19). As 0/ coincides with ~ on Eo the assertion 

will follow. Since R~ = R~~ + E by (19) we get from (20) that 
o 

(22) ~E 

We turn to the isometry class of E*~ • Notation: if 

X~o = X~ n Eo ; for example 

Therefore, by (21) 

(23) R~~ + E*~ R~~ ffi E*~O 
o 

x C E we set 
o 

Since E is nondegenerate it follows from (20) that the sum R~~ + E*~ 

is direct and orthogonal;we obtain from (23) that 

(24) E*~ ~ E*~o 
0 

From (20) we get E*~~ = E* + E*~~ n R~ E* + (R~~+E*~)~ . Hence by 

E*~~ = ~ 
+ R~.l. + E*~o~o (23) we obtain E* + (R~~+E* o)~ E* . Therefore, 

0 0 



( 25) 
.L .L 

cpE* 0 0 
o 
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From (22), (24), (25) we obtain (E,c!» "" (E,'I') as asserted. Since 

E*.L n R.I..1. = (0) by (20) and 

from Theorem 3 that there is an isometry (E,c!» "" (E,'I') which maps 

R.I..1. onto R.I..1. • Hence (E,c!» admits a Witt decomposition for the 

totally isotropic R.I..1. 

Of course, when (20) holds then the index i = dim E*.I..I./E*.I..I. n (R.I.+E*) 

vanishes and the proof of Theorem 3, in its last step, sets up a Witt 

decomposition for R. A direct proof of Theorem 3 which does not manu-

facture a Witt decomposition in its course seems possible only when (10) 

is assumed (such a proof is the proof of Theorem 2) • 

10. Remarks on related results (Principle II) 

The sample which makes up the present chapter is atypical in one 

aspect: The relevant lattice is distributive. A nice example of a non-

distributive lattice is given by Moresi in [3] : 

Theorem 4. Let the division ring have finite dim SIT • Assume 

that F is a .I.-dense subspace in the nondegenerate E-hermitean space 

E with .I.-closed E* • The orthostable lattice V(F,E*) generated by 

F and E* in L(E) is finite; it has 37 elements in general and is 

given by the following diagram 



determine ~ on nu tne ~_densit'i of 
diagratn • D~ 
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One can prove the following 

Theorem 5 ([2]). Let F and E be as in Thm. 4 and dim E = ~o . 

Assume that F is quasistable (the case if and only if F contains an 

infinite dimensional totally isotropic subspace). Then the orbit of F 

under the orthogonal group is completely characterized by the space 

F n E*L (left pointwise fixed) and the indices dim E/(F+E*L) , 

dim(F+E*L)/(F+E*L*) , dim(F+E*L*)/F , dim(FnE*L)/(FnE*L*) 

The proof is given with all the necessary details in [2]. It has 

the remarkable feature that the lattice ~V(F,E*) in the value space 

SiT does not enter the scene. It has the ~ feature of having to deal 

with a nondistributive lattice. For the benefit of the reader who wants 

to investigate similar cases we shall formulate here a strategy which 

has proved helpful to us in many cases ([2]). A model application of 

this strategy is given in the course of proving the "Arf theorem" in 

Chapter XVI. 

Let V, V c L(E) be not distributive and assume that a lattice 

isomorphism T: V + V has to be squeezed through to a linear 

in the underlying vector space. Since V contains ~C 
lattice we do have a real obstacle. For, if we define ~ on 

'V map T 

as a sub-

A and 

B - say by recursion - such that ~(A) = AT 

is automatically decided upon as C c A + B 

~(B) = BT then ~(C) 

vJill we have ~ (C) c C T ? 

'V 
As T has to be an isometry on top of it we see that the problem may 

be overdetermined in various ways and prohibit a solution. 

If the indices in ~C are finite and if there are only 

finitely many such nondistributive spots in V it may happen that one 

is able to start the recursive construction of 
'V 
T k>y a ~ : W + W 

000 

where the finite dimensional Wo covers all the nondistributive places 

in V; then one is done in view of the result in the distributive case. 
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We shall now give a precise version of this natural idea. The 

verification of its validity is left to the reader. 

Principle II. Let (E,~) be a nondegenerate E-hermitean space 

of dimension ~ ~O . Let V c L(E) be a complete sublattice which is 

stable under the operations X ~ X~ and X ~ X* := {xEX I ~(x,x)ET} 

and in which compact elements are joins of join-irreducibles. Let 

v c L(E) be a second lattice of this kind and T: V ~ V a lattice 

isomorphism which preserves indices (= dimensions of quotients of neigh-

bouring elements in the lattices) and which commutes with ~ and * 

(defined on the lattices). 

Assume that there exist finite dimensional subspaces Wo ' Wo c E 

and an isometry '" T : W + W with 
000 

(26) ~ (W nA) (W nAT) for all A E V 
o 0 0 

(27) o (Wo+A t ) W + nA (At EV) 
0 t t 

(28) (\ (W +A ) W + f\A (A EV) 
o t 0 t t t 

and such that condition (15) of Principle I in IV.IO is satisfied. 

In order that '" T admits an isometric extension 
o 

that 

induces the lattice isomorphism T it is sufficient that the following 

condition holds. 

(29) 

If X E V is join-irreducible and compact but not 

join-prime then there exists a subspace HeW 
o 

which is a linear supplement in X of the immediate 

antecedent of X. 
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CHAPTER NINE 

INVOLUTIONS IN HERMITEAN SPACES IN CHARACTERISTIC TWO 

1. Introduction 

Fields and forms are as specified under the caption of Chapter 

VIII. In addition we shall often assume that the field is such that 

(0) 
there is only one isometry class in dimension ~O 

of nondegenerate trace-valued £-hermitean forms. 

Hence all nondegenerate ~O-forms will be quasi stable here if (0) is 

in force. 

* 

We shall classify the involutions I in the orthogonal group of 

an £-hermitean space (E,~) in dimension ~O . The problem is trivial 

in characteristic not two because then (E,~) splits orthogonally in­

to the spaces ker(I-1) and ker(I+l) . In characteristic 2 involutions 

are puzzling. We shall treat in full generality the case where (E,~) 

is trace-valued and the field satisfies (0) (Theorem 2 in Section 7) . 

In finite dimensions or, more generally, when im(I-l) is ~-closed, 

then the problem is tantamount to classifying quasistable spaces over 

the given field; in general, the question is more complex but still of 

the same degree of difficulty. The solution which we develop here makes 

it quite evident that without investing some serious work into lattice 

computation there can be no hope of mastering the problem. 

As a side result we obtain the missing half to a result by 

Kaplansky. In Theorem 3 of [lJ he showed that the self-adjoint linear 

transformations U with U2 = 0 in a space of countable dimension, 

equipped with a symmetric form over a quadratically closed field of 

chacateristic not 2, are determined up to orthogonal similarity by 
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three cardinal number invariants. An entirely analogous result holds 

in characteristic 2 but then seven cardinal number invariants are 

needed. 

2. The form derived from an involution 

Let char k 2 and (E,~) be nondegenerate. If I: E + E is 

an isometry with 12 = 1 (involution) we define U: E + E by 

(1) I 11. + U. 

Since 12 1 we find 

(2) u2 o • 

Since I preserves ~ we find by (2) that ~(Ux,Uy) 

x , y E E and 

(3) ~(Ux,y) + ~(x,Uy) o • 

o for all 

(U is self-adjoint with respect to ~ .) Conversely, if U: E + E 

is a linear map with (2) and (3) then (1) defines an involution. 

We now define a new sesquilinear form ~ on E x E by 

(4) ~(x,y) := ~(Ux,y) . 

Since U is self-adjoint the form ~ will be E-hermitean provided ~ 

is E-hermitean. The form ~ is highly degenerate; its radical is the 

kernel of U, hence rad ~ has the same dimension as E if dim E 

is infinite and is at least of dimension ~ dim E when E is finite 

dimensional. We call ~ the form derived from the involution I of 
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3. Orthogonal similarity 

If I is an involution of (E,~) and D E O(E,~) an arbitrary 

element of the orthogonal group then 

(5) I 
-1 

D·I·D 

is likewise an involution. In this chapter we are interested in the 

"types" of involutions which the space (E,~) admits. Therefore, we 

shall not consider I and I as different since they have like de­

finitions with respect to congruent bases m and mD of E . Thus 

the question arises: when are two given involutions orthogonally 

similar? Now if (5) holds then D is an isometry E ~ E with respect 

to either form ~ and ~ (E,~,~) "" (E,~,iji) The converse is 

equally obvious; if D: (E,~,~) + (E,~,~) is an isometry then 

-1 -1 -1 -1 -1 - -
~(DUD x,y) = ~(UD x,D y) = ~(D x,D y) = ~(x,y) = ~(Ux,y) for all 

x , Y E E . Hence we can conclude (5) if (E,~) is nondegenerate. Let 

us state this simple but important fact as 

Lemma 1. Two involutions I, I of the nondegenerate space 

(E,~) are orthogonally similar if and only if (E,~,~) and (E,~,iji) 

are isometric. 

4. A special case 

Results of Chapter VII will allow us to decide the question of 

orthogonal similarity in important special cases. Let I = i + U be 

an involution of (E,~) and set J:= im U, K:= ker U . By (2) and 

(3) we have 

(6) K • 

Since from now on we shall officially assume dim E to be countable 

we can use metabolic decompositions for the totally isotropic J~~ , 
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E = (J~~~L) ID E . Since E C J~ = K we see that I is the identity 
o 0 

on the orthogonal summand Eo. For certain investigations it will be 

no loss if we neglect Eo' i.e. if we assume that 

(7) J~~ K • 

Lemma 2. Let (E,~) be a nondegenerate £-hermitean trace-valued 

space of dimension ~ ~O . If the involution T = ~ + U has (7) and 

~-closed J = im U then, for I = ~ + U a second involution of this 

kind, an isometry (E,~) ~ (E,~) implies an isometry (E,~,~) ~ (E,~,~). 

Proof. As ~ is trace-valued we have Witt decompositions 

E = K ~ L, E = K ~ L • Since K rad ~, K = rad ~ we obtain 

from (E,~) "" (E,~) an isometry Dl : (L,~) ... (L,~) We show that 

Dl has a transpose D2 : K ... K with respect to the pairings (L,K) 

(L,K) sponsored by ~ Indeed, for given - E is a unique . x K there 

Y E L with x = Uy (since J = J~~ = K ). Therefore, ~(x,DIZ) = 

~(Uy,DIZ) 
- - -1- -1-
~(y,Dlz) = ~(Dl y,z) = ~(UDI y,z) for all Z E L . Thus 

- -I-x ~ UD I Y is the transpose D2 of Dl . Set 
v -1 
Dl := D2 • It is now 

clear that if we define a linear map D: E ... E by DIL = Dl ' 

then D is an isometry for both ~ and ~ . The mapping D just con-

structed is not, of course, the only solution. 

We can now apply the results in Chapter VII on the classification 

of quasistable spaces (E,~) . Since such spaces are infinite dimen-

sional we should have that dim J = ~O in the situation of Lemma 2. 

If dim J is finite then I is the identity on a subspace of finite 

codimension in E . The discussion of such isometries is actually a 

problem in finite dimensions (by virtue of Lemma 2). We shall dismiss 

it for the moment and assume in this section that 

(8) dim E/ker (1-1.) ~o . 
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We shall need the k-vector space SiT associated with the 

division ring (k,*,E) • With the involution I of (E,~) we can 

associate the k-vector space homomorphism ~: E -+S/T defined by 

(9) ~: x ~ ~(x,x) + T ~«lI.+I)x,x)+T E SIT 

~ has to be evaluated on the closure (with respect to ~) of the 

trace-valued part of (E,~) which we formally introduce by 

(10) A := {x EEl ~ (Ux,x) E T} • 

The closure of A, with respect to ~ , is (U(UA)~)~ which equals 

(cf. Lemma 3 in Section 6 below) (JnA~)~ and hence A~~ as J is 

assumed closed in (E,~) . Thus, if the division ring enjoys property 

(0) then (E,~) and (E,W) are isometric if and only if the following 

hold 

(11) (~ with respect to ~ 

(12) ~E ~ as defined in (9» 

(13) (~ with respect to ~ 

Finally we remark that it is possible to get rid of the restriction 

(7) if we assume 

(14) (J~ ,~) -~ (J ,~) • 

We summarize our considerations in the following 

Theorem 1. Let k be a division ring with property (0) and E 

a nondegenerate E-hermitean trace-valued NO-dimensional k-space. Let 

I and I be involutions of (E,~) with (8) and assume that 

J := im(I-l) J := im(I-li) are ~-closed. 

In order that I and I are orthogonally similar it is necessary and 

sufficient that (11), (12), (13) and (14) hold. 
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It is not difficult to supplement Theorem 1 by listing canonical 

rep,resentatives for the involutions with closed J. We shall give a 

complete list after the general case has been discussed. 

5. A lattice material to the solution of the general'problem 

The method of the previous section to establish orthogonal simi-

larity of two involutions I ,I in (E,~) could be pushed one step 

further - instead of assuming J = J~~ it would suffice to assume that 

J + A~ = J~~ . However, if no assumptions are made on J then the 

isometry D: (E,~) ~ (E,~) which gives I = DID-l has to be con-

structed anew from scratch. The problem arises which obvious invariants 

should be observed in order that the recursive construction of D is 

not, at the outset, doomed to fail. We observe that the involution 

I: (E,~) ~ (E,~) is also an isometry for its derived form ~ , 

~(Ix,Iy) 
2 

~(U x+Ux,y+Uy) = ~(Ux,y) = ~(x,y) • Hence we have the follow-

ing commutative diagram of isometries 

(E,~,~) 
D (E,~,iY) -----+ 

(15) I 1 1 I 

(E,~,~) -----+ (E,~,iji) 
D 

This leads us to the following consideration: 

Definition. Let I be an involution of (E,~) • 

V(I) is the smallest sublattice in the lattice 

(16) L(E) of all subspaces of E which contains (0), 

E and A (defined in (10» and which is stable 

under ~ and U: = jL + I . 

V(I) is an invariant attached to the (orthogonal) similarity 

class of the involution I • Notice that the derived form of the in-
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volution does not intrude itself upon the definition of V(I) 

The lattice V(I) admits two operations, ~ and U . If I is 

orthogonally similar to I then the map D in (15) induces a lattice 

isomorphism t: V(I) ~ V(I) which preserves indices (dimensions of 

quotients of neighbouring elements in the lattices) and which commutes 

with ~ and U . Furthermore t commutes with the maps ~ and ~ , 

or rather, with the maps from L(E) into L(S/T) induced by ~ and 

~ . We shall not make a difference between ~ , ~ and these induced 

maps, thus 

V(I) t 

(17) ~~ 
L(S/T) 

is commutative. 

In the situation of closed J, as assumed by Theorem 1, the 

lattice VII) looks as follows 

E 

(UA)~ 

U(AH)=(UA)H 

UA 

(0) 

With this lattice in view let us look at Theorem 1 again (we may omit 

(14»when trying to grasp what is at stake). Condition (11) & (12) & (13) 
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is equivalent with (11) and the existence of a T which makes the 

diagram (17) commutative. Clearly, the existence of a commutative (17) 

appears to be the vital part in Theorem 1. In this setting the assump­

tion that J and J be closed seems rather ad hoc and superfluous. 

And superfluous it is! We handed over the problem to Studer who suc­

ceeded in [2J to prove our conjecture that (11) and a commutative (17) 

suffice for the general case as well. To accomplish this it was neces­

sary to compute the lattice V(I) in order to be able to construct 

an isometry D: (E,~,~) + (E,~,~) that induces the given T (cf. 

Section 8 below). 

We terminate this section by presenting StuderS lattice V(I) as 

given in [2J. V(I) turned out to be finite and distributive; it con­

sists of the following spaces (cf. the diagram on the next page). 

1= (0) 

2=UAnU(UA)~=A~nUA 

3=A~n(UA)~~ 

4=U(UA)~=JnA~ 

5=A~ 

6=UA 

7=(UA+A~)n(UA)~~ 

8=UA+U(UA)~ 

9=A~+UA 

10=U (AH) 

X 32 

UX 20 

a. := dim 32/31 

o := dim 25/24 

31 

17 

12=U(A~~)+U(UA)~ 23=J~=K 

13=A~+U(A~~) 24=An(UA)~ 

14=Jn(UA)~~ 25=(UA)~ 

15=(J+A~)n(UA)~~ 26=A 

16=(UA)~~ 27=A+(UA)~ 

17=U(UAnU(UA)~)~ 28=A~~ 

18=(J+A~)n(A~+(UA)~~) 29=A~~+(UA)~ 

19=A~+(UA)~~ 30=(U(UA)~)~=(JnA~)~ 

20=J=UE 31=(A~nUA)~ 

21=J+A~ 32=E 

30 

14 

29 28 

12 10 

i3 := dim 31/29 

11 := dim 22/21 

27 26 

8 6 

25 24 23 

4 2 1 

y := dim 29/27 

\! := dim 23/22 
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32 

31 

30 
The lattice V(I) of 

29 S 
Definition (16) for 

28 
27 Y 

arbitrary division 

26 rings with finite 

25 dim SjT 

4 

ct 

23 

v 

22 

20 6 

2 

1 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

X.L 32 31 29 30 28 25 25 24 24 25 25 24 24 25 25 25 

X 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

X.L 24 24 24 23 23 23 22 19 16 5 3 5 3 4 2 1 
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In the next section we shall give clues for the verification of 

the correctness of the above diagram. 

* 

6. Remarks on the lattice 

The first thing to check in the diagram is, of course, the in-

elusions. As an illustration we shall consider the following two cases: 

(18) 10 c 14 17 c 18 • 

(See VIII.3 as far as general remarks on the procedure are concerned.) 

The first inclusion is easy. 14 = 20 n 16 by definition and 10 c 20 

is obvious. The map U = ~ + I is continuous in the weak linear topo-

logy cr(~) and therefore preserves accumulation; hence 10 c 16 . In 

order to prove the second inclusion (and many other relations in the 

lattice) we need first that 

(19) 28 n 25 c 26 (hence 2Sn25 24 ) . 

Let t E A~~ n (UA)~ and compute ~(Ut,t) . Since, by adjointness, 

(UA)~ 

Thus tEA by the definition of A. This proves (19). We have used 

a simple property of U and continue to use it and similar properties, 

such as are expressed in the following 

Lemma 3. If U: E + E is self-adjoint and has U2 = 0 then for 

all subspaces FeE we have (notation K = ker U , J = im U ) : 

(i) UUF = (0) (ii) U-1U-1F = E 

(iii) U-1UF F+K (iv) UU-1F = Fm 

(v) (UF)~ U-l(F~) (vi) U( (Fm)~) = (u-1F)~m 

(vii) U(Fn(UF)~) = UFnU«UF)~) 
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The proof of the lemma is very easy. 

Let us now turn to the second inclusion in (18). We have 18 = 

19 n 21 by definition of 18 • Since 17 c 20 c 21 is entirely obvious 

we are left with the verification of 17 c 19 . We rewrite 17 by using 

in turn (vii), (v), (iv) of the lemma and find 17 := U(UA n U(UA)~)~ = 

U«U(A n (UA)~»~) = UU-l«A n (UA)~)~) = (A n (UA)~)~ n J C (An(UA)~)~ = 

24~ . On the other hand, since dim A~ ~ dim SIT < 00 , we have that 19 

is ~-closed, 19 (A~~ n (UA)~)~ , and thus by (19) we read off that 

19 = 24~ • As we have shown that 17 C 24~ we are through with veri-

fying 17 C 19 . 

The remaining inclusions are easier and are left to the reader. 

Stability under U is quite obvious: The interval [1,23] is mapped 

onto 1 and the interval [23,32] is mapped onto the interval [1,20]. 

E. g., U(30) = U(U(UA)~)~ = UU-l«UA)~~) = (UA)~~ n J =: 14 by the 

above lemma. 

The legend to the lattice is drawn up in a fashion as to make 

apparent stability under U and ~ . Therefore it is appropriate to 

check ~-stability before turning to the sums and intersections. We 

find X~ without any problem except for X = 19 . In order to find 

19~ let us first verify that 24 is ~-closed, 

(20) 24~~ 24 . 

All we need for this is to show that dim 24/23 < 00 (as 23 is~-

closed). Now dim 24/23 ~ dim 25/23 and dim 25/23 can be estimated 

by using a Witt decomposition of E for the totally isotropic J~~ , 

E = (J~~~L) ~ Eo • We can read off K = J~ = J~~ ~ Eo' A = 

(J~~~Eo) ~ (AnL) and dim 25/23 = dim«U(AnL»4 nL ) ~ dim J/U(AnL) 

dim L/A n L = dim E/A ~ dim SIT < 00 • This establishes (20). Now we 
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had already shown that 19 = 24~ when checking inclusions. Therefore 

we have 19~ = 24~~ = 24 as asserted by the table. 

We now turn to the intersections. The following assertion is cruc­

ial for all that follows 

(21) 3 n 4 2 • 

The shortest way to get (21) is as follows: By the definition of 8 

we have 8~ = (6+4)~ = 25 n 30 , hence 

(22) 25 n 30 24 • 

On the other hand we have 

(23) dim 25/24 dim 31/30 < '" 

because the chain 32 ~ 31 ~ 30 is mapped in the chain 1 c 2 c 4 by 

~ - which preserves the two indices as all three spaces are ~-closed -

and because the chain 23 c 24 c 25 is thrown on the same chain 

1 c 2 c 4 by U (which preserves the two indices since ker U = 23 ). 

From (22) and (23) we obtain 

(24) 25 + 30 31 . 

If we pass to the orthogona1s in (24) we get 16 n 4 = 2 and therefore 

2 c 3 n 4 c 16 n 4 = 2 . This proves (21). The remaining intersections 

X n y X meet irreducible, Y arbitrary) are now quite easy to 

handle. 

There remain the sums. So many relations have accumulated by now 

that this verification presents no problems. E. g. from 30 n 29 = 28 

we obtain, by taking orthogonals, that 

(25) 3 + 4 5 • 
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Hence - in order to have yet another example - 4 + 7 

9 n (4+16) = 9 n (3+4+16) = 9 n (5+16) = 9 n 19 9 

4 + (9nl6) 

Remark. We end this section by observing that V(I) happens to 

be stable under 

Each X n J 

We have 

(26) .L 

is of the shape 

o U 

UY with Key E V (I) 

o .L 

since this holds in all of L(E) by (v) of Lemma 3. 

7. The classification theorem 

so Y . 

We shall now state the general result hinted at in Section 5. It 

is assumed that the division ring (k,*,E) satisfies condition (0). 

We jot down once more the assumptions accumulated thus far: 

The division ring k is of characteristic 2, it has 

dim SIT < 00 , and there is only one isometry class of 

nondegenerate trace-valued E-hermitean spaces over k 

in dimension ~O • 

The space (E,~) will always be assumed nondegenerate, trace-valued 

and of dimension ~O • For I an involution of (E,~) the derived 

form ~ induces a map L(E) + L(S/T) via the homomorphism W in (9). 

It throws the lattice V(I) c L(E) homomorphically into the lattice 
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321/J 
311/J 

CI. 

301/J 

291/J S 

281/J 

271/J 
Y 

0 (0) =261/J 

1/JV (I) 

We pause to recall the case - dismissed earlier by (8) - where 

dim J is finite (it would be inconvenient to formally exclude this 

case). By the Lemmas 1 and 2 the similarity class of I is still 

characterized by the isometry classes of (E,~) and (J~,~) respective-

ly (cf. (14)). The first was characterized by (11) I (12) I (13) for 

dim J infinite; when dim J < 00 we have to replace (13) by the assump-

tion (A,~) ~ (A,~) The nondegenerate part of (J~,~) is of dimension 

v = ~O when dim J is finite. Hence by virtue of (0) the isometry 

class of (J~,~) is fixed by the dimension of its radical (which is 

J ). 

We are now ready to state the classification theorem 

Theorem 2. Let I and I be involutions of (E,~) . We shall 

distinguish between the cases "dim J < ~o" (Case I) and "dim J = ~o" 

(Case II). In order that I and I be orthogonally similar the follow-

ing are necessary and sufficient. 

In Case I: 

(j) ((UA)~ ,~) ~ ((UA)~ I~) i.e. (25 I If) ~ (25,~) 

(j j) (A,~) ~ (A, if) i.e. (26 ,~) ~ (26,h 

(j j j) 1/JE 1/JE 

(jv) dim J dim J 
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In Case II: (j) and the following two 

(v) 
.1 -.1 

(J ,4» == (J ,4» , 

(vj) there exists an index preserving lattice isomorphism 

T: V(I) + V(I) which maps A on A and is com-

patible with the operations .1 ,U and .1 ,U on 

the lattices and which renders commutative the dia-

gram (7). 

Condition (j) & (v) & (vj) is equivalent with the conjunction of (j), 

(v) and 

(vjl) !/IE !/IE 

(vj 2) !/I (JM.1).1 hJnA.1).1 i.e. 3 o !/I 30~ 

(vj 3) !/IA.1.1 ~A.1.1 i.e. 28!/1 2"8!/1 

(vj 4) 1.1 1.1 

A proof of Theorem 2 for symmetric forms is given in [2J. We shall 

not reproduce it here in detail but we shall sketch the principal 

features of such a proof. This brings us to the next section. 

8. Remarks on the proof of the classification theorem 

Case I of Theorem 2 presents no problems; what is at issue is 

Case II. A proof for this case has to produce an isometry 

D (E,4>,'I') + (E,4>,'I') 

which induces a prescribed lattice isomorphism T: V(I) + V(I) If 

J f J.1.1 then the method used to prove Theorem 1 still yields an iso-

metry 

D . o . (JEIlLEElEO ,4> , '1') 

defined on J Ell L Ell Eo C E 

+ 
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analogous Witt decomposition for the totally isotropic J~~). Could 

we not extend Do to all of E? The answer is that we can always ex­

tend Do to (JffiLffiEo ) + A~ but not any further in general. 

In order to prove the first assertion recall that Do arose from 

joining an isometry Dl : (L,~) ~ (L,~) with its contragradient 

01: J + J (with respect to the pairings by ~). As A~ c J~~ we seek 

to extend 01 to J + A~ such that products with elements of L will 

be preserved. Introduce supplements: 

Since 4~ n Ll = (0) and dim Ll is finite we can arrange for 

Al ~ Ll · Al ffi A2 is nondegenerate and hence hyperbolic for ~ 

(look at the diagram: dim A2 = dim 4~/28 = dim 30/28 = S = dim 5/4 

dim Al ). Now it is obvious how to proceed. Let A2 := Dl (A2) and 

£1 := Dl (Ll ) ; then pick Al in analogy to Al The restriction Dll 

of Dl to A2 can be extended to Al ffi A2 ~ Al ffi A2 be joining it 

with the contragradient 
v 
Dll of Dl Since Dl maps A~~ n L onto 

A~~ n L (by virtue of (vj3)) it is clear that we can extend Dl ffi Dl ' 

v 
by joining it with Dll ' to an isometry for ~ (isometry with respect 

to ~ is trivial since J~~ is in the radical of ~). 

As to the second assertion: if x E J~~ '(J+A~) where should x 

be mapped? We have no control whatever over the image 6f (x)~ n L 

under Dl because Dl is immune from any intrinsic property that 

relates to the embedding J C J~~ . That is why the recursive con-

struction for D has to be repeated from scratch. 
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Thus, we see that we can get a proof for Theorem 2 almost free 

via earlier results if ~ = 0 (i.e. J + A~ = J~~). If ~ f 0 then 

one has to start allover again and - as we shall see - the old and the 

new construction run entirely alike; one merely has to adapt the course 

of recursion to ~ being nonzero. This nicely illustrates a sigh by 

Bani: Change a trifle and you can't reduce the problem to the former 

situation but have to start allover again: We think that this true 

remark pinpoints an intrinsic feature of infinite dimensional linear 

algebra and not some inadequacy of the method. 

We shall now sketch the construction of a D with (15) ab ovo. 

The first thing to do is to reduce the problem to the case where 

(28) v o . 

"v = 0" is achieved by chopping off the boring summand Eo' How to 

get rid of o? Pick a supplement P with 24 ffi P = 25 . Hence 

2 ffi UP 4 A glance at the diagram and the ~-table reveals that 

H := P ffi UP is nondegenerate. Hence E = H ffi H~ is a decomposition 

into U-invariant subspaces. By the assumptions (j), (vjl) ,(vj2) in 

Theorem 2 (E,~) ~ (E,W) • Pick an isometry and let P be the image 

of P . Then 24ffi P = 25 and we let H = P ffi UP . We can change P 

and P mod UP and UP respectively such that P and P become 

totally isotropic for ,p . Now we join a ~-isometry P ... P with its 

contragradient UP ... UP and obtain an isometry (H,,p,~) ~ (H,,p,W) ; 

further (H~,,p) ~ (H~,,p) by Witt's Theorem for finite dimensions and 

(H~,~) ~ (H~,W) by construction. The assumptions of Theorem 2 are in­

herited by the reduced situations H~ , H~ and here we find 0 = 0 

To then arrive at a = 0 one chops off a summand X ffi Y ffi UX ffi UY 

where X:= 25 n L (= 24 n L as 0 = 0) and Y ffi (30nL) = L . In 

this manner we arrive at a situation with (28) in force; this means 
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that (L,~) has a dense trace-valued part, i.e. that (L,~) is stable. 

The lattice V(I) then is 

E 

AJ.J. 

y 

UE=.J 

U 

V(I) when a = 0 = v 0 

The stable spaces (L,~) and (L,W) - totally isotropic for ~-

are isometric by assumption (vjl) of Theorem 2; A n L is mapped onto 

A n L and, because of assumption (v j 3), it follows that thereby 

AJ.J. n L is mapped onto AJ.J. n L . Therefore one starts the recursive 

construction of a D with (15) on the U-invariant finite dimensional 

space 

where (AnL) ffi C = AJ.J. n Land (AJ.J. nL ) ffi B = E Wo is defined by 

adding analogous objects isometric under (L,~) =:0 (L,iii) • One then 

extends the isometry (W ,~,~) =:0 (W ,~,iii) 
o 0 

step by step by adjoining 
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vectors x from A -- J~~ or from J~~ __ (A~+J) . In the first case 

one tears off 2-dimensional U-invariant spaces that contain x and 

in the second case one simply tears off (x) (J~~ is U-invariant) . 

There are no problems; the reader may, if equipped with the requisite 

patience, supply the details. 

9. On the classification 

of nilpotent self-adjoint transformations 

There are nontrivial instances where (k,*,s) has S = T (e.g. 

in the case of so called involutions of the second kind). In such 

situations the classification theorem is akin to that of characteristic 

not 2. We shall again distinguish the two cases of Theorem 2. 

Theorem 3. Assume that k is as in Section 7 and has S = T . 

Let (E,W) be nondegenerate and of dimension ~O In order that two 

involutions I, I be orthogonally similar the following are necessary 

and sufficient. 

In Case I (dim J < 00 V(I) reduces to the chain (0) C J C J~c E ) 

(i) (E,'!') 2:0 (E,Q;) 

In Case II (dim J = ~O V(I) reduces to (0) c J c J~~ c J~ C E ) 

dim J~/J~~ = dim J~/JH ("\) v") 
(ii) 

(J~ ,w) 2:0 (J~ ,w) in case \) is finite 

(iii) dim J~~/J dim JH IJ (")! ~II) 

Another special case of Theorem 2 worth of mention is described 

in 
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Theorem 4. Let k be a perfect commutative field of character­

istic 2 and ~ a nondegenerate alternate bilinear form on the k-vector 

space E; dim E = ~o . In order that two involutions I and I of 

(E,~) be orthogonally similar it is necessary and sufficient that 

there is an index-preserving lattice isomorphism between the lattices 

of the involutions that commutes with ~ , U and ~ , U . In other 

words (cf. the diagram in Section 5) the (orthogonal) similarity class 

of an involution I is characterized by the following seven cardinal 

number invariants 

(29) 

dim J~/J~~, dim J~~/J+A~, dim J+A~/J , 

dim U(A~~)/UA, dim UA/(A~nUA) , dim A~nUA , 

dim JnA~/(A~nUA) 

Here A:= {x EEl ~(Ux,x) o} , U:= I - 1, J:= im U . 

In [lJ Kaplansky had proved that over commutative fields of 

characteristic not 2 in which every element is a square the self­

adjoint linear transformations U with u2 = 0 in a space of count-

able dimension equipped with a nondegenerate inner product are character-

ized by the three invariants 

(30) dim J~/J~~, dim J~~/J, dim J . 

As Theorem 4 also classifies all self-adjoint U with u2 = 0 we 

have here the companion in characteristic 2 to Kaplansky's result. 

We see that the second invariant in (30) has to be refined in two and 

the third invariant in (30) into five invariants when char k = 2 
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10. Canonical representatives 

In finite dimensions we have the following three well known "ir-

reducible" types of involutions: 

First, the nondegenerate spaces El of dimensions < 2 which 

cannot be broken into proper orthogonal summands equipped with the 

involution 1L. 

Second, the hyperbolic planes E2 = k(e,e') equipped with the 

involution 
-1 

1 2 : e t+ A e' , e' ~ Ae where the parameter can vary 

in S ..... {a} 

Third, orthogonal sums of two hyperbolic planes E3 

.l 
k(e,e') ffi k(f,f') equipped with the involution 13: e t+ f , 

e' 1+ f' fl+e, f'l+e' 

With these three types one can build a representative in each 

similarity class when dim J < ~o (Case I of Theorem 2). By taking 

infinite sums one gets - trivially - certain cases with dim J = ~o 

We shall see that there are just two more genuinely new possibilities 

in dimension ~o (Types 1 and 5 below). Let us give a complete list 

of the "irreducible" types when dim J = ~o (Case II in Theorem 2) . 

~: a = S = y = 0 = v = ]..I = 0 Let E be an orthogonal 
0 

sum of ~O spaces of the kind E3 above. JOining all involutions 

13 on E3 defines I on E 
0 0 

~: ]..I = 1 and the other indices are zero. Let Eo ' 10 

be as in the previous example and set E = Eo ffi (a) where the vector 

a is isotropic and has product 1 with all basis vectors of the de-

fining basis for 

E 
o 

I . Set 
o 

Ia = a and let I coincide with I on 
o 
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~: all indices are zero except for v . Pick a space El 

as above with ~ as the involution. Join it with a space of Type 0 

( v = 2 iff (k,*,£) = (k,:I1.,l». 

~: 0 = 1 and the remaining indices vanish. Pick a space 

E2 as above with the parameter A E S ,T and join it with an example 

of Type O. 

E=A E=A E 

E=A ~O ~O ~O 
A 

~O 
JJ.=JJ.J. JJ. 

JJ. 
\1=1 v 0=1 

J 0=1 UA 

~O 
J J=JJ.J. ~O 

~O ~O 
AJ. 

(0 ) (0) 

(0 ) (0 ) 

Type 0 Type 1 Type 2 Type 3 

~: all indices but yare zero. For a fixed A E S ,T 

form an orthogonal sum of ~O copies of E2 as given above. 

~: B is the only nonzero index. Let E4 ' 14 be as in 

the previous case. Set E = E4 ffi (a) where the isotropic a has all 

products 1 with the elements of the first half of the defining sym-

plectic basis for 14 and has products A with the elements of the 

second half. Set Ia = a and let I coincide with 14 on E4 • 

~: a = 1, B = y = 0 = v = \1 = O. Let Eo ' 10 be of 

Type 0 and add two copies of E2 with equal A E S ..... T E 

.l.. .i 
Eo ffi E2 ffi E2 . Join the involutions on the summands to get one on E . 
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E=AJ.J. E E 

y=l S=l 0.=1 

A A=AJ.J. A 

~O ~O 
NO 

(UA)J. 
J JJ.=JJ.J. 

0.=1 
y=l J 

UA S=l 0.=1 

NO 
UA UA 

N NO AJ. 0 
(0) Jl,J. 

(0) 
S=l 0.=1 

(0) 

Type 4 Type 5 Type 6 

* 
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CHAPTER TEN 

EXTENSION OF ISO~£TRIES 

o. Introduction 

The main result in this chapter is a theorem in [1] on the exten­

sion of isometries ~: V -+ V between ~-closed subspaces of a sesqui­

linear space E (Theorems 5 and 9 below). The crucial assumptions for 

an extension to exist turn out to be equality of the isometry types of 

v~ and ~ and homeomorphy of V and V under ~ with respect to 

the weak linear topology cr(~) attached to the form on E 

In discussing extension problems we have made moderate use of the 

concept of a dual pair. It is possible to eliminate the concept but on­

ly at the cost of perspicuity. We think that the student of forms in 

infinite dimensional vector spaces should be well acquainted with the 

concept of dual pair (without, of course, espousing any beliefs into 

orgies of duality). We have therefore included in the first sections 

some of the classical notions introduced in [7]. Mackey's characteriza­

tion of modular and dual modular pairs of closed subspaces is of inter­

est to us in the light of the results on orthogonal and symplectic se­

paration. (This topic of Chapter VI is taken up again, though in a dif­

ferent vein, in Section 7 below.) 

In Section 8 we have included a short discussion on the log frame 

Theorem. By applying this theorem to the results of Section 5 we show 

how these results can be extended to certain uncountable spaces. This 

application is representative for a host of applications that can be 

made to results obtained in countable dimensions. 
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1. Recall of dual pairs (algebraic formulation) 

Let k be a division ring, E a k-left vector space and E' a 

k-right vector space, , ) : E x E' ... k a nondegenerate bilinear 

form (Le. if (x,y) = 0 for all x E E then y = 0 and,if (x,y) 0 

for all y E E' then x 0 ) . We say that E and E' are dually 

paired by ( , ) or that E and E' form a dual Eair and the like. 

ExamEle 1. Let E' be the set E* := HO~ (E,k) of all k-linear 

maps f: E ... k E* is a k-right vector space under pOintwise addi-

tion and right multiplication by scalars from k • For x E E , f E E* 

we define (x, f) : = f (x) . 

ExamEle 2. Let ~: E x E ... k be a nondegenerate ~-symmetric 

sesquilinear form with respect to the antiautomorphism K k ... k We 

can convert the k-left space E into a k-right space E' E by defi-

ning 
-1 

XA = K (A)X for all x E E and all A E k. Then (x,y) := ~(x,y) 

is a bilinear form on E x E' = E x E . 

ExamEle 3. Let (E,~) and the pairing ( ,) be as in Example 2. 

Consider a ~-dense subspace V C (E,~) , V~ = (0) The restriction of 

( ,) to V x E C E x E sets in duality the pair of spaces V, E 

If E and E' are in duality and X is a subspace of E then 

we set 

(1) XO := {y E E' I (x,y) o for all x E X} • 

For Y a subspace in E' we set yO = {x EEl (x,y) = 0 for all y E y}. 

The operator shares properties familiar with ~ such as: X C (XO)O, 

and calculations on ~ can be carried over to ° without any changes; 

e.g., subspaces X C E which are "orthogonals", i.e. X = yO for some 
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Y CE' , are "closed" in the sense that (XO)O x • In particular we 

have: 

(2) U and dim V /U < 00 then (VO)O = V. 

Example 3 above illustrates how "subpairs" can be formed from gi-

ven pairs. The general definition runs as follows. If V C E is an ar-

bitrary subspace in E then the pairing (, : E x E' + k induces 

a nondegenerate bilinear form on V x (E'/VO) We mean this induced 

form when we say that (, ) dually pairs V and E'/Vo ; this dual 

pair is called a subpair of the dual pair (E,E') . Symmetrically, if 

W is a subspace of E then induces a bilinear form on 

(E/W) x WO ; however, in order to obtain a nondegenerate induced form 

we have to require that W be closed, (WO)O = W . With this proviso 

added we call (E/W,WO) a quotient pair of E, E' . Finally, if (E,E') 

and (D,D') are two dual pairs over k we can put into duality the 

product spaces E x D , E' X D' by the definition «(x,z), (x',z') := 

(x,x') + (z,z') the dual pair thus defined is the direct product or 

the direct sum of the dual pairs (E,E') and (D,D') . (In the general 

case of an arbitrary family (El,El')l E I of dual pairs we define a 

direct sum by setting into duality the spaces 

( (xl) , (y l» : = 

Ell E 
I 1 

and IT E ' 
I 1 

via 

We finish this short rappel with the definition of homomorphisms 

between pairs. If E and E' are in duality then the two homomor-" 

phisms E' + E* , E + (E')* defined by y ~ (.,y) and x ~ (x,.) are 

injective. It is therefore possible - and useful - to think of E' and 

E as subspaces in the full algebraic duals E* and (E')* respec-

tively (cf. Example 1). Let then (E,E') and (D,D') be given dual 

pairs over k and 
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(3) E o 

a k-linear map. There is the uniquely determined "dual" map cP*: 0* + E* 

defined by (e,CP*d*) = (CPe,d*) (where ( ,) is as in Example 1), 

e E E , d* E D* . We can restrict cP to the subspace D' C D* and get 

a map 

cp* 
E* - D' • 

If D' happens to be mapped inside E' C E* under cP* , i. e., if we 

actually have a map 

(4) 
cp* 

E' -<--- D' (with (e,CP*d') (CPe,d') ) 

then cP in (3) is called a homomorphism of the pair (E,E') into the 

pair (D,D') • If cP is bijective and CP*D' = E' then cP is called 

an isomorphism of the pairs (E,E') and (D,D') We readily check 

that if cP in (3) is a homomorphism of pairs then K := ker cP is 

closed, (KO)O = K • Notice that by nondegeneracy of the pairings there 

can be at most one map cP* satisfying (4); if it exists (i.e. if cP 

is a homomorphism of pairs) then cP* is called the transpose of cP 

and often denoted by tcp. 

Example 4. Let (E,E') be a dual pair and K C E a closed sub-

space, K = (KO)O • The canonical map ~: E + E/K is a _homomorphism 

of the dual pair (E,E') into the quotient pair (E/K,KO) (because 

11* is the map KO c...- E' ). 

Example 5. Let CP: E + D be a homomorphism of the dual pairs 

(E.E'1 and (D,D') • K := ker CP, ~: E + E/K the canonical map, 

if. : E/K + im cP the uniquely determined k-linear map with cP ° ~ = cP 

Then cP is a homomorphism of the quotient pair (E/K, K 0) into the 

pair (im CP, 0'-/ (imCP) 0) (because the dual map CP* = ~* ° if.* maps into 

E' by assumption). 
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Definition 1. Let ~ : E ~ D be as in Example 5. Then the map 

~ is an open homo'llorphism of pairs if and only if the associated map 

$ is an isomorphism of pairs. 

2. Topological setting 

Just as we have defined the weak linear topology o(~) in a ses­

quilinear k-space (E,~) we can define "weak" linear topologies on 

the spaces E, E' of a dual pair (E,E') . The set {yO lye E' & 

dim Y < oo} serves as a a-neighbourhood basis for a linear topology -

called cr(E,E') - on E; symmetrically, the linear topology o(E' ,E) 

on E' , induced by E, has {XO I X c E & dim X < oo} as a a-neigh­

bourhood basis. If k is endowed with the discrete topology then 

o(E,E') and o(E' ,E) are the coarsest linear topologies that render 

the pairing <, ) separately continuous. The closures of linear sub­

spaces Z with respect to these topologies are given by (ZO)O The 

subspace in E* (the full algebraic dual of E consisting of all 

continuous linear maps from the topological space (E,o(E,E')) into 

the discrete k coincides with E' . This follows directly from (2). 

Now we prove 

Theorem 1. Let (E,E') and (D,D') be dual pairs over the divi­

sion ring k and ~: E ~ D k-linear. Then the following are equiva­

lent: (i) 'I' is a homomorphism of pairs, (ii) 'I' is weakly continu­

ous, i.e. continuous with respect to the linear topologies o(E,E') 

and o(D,D') on E and D respectively. 

Proof. Assume (i) and let t'l' be the transpose of '1'. It suffi-

ces to establish continuity of 

Then 

'I' at the origin. Let XO be a typical 

(t'l'X) ° is a neighbourhood of 0 E E neighbourhood of a E D 

and its image, under 'I' is contained in XO . Thus 'I' is continuous. 

Conversely, if 'I' is assumed continuous then we want to show that 
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tcpx E E* actually is in E' for all x in D' . But tcpx = x ° cp is 

continuous, so tcpx E E' by the remark preceding this theorem. Q.E.D. 

We have the following 

Corollary 1. Let cp be as in the theorem. If cp is weakly con­

tinuous then so is its transpose tcp, i.e. tcp: D' + E' is continu-

ous with respect to the linear topologies ~(D' ,D) , cr(E' ,E) induced 

by D and E on D' and E' respectively. Further, cp is an iso-

morphism of pairs if and only if cp is a homeomorphism between the 

topological spaces (E,cr(E,E'» and (D,cr(E,E'» . 

If (E,E') is a dual pair and veE a subspace then there is 

the linear topology cr(V, E'/VO) on V induced via the pairing that 

defines the subpair (V, E' /VO) This topology coincides with the to-

pology induced on V by the topology cr(E,E') on the overspace E. 

If (E,E') is a dual pair and weE a closed subspace then 

there is the linear topology cr (E/v1 , WO) on E/ W induced via the pair-

ing that defines the quotient pair (E/W, WO) This topology coincides 

with the quotient topology on E/W induced by cr(E,E') on E. 

If (E,E') and (D,D') are dual pairs then the linear topology 

cr(E x D, E' X D') on E x D induced via the pairing that defines the 

product pair (E x D, E' X D') is the product topology of cr(E,E') 

and cr(D,D') on E and D respectively. 

From these remarks we obtain the following 

Corollary 2. Let cp be as in the theorem. Then cp is an open 

homomorphism of pairs if and only if cP is continuous and carries 

open sets of the topological space (E, cr(E,E'») into open sets of 

(im Cp, cr (D, D' ) ) (i.e. cP is open in the usual topological sense). 
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Remark 1. If a nondegenerate sesquilinear space (E,~) is con­

ceived of as a space in duality with itself (as explained in Example 2 

of Sec. 1) then the linear topology a(E,E) on E via duality is pre­

cisely the weak linear topology a(~) associated with the form. 

The reader who is interested to learn more about the linear topo­

logies that can be associated with a pairing is referred to §§ 10 - 13 

in [6]. 

3. Mackey's theorem on modular pairs 

Consider a dual pair (E,E') and two arbitrary subspaces M, N 

in E. We have the three subpairs (M,M') , (N,N') , (M+N,(M+N)') 

where M' := E'/Mo etc. The map ~: M x N + M + N defined by 

(5) (m,n) ~ m+n 

is weakly continuous, i. e. a homomorphism of the product pair 

(M,M') x (N,N') into the pair (M+N, (M+N)') 

Lemma 1. ([7], p. 167). The following are equivalent: (i) ~ is 

open, (ii) for each pair y i ' Y:2 E E' with Y i - y i E (M n N)O there 

is z' E E' such that z' - Yi E MO and z' - yi E N° 

Proof. By the definition in Sec. 1 ~ is open if and only if 

for each "functional" f EM' x N' C (M x N ) * that vanishes on the 

kernel K = im ~ { (z, -z) z E M n N} there exists z' E E' such 

that CP*z' = f i.e. z' f Furthermore, by definition of M' 

N' the functional f is induced by a pair (yi,yi) E E' x E' with 

«m,n) If) = (m,yi> + (n'yi> for all (m,n) E M x N 

vanishes on K precisely when y i - y i E (M n N ) ° 

the assertions: 

We see that f 

Now we can prove 

Let Yi I Yi E E' be given elements with Yi - Yi E (n n N) ° and 
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f E KO eli' x N' the corresponding element (yi ' Yi) If we assume 

q> open there is z, E E' with q>*z' = f , i.e. (m+n,z' ) = (m,yi> + 

(n'Yi) for all m E M , n E N 1 thus z' - yi E MO , z' - Yi E N° . 
This proves the implication (i) ~ (ii). 

Conversely, if f = (yi, yi) is in ~ and if (ii) is assumed 

then there is z' with (m,z') = (m,yi) and (n,z') = (n,yi) for all 

m. EM, n EN. From this we obtain q>*z' = f «m,n) ,q>*z'} 

(m+n,z') (m,yi) + (n,yi) = « m , n ), f} , Le. q> is open. 

The importance of this lemma to us lies in the following particu-

larization (cf. the remark at the end of the previous section). 

Theorem 2. Let (E,~) be a nondegenerate sesquilinear space of 

arbitrary dimension, M and N linear subspaces with M n N = (0) , 

a (M) , a (N) , a (Me N) the topologies induced on M, N , Me N respec­

tively by the linear topology a(~) associated to the form. Then the 

following are equivalent: (i) a (Me N) is the product topology of 

aIM) and a(N) , (ii) M~ + N~ = E . 

Indeed, as M n N = (0) the pairs (M , f.1' ) x ( N , N' ) and 

(M + N 1 (M + N >-') are isomorphic pairs so that q> in (5) is a homeo-

morphism for the weak topologies. Furthermore, if M n N = (0) then 

(ii) in the lemma is equivalent with MO + N° = E' 

If we restrict ourselves to the contemplation of closed subspaces 

M , NeE then there is a purely lattice theoretic version of the 

(equivalent) properties (i) and (ii) in the lemma. We first need the 

Definition 2. Let A, B be elements of a lattice L. The ordered 

pair ( A , B) is called a modular pair if 

(6) for all C:;;; B (CVA) II B C v (AIIB) 
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the pair ( A , B) is called dual modular if 

(7) for all C:<: B (CJ\A) VB C J\ (A VB) • 

Clearly, a lattice is modular if and only if all pairs of elements 

are modular (dual modular). We shall not pursue the purely lattice 

theoretic aspect here but turn directly to lattices of subspaces in a 

vector space. (For the general theory we refer to [8] and [9].) 

Let (E,E') be a dual pair of vector spaces and L(E,E'), L(E' ,E) 

the lattices of closed subspaces in E and E' respectively 

( Xl J\ X2 : = Xl n X2 ' Xl V X2 : = (Xl + X2 ) ° ° for Xl = x lo ° , X2 = X2° ° 

arbitrary closed subspaces). Since X ~ XO is an antiisomorphism of 

lattices L(E,E') + L(E',E) it follows that 

(8) 

We assert 

(9) 

The pair (A, B) is a modular pair in L (E,E') if and 

only if the pair (AO, BO) is dual modular in L(E',E) • 

(A,B) is a dual modular pair if and only if A V B A+B 

Proof. Assume that A V B = A + B • l'1e have to show that 

(C J\ A) VB :<: C II (A V B) for all C:<: B (the converse inequality holds in 

every lattice). C II (A V B) = C n (A + B) = (C n A) + B c: (C II A) V B as as­

serted. Assume conversely that A+B" (AVB) = (A+B)OO and pick 

x E (A+B)OO\(A+B) • Set C = B E9 (x) ; Coo = C by (2), thus 

C E L(E,E'). Furthermore CII(AVB) = C. On the other hand (CJ\A) VB = B 

for, if Y E C J\ A then y b+AxEA so AX E A + B and therefore 

A = 0 by the choice of x, hence y E B • Thus (7) is violated. Q.E.D. 

We terminate with the announced theorem by ~lackey ([7], Thm. III-7, 

p. 167). 
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Theorem 3. Let E, E' be a dual pair and M, N closed subspaces 

in E • Then the homomorphism q> in (5) is open if and only if (M,N) 

is a modular pair in L(E,E') . 

Proof. Assume (M,N) modular. By (8) and (9) therefore MO + N° = 

(M n N ) ° . We show that property (ii) of the lemma holds. 

Indeed, if yi - Y2 E (MnN)O then yi - Y2 = m' + n' (m' E MO , 

n' E N°) by what we just said and the vector z' := yi - m' = n' + Y2 
has the requisite properties. Conversely, if q> is open then (by the 

lemma) for x' = x' - 0 E (MnN)O there is z'E E' with z' -x' E MO 

z' - 0 E N° whence x' E MO + N° • We have proved that (MO + N0) 00 = 

( M n N ) ° c n° + N°; because the converse inclusion is trivial we have 

(MO + N° )00 = MO +N°. By (9) and (8) we obtain modularity of the pair 

(M, N) • 

Corollary. Let (E,~) be a nondegenerate sesquilinear space of 

arbitrary dimension, M and N ~-closed subspaces of E with 

M n N = (0). (M, N) is a modular pair in the lattice LJ.J.(E) of 

~-closed subspaces of E if and only if M~ + N~ E. (M, N) is a 

dual modular pair in L (E) 
~~ 

if and only if M + N is 

4. Isometries between dense subspaces 

~-closed. 

Let (E,~) be a nondegenerate sesquilinear space and 

(10) v v 

an isometry between ~ -dense subspaces V, V in E. If we make use of 

the dual pairs ( V , E) , (V, E) with the pairings given by ~ (cf. 

Example 3 in Sec. 1) then the discussion of an extension q> • E + E 

of q>o becomes quite trivial. For, if there is such a q> then q>-l 

coincides with the transpose 

(11) E 
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of the homeomorphism ~o and is thus uniquely determined. Conversely, 

if we make the (necessary) assumption that ~o be a homeomorphism with 

respect to a(~) then there exists the transpose ~o ; the map 

~ := t~o-l coincides on VeE with ~o . Hence the vector space auto-

morphism ~ extends ~o and satisfies, by definition, the orthogona-

lity relations 

(12) ~ (~v , ~e ) ~(v , e) (vEV,eEE). 

The map ~ is continuous with respect to the topologies a ( E , V) and 

a( E , V) and, obviously, need not be continuous with respect to a(~) = 

a( E , E) (change ~ without upsetting (12)); a fortiori, ~ need not 

be an isometry. However, if ~ happens to be a(~)-continuous then 

(12) does imply that ~ is an isometry, ~(~f, ~e) = ~(f , e) for 

f , e E E . Indeed, f is an accumulation point of V, f = lim F for 

F a filter on V and ~f lim ~F if ~ is assumed continuous. Hence 

~ (~f , ~e) = ~ ( lim ~F , ~ e) = lim ~ (~F , ~e) = lim ~ ( F , e) = ~ ( f , e ) • 

Thus we have proved 

Lemma 2. Let (E,~) be a nondegenerate sesquilinear space (of ar-

bitrary dimension). Then the following are equivalent: (i) ~o in (10) 

admits an isometric extension to E, (ii) ~o is a a(~)-homeomorphism 

and its transpose t~ 
o in (11) is a(~)-continuous. 

Lemma 3. ([1] Satz 4, p. 16). Let (E,~) be as in Lemma 2. As-

sume in addition ~ to be alternate. Then the following are equivalent: 

(i) ~o in (10) admits an isometric extension to E, (ii) the ortho­

gonals u~ and (~ou)~ are isometric for all subspaces U C V with 

dim V/U s; 2 • 

Proof. lie only have to prove the implication (ii) => (i). If we 

let U run through the hyperplanes V n x~ , x E E then we learn from 



236 

(ii) that ~o is a cr(~)-homeomorphism. Hence there exists the trans-

pose in (11) and t -1 
~ := ~o satisfies (12). Let then f, e E E 

be arbitrary. Pick v E V such that f + v .I. e . Thus the plane P 

spanned by f + v and e is totally isotropic and so is the plane 

(~o(p.l.n V».1. by (ii). This means that ~f+~v.l. ~e ,thus ~(f+v,e) 

From (12) we get ~(f,e) = ~(~f,~e) • Hence ~ is an 

isometry. 

5. Isometries between closed subspaces 

Let us assume in the first place that (E,~) is a nondegenerate 

infinite dimensional alternate space. Let us call here partial isomor-

phism in (E,~) an isometry 

(13) V ---+- V 

where V, V are .I.-closed subspaces in E such that 

(14) dim v.I. / rad V dim V.I. / rad V 

and such that ~ is a homeomorphism for the linear topology cr(~) . 

Remark 2. Since ~ is an isometry we have dim (rad V) = dim (rad V) ; 

hence by (14) the spaces and -.I. 
V are isometric as ~ is alternate. 

Lemma 4. The set J of partial isomorphisms in (E,~) has the 

Ping - Pong property: for any ~ E J and x E E there is some ~l E J 

which extends ~ and which has x in its domain (range). 

Proof. Assume that a homeomorphism ~ with (13) and (14) is gi-

ven and x E E\V We first extend ~ to an isometry ~l on Vl := 

VEe (x) . Then we shall show that ~l is a homeomorphism for creep) 

and that (14) holds for Vl 'Vl in place of V,V 

.I. 
Y E V and E 

.I. Since Case 1: x E V+V . Set x = y + z , z V 
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z ~ V we conclude by (14) that there is i E V.L \ V • In this case we 

-extend ~ by sending x into x:= ~y + z • 

Case 2: x ~ V + 
.1 

V . Since ~ is an isomorphism of the pairs ---
(V, E /v.L) (V, E /v.L) - -.1 t -and there is x E E \ V such that ~x = x 

.1 
~(~v, x) t -

~(v,x) (mod V ) , i.e. = ~(v, ~x) = for all v E V . From 

this relation we can also conclude that x ~ V + V.L and that we may 

extend ~ by sending x into x. 

The isometry ~l: V ~ (x) -+ V ~ (x) thus defined has .L-closed 

domain and range1 in particular, V and V are closed in the topolo­

gies on V ~ (x) and V ~ (x) induced by cr(~) , hence also open in 

these topologies because the quotients are finite dimensional (the quo-

tient topology is discrete so V and V are open as inverse images of 

(0) under the canonical map). Thus ~l maps the zero-neighbourhood V 

homeomorphically onto the zero-neighbourhood V hence ~l and -1 
~l 

are continuous at the origin, hence continuous • 

.1 
There remains to compute d = dim (V ~ (x) ) / rad (V ~ (x» • In 

Case 1 we find (by modularity) rad (V~ (x» ( rad V) ~ (z) 1 thus 

d = dim V.L / rad V - 2 • An analogous computation holds for V~ (x) so 

(14) is inherited. In Case 2 we find rad ( V~ x) ( rad V) n x.L so 

d = dim v.L / rad V - 1 if rad V C x 
.1 

and d = dim V.L / rad if V 

rad rf.x 
.1 

~l 
- find V 1 since is an isometry with x 1+ x we ourselves 

with rad V C 
-.1 
x in the former case and with rad V -.1 

rf.x in the latter 

case. Hence (14) is inherited. 

The proof of Lemma 4 is thus complete. 

If the dimension of (E,~) is denumerable then we obtain from 

Lemma 4, by using standard arguments, the following 
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Theorem 4. ([1] Satz 1, p. 8). Let (E,~) be a nondegenerate 

alternate space of dimension ~O . An isometry ~ : V ~ V where 

V , veE are ol-closed admits an extension to all of E if and only if 

~ is a homeomorphism for the weak linear topology o(~) and V , V 

satisfy (14). 

Indeed, each partial isomorphism in ] can be extended to a metric 

automorphism of E. 

The restriction to alternate forms in Theorem 4 is unduly severe. 

With some additional stability assumptions we reach a wide class of 

spaces to which our result applies. We first state the generalization 

intended. 

Theorem 5. ([1] Satz 3, p. 14). Let (E,~) be a nondegenerate 

trace-valued sesquilinear space of dimension ~O ~ : V ~ V an iso-

metry, V and Vol-closed and ~ homeomorphic with respect to o(~). 

In order that ~ admits an isometric extension to the entire space E 

the following is sufficient: If dim Vol / rad V is finite then Vol and 

Vol are isometric spaces; if dim Vol / rad V is infinite then Vol and 

Vol contain totally isotropic subspaces W , W of infinite dimension 

such that W n rad V = (0) , w n rad V = (0) . 

Proof. We first take care of the case where dim Vol / rad V is fi­

nite. Let VI be a supplement of R:= rad V in Vol and VI a supp-

lement of R := rad V in 

Witt decomposed relative to 

-ol V . since 

R, Vol = (REaR') 
1 

isotropic. Hence E = (R Ea R' 
ol ol 

) Ea VI Ea El with 

with V 

Vol '" Vol . V ol 
1 

can be 

R' totally 

_ol_ 
R Ea El be an analo-

gous decomposition with respect to V . Let ~o be the restriction of 

~ to R. Since ~o is a o(~)-homeomorphism it is an isomorphism of 

the pairs (R,R') and (R,R') and we can use the inverse of the 



239 

transpose t(jl 
o to extend (jIo to R e R' • Thus we have 

produced an extension of (jI to all of E in this case. 

Assume then that dim vl. I rad V is infinite. Let us go through 

the steps in the proof of Lemma 4. If we are in Case 1 then we can pick 

z E Vl. \ V with ~(z,z) = ~(z,z) because is trace-valued and 
-l. 
V 

contains (infinitely many) hyperbolic planes P with P n V = (0). If 

we are in Case 2 we first pick x E E \ (V + Vl.) , as explained, with 

~(x,v) ~(x,(jIv) for all v E V • Then we select t E Vl. n xl. with 

~(t,t) ~(x,x) - ~(x,x) and switch from x to x + t • 

rlith these amendments we get a proof for Theorem 5 out of the 

proof of Lemma 4. 

6. Isometries between arbitrary subspaces 

Again, let (E,~) be a nondegenerate trace-valued space of dimen-

sion ~O and 

(jI V - V 

an isometry between subspaces V, veE • \'Ie continue to assume that 

(jI is a homeomorphism for the linear topology cr(~) We consider the 

pairs (V, E I vl.) and (E I Vl. , vl.l.) induced by ~ and the corre-

sponding pairs attached to V. Since (jl is homeomorphic there exists 

the transpose t(jl, 

(V, E I Vl.) 

- -l. 
(V, E Iv ) 

and we may ask if t(jl is a homeomorphism for the quotient topology in-

duced by cr(~) This is tantamount to asking if t(jl is an isomorphism 

of pairs for the second pairings above. If such is the case then the 
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.1..1. -.1..1. 
transpose V -+ V extends ~ and is an isometry (by continuity 

and by separate continuity of ~). Hence it can be extended to all of 

E by Theorem 5, provided we add the requisite arithmetic conditions 

enunciated there, viz, 

If dim V.I. / V.I. n V.I..1. .I. -.I. 
is finite then V and V are iso-

metric, if dim V.I. / v.I. n V.I..1. is infinite then v.I. and V.I. 
(15) 

contain totally isotropic subspaces \'1, W of infinite di-

mens ion such that 
.1..1. - -.1..1. 

W n rad (V ) = (0) , ~i n rad (V ) = (0) • 

Conversely, if an isometric extension E -+ E of ~ exists, then its 

restriction to v.I..1. is the transpose of t~ in the above diagram. 

This settles the issue: 

Theorem 6. Let (E,~) be a nondegenerate trace-valued space of 

dimension ~o and V, V subspaces which satisfy (15). Let ~ : V -+ V 

be an isometry which is a homeomorphism for the linear topology o(~) • 

In order that ~ admits an extension to an isometry E -+ E it is ne­

cessary and sufficient that the transpose t~: E / V.I. --+ E / v.I. is a 

homeomorphism for the quotient topologies of a(~) • 

Remark 3. Since ~ : V -+ V maps R:= rad V onto R:= rad V 

it is tempting to track the two maps ~o R -+ Rand 1$: V / R -+ V / R 

induced by ~ instead of trailing ~ • This will lead us to Lemma 5 

below. We have seen above that the existence of an extension of ~o to 

E implies: 

The transpose t~ 
o 

-.I. .I. 
: E/R --+ E/R is a homeomorphism 

(16) 
for the quotient topologies induced by o(~) 

Likewise we can pursue 1$ by using the pairs ( V / R , R.I. / v.I. ) , 

( R.I. / v.I. , v.I..1. / R.I..I.) induced by ~ and the corresponding pairs attached 

to V / R • The existence of an isometric extension of ~ to E implies 
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The transpose 
tA -~ -~ ~ ~ 

Cj1 : R Iv --.. R Iv is a homeomorphism 

with respect to the topologies a ( ii.~ I v~ , v~~ I ii.LL) and 

a ( R~ I V~ , V~~ I R~~) • 

From the existence of an extension ~ to E of Cj1. V -+ V we get 

(16) and (17); but ~ cannot be recaptured from (16) and (17) because 

some information on how the objects R and V I R are pieced together 

inside E is obviously lost. For example, if X and X are linear 

supplements of R~~ and 
-~~ 
R in V~~ and vLL respectively then we 

can look at the lifting Cj11 : x--.. t(tcPl V~~ I R~~ -~~ -~~ 
X of : _ V I R 

(t(tcP) exists if we assume (17)). Cj11 is a homeomorphism with respect 

to a(x,R~/V~) = a(x,R~+X~/X~) and a(x,R~/V~) = a(x,R~+x~/X~) 

On the other hand, from the existence of ~ we have first that for 

each choice of X there is X such that turns out homeomorphic 

for a (<p) , i.e. for a (X , E/X~) and 
- -~ a (X, E/x ) and,second, the map 

Cj11 does coincide with cP on V n X (everything is such a snug fit 

here because the map Cj11 is uniquely determined if the existence of ~ 

is assumed). It is possible to recapture ~ (from (16) and (17)) if we 

require slightly less about the liftings of t(tcP) , namely 

(18) 

For each a (<P) - topological supplement X of R~~ in "f~ 

wi th VcR EB X the transpose t (tcP) : V~~ IR ~~ ->- V~~ IR ~~ 

of in (17) admits a a(<p)-continuous lifting 

Cj11 : X -+ X which coincides with cp on X n V . 

\'Ie shall see below that the image X = im Cj1 1 turns out to be a topo-

logical supplement of 
- ~~ - ~~ 
R in V Our assertion is formulated in 

the following 

Lemma 5. Let (E,<P) be a nondegenerate ~O-dimensional alternate 

space and V,V subspaces with dim V~/V~ n V~~ = dim V~/V~ n vLL and 

dim R~/R~~ = dim R~ lii.LL (R and R the radicals of V and V respectively). 
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-
Assume that 'l' : V -+ V is an isometry and a 0 (1)) - homeomorphism. 

Then 'l' admits an isometric extension to all of E if and only if the 

homeomorphisms 'l'o: R -+ Rand $ : viR -+ viR satisfy (16), (17) ,(18). 

Proof. vIe only have to establish sufficiency of the conditions 

listed. We first quote the corollary to Theorem 2 in Sec. 3 of Chap. V : 

there is a I'litt decomposition as follows: 

(19) E 
.l.l .l 

(R E9 R ') E9 Eo with V and V 
o 

VnE 
o 

From this decomposition we see that 0(1)) induces on V the product 

topology of 0(1)) Iv 
o 

Since 'l' is a weak homeomorphism 

the topology 0(1)) induces on V the product topology of 0(1)) IR and 

Hence by the corollary to Lemma 1 in Sec. 3 we obtain 

(20) R.l + ('l'V ).l 
o 

E . 

From (19) we obtain furthermore R.l.l E9 v.l.l . Thus we may let 
o 

.l.l 
X = V in (18) so -.l.l -.l.l (.l.l) .. f V = R E9 '1'1 Vo . By contlnulty 0 '1'1 we o 

R.l.l n ('l'V ).l.l = (0). 
o 

have ( V .l.l) C ).l.l -.l.l 'l'l 0 ('l'lVo C V ; by (20) furthermore 

Since 'l' V = 'l'V 
100 

by (18) therefore 

nuity of 'l'l and separate continuity of 1> we now see that 'l'1 is an 

isometry. Furthermore, we now have 
-.l.l 
V 

read as 

(21) ( R E9 'l'v ).l.l 
o 

R.l.l E9 ('l'V ).l.l 
o 

R.l.l E9 ('l'V ).l.l which may be 
o 

Because R.l 'l'Vo and R n 'l'Vo = (0) we can, by (20) and (21), ortho­

gonally separate Rand 'l'v 0; i. e. there is a decomposition E = El £ E2 

with ReEl' 'l'Vo c E2 (Theorem 2 in Chapter VI). El can be Witt 

decomposed for R.l.l. After reshuffling of the spaces we obtain a decom-

position entirely analogous to (19), 

E 'l'V C E 
o 0 
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Now it transpires that we can extend ~ to all of E. By (16) 

ttp is a cr (qi) - homeomorphism; therefore there exists its transpose 
o 

~ := t(ttp ) : R~~ -+ R~~ ; it is homeomorphic for cr(qi) 
o 0 

Therefore 

there exists its contragredient (tiP )-1 : R' -+ R' • He join it with 
o 

~o to get an isometry tp2 : R~~ $ R' -+ R~~ $ R' 

sumptions in the lemma, it follows that dim E 
o 

Finally, by the as­

dim R~/R~~ = dim E ; 
o 

therefore the alternate spaces Eo' Eo are isometric. \'ie may quote 

Theorem S to obtain an extension tp 3 : Eo -+ Eo of the cr (qi) - homeo­

morphic isometry tp 1 : V 0 ~~ -+ V 0 u .. vIe jOin tp 2 and tp 3 to obtain 

an isometric extension tp E -+ E of <:P. 

7. The results of Chapter VI as an inference from Theorem S in SectionS 

We shall illustrate the contention made in the caption by deriving 

the results on orthogonal separation (Theorem 2 in Chapter VI) from the 

results in Section S. 

Theorem 7. Let (E,qi) be a nondegenerate trace-valued sesquili-

near space of dimension NO • Assume that the subspaces F, GeE sa­

tisfy the conditions (j) (F + G) ~~ F~~ + G~~ , (jj) F~ + G~ E 

and F ~ G • In order that F and G are orthogonally separated in E, 

i.e. that there is a decomposition E 

is sufficient that the following holds: 

If dim (F + G ) ~ / rad « F + G ) ~) is infinite then there exists a 

totally isotropic subspace \'i C (F + G ) ~ of infinite dimension 

with \'i n rad « F + G )~) = (0) . 

Remark. We had in fact derived results of this kind via Theorem S ---
in Section S before the results in Chapter VI had been found (see [3], 

Bemerkung p. 20). Bani pointed out that even a more general version 

than Theorem 2 in Chapter VI can be obtained in this fashion; indeed, 



244 

in Theorem 7 above we require condition (10) of Chapter VI only when 

(cf. loco cit.) X = (F + G).1 ; we do not, in the proof below, need it 

for X = F, G This is very satisfying because here we have complete 

symmetry with the corresponding Theorem 4 in Chapter VI on symplectic 

separation. 

Proof. (Bani) We may and we shall assume that F, G are .1-closed • 

.1 .1 
Case 1: dim (F + G) / rad ( F + G) ) NO • Since (E,~) is trace-

valued and because W C E we have an isometry (external 

orthogonal sum) because both spaces are hyperbolic. We map the subspace 
.1 

F(DGCE into E (D E by throwing the summand F onto the subspace F 
.1 

contained in the first summand of E (D E and by throwing the summand G 

onto the subspace G contained in the second summand in 
.1 

E(D E . In E 

the subspace F + G is closed and, by Theorem 2, it carries the pro-

duct topology of cr(~) on F and G respectively. The same holds 

true, trivially, for the intended image 
.1 

F (D G C E (D E • Thus the in-

tended mapping ~ : F (D G -+ F (D G is a weak homeomorphism. By the 
.1 

existence of W we see that (F + G ) contains a No - dimensional 

hyperbolic space H; since H C F.1 n G.1 we see that, in E 4 E , 

(im~).1 contains copies of H so that the condition in Theorem 5 (on 

both V and V) is satisfied. Thus ~ can be extended to an isometry 

E ~ E 4 E which proves the assertion in this case. 

Case 2: dim (F + G ) .1/ rad (( F + G ).1) < NO • By chopping off a fi­

nite dimensional orthogonal summand we reduce the problem of separation 

to the case where this dimension is zero, i.e., 

rad F (D rad G 

Since FeG carries the product topology by (jj) the space rad F(Drad G 

is .1 -closed, hence there is a Witt decomposition 
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J. 
E = ((rad F EB rad G) EB e) EB Eo ' e totally isotropic. Sums being to-

pological we can rewrite the hyperbolic part, E = (rad F EB e') 4 
( rad G EB e" ) 4 E 

o 
e' := e n (rad G)J. , e" = e n (rad F)J. (cf. [6], 

(6) p. 94). So far we have separated only rad F and rad G 

We now consider the projection pr from F EB G = (F EB G )J.J. 

rad F 4 rad G 4 E onto E • Since E 
000 

pr F + pr G and since 

pr F J. pr G we obtain Eo 
J. 

pr F EB pr G as E 
o 

is nondegenerate. Since 

F EB G and pr F EB pr G are topological sums and pr is open and, of 

course, continuous, it follows that the restrictions F + pr F , G + pr G 

are open and continuous. 

If we Witt decompose E with respect to rad F , rad G then we 

find topological decompositions F = rad F EB Fo ' G = rad G EB Go 

means that the isometry w in 

This 

rad F EB Fo F pr F 

u 

F 
o 

is a homeomorphism. Set F: = rad F EB pr F 

we obtain a weakly homeomorphic isometry ~ 

G : = rad G EB pr G . Thus 

F EB G -+ F EB G • vie find 

dim (F + G ) J. / rad (( F + G ) J.) = 0 so that we may quote Theorem 5. As F 

and G are separated we are done. This finishes the proof of Theorem 7. 

8. Transgression into the uncountable: an application of the log frame 

Let (H,~) be a nondegenerate sesquilinear space. We are inter-

ested in orthogonal decompositions of H into orthogonal summands of 

dimensions ~ ~O ; if H admits such decompositions then we call (H,~) 

euclidean. A nondegenerate sesquilinear space which is isometric to a 

subspace of a euclidean space is called preeuclidean (see the examples 

in the introduction of Chapter II). 
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On (H,~) we introduce the denumerable linear topology 0l(~) 

attached to the form1 it has {x.I. I X C H & dim X < Nl } as a 0 -neigh­

bourhood basis (the division ring k is, as usual, endowed with the 

discrete topology). We have the following decomposition theorem, the 

so-called log frame *) ([10] , Satz 3, p. 2401 [5] , Corollary 8, p. 181 

[2] , Theorem 2, p. 1570) : 

Theorem 8. Let (H,~) be euclidean and H = e.l. H some fixed 
vEJ v 

decomposition with dim Hv ~ NO • If E is a 01 (~) - closed subspace 

of H then there exists a partitioning J = U J 
1 

with 

Consider an isometry cP : V - V between .I.-closed subspaces V, V 

in a euclidean space H of dimension> NO • The topology 01 (~) is 

finer than o(oli) thus V, V are 01 (~) - closed and, by Theorem 8, 

there are orthogonal decompositions of H into subspaces G1 ' G~ 

such that 0 < dim G , dim G :;; NO (since the number of summands 
1 ~ 

equals dim H we may let 1 , ~ run through the same index set) and 

such that V is the sum of all V n G , V the sum of all V n G 
1 1 

In order to fix ideas we formulate the following 

Lemma 6. Let H = e.l. G 
I 1 

.I.-e G 
I 1 

with V = e (V n H ) ,. V 
I 1 

e(VnH). 
I 1 

Then there exists a partitioning of I I=U{M I~EJ} 
~ 

with 

card M~ ~ NO and such that cP maps, for each ~ E J , the intersection 

V n e.l. { G I 1 E M onto the corresponding intersection 
1 )J 

V n e.l. { G 1 E M } 
1 ~ 

*) Raami saha (Finnish), scie 3. cadre (French), Gatterslige (German). These 

classical sawmills have, of course, a gang of strictly less than NO saws; 

their forerunner, the famous troncOn da Trentln has only one blade. 
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The proof is obvious: We start with v n G 
o 

and decompose the im-

ages qle of some basis (e.) v of V n G according to the second v 0 

decomposition H = 
.1.-

, Gt Nonzero components arise only in a countable 

number of summands G1 , say for 1 E II c I Map now bases of all in-

tersections V n G 
1 

with subscripts 1 out of II by ql-l and decom-

pose the images according to the first decomposition H = EB G Nonze-
I t 

ro components can arise only in a countable number of summands, say for 

1 E 12 c I , (because there are at most ~O card II ::; ~O 
2 

= ~O images 

and each producing finitely many components only) . ~'le keep switching 

back and forth ad infinitum (Le. a countable number of times). We col-

lect all subscripts of G which we meet in this procedure into the 
1 

union M 
0 

:= {a} u 12 U 14 U ... and all subscripts of G we run v 

into are contained in Mo:= II U 13 U Let then ),. E I \ Mo Ne 

repeat the step with V n G),. to get subsets HI C I \ Mo ' HI C I \ MO 

of cardinality ::; ~O Transfinite iteration yields partitionings 

I Mo U Ml U •.• , I 

V n EB {G I 1 E M 
1 K 

= Mo U Ml U 

onto V n e { G 
1 

ing shows that we can achieve M 
K 

M 
K 

the lemma. 

wi th the property that ql throws 

I 1 EM} . A second partition­
K 

. This finishes the proof of 

We have shown that (H,~) , if it is euclidean, admits orthogonal 

decompositions H=EBJ. G 
I 1 

tible with ql , 

(22) 
ql(vnG1 ) 

V = E V n G 
1 

EB.I. G 
I 1 

V n G 
1 

with dim G , dim G ::; ~o 
1 1 

( 1 E I ) 

V = E V n G 
1 

and compa-

A further partitioning shows that it is harmless to assume besides (22) 

that the dimensions n 1 of the orthogonals of V n G1 ' taken in G1 ' 

modulo their radicals are, for each 1 E I , either zero or ~O un-

less, of course, n = dim v.J./ rad V should be finite and nonzero. 
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In that case we arrange for n = n 
o 

and n = 0 
1 

for all lEI,{O}. 

A final reshuffling allows us to assume that the n 
1 

equal the corre-

sponding dimensions n 
1 

After these preparations we can apply Theorem 5 to each summand 

G1 We obtain the following result ([1], Satz 2, p. 12) : 

Theorem 9. Let (H,~) be a euclidean trace-valued k-space with 

respect to the antiautomorphism * of k Assume that (k, *, e:) ad-

mits only one isometry type in dimension ~O of nondegenerate trace­

valued forms. An isometry ~: V -+ V between ~-closed subspaces of E 

admits an extension to all of E if and only if the following two con-

ditions are satisfied : (i) ~ is a homeomorphism with respect to the 

weak linear topology cr(~) (ii) if dim V~ / rad V is finite then 

V~ and v~ are isometric spaces; if dim V~ / rad V is infinite then 

it equals -~ -dim V / rad V . 

Notice that the topology crl(~) does not enter Theorem 9. 

9. On the extension of algebraic isometries 

Here we consider the situation where ~: V -+ V is a metric au-

tomorphism on the subspace V in the (nondegenerate) sesquilinear 

k - space E and we study extensions of ~ to E. We assume that ~ 

is algebraic on V. This means that there is a polynomial f over the 

center C of k, such that i 
f(~) = l: a i ~ = 0 , Le. 

o for all x E V . 

We ask if ~ admits an (isometric) extension ~ to all of E such 

that ~ is algebraic on E, i.e. f(~) = 0 for a multiple f of f 

over C 
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Example. Consider the isometry v ~ Avon the totally isotropic 

subspace VeE, A a fixed element of the center such that AA* ~ 1 . 

Since E is assumed nondegenerate and AA * ~ 1 no isometry q>: E - E 

can satisfy the polynomial equation f = X - A = 0 • Hmvever, there is 

an extension q> of q> which satisfies the equation f(~) = 0 on E 

where f = (X - A ) ( X - ( A *) -1 ) ( X - 1) = f· (X - (A *) -1 ) ( X - 1 ) ; 

this follows from the existence of a Witt decomposition of E with re-

spect to 

tity on E o 

= (vJ.J. Ell V I ) ~ E 
o 

( V' C V,J. ) 

(thus we may delete the factor X - 1 

is the iden-

in in case 

J.J. 
dilates by (A*)-l on V' and dilates by A on V 

Actually, we shall consider here only the rather modest situation 

where f E C[X] splits into different linear factors. We then sort out 

the factors in the following fashion: 

n 
f = IT (X-v.) 

j=l J 

m m. 
IT (X-A.)(X- ~.)l. 

i=l l. l. 
with pairwise 

(23) different factors, but 

and m . E {O , l} . 
l. 

With such a polynomial f we associate the multiple 

f 
n 
IT (X -

j=l 
(24) 

and f = ( X -

Let us introduce the 

L. = ker (q> - A.) , !<1. 
l. l. l. 

m 
Vj ) IT (X -

i=l 
m 

1 ) IT (X -
i=l 

eigenspaces of 

A. ) ( X-
l. ~i ) if n > 0 

A. ) ( X- ~. ) 
l. l. 

if n = 0 • 

f in (23) , K. = ker (q> - v .) , 
J J 

L. 
l. 

and Hi are totally 

isotropic. Furthermore, any two different X, Y among the eigenspaces 

are mutually perpendicular, X J. Y , with the only exceptions {X, y} = 

{ Li ' Mi }, i = 1, ... ,m . It transpires that we can extend q> by try­

ing to apply orthogonal and symplectic separation to the eigenspaces; 

for there will be a splitting of E into the eigenspaces of iii if such 

there is. We have the following result (for arbitrary characteristic) : 
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Theorem 10. ( [3] , Satz 4, p. 32). Let (E,~) be a ~o-dimen­

sional nondegenerate trace - valued E - hermi tean space over (k, * , E) 

Assume that (k,*,E) admits only one isometry type of such spaces in 

dimension ~o . Let ~ : V -+ V be an isometry that satisfies the po­

lynomial equation f(~) = 0 on V and where the polynomial splits in-

to different linear factors over the center of k. vJrite f as in (23) 

and associate with it the polynomial f in (24). Then the following 

statements are equivalent (i) There exists an isometric extension 

ip : E -+ E of ~ with flip) = 0 on E, (ii) The n + 2m eigenspaces 

X. = Kl , ... , K , Ll , HI , L2 , M2 ; ••• I L , M of ~ - some of 
~ n m m 

the M. may be (0) satisfy the conditions ( Xl E9 E9 X )~~ 
n+2m ~ 

Xl 
~~ + +X ~~ and, for all between 1 and n + 2m 

n+2m 
p 

( Xl E9 E9 X )~ + ( Xp+l E9 ... E9 X ) ~ = E 
P n+2m 

Proof. Assume (i) and let , ... , be the eigenspaces 

~ K ~ 
( Ll E9 511 ) 

~ 

E9 n E9 E9 ... of ~ • Their sum r splits, 

ffi (L E9 M ) m m 
. From the representation of 1 as g.c.d. of the factors 

f f f-
~ , ••• , ~ of we conclude that 

1 m 
r = E Because the L. and 

~ 

M. are totally isotropic we obviously have (ii). It remains to prove 
~ 

the converse implication (ii) ~ (i) • 

If (ii) holds we can orthogonally separate Kl and El := K2 E9 ••• 

E9 Mm (by Theorem 2 in Chapter VI) for, by (ii) we have r~~ 
~~ K ~~ + 

1 
+ r~~ 

1 
c r . From this, and by choosing p = 1 

r~~ ~~ r~~ Furthermore, we conclude that = Kl E9 1 in (ii), we see that 

so the step may be repeated n+m times in 
~~ ~~ 

K + ••• +t1 
2 m 

order to obtain a decomposition E 

with K. c E. I Li E9 Hi C F. In F. we can use symplectic separation 
J J ~ ~ 

(Theorem 4 in Chapter VI) in order to obtain Witt decompositions 

F. ( ~~ 
E9 Li ) 

~ 
F. with M. C L! C L!J. We define cp dila-= Li E9 as a 

~ ~o ~ ~ ~ 

tation with multipliers v. on E. , A. on L~~ , lli on L! , 
J J ~ ~ ~ 
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~o 

(i = 1, ... ,m) 
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if n#-O in (23) and vI = 1 if 

n = 0 . (Incidentally, if E should be alternate, then we can write 

F. as a sum of two totally isotropic subspaces and merge these with 
~o 

L:u and L~ respectively. l"le then need not distinguish between n=O 
~ ~ 

and n #- 0 in (24) .) We have thus found an isometry cp on E which 

extends ~ and which has f(~) = 0 on E. Q.E.D. 

Corollary. Let (E,~) and (k,*,£) be as in Theorem 10 but as-

sume char k #- 2. Let ~ : V -+ V be an involutory isometry, 
2 

~ = l\r. 
Then ~ can be extended to a (metric) involution on all of E if and 

only if Kl : = ker (~ - 1) and K2 : = ker (Cjl +]IJ satisfy the conditions 

K .L.L K.L.L .L.L 
1 + 2 and Kl + K2 = E 

If the characteristic of k is allowed to be 2 then the problem 

in the corollary becomes considerably involved (see Chapter IX) . 

* 
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CHAPTER ELEVEN 

CLASSIFICATION OF FORMS OVER ORDERED FIELDS 

1. Introduction 

In this chapter we shall show that a certain kind of commutative 

ordered fields, the so called SAP fields, lend themselves very natural-

ly for the construction of No-forms which admit a simple classification 

with respect to isometry. We shall first say a few words about the 

fields and then describe the type of No-forms to be studied. 

In what follows k is an orderable commutative field. We identify 

orderings with the corresponding sets P C k of positive elements 

(Thus P is a subgroup of index 2 in the multiplicative group k and 

P is additively closed). X(k) is the set of all orderings on k. 

Each a E k defines a signature 
A 

a: X(k) ... {l,-l} by sending P E X(k) 

into sig (a) which is +1 if a E P and -1 if a E -P • X(k) is p 

endowed with the coarsest topology that renders all signatures a con-

tinuous. A subbasis for the system of open subsets of X(k) is the 

system of sets H(a) = {p E X(k) la E p} where a runs through k 

([11], page 208). The field k is called a SAP-field if it has the 

following "strong approximation property": Any two disjoint closed sub-

sets of X(k) are separated by some signature a, i.e. one of the two 

sets belongs to H(a) and the other to H(-a) ([11], page 108). 

The reader who is not inclined to become involved in topological 

considerations may assume X(k) to be finite and discard all of the 

topology that will occasionally come up in what follows. Examples with 

finite X(k) are provided by the algebraic number fields which is to 

show that the discussion will not become shallow if X(k) is finite. 

We terminate our introductory remarks on fields by formulating a 

property on fields which is crucial for the discussion in this chapter. 
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It reads 

. 
(1) Every binary form (l,-s>, s E k , represents some element in s 

each coset of k/ks (ks is the multiplicative subgroup of sums 

of squares). 

Examples of such fields will be given in Section 3. We shall now turn 

to the forms to be classified. 

Let ~ : E x E ... k be a symmetric, non degenerate bilinear form 

on the /!to-dimensional k-vectorspace E • We recall that for G a sub-

space II Gil is the set {~(g,g)lg E G'{O}} and (E,~) is called 

stable (in itself) if II EU = () {II FJ.1I1 F C E and dim F < .. } 

Notice that this equality cannot hold for finite dimensional non dege-

nerate E ~ (0) • Each field k admits stable forms: if for a E k 

we let <6, • •• > be the orthogonal sum of 

J. 
every orthogonal sum $aEI <a, ••• > , where 

/!t 
o copies of <a> then 

card I < /!t , is a stable 
- 0 

space. If a stable space is isotropic then it is an orthogonal sum of 

hyperbolic planes. 

Definition. (E,~) is called weakly stable if E splits off some 

orthogonal summand which is stable. 

It is not difficult to show that (E,~) is weakly stable if and 

only if the set IIEII .. :=n {II FJ. II IF C E and dim F < dim E} is not 

empty. If (E,~) is weakly stable and isotropic it is an orthogonal 

sum of hyperbolic planes. Thus we shall have to study anisotropic forms 

only. 

The aim of this chapter is to classify the weakly stable /!t -forms o 

over SAP fields which satisfy (1). Our results generalize in several 

directions work on quasistable forms done in [13]. Quasistable forms 

are weakly stable forms that split off a stable orthogonal summand of 

finite codimension (The concept is due to MAXWELL). Let us turn to the 
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details now. 

2. Weakly isotropic forms 

All forms are symmetric bilinear forms. 

The SAP fields mentioned in the introduction can be characterized by 

many other properties ([4][11][15]) • One such equivalent property is 

of particular interest here. Call totally indefinite a form 

••• ,sig (a )} = {l,-l} (cf. Cor. 3 in Section 4). We also put down the 
p m 

Definition. ~ is called weakly isotropic if No~ 

is isotropic. 

Thus is weakly isotropic if and only if there 
m 

are sums of squares, sl,s2, ••• sm E ks 

if and only if there is some natural N 

such that ~ a.s. = 0 , i.e. 
1 ~ ~ 

such that N~ = ~$ ••• ~ is 

isotropic. 

SAP fields may be characterized by the following property (a kind of 

"HASSE principle") on finite dimensional forms ([4]): 

(2) Every totally indefinite form is weakly isotropic. 

We wish to compare (2) with the following "axiom" on ordered fields • 

. 
(3) For A,B any disjoint closed subsets of X(k) and a E k any 

element which is positive at all orderings of A (i.e. a E P for all 

pEA) there exists S Ek such that a-S 2 is positive at all orderings 

of A and negative at all orderings of B. 

~. For fields k with finite X(k) property (3) coincides 

with "axiom 2.1" in [13], i.e.,by the next lemma/Maxwell's axiom des-

cribes precisely the SAP fields with finite X(k) and with property (1). 

If X(k) is finite and if all P E X(k) are archimedian then, as re-

marked in [13], the weak approximation theorem for real valuations can 
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be used to show that k satisfies (3). 

Lemma. (1) & (2) <=> (3) . 

Proof. We show first that (1) is equivalent with the following 

property (called "the shovel") 

(4 ) for all a,S E k we have 

{ax2+ Sslx E k, s E k } 
s 

Indeed, if a,S E k and s E ks where k satisfies (1) then 

<l,-s> represents an element in the coset (mod ks ) of -a-IS. From 

this we can conclude that k C {x2+ a-lSslx E k, s E k} and we see 
s s 

that (4) must hold. Conversely, if in (4) we let a = 1 we obtain 
. 

for arbitrary S E k hence we have (1). Thus 

(5) (1) <=> (4) 

We now turn to reformulating (1) & (2). Let A,B disjoint closed sub-

sets in X(k) where k is any SAP field. Let a E k be a given ele-

ment with a positive at all orderings in A. Let 

D := {p E X(k) I-~ E p} • We may pick an E E k which is positive at all 

pEA and negative at all P E BUD Then the form <l,-a,E> is to-

tally indefinite. By (2) we obtain an equation sl - aS 2 + ES 3 0 

with s. E k 
~ s If now we make the further assumption that k satisfies 

(4) then we may write the element in the form 2 
-ax + Es 4 • With-

out loss of generality x ~ 0 • If we substitute in our equation we ob-

tain This shows that the element 

is positive at all orderings of A and negative at all orderings of B, 

i.e. (3) holds with Thus (1) & (2) => (3). The converse 

is easy: Disjoint closed subsets of X(k) can by (3) be separated even 

2 . 
by elements of the very special shape s-s where s E k may be pick-

s 

ed beforehand; so k must of course be a SAP field. Further, if a E k s 

is given then X(k) is the disjoint union of A := {p E X(k) la E p} 
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and B:= {p E X(k) I-a E p} so that any separating element has the 

signature a, i.e. must lie in the same coset modulo ks as the ele­

ment a. Thus by (3) every coset in k/ks contains some s-B2. Since 

s is arbitrary in ks this proves (1) • 

Problem. Describe the orderable fields with property (1) (for non 

orderable fields the problem is trivial). 

3. Examples of fields in connection with properties (1) and (2) 

We list here a few examples of fields which satisfy some of the 

conditions (1) and (2) introduced in the two previous sections. Indi-

cations as to where proofs may be found are given. 

All pythagorean fields k (Le. k with satisfy (1); 

lR((tl »((t2» is one which violates (2) ([lSJ Satz (2.2». On the 

other hand 'D ((t» satisfies (2) ([lSJ, §3) and violates (1) (because 

(3) is violated when a = 2+t2). lR or any field with just one ordering 

is an obvious candidate for (3), i.e. for (1) and (2). Any real alge-

braic numberfield (i.e. formally real finite algebraic extension of '1) 

satisfies (3) by the Remark in Section 2. Another example which has 

both (1) and (2) but infinitely many orderings is k = lR(t) by Thm. 8 

in [19J. More generally, we may take k to be any finite algebraic 

orderable extension of a function field ko(t) where ko is heredi-

tarily euclidean (this means that not merely in k but in each finite 
o 

algebraic orderable extension field of ko every element or its nega­

tive is a square [16J); by Thm. 1 in [4J these fields are examples with 

(1) and (2) and, of course, with infinitely many orderings. Finally 

k = lR(tl ,t2 ) violates (1) (since 

is violated) and it also violates 

2 2 2 I ~(tl+t2) ~ {1x +tls x E k,s 

(2) by [lSJ, Satz (2.2). 

E k } (4) 
s 
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4. A remark on Hilbert ordered skew-fields 

In this short section we collect a few simple facts in connection 

with ordered fields. We think that the statements which we wish to make 

are more perspicuous if we include the non commutative case at this spot. 

We shall need only HILBERT's conception of an ordered skew field k 

which amounts to the specification of an additively closed subgroup of 

index 2 in the multiplicative group k of k ([8J §13, Satze der An-

ordnung, furthermore §33, Satz 60 where the famous example of an ordered 

skew field is given). In particular P is an invariant subgroup of k. 

(For other concepts of orderings see [2J, Appendix I p. 127-128 and 

[9J) • 

Let M C k be a subset which contains 1 ; we let M be the set 

of all finite sums of finite products 

and xiE k 

By an application of Zorn's lemma in the manner of [3J or [18J 

it is not difficult to prove the following 

Lemma: Let 1 E M C k • There exis~ an ordering P on k with 

if and only if finite sums of finite products 

(miE M , xiE k ) do not vanish or, equivalently, if -1 ~ M . 

One then deduces the following corollaries 

Corollary 1. Let 1 E M C k and a E k • If -l,a ~ M then there 

is an ordering P on k with M C P and ~ E -P 

Corollary 2. Let 1 E Me k • Then M =(I{p E X(k) Ip :J M} • 

Corollary 3. Assume that k is ordered and (a1)lEI a totally 

indefinite family in k (i.e. for each P E X(k) there are v,~ E I 

with av E P and a~ E-p). Then there is a finite subfamily which is 

totally indefinite. 

~. Set 
-1 

a 'a 
1 0 

for some fixed index o E I so that 
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1 EM: = {Ci I t E I} • Since M is totally indef ini te we must have 
t 

-1 E M - 2 by the lemma, -1 = EITaixi • Let M o be the set of the 

occuring in this sum. Since -1 is invariably negative there must for 

each P E X(k) be an element in Mo which is negative at P. So 

{I} U Mo is totally indefinite and so is the finite subfamily 

({l} U Mo)ClO of (Clt)tEI. 

5. Two HASSE Principles 

Let (ei)iEI be an orthogonal basis in a k-space E equipped 

with a nondegenerate symmetric form ~ and k an orderable commutative 

field. For fixed ordering P E X(k) we can sort out the e i according 

to whether ~(ei,ei) is positive or negative at P. Call n+(p) the 

cardinality of the set of the e i with positive inner product and 

n-(p) the cardinality of the remaining e i • The two cardinals do not 

depend on the choice of the basis. The pair - + ind~ (P) = (n (P) , n (P» 

is called the (inertial) index of (E,~) at P. In the theory of 

finite dimensional spaces one can, of course, do with ~ of the two 

cardinals (or, as is customary, with the difference of the two). 

Another way of putting it is to introduce the kp-ification ~P of 

the form ~ where kp is the real closure of the ordered field (k,P). 

If ~ is another form over k then an equality of indices, ind (P) 
~ 

in~(p) , is equivalent with an isometry '" ~P = ~P • We also see that 

~P is isotropic if and only if ~ is indefinite at P, i.e. if ·the 

product + -n (P). n (P) is not zero. 

It will turn out that the forms which are investigated in this 

chapter are characterized by their indices at all P (Section 6, Theo-

rem). In other words they will satisfy the following "weak HASSE prin-

ciple" 

(WH) for all P E X(k) • 
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We now compare (WH) with the following "strong HASSE principle" 

(SH) 4! is isotropic <=> qip is isotropic for all P E X (k) 

Let C be a class of ~o -forms over k with the property 

(6) if qi = ~ ~ qi' with dim ~ finite then qi E C<=> qi' E C 

Examples of C with (6) are the class of quasi-stable forms, the class 

of weakly stable forms. We now justify part of the terminology by the 

following 

Lemma. If C satisfies (6) then we have the implication: 

(SH) for all qi E C => (WH) for all qi,,¥ E C 

"-
Proof. Assume that for all P E X(k) we have qip '¥p. We shall 

construct an isometry between (E,qi) and (F,'¥) recursively. Assume 
l. l. 

that E = G <9 E' and F = H <9 F' with finite dimensional G and T 

an isometry G ~ H . One may start with G = (0) . We show how to ex-
l. 

tend T to G<9 (e) where e E E' is prescribed. Assume first that 

<I>(e,e) oF 0 Let <1>' and '¥' be the restrictions of <I> and '¥ to 

E' and F' respectively. By an application of Witt's theorem we con-

clude that (P E X(k» • Now the form <-<I>(e,e» <9 <1>' is ob-

viously isotropic. Therefore by (SH) we conclude that <-qi(e,e»~ '¥' 

is isotropic. This means that '¥' must contain a vector f with inner 

product qi(e,e) • It is obvious that we can therefore extend T by 

sending e into f • If we should have that qi(e,e) = 0 then e is 

contained in a plane spanned by an orthogonal pair of non isotropic 

vectors e l ,e2 • By applying the former argument twice we extend T to 

l. 
G <9 k(el ,e2 ) • Alternate application of this procedure to E and F 

"-
yields the desired isometry (E,<I» = (F,'¥) 

Remark. Condition (6) does not hold for the class C of all stable 

forms. Nevertheless the implication in the lemma is valid in this case 

too. To see this one has to modify the above proof in the following 
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way: By (SH) for stable forms we get that ~; <-~(e,e» ~ ~I is iso-

tropic. But this implies that 

stability of ~' means that 

<-~(e,e» ~ ~O~I is isotropic, and the 

~ ~' ~ ~' • So <-~(e,e» ~ ~I is iso­
o 

tropic. 

6. The classification 

k is assumed to be an orderable (commutative) field; forms are 

symmetric and non degenerate and of dimension ~ 
o 

In the following theorem we characterize the property SAP and the 

property (1) and SAP (i.e. (3) by the lemma in Sec. 2) via the be-

haviour of certain classes of ~ -forms. 
o 

Theorem. For any k we have 

SAP <=>(WH) for stable forms <=> (SH) for stable forms. 

(3) <=>(WH) for quasistable forms <=>(SH) for quasistable forms. 

(3) <=>(WH) for weakly stable forms <=>(SH) for weakly stable forms. 

Proof. We set out by showing that (3) implies (SH) for weakly 

stable forms. If ~P is isotropic for all P E X(k) then (ui)iEW 

is totally indefinite for any diagonalization ~ = ~~ <U i > • Thus by 

Corollary 3 in Sec. 5 ~ splits off an orthogonal summand ~ which 

is totally indefinite and of finite dimension. Hence if k has SAP 

then we may quote (2) and conclude that ~o~ is isotropic; so 

is isotropic. If ~ is weakly stable, ~ ~l ~ ~2 with ~2 stable 

then ~o~ ~ ~o~l ~ ~2 by the stability of ~2 . If k has (3), then 

it has (1) and we may quote (4) to conclude from the existence of an 

isotropic vector of ~o~l ~ ~2 that ~l ~ ~2 must contain a non zero 

isotropic vector. 

Thus we see that the assumptions on k in the first "column" of 

the theorem individually imply the (SH)-statements at the far end of 

the corresponding row. The latter imply the corresponding (WH)-state-
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ments by the lemma in Section 5. 

Assume then (WH) for stable forms. We want to show that k has 

SAP by showing that (2) holds. If ~ = <al, ••• ,an> is totally indefi­

nite then ~ := ~o~ = ~~=l<ai,ai' ••• > must be isometric to an ortho­

gonal sum of hyperbolic planes and hence isotropic. This shows that 

the (WH)-statements in the middle column of the theorem imply (2), i.e. 

SAP. 

It remains to prove that (WH) for quasi stable forms implies (1): . 
indeed, if s E ks and a E k are prescribed then <l,-s> ~ <-a,-a, ••• > 

is isotropic because it is isometric with <1,-1> ~ <-a,-a, ••• > by (WH). 

Q.e.d. 

Remark 1. In the whole chapter we discuss symmetric forms only. 

It is, however, not difficult to extend the results to hermitean forms 

over quadratic extensions of k or quaternion division algebras with 

the usual involutions when the fixed field k has the requisite pro-

perties(investigated in the present chapter). 

Remark 2. If, for the moment, we let k be not formally real 

then X(k) = ~ and conversely. Therefore, if (E,~) is weakly stable 

over such a k then it must contain a totally isotropic subspace of 

infinite dimension. Hence if char k ~ 2 then E is an orthogonal 

sum of hyperbolic planes. Thus we see that in the case of non orderable 

fields only the characteristic two situation leaves room for a dis-

cussion of weakly stable spaces. This discussion is carried out in 

Chapter VII. 

7. Canonical representatives for quasistable forms 

k is an ordered commutative field with property (3). 

With every non empty finite family (Xi) of non empty disjoint 

closed subsets Xi of X(k) we associate once and for all a family 
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of elements e(i) E k with e(i) negative at all orderings P E Xi 

and positive at all P of the other Xj in the family • 

.L 
Let (E,~) be quasistable, i.e. E = F e G with dim F finite 

and G stable. It is advantageous to choose F minimal in the sense 

that IIGII n IIFII c {oJ • Furthermore we may assume that the restriction 

~ of ~ to G is anisotropic for otherwise G and E are both 

orthogonal sums of hyperbolic planes (which is the canonical form of 

an isotropic quasistable space whenever the characteristic is not two) • 

To bring ~ into canonical shape pick some a E II Gil " {oJ and 

let I be the set of all P E X(k) with the property that all ele-

a -111 Gil 
. 

ments of are positive at P . If now 6 E k is any element 

which happens to be positive at all orderings of I then the quasi-

stable form <-6> e -1 a 'I' is totally indefinite and hence isotropic 

the theorem of the last section. Therefore see: 

a-lllGIl is the set of ill 6 E k which are positive at all P E I • 

Clearly I is a closed subset of X(k) • 

by 

Let then fl, ••• ,fm be some orthogonal basis for F. There is -

by what we have just seen - for every fi some pEl at which 

a-l~(fi,fi) is negative for otherwise ~(fi,fi) E IIFII n IIGII c {oJ 

by our normalization. For all o~ j ~ m we then consider the sets 

-1 -1 Xj :={PEI I precisely j among a ~ (f l ,f l ) , •.. ,a. ~ (fm,fm) are neg. at p} • 

The sets are closed subsets of X(k) and I = U X .• Let 
J 

J = {il, ••• ,ir } be the subscripts j with Xj F ¢ and let e(il ) , •• 

••• ,e(ir ) be the elements E k associated with the family (Xj)jEJ' 

By the classification theorem of Section 6 we obtain the canonical 

representation 

(7) 

N-l.r.. Here one can easily read off indices of the form ~ ~ for P V. I 
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the index is invariably (~o'~o) 

if P E X .• 

for P E I the index is (i,~o) 

1 

We see that the collection of all families (£(i» corresponding 

to the collection of all non empty finite families (Xi) of non empty 

disjoint closed subsets of X(k) form a complete and irredundant 

system of invariants for the description of quasistable forms over a 

field satisfying (3). May the closed sets Xi be chosen completely 

arbitrary in X(k) ? There is a condition! Recall that (E,~) must 

admit countably infinite bases (e i ) • Passing to the inner products 

~(ei,ei) we see that k must admit subsets M of cardinality ~ ~o 

such that U Xi is the set of all P E X(k) for which M is positive 

at P. For certain fields this requires U Xi to be a "large" subset 

of X(k) On the other hand, if this condition is satisfied then we 

may set ~ := ~~EM <~,~, ... > and define a quasistable ~ by the 

right hand side of (7). 

In [13J MAXWELL has given canonical representatives when X(k) is 

~; they can easily be obtained by our classification theorem. Let 

X(k) = {Pl, ••• ,Pm} and choose (by SAP) once and for all elements 

nl, ••• ,nm E k with 

We abbreviate n. := 
1 

where (n - (P.),~ ) 
1 0 

is the index of 

-1 
a ~ at Pi By the classification theorem of the last section we ob-

tain 

(8) 

For finite X(k) the two normal forms (7) and (8) are of a dif-

ferent nature. We shall illustrate it by an 

Example. Let k = 0(12) • So X(k) = {Pl ,P2} and the only possi-

bilities for non empty finite families of non empty disjoint subsets of 
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A natural choice for the corresponding families (£(i» is, in turn, 

(-1), (-1), (-1), (/2,-/2) • Then (7) will always turn out either as 

~-l~ ~ i<-l> $ <stable> or as ~-l~ ~il</2> $ i 2<-/2> $ (stable) with 

i l F i2 • 

In order to arrive at (8) we need choose the n .• It is natural 
~ 

to set nl = /2 and n2 -/2 Then for all forms over k (8) will 

read as 
-1 ~ ~ ~ 

~ ~ = nl<~2> + n2<-~2> $ (stable). Thus the normal form of 

E := <-3> $ <1,1, ••• > in the style of (7) is <-1> $ <1,1, ••• > where­

as in the manner of (8) it reads as </2> $ <-/2> $ <1,1, ••• > • 

Remark 1. X (k) may be infinite but II Gil =.(1{ II H.L III H C E and 

dim H < oo} be so large as to make I turn out finite. Then one can 

choose elements in k which are negative at any ~ ordering of I 

and positive at all the other orderings of I and again arrive at a 

standard representation in the style of (8). 

Remark 2. From (7) we see that the indices of ~-l~ (and hence the 

indices of ~ ) at P ~ I are invariably (No,No) • Therefore, instead 

of saying that a quasistable ~ is determined by all indices we may 

say that a quasistable (E,~) is determined by the collection of the 

following invariants: the set IIElloo' which is of the kind that there 

is ICX(k) with ~-1IlElloo={818EP for all pEl} for some 

~ e:IIElioo , and by the indices of ~ at the orderings in I. (cf.[13] 

Thm. 2.5). 

8. Fields over which all N -forms are quasi stable 
o 

k is an orderable commutative field, forms are symmetric and non 

degenerate. 

~. For any k the following two statements are equivalent 

(9) Each No-form over k is quasistable 
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10) X(k) is finite and every ~o-form (E,q;) with IIEII C ks 

sents 1. 

repre-

~. (10)~(9): Let q; = Qj.L<a.> 
IN 

Bl,···,Bm 

~ 
be an arbitrary ~o-form over 

k and assume (10). Let be a (finite) set of representatives 

in k/ks . By expressing all a . in terms of Bj and factors from 
~ 

k we see s that q; splits into an orthogonal sum q; = Blq;l 19 ••• 19Bmq;m 

with lIq;ill C ks • At least one q;. is of 
~ 

infinite dimension and each 

lIq;ill lIq;ill 
. 

such q;i has k C by (10) , i.e. = k • Hence q; is an s s 

orthogonal sum of a finite dimensional form and finitely many stable 

ones. Therefore q; is quasistable. 

(9)--.(10): Since every stable q; with 1Iq;1I C k has 
s 

and thus represents 1 we see that every quasistable form ~ with . 
C k 

s represents 1. This shows one half of (9) ~(10). It remains 

to show that a k with infinite X(k) admits forms that are not qua­

sistable. If X(k) is infinite then - since each P E X(k) is made 

up of full equivalence classes in k/ks - the group k/ks is infinite 

as well. We also recall \hat the intersection of a finite number of 

subgroups in k, each of finite index in k, has itself finite index 
n 

in k so that the intersection ~Pi of finitely many orderings must 
1 

contain infinitely many equivalence classes of k. As r-\{plp E X(k)} 

reduces to k s we can therefore determine a countable sequence 

(Pi)iElN of orderings with ~Pi 1 Pn+l for all n ~ 1 • We pick 

a E (~P.),P 1 and define E:= $.L<ai > • No stable subspace of 
n 1 ~ n+ Jl'>l 

E can contain a line <ai > since a i is negative at Pi +l and 

q;(x,x) positive at Pi +l for all x E «a> + ••• +<a.».L • In parti-
~ ~ 

cular E cannot be quasistable. 

From Hasse Theory we know that the orderable finite algebraic 

extensions k of ~ satisfy (10); hence the 

Corollary. Let k be a real algebraic number field. Each non-
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degenerate ~o-form is determined up to isometry by its positive and 

negative indices at all real completions of k . (If k is not real 

then there are no indices and all non degenerate ~o - forms are isomet­

ric, to wit, they are orthogonal sums of hyperbolic planes. Cf. the re-

mark at the end of Section 6 .) 

This corollary was proved in [14] and independently in [12] • 

* 
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Postscript. After this chapter had been written we received a 

preprint of a paper by A. Prestel and R. Ware, entitled "Almost isotro-

pic quadratic forms" (to appear in J. London Math. Soc. (2),19 (1979». 

In this paper the authors characterize the fields which satisfy SAP & (1) 

by various other properties, e.g.: The pythagorean closure of k is 

SAP • 



CHAPTER TWELVE 

CLASSIFICATION OF SUBSPACES IN SPACES WITH DEFINITE FORMS 

Introduction 

In the whole chapter (E,~) will be a positive definite hermitean 

space of dimension ~ 
o 

over the divisionring k with involution 

If ,~l then it follows from Dieudonne's lemma that k is 

either a quadratic extension k ko(Y) over an ordered field (ko '<) 

with o > Y 
2 E k and (x+yy), for all E k k is x-yy x,y or 

0 0 

a quaternion algebra (~) with k ordered, a,S < 0 and , being 
ko 0 

the usual "conjugation". If , = ]I possible only when k is commuta-

tive, then ~ is symmetric and k kO is ordered. 

(E,~) will be assumed strongly universal throughout, i.e. 

II FII = II Ell for all infinite dimensional non degenerate subspaces F of 

E ; furthermore we assume that 1 E II Ell 

* 
In Chapter Five we described a complete set of orthogonal invari-

ants for subspaces V C (E,~) under the assumption that E abounds in 

isotropic vectors. Here we shall do the same under the opposite assump-

tion that (E,~) is positive definite. The difference concerning both 

the difficulty of the problem and the theorems which hold is remarkable. 

Let us illustrate the situation by an example. Assume that the 

symmetric space (E,~) over ffi. is spanned by an orthogonal basis 

(ei ) iElN with II e2ill:+l and II e2i+lll = -1 . Then the cardinal dim E/V 

is the only invariant for L-dense subspaces V of finite codimension 

in other words, all VeE with VL (0) and equal dim E/V < 

make up one orbit under the orthogonal group of E . The same is true 

for k any subfield of ffi.; in fact the nature of k is entirely ir-

relevant as is shown in Chapter 5. Assume now that k = ffi. and (e i ) 
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is orthonormal and let the orthogonal group act on the set of ~-dense 

subspaces VeE with, say, dim E/V = 2 • There are 3 orbits. If k 
N 

is replaced by the real closure of ~ we obtain 2 0 orbits. Besides 

the cardinal dim E/V we have here certain "arithmetical" invariants. 

They make apparent a "rigidity" of the definite space (E,qi) • 

In the first seven sections we prove our principal result on ~-

dense subspaces; it is the fundament for the whole chapter. 

1. Standard bases for ~-dense subspaces and their matrices 

1.1. Let (ko '<) be the ordered subfield of the divisionring k 

The Cantor completion process with Cauchy systems in ko leads to an 

ordered field. Of this field we shall need in the following only the 

subfield ko of the limits of the denumerable Cauchy sequences in k o 

1.2. In the whole chapter K is the real closure of ko Notice 

that ko need not be dense in K for non archimedean ordered ko 

(Satz 1.2 in [I]). For a nice characterization of ordered fields which 

are dense in their real closure the reader may consult [5] and §3 in 

1.3. We let the given involution T on k act as the identity on 

the fields k, K • So k ® k , K ® k become involutorial rings. Since 
o 0 

a,s,i < 0 the rings k04Slk = ko(Y} , K ® k = K(y} resp. k ®k o 

(~~S), K ® k = (a~s) are in fact still division rings •. We .think· of 

k ® k , K ® k as endowed with the usual "euclidean" topology induced 
o 

by the "norm" XX T (x E k ® k or K ® k) • 
o 

1.4. Besides the hermitean k-space (E,qi) under investigation we 

shall often make use of the n-tupel spaces kn, (ko® k}n etc. equipped 

with the usual hermitean product 

few occasions in Appendix II we use the same notations also for infinite 

convergent series, e.g. < (ai}iEJN ' (Si}iElf'I = £aiS i T , II (ai}iEJI = 
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I: ex ,ex: N ~ ~ and the like. 

1.5. Since (E,w) is strongly universal every infinite dimensional 

subspace of (E,W) is spanned by an orthonormal basis. Hence every 

x E E is contained in some finite dimensional subspace spanned by an 

orthonormal basis. In other words, for every ex E IIwll there exists 

n E N and suitable X E kn such that ex = <X,X> • From this we con-

clude 

1.5.1. Let M be the N x N matrix of some positiv definite 

hermitean form X with respect to the involution T of k, 

dim X N < ~ • If II xII c II wll then M is a m-Gram matrix for a suit­o 

able m < ~ 
- 0 

This means that there exists a matrix c over 

k such that M = ctr·cT • If the number n in 1.5 may be chosen inde-

pendently of ex then we may pick for m any number exceeding nN. 

Indeed, diagonalize: M = QtroDoQT with D = [dl, ••• J diagonal. 

d i E IIwll • Hence we find a set of N pairwise orthogonal m-tuples 

Yl'··· with <Yi,Yi > = d i Take the Yi as columns for a matrix Y, 

ytr.yT = D • C := (Qtrytr)tr will do. 

1.6. Let (Ai)iEN be a sequence in k and (Yij)ijEN an inver­

tible row-finite matrix with 

(1.6.1) T 
~Y ijYrj = (\r (Kronecker) • 

We define a new sequence (Ii)iEN by 

(1.6.2) 

and claim: 

(1.6.3) There exists for every N' E N such that 
N' 

- -T 
I: A.Ai 
1 ~ 

and symmetrically for every N E N there exists N' E N such 
N' 
I:A,A: • In particular, if one of the two sequences 
1 ~ ~ 

N - -T 
(I: l AiAi )NEN is a Cauchy sequence then so is the other. 
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Proof. For fixed i E N let j(i} be the smallest natural number 

= max{j (I) , ••• ,j (N}} , so 
_ N '[ _'[ 
)..,0: y, 'Yl.'r}). < 

J i=l l.J r -

Nl _ N2 '[ _'[ 
E ). (E Y Y }). for N > N since our quantity is obviously j,r=l j 1 ij ir r 2 -

monotonic with increasing N We choose N2 = max{i(l}, ••• ,i(Nl }} 

is of course also column-finite in view of (1.6.1) 

for 1 < j,r ~ Nl • Hence 

1.7. Standard bases. Let V C (E,~) be some infinite dimensional 

subspace. There always (1.5) exist bases ~ = (vi}iEN U (ft}tEJ of E 

such· that 

(1. 7 .l) (vi) iEN is an orthonormal basis of V ; 

(1.7.2) (ft}tEJ is an orthonormal basis of some supplement of 

V in E . 
With respect to a fixed basis ~ we set for the whole chapter 

(1. 7 .3) a ti =~(fl,vi) (tEJ, iEN) 

(1. 7 .4) 
n '[ 

(t,KEJ, nEN) A = Ei=l a tiaKi tKn 

Since o < IIf - E~=lativill = 1 - Attn we have - t 

(1. 7.5) 0 ~ Au n < 1 

We call standard basis for the embedding VeE a basis ~ which 

satisfies (1.7.1), (1.7.2) and 

(1.7.6) (AtKn}nEN is a Cauchy sequence for all t,K E J • 

In general there will be no standard basis for an embedding VeE but 

we do have the following important case: 

(1.7.7) If (ko '<) is archimedean then there are always standard 

bases. 

Proof. (Attn}n is bounded by 1.7.5 and obviously monotonic, hence 

Cauchy in the archimedean case. If all (A ) , t E J , are Cauchy t tn n 
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then so are (A1Kn)n by the Schwarz inequality (this follows just as 

in the commutative case). 

Furthermore, by 1.6 and by the Schwarz inequality, we have 

(1. 7.8) If }8 = (vi)JN U (f l ) J is a standard basis for Vc E 

and (Vi)JN any orthonormal basis of V then iii (vi)JN U (f l ) J is 

again a standard basis for VeE and lim A lim A in k ® 
lKn lKn 0 n+oo n+oo 

(1,K E J) . If VeE admits at least one standard basis then the 

union }8 of any orthonormal families (vi)JN (spanning V) and (f l )J 

(spanning a supplement of V in E) is a standard basis for VeE 

k 

(1.7.9) Thus, whenever we do have a standard basis for VeE we 

may contemplate the positivesemidefinite matrix A = (A1K )1,KEJ where 

A = lim A E k ® k ; we call A the matrix associated with the lK lKn 0 n+oo 

standard basis. 

2. The matrix of a ~-dense subspace with standardbasis 

Assume that V ~ (E,<P) admits a standard basis 

}8 = (vi)iEJN U (f l )lEJ • We can always arrange for the typical x E E to 

be represented in the form x = r~ Sifi + r~ AiVi • Setting SN:= 
N n n T 

rj=l (Aj+rlSiCLij) (AjH l SiCLij) we have the identity (olK: Kronecker) 

(2.1) 

We assert: 

(2.2) The matrix A1K - 0lK is negativesemidefinite. 

Proof. Assume that for some given sl""'sn 
n 
r Sl (A1K-o lK )S: f 0 . Choose N so large that 

1,K=1 

we have 

n n 
Irs (A N-A )sTI < Irs (A -0 )sTI . Consider then the vector 
1,K=1 1 lK lK K l'K=l 1 lK 1K K 

n n 
r s·f. + 

N with A. -r s i CL ij S = 0 for this choice of x = r l AjV j N 1 ~ ~ J n 1 
N 

the A. and (2.1) shows that r s (A ° )t;T < 0 since II xII > 0 
J 1,K=1 1 1K 1K K 

Q.e.d. 
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We also see that we cannot have, at the same time, both "U; (A -0 ) S T =0" 
1 1K 1K K 

and "ESifi E V + Vol" unless all si be zero. Thus 

(2.3) If A - 0 is not definite then V + Vol # E • 
1K 1K 

The converse does not, of course, hold as illustrated by theorem (2.6). 

From (2.1) we deduce by the same kind of arguments the following 

(2.4) Assume that on the k-vectorspace E we introduce a hermitean 

sesquilinear form ~ with respect to the involution T of k by 

specifying the products on some basis m = (wi) iE1N U (f1 ) 1EJ of E in 

the following manner. We require firstly (wi)iE~ to be orthonormal 

for ~ , secondly we require (f1)tEJ to be orthonormal for ~ 

thirdly we choose the ati 

(2.2) hold. Then we have 

~(ft,Wi) in such a way that (1.7.6) and 

(2.4.1) ~ is positive semidefinite on all E, 

(2.4.2) If W is the span of (wi)iE~ then wol # (0) iff there exists 
m 

such that the sequence (E SlAtKnS~)n 
1,K=1 

is eventually constant when n + 00 

(2.4.3) If Wol = (0) then the form ~ is definite on all of E and 

the matrix (A tK ) is definite. 

Notice that (E,~) thus defined need not be strongly universal. 

2.5. Corollary. Assume that V C (E,~) with Vol = (0) admits a 

standardbasis m . Then the matrix (A1K ) associated with this basis 

is positive definite and the matrix A1K - 1 is negative semidefinite. 

Furthermore k admits non eventually constant denumerable Cauchy 

sequences; hence the topological space 

and is thus a complete space. 

k ~ k 
o 

has a denumerable basis 

2.6. A theorem. As ~ is assumed to be strongly universal we see 

that ll~ll coincides with the subset Q:= {<x,x>lx E km,m E~} of 

k o Let Q be the closure of Q in k o 
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In order not to have to interrupt the train of thoughts we have 

delegated the proof of the following instructive theorem to Appendix II. 

Theorem. Assume that - -+ 
Q = k o 

(the non negative elements of k ) 
o 

and that ko possesses a non eventually constant denumerable Cauchy 

sequence. Let A be any positive definite J x J-matrix over k ® k , 
o 

card J ~ ~o ,with A - ~ negative semidefinite. Then there is a po­

sitive definite hermitean k-space (E,~) which contains a standard 

basis !!l = (vi}JN U (fl}J with .L-dense span of the (vi}JN and with A 

as the associated matrix. Here (E,~) need not be strongly universal. 

Remark. We have chosen the assumption Q = k~ for the sake of 

convenience; the assumption is actually too strong. 

Corollary. Let (E,~) be a strongly universal k-space with 

1 E II~II . Consider the situation of the theorem but make the stronger 

assumption Q = k+ • Then the space o 

metric with (E,~) 

(E, ~) constructed in 2.6 is iso-

Proof. We keep the notations of 2.6. The subspace E:= k(vi)iEJN 

of (E,~) is strongly universal being isometric to (E,~) Further-

more Q = II~II = IIEII c II~II C k+ = Q hence we have equality throughout. o 

2.7. Consider the situation of theorem 2.6 for some fixed 

n = card J = dim E/V ~ ~o • We may represent the matrix A = (AlK)l,KEJ 

as a point with the coordinates A lK 

By our theorem 2.6 we are interested 

the intersection of the two cones 

in a I n·(n+l) - dimensional space. 

in the convex region,R which is 

Kl (AlK ) positive definite, 

K2 (AlK ) - 1 negative semidefinite. 

To every point of ~ corresponds a dense embedding V C (E,~) (and 

conversely). The invariants for VeE which we are going to set up in 

the next section will enable us to replace the study of orbits in the 
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set of ~-dense VeE under the orthogonal group of (E,~) by the 

study of orbits in the region cJ( under some more accessible group. 

Here is a picture of .ft.. for n = 2 and ~ symmetric. One may 

take e.g. k = 9) so it =IR and ~ c 1R3 : 
0 0 

When n = 2 and k = IR then Jt 
is the union of 3 orbits by the 

Main Theorem in Section 4. 

(1,1,0 ) 
Where are the orbits! 

~ for n = 2 ~ only the nearer half of the surface (and with the 

equator ellipse excluded) belongs to ~ 

3. The 1/J - invariant of a ~-dense subspace 

dard bases for the embedding VeE , V~ = (0) We have 

(3.1.1) f 
1 

for certain row-finite matrices (Y 1K ) 

smallest natural number such that ~li 

for K(l) • (Y 1K ) is invertible. 

(~li) over k ~ i(l) is the 

o for i > i(l) ~ similarly 

~ and ~ 

(3.1.2) 

be the matrices over it ® k associated with 
o 

respectively and 1 - (0) the unit matrix. We assert - lK 1,KEJ 

A - 0 lK lK 

V(l) .Il(K) T 
L Y1V (Av)l-Ow)YK)l (y lv E k) 

v,)l=l 

Proof. By 1.7.8 ~ 

basis for VeE and Al~ A1K (l,K E J) • By making the transition 
-from ~ to ~ via ~ it becomes evident that we may assume at the 
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outset that 

(3.1.3) 

From (3.1), (3. 1. 3) we get alJ.' = ~(f v,) 
1, J. 

and, by 

making use of the fact that (vi)JN' (fl)J ' (f 1 ) J are or,thonormal 

families, it follows that 

(3.1.4) A - a 
lKm lK 

for every 

m ~ i(l), i(K) 

From this (3.1.2) follows since we have convergence for m ~ ~. 

3.2. The invariant 0/. We see from 3.1.2 that the quantities 

appropriate for the description of a L-dense embedding VeE are not 

the matrices A associated with standard bases but rather the matrices 

A - 1 • In the special case when ko = ko (3.1.2) says that A-I 

transforms just like an ordinary hermitean symmetric tensor (i.e. like 

a hermitean form) when the standard basis describing the embedding 

VeE is changed. If ko ~ ko then the embedding VeE still de-

termines the equivalence class of the matrix A-I (over k ® k) 
o 

modulo the transformations 3.1.2 over k induced by the allowable 

"coordinate transformation (3.1.1)" which describes the transition 

from one standard basis ~ to another such basis ~. 

For the rest of the chapter we shall set (a lK = Kronecker) 

(3.2.1) (l,K E J) 

and by 0/ we shall understand the class of the matrix (o/lK) modulo 

the transformations (3.1.2) which we shall set down here once more 

(3.2.2) (y 1 \I E k) 

Definition (3.2.1) is justified by the fact that the quantity 0/ 

actually characterizes the dense embedding VeE ("main theorem"). 

The easy half of this characterization is contained in the proof of 

3.1.2. We state it in the following form 
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3.2.3. Theorem. Let VeE, VeE with 
.L 

V be embed-

dings which admit standard bases. If there exists a metric automorphism 

T of (E,~) with TV = V then W = ~ for the corresponding psis, 

i.e. an equation (3.2.2) holds for the components WlK ' ~lK where 

(YlK)l,KEJ is a row-finite invertible matrix over k. 

4. The Main Theorem on i-dense subspaces and the plan of its proof 

Our first principal result is a converse of theorem 3.2.3 above. 

In order to prove it we have to put down an additional condition on the 

field k (c.f. Remark 5.6 below). 

We have set down as a general assumption for the whole chapter 

that (E, ~) be strongly universal and that I E II ~II • This means that 

the set II~II is made up of all sums <X,X> where X E km and where 

m ranges in W. For the proof of the main theorem we need a finite-

ness condition to the effect that we obtain all of II~II if we bound 

m by a suitable bound. Let Qs c k~ be the set of all sums <X,X> 

where X E k S • We shall assume k to satisfy 

(4) There exists sEW such that k+ = Q 
o s 

Remark. It is not difficult to provide examples of division rings 

(k,T) that admit positive definite forms ~ and which satisfy (4). 

Let us consider the case where T = 1 • In this case (4) says that 

has finite Pythagoras number [7J and admits one ordering only. (The 

Pythagoras number of an ordered commutative field is the smallest 

cardinal s < ~ such that every sum of squares in the field equals 
o 

a sum of at most s squares.) Algebraic number fields with unique 

k o 

ordering provide examples with s = 4 • Of course,there always are the 

real closed fields with s = I 

We are now able to state 

The Main Theorem (on i-dense subspaces). Let V,V E E with 
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V~ = v~ = (0) be embeddings which admit standard bases such that an 

equation (3.2.2) holds. Provided that k satisfies (4) there exists a 

metric automorphism T of (E,~) with TV = V 

The proof of the Main Theorem will be given in the course of the 

next three sections. In sec. 5 we derive from the assumptions of the 

main theorem that there are standard bases such that the associated 

matrices are equal (Lemma 1). In sec. 7 we prove that if the associated 

matrices are equal one may always introduce bases such that a . = a . 
1~ 1~ 

(1.7); this will of course guarantee the existence of the required 

automorphism (Lemma 3). For the recursive construction in the proof of 

Lemma 3 another lemma is needed the proof of which is somewhat lengthy; 

we could have shortened it to a fraction were it not for the non commu-

tative cases which we are not willing to drop. It will be inserted as 

lemma 2 in section 6. 

5. Proof of the Main Theorem: the first lemma 

5.1. Lemma 1. Let VeE, veE with V~ v~ = (0) be embed-

dings which admit standard bases ~,~ such that the corresponding 

~,~ are equal; i.e. (3.2.2) holds for (Y1K)1,KEJ a row-finite in­

vertible matrix over k. If k satisfies (4) then there exists a 

standard basis ~, for VeE such that ~~K = ~lK (l,KEJ) . 

Proof of lemma 1: 

5.2. If for all 1 E J c ~ we succeed in determining natural 

numbers i(l) and Sli E k , ~ < i 2 i(l) such that the vectors 

(5.2.1) 

are an orthonormal family then by (3.1.2) ~~K ~lK 

5.3. The induction assumptions. We shall assume that we have al-

ready determined numbers i(l) E ~ for 1 < N as well as the cor-
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responding ~li' 1 2 i 2 i(l) such that (f~)l<N is an orthonormal 

family. We shall show how to find i(N+l) and the corresponding 

~N+l,i ' 1 < i < i(N+l) such that (f~)l<N+l is an orthonormal family; 

this will also cover the very first step, i.e. the determination of 

1(1) and ~li' 12 i 2 1(1) . 

5.4. Reformulation of 5.3. Let m ~ max{i(l) , •.• ,i(N)} be a fixed 

natural number. We set 

(5.4.0) ~li := 0 (1 < 1 < N 

hence we may write 

(5.4.1) 

If we set 

(5.4.2) 

and 

f' 
1 

i ( 1) < i < m) • - , 

(12 N) 

(5.4.3) r(m)'K := A - Loo (LV(l)y a ) (L~(K)y a )T 
, 1K i=m+l v=l 1V vi ~=l K~ ~i 

then orthonormality of the family (5.4.1) is easily verified to be 

equivalent with 

(5.4.4) 

Simplifying the expression for 

(5.4.5) r (m) E k 
1K 

r (m) 
1K 

in (5.4.3) shows that 

The convergence of the infinite sum in (5.4.3) follows directly from 

the existence of the infinite sum ~~ 

5.5. Choice of i(N+l). Consider the matrix r = (r(m)1,K)1,K2N+l ' 

For m + 00 the matrix r converges to the positive definite (2.4.3) 

matrix (A ) 
1K 1,K2N+l 

We may therefore pick m so large that rim) 

is positive definite (Continuity of the principal minor determinants) • 

In fact, if s is the number in (4) we shall require that m be chosen 

such that we have both 
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(S.S.l) m > N·s and r positive definite . 

Such an m we take as our candidate for i(N+l) . By (4) and (l.S.l) 

we then have 

(S.S.2) r (cil )l<l<N+l over k. 

l<i<m 

In the hermitean m-tupel space (km;<,» we consider the vectors 

Xl = (All'··· ,A lm) , 1 ,::. 1 < N and the N+l columnvectors 

of the matrix C in (S.S.2). By (S.4.4) we have 

By Witt's theorem we can extend the isometry 

~ : Yi~ xi (l'::'i'::'N) to all of km. If we set 

xN+l := ~YN+l 

we have 

(S.S.3) 

Now we should pick i(N+l) and the corresponding ~N+l,i (l'::'i'::'i(N+l) 

in such a fashion that the vectors fi, ••. ,fN,fN+l of (S.2.l) are 

orthonormal. Just as in (S.4) this orthonormality amounts to the con-

dition 

(S.S.4) (l'::'l,K,::.N+l) . 

The Ali with 1 < 1 < Nand 1 < i < m are known by (S.4.2),and the 

(S.S.S) A := ~ + ~K(N+l)y a 
N+l,i sN+l,i K=l N+l,K K,i 

are the unknowns since the ~N+l,i are unknown. Now (S.S.3) shows that 

(S.S.4) is solved with AN+l,l, ... ,AN+l,m--as the components of 

xN+l := ~YN+l • Hence we can solve for the in 

(S.S.S). These elements and i(N+l) := m have all the requisite pro-

perties. The proof of lemma 1 is thus complete. 

S.6. Remark. In retrospect it can be made plausible that we do 

need the assumption (4) instead of mere strong universality of (E,~) 
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if we want to prove lemma 1. For if the lemma holds then the matrix 

r(m) as introduced by (5.4.3) must be a "m-Gram-matrix" for some 

m E IN , Le. theremust exist a m x N matrix Cover k with 

r(m) = ctr·c, for some m E IN Without a finiteness assumption it is 

conceivable that all matrices C with ctr·c' = r(m) have more than 

m rows for all m E IN • Now the way in which the N x N matrix 

r(m) is defined,namely as a difference of matrices over k, makes it 

necessary to require the following of the field k (recall that N 

varies in IN in the course of the proof): Every hermitean form r in 

finitely many variables which has Ilrll C k+ 
0 

-+ 
- k 

0 
satisfies II rll C Qs 

for suitable s E IN • Hence condition (4) • 

5.7. The following remark will be useful at some later stage. Let 

(vi)iEIN U (f 1)lEJ be a standard basis for VeE , V~ = (0) • If we 

change finitely many f1 modulo V to f~ , f~ = f1+ ~~livi such that 

these f' 
1 

are orthonormal, then the f' 
1 

can be completed to a standard 

basis such that f - f' 
1 1 

(l,KEJ) • Indeed, we only have to apply the proof of 5.1.3 to the case 

where (Y1K)lKEJ of 3.2.2 is the unit matrix. 

6. Proof of the Main Theorem: the second lemma 

6.1. Consider the situation r = dim E/V < = • For some fixed 

standard basis A n 

(A) defined in 1.7. For n ~ = 
1Kn l~l,K~r 

the matrix A 
n 

converges 

to the positive definite (2.4.3) matrix A = (A ) 
1K 1~1 'K~r 

is n 
o 

these 

E IN such that An is positive definite for n > no 

n there is an inverse B - (B ) of A trB = B' n - 1Kn ni n n 

is positive definite for n > no 

B = A-I • 

Bn converges with n ~ = 

Hence there 

and for 

and Bn 

to 

The matrix Sn An+l - An is positive semidefinite and the 

identity 
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(6.1.1) 

shows that Bn- Bn+l is positive semidefinite. Hence for fixed X E k r 

the sequence (trXB XL) is monotonically decreasing and not eventual-
n n 

ly constant since V~ = (0) (2.4.2). 

6.2. For the recursive construction of the automorphism in lemma 

7.0 of the next section the maximum of a certain function defined on 

the sphere sm-l c (~k)m , 

(6.2.1) sm-l : <X,X> 1 

turns out to be of central importance. We shall now define this func-

tion. We set A := (asj)l~s~r,l~j~m with the a 
sj 

as defined in 

1. 7; furthermore C := trAL B A , c := trALBA For X E (~k)m we n n 

then define 

(6.2.2) 11 (X) = trxc XL 
m,n n' 

6.3. Lemma 2. Let n > n 
0' 

n > m . (i) 11 has a maximum - - m,n 

Ilm,n on Sm-l with 0 < Ilm,n ~ 1 (Ilm,m E {O,U) . (ii) For fixed m 

there exist n such that Ilm,n < 1 (iii) 11 has a maximum 11m m,"" 

on sm-l and 11m < Ilm,n < 1 for all m E 1N -

Just as in the case of commutative fields k with archimedean 

ordered ko (i.e. K = ffi) one finds that the maximum problem of lemma 

2 is a equivalent to an eigenvalue problem, namely 

(6.3.1) 

Before proving the spectral theorem for the fields admitted here we 

shall list some consequences in connection with (6.3.1). 

6.4. If X is a nonzero eigenvector for the eigenvalue 11 in 

(6.3.1) then 11 (X) = 1l·<X,X> . Hence 11 E K • We have 0 < 11 _< 1 m,n 

(and 11 E {O,l} if m=n). 
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2 
Proof. To show that ~ < 1 we shall prove that ~ - ~ < 0 . Set 

V := (a ')1 . (if s] <s<r,m<~<n 

tr-, -
A = A-V· V • We have m n 

m=n V will not be needed) so 

~2.<x,x> = tr(~X) (~X)' = trx.c.trc,x, 
n n 

trX.trA'B AtrA'B Ax' = trX.trA'B (A _ V.trV')B AX' 
n n n n n 

11 (X)-
m,n 

tr (trV'B AX')'. (trV'B AX') • As 11 (X) = ~<x,x> we therefore see 
n n m,n 

that (~2_~)<x,x> < 0 . If we should have m = n then we find 

6.4.1. There are only finitely many n E N such that (6.3.1) 

possesses a nonzero eigenvector Xn with eigenvalue 1. 

Proof (indirect). Assume there were such X with n 
n 

ranging in 

an infinite subset peN. We keep the notations of the proof of 

6.4 where we have shown that 

(trV'B AX') • Hence trV'B AX' 
n n n 

o for n E P 

_ tr(trV'B AX')'. 
n 

Since v~ = (0) we 

cannot have that the rows of the rby(n-m+l) matrix V are linearly 

dependent for infinitely many n EN. Therefore o for 

n > n l and n E p • Bn is invertible for n > n 
o (6.1) so 

for 

find for these n that 

n > no+ n l and n E P Therefore (6.2.2) we 

o trx trA'B Ax' = 11 (X) = <X X > 
n n n m,n n n' n ' 

a contradiction 

~. The following statements are equivalent. (i) X E sm-l is a 

point of maximum for 11 • (ii) 
m,n 

is an eigenvector of 

(6.3.1) belonging to an eigenvalue ~ which renders en - ~i negative 

semidefinite. 

Proof. Assume (ii) and let X + Z be arbitrary in 
m-l S , 

<X+z, X+Z> = 1 . We find 

(6.5.1) 

which shows that (i) holds. Assume conversely that (i) holds. We then 

consider the function H(Y):= 1Im,n(Y) - ~<y,Y> on the vectorspace 

(K®k)m for suitable value of the "constant" ~ : We can fix ~ E K such 
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lim * [H(X+aT)-H(X)] 
K3!lI-+-o 

vanish in arbitrary directions T E (~k)m • Indeed, if we choose 

~ = max lTI (Y) = TI (X) then Cn- ~1 is negative semidefinite 
Sm- m,n m,n 

~1 m on S hence so on all of (~k) (since K is real closed). There-

fore H(X+lIT) - H(X) = H(X+lIT) tr(X+lIT) (C -~l) (X+lIT)T < 0 for all 
n 

1I E K Hence the quantity 

(6.5.2) lim i(H(X+lIT) - H(X» 
K~lI-+-o 

is both < 0 and ~ 0 so DT = 0 • 

We shall now evaluate (6.5.2) for suitable choices of T. Let T = Ti 

be the m-tuple (0, ••• ,0, ••• 0) with 0 at the ith place. We shall 

first discuss the non commutative case, K ® k = (a,~) . Assume that 0 
K 

is one of the three basis vectors e with OT = -0 • A banal calcu­
i 

lation shows that o = 0 (6.5.2) yields 
Ti 

(X 

m 
(6.5.3) o = 01: - T T 

1: 0 + ~~io- ~O~i where 1: ~.C " 
j=l J nJ~ 

for 1 < i < m • In other words o-l(1:T_~~ )0 
i 

turn be shows that commutes with 

so commutes with (a = 

Application of (6.5.3) to 0 = e 3 thus yields 

(6.5.4) 

We also have 

(6.5.5) 

Letting in 

which is read off from 0 0 if we let 0 
Ti 

1 • Addition of the two 

equations shows that (6.3.1) holds. The same conclusion is obtained in 

the easier commutative case which we leave to the reader. 

6.6. The spectral theorem. Let C: (~k)m-+ (~k)m be a hermitean 

linear map, i.e. a map which satisfies 
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(6.6.1) <CX,Y> = <X,CY> for all X,Y E (~k)m • 

Then there exists an orthogonal basis of «~k)m ;<,» consisting of 

eigenvectors of C. 

The spectral theorem could be proved just as in the well known 

commutative case with T = ~ by making use of the Dieudonn~ determinant. 

In order to discuss the "characteristic polynomial" it is however cru-

cial that the involutorial field (k,T) has ~~T in its center for 

all ~ E k • In the skew case this leaves us just with the quaternion 

algebras and, in this case, a straight forward reduction to the commu-

tative case can be given as follows: 

Proof of the spectral theorem. The field L = K(Ia) is algebraic-

ally closed (whether k k (Ia) or k = (a,B» and L C K ® k • 
o ko 

Hence by the commutative case of the spectral theorem the L-linear 

endomorphism C of the finite dimensional L-space (~k)m admits 

an eigenvector. etc. 

6.9. Corollary. Let ~ be a hermite an form in finitely many vari-

abIes over the division ring (hermitean with respect to "con-

jugation"). Assume that K is real closed (K may be archimedean or 

not). Then ~ can be diagonalized by a unitary transformation of the 

coordinates. ~ has therefore a maximum on the unitsphere. 

6.10. Proof of Lemma 2. Let C be the map defined by Cn (with 

respect to the basis e i = (0, ••• ,0,1,0 ••• ,0) E (~k)m). By the spec­

tral theorem there is an orthogonal basis ~ of eigenvectors for C; 

the matrix C with respect to ~ is diagonal, C VC v- l = 
n n n 

[Ill"" ,llm ] V has the eigenvectors as rows and lli are the eigen-

values. Since K is real closed we may choose the eigenvectors X to 

have <X,X> = ~ so that V is unitary, -1 UVT V = • The equation 

V(C -llll) trvT = C - lllL shows that the matrices Cn- lllL and 
n n 

[lll""'llmJ - 111 are at the same time negative semidefinite so 
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qualifies for (6.5); if X is an eigenvector for 

then X is a point of maximum for 11 m,n 
Assertions (i) of the 

lemma now follow from (6.4). 11 has analogous properties. The in-m,oo 

equality in (iii) follows from (6.1). Assertion (ii) is taken care of by 

6.4.1 (It follows equally from (iii) and the fact that the eigenvalues 

depend continuously on c .). 
n 

7. End of the proof of the r~in Theorem: the third lemma 

7.0. Lemma 3. Let VeE, VeE with V~ = V~ (0) be embeddings 

which admit standard bases m,m such that ~lK = ~lK for all 1,K E J 

(card J = dim E/V = dim E/V). If k satisfies condition (4) then there 

exist standard bases m',m" for VeE, VeE respectively such that 

<I> (f~ ,vi) = <I> (f~ ,v:;.> (for all 1 E J, i E IN) , Le. the map which sends 

members of m' into corresponding members of mil induces a metric 

automorphism of E which maps V onto V 

7.1. Proof of Lemma 3 when card J = dim E/V < 00. 

7.1.0. Let m = (vi)iElN U {fl, ••• ,fn }, i = (;i)iElN U {ll, ••• ,ln} 

be the two bases which have ~lK = ~lK or,equivalently, A1K = A1K 

(l~l,K~n) . We are going to construct a metric automorphism T: E ~ E 

with TV = V in the following manner. Let (es)sElN be some fixed basis 

of E Assume that we have already determined finite dimensional sub-

spaces Vr c V , Vr c V with the properties 

with T I. = f. and T V r ~. r r (ii) Vr,Vr are spanned by 

orthonormal bases. 

Let e be the first member of our auxiliary basis (es)sElN of E 

with e ~ k(ll, ... ,l ) $ V n r By (1.5) we can find a finite dimensional 

space spanned by an orthonormal basis and such 

that e E k(ll, •.• ,l ) $ (V $ W) . We shall determine a space n r 



288 

w c V~ n v with dim W = dim Wand spanned by an orthonormal basis r 

such that ~(f ,x.) = ~(f ,x.) 
1 ~ 1 ~ 

(l~l~n ; iEI) . It is then 

clear that Tr can be extended to an isometry k(fl,··.,fn ) ~ (Vr~W)+ 

k(fl, •.. ,fn ) ~ (Vr~W) by sending xi into xi . The step may then be 

repeatet with Vr+l V~W and 
r 

Alternating in this fashion between V and V we make sure that 

In order to carry through this program we need solve only the 

following problem whose solution may then be applied to the embeddings 

V' = k(vi""'V;)~ n V c V' e k(f 1 )J ' V' = k(Vi""'V;)~ n V c V' ~ 

k(f1 )J where the vi,vi are the basis vectors which we have already 

constructed. 

7.1.1. (Problem). Given a vector x E V with IIxll = 1 find a 

vector x E V with IIxli = 1 and prescribed ~(fl'X) , to wit 

(7.1.1.1) ~ (f ,x) = Ti 
1 1 

where Ti = ~ (f ,x) , 1 E J • 
1 1 

Notice that by the density of V there exist,of course,vectors Z E V 

with (7.1.1.1); the problem is whether there are such vectors with 

II zli < 1 ! 

7.1.2. Solution of problem 7.1.1. In order to solve this problem 

we shall look out for a vector z E V with ~(f ,z) = Ti and IlzlI < 1. 
1 1 

Then 1- IIzll E II~II by assumption (4) so ( .1.5) the space 

V n z~ n k(fl)~EJ contains a vector v with II vII = 1- IIzll . x v+z 

then has the required properties. 

Our candidate for such a vector z is (cf. Remark 7.1.3) 

(7.1.2.1) 

and where the natural number n shall be chosen suitably. (7.1.1.1) 

is satisfied for x = zn • For IIznll we find IIznll = 'E~ AiA~ 
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-T -
IIzn ll 

-T 
L: nVBV\ln nil Hence lim exists and equals L: nvBVlln ll 

V,IlEJ n .... '" V,IlEJ 
-'t' 

since by the assumption of the lemma E n B nil AVIl AVIl 
V,Il EJ v Vil 

-T-
(1/JVIl= AVIl +0 VIl) Thus, if we had L: nvBVllnll < 1 then for suitably large 

n we would indeed have II zn ll < 1 and the proof of Lemma 3 would be 

complete (in the dim E/V < '" - case) • 

-'t'- -
NOw, how large can L:nvBVllnll get when (7.1.1.1) nv 

x = L:~ ~ivi for some mEN and II -II m - -'t' 
X = L:l ~i~i = 1 ? Part (iii) of 

(6.3) 

"EL~7 

-T- -
tells precisely that L: n B n < 1 

v,IlEJ v Vil Il 
on the sphere 

= 1" 
~ ~ 

7.1.3. Remark. One may ask how the choice of the candidate 7.1.2.1 

is motivated. How does one chance upon the formula for the components 

Ai ? The answer is: work out the problem for symmetric forms in the 

case of archimedean k , k = R by looking for the shortest Z E V 
o 0 

satisfying 7.1.1.1. An obvious tool is Lagranges "method of undetermined 

multipliers". Straight forward discussion of Lagrange's function 

H = Ilzll -

L: Il a . 
oEJ a o~ 

L: Il (I(f ,z)-~ ) = L:A~ - L: Il (a .A.-~ ) 
1 EJ 1 1 1 ~ 1 EJ 1 1 ~ ~ 1. 

and the multipliers Ilrr turn out to be Ilo 

hence our formula for the Ai in this case. 

yields 2A. 
~ 

2 L: -n B • 
v Von ' vEJ 

If one is interested in the mere existence of a z E V with 

IIzll < 1 and (7.1.1.1), i.e. if one doesn't need a formula for z which 

lends itself for generalization then one can also argue differently in 

the case of commutative k with archimedean ko ; see [8J, Lemma lII.9. 

7.2. Proof of the Lemma 3 when card J = dim E/V = ~o. Let 

lS = (vi)iEN U (f1)lEJ ' iii = (Vi)iEN U (f1)lEJ , (J=lN), be the standard bases 

with 1/J = ~ , i.e. A 
1K lK 1K 

A1K for 1,K ~ J • We shall build up new 

standard bases lS', lS" with I(f~,vi) = I(f~,vi) (lEJ, iEN) step by 

step. Let (wi)iEN' (Wi)iEN be "auxiliary" bases of V, V respectively. 

We put down the following 
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7.2.1.Induction Assumptions. Assume that we have already deter-

mined families lB' = (v') U (f') lB" 
n,m i l~i~n 1 l~l~m' n,m (vi) l<i<n U 

(f~)l<l<m such that 

with 

(v!), (v'.'), (f'), (fll) are orthonormal families 
~ ~ 1 1 

(7.2.1.1) 1 < 1 ~ m , 1 ~ i < n 

and k(vi)l<i<n = V n span lB~,m ' k(vi)l<i<n = V n span lB~,m further-

more 

(7.2.1.2) f'- f 
1 1 

E V fll- f E V 
, 1 1 l<l<m. 

We are going to show how to extend the fragments lB' lB" 
n,m' n,m such that 

the induction assumptions just mentioned continue to hold for the ex-

tended families. 

Let V' = V n k(v!)~ V" o ~ ~~n' 0 
V n k (v'.') ~ • We consider the 

~ ~<n 

following subspaces of (E,V): 

(7.2.1.3) E' = k(fl', ... ,fm') ~ V' E" = k(f" fll) Eil V" a ' 1'···' mo' 

We assert that not only do these spaces E',E" admit standard bases 

but there are such bases with 

(7.2.1.4) A' = A" 
lK lK 

for the associated matrices. Indeed, since A A for all l,K in 
lK lK 

particular so for 1 5.. l,K 5.. m Replacing the f ,f by f{,f~ does . 
1 1 

not by (3.1) affect the associated matrices in view of (7.2.1.2). With-

out affecting these matrices we may furthermore switch from (vi)iE~' 

(;i)iE~ to any other orthonormal bases of V,V respectively; this 

permits us to chop off k(vi""'v~) , k(vi""'v~) as orthogonal 

summands in V, V respectively: because of (7.2.1.1) equality of the 

associated matrices is thereby inherited by E' and E" . This proves 

(7.2.1.4). 

7.2.2. The adjunction of further v',' 
~ 

to lB' n,m' 
lB" 

n,m 
Let 

be the first member of our auxiliary basis (wi) iEH~ of V not con-

w 
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tained in k(vi' ••• 'v~) • w = x + y , y E k(vi' ••• 'v~) , x E V~ • We are 

going to enla;rge in such a ,,>lay that j8' j8" 
n,m' n,m 

w E span j8' , ,. 
n ,m 

Because of (7.2.1.4) we may apply 7.1 to the spaces (7.2.1.3): there are 

orthonormal bases (wi)iEw' (wi)iEW of V~, v~ respectively such that 

There is s E IN such that 

j8" to j8' j8" by setting 
n,m n+s,m' n+s,m 

We now pass from j8' 
n,m' 

a later step we adjoin enough new v': to j8" so that the extended 
J. n,m 

family contains the first member w of (wi) iEW not contained in the 

span of j8" 
n,m Alternating between 

ensure that the growing bases 

j8' 
n,m 

(v': ) 
J. 

and j8" 
n,m is necessary to 

will both exhaust v and 

V respectively. Induction assumptions 7.2.1 are trivially preserved 

by this step. There remains 

7.2.3. The adjunction of further f' ,f" to j8' ,j8" • Let 
n,m n,m 

B' ,j8" be as in 7.2.1. For purposes of calculations we complete n,m n,m 

respectively. We also complete the fi, ••• ,f~ and the fi, .•. ,f~ as 

indicated 

iEW) we 

then try 

(7.2.3.1) 

satisfies 

(7.2.3.2) 

in 5.7. Setting ct ' . 1J. := <I> (f~ ,vi) 

shall therefore have l: ex I. a'~ 

to 
W 1J. KJ. 

determine N E W and t;i E k 

fm*+l := f' + l:n+N ~ v' m+l 1 "i i 

Ilf~+lll = 1 

<I> (f~+l ,vi) 

or, equivalently, 

(7.2.3.3) l:n+N 1: 
t;it;i 1 

(7.2.3.4) l:n+N 
1 

t; ,1: 
i ct li 

(7.2.3.5) 

+ 

= 

l:n+N 
1 

, t;1: 
ct m+l,i i 

0 

ct" 
m+l,i 

all, := <I> (f~ ,vi) (lEJ, 1J. 

A 1 K ' 

for 

o 

+ 

l: a" ,a": 
W 1J. KJ. 

1 < i < 

(l,:,l,:,m) 

(l,:,i,:,n) 

= 

n+N 

n+~ ,1: 
l:l .ct +1 . J. m ,J. 

(l,:,l,:,m) 

A1K We 

such that 

0 
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We set 

(7.2.3.6) Xi = ~. + 0.'+1 . 1 m,1 

We see that (7.2.3.5) settles the values of Xi for 1 < i < n • The 

other two conditions now read (a' = a" 
til i 

by (7.2.1.1»: 

(7.2.3.7) I:n+NX x'= I: n+N a' a" - I: n a" a'" 
n+l iiI m+l,i m+l,i 1 m+l,i m+l,i 

(7.2.3.8) I: n+N a' a" - I: n a" a'" 
1 m+l,i 1i 1 m+l,i 1i 

Or if we finally make use of the fact that I: a' a" 
i=l ti Ki 

A 
1K 

I: a" .0.": 
i=l 11 K1 

(7.2.3.7' ) I: n+N X X' 
n+l i i 

Em a" anT _ Em a' a lT 
n+l m+l,i m+l,i n+N+l m+l,i m+l,i 

(7.2.3.8') EOO aU aliT _ roo at a iT (1 ) 
n+l m+l,i 1i n+N+l m+l,i 1i ~l~m 

Call Lm+l,m+l(N) the righthand< side in(7.2.3.7') and Lm+l ,l (N) 

(l~l~m) the righthand side in (7.2.3.8'), furthermore Lv~(N) := 

"n+N, "(1 ) ~n+laVia~i ~v,~~m • From (7.2.3.7), (7.2.3.8) it is clear that L(N) 

is a matrix over k. In the hermitean space (kN;<,» we consider the 

(a~,n+l, ••• ,a~,n+N) where l<l<m 

Hence our last two equations read 

(7.2.3.7") <X,X> = Lm+l,m+l(N) 

(7.2.3.8") (1 ~ 1 ~ m) 

For N" 00 the matrix L(N) converges to the positiv definite ma-

trix (VL = (0» (I::+la~ia~l)v,~~m+l 
sufficiently large N EN. Hence by 

L (N) = <Z ,Z > (l~l'K~m+l) for 
1,K 1 K 

(N)l +<ms) .Since <Y1 ,YK> = L1K (N) 

so L(N) is positive definite for 

assumption (4) and (1.5.1) we have 

Z suitable vectors of kN 
1 

for 1 ~ 1,K ~ m we can by Witts 

theorem extend the isometry tp:Zt-+Y 
1 1 

to all of kN • Then 

X:= tpZm+l = (Xn+l' ••• 'Xn+N) solves our conditions (7.2.3.7") and 

(7.2.3.8"). From the Xi (n+l~i~N+n) we solve for the ~i and thus 

find our vector f:+l of (7.2.3.1). 
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!Il' 18" n,m+l' n,m+l by adjoining 

and f" m+l respectively. All induction assumptions continue to hold. 

Shall we exhaust all of E by iterating steps 7.2.2 and 7.2.3 alternately 

(and alternating in each step in turn between the roles of V and V)? 

The point to keep in mind is that we keep changing the bases (f~)tEJ' 

(f~)tEJ in each application of step (7.2.3) (see the beginning of 

(7.2.3» so that f* is - in each application - the match to a member 

f" in a basis which is continually being changed (and of course the 

same if the roles of V and V are interchanged). However, in each 

change of the basis (f~), (f~) the members are merely modulated modulo 

V, V respectively. Since we do exhaust V, V by repeated application 

of (7.2.2) we shall therefore also exhaust supplements of V, V in E 

by repeated application of (7.2.3). This completes 7.2. 

8. An important special case: ~-dense hyperplanes 

Embeddings VeE with dim E!V = 1 are remarkably simpler to 

deal with than those of arbitrary finite codimension. Therefore, and 

because hyperplanes are distinguished objects we state here a general i-

zed version of our main theorem for this special case. 

8.1. If S = (si)iEN is a sequence in an ordered set we let A[S] 

be the set of all elements larger than all si. Thus an equality 

A[S] = A[S'] for two sequences S,S' says that each sn is overtaken by 

a s~, and vice-versa. If A[S] = A[S'] we also write S ~ S' • 
o 

'V is 

an equivalence relation. 

8.2. Given a sequence X = (~i)iEN in the divisionring (k,T) we 

associate with it the sequence 

ko c k • We define: 

n T 
X* = (-l+E~.~.) EN in the ordered field 

1 1. 1. n 

(8.2.1) If X and Yare sequences in (k,T) we set X 'V Y if and 

only if there exists 0 ~ y E k such that A[X*] 



294 

The relation ~ is an equivalence relation and we let [X] be the 

equivalence class of the sequence X 

B.3. Let VeE have V~ = (0) and dim E/v = 1 . A basis for 

the embedding will here be a basis ~ satisfying 1.7.1 and 1.7.2, 

(B.3.l) i E .IN 

and furthermore we associate with the basis ~ the sequence 

(B.3.2) 

It is trivial to say that X determines VeE to within an automor-

phism of E. We shall prove that [X] is an orthogonal invariant which 

characterizes VeE up to automorphisms of E. By our main theorem 

this is evident if ~ is a standard basis for then "x*<tyy'y*" is 

obviously equivalent with "lim x* = yy'lim Y*". However ~ need not 

be a standard basis. 

Our theorem now reads 

B.4. Theorem. Let V,V be ~-dense hyperplanes in (E,~). 

If there exists a metric automorphism T of (E,~) with TV V 
then [x] = [X] for all bases of the embedding. Conversely, if [X] 

[x] for at least some bases ~,~ and if (4) holds then there exists a 

metric automorphism T of E with TV = V 

B.S. Proof of B.4. The first half of the theorem is a routine 

verification (One makes use of 1.6). Assume then that [x] [X] with 

respect to bases ~ = (vi)~ U (f) , m = (Vi)~ U (f) • We first remark 

that a basis ~' can be introduced such that A[X'*] = A[X*] : By as­

sumption A[X*] = A[yy'X*] for suitable Y ~ 0 • Now if yy' ~ 1 we 

may assume that yy' < 1 (for otherwise we interchange the roles of X 

and X since there are 

A1"" 'Am E k such that there are m 
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orthonormal vectors Vi""'V~. If we set we have 

II f ' II = 1 • {Vi"'" v ~} can be completed to an orthonormal basis (vi) /11 

of V With respect to the basis j)3'= (vi) [.J U (f' ) 

n_ -T 
~ 

n T 
(8.5.1) (l:a, a,) (l:a~a~ ) 

1 1. 1. n 11.1. n 

We claim that bases can be introduced such that a i 

we now have 

a, for all 
1. 

i E ~ • The program is the same as in 7.1 and it is only 7.1.1 which 

needs to be considered. The solution of problem 7.1.1 is much simpler 

here as we do not need lemma 6.3. The given vector x in 7.1.1 can be 

completed to an orthonormal basis which we call again (Vi)iE~; (8.5.1) 

will be inherited (see (1.6». Since vL (0) there is an infinity of 

The vector 

(v = x) 
1 

satisfies Ilxll < 1 

<l>(f,~) • This terminates the proof of 8.4. 

and <l> (f' ,x) 

8.5.2. Remark. There is, in principle, no obstacle to treat the 

case of arbitrary VeE in the same fashion as we have done with 

hyperplanes. For practical purposes ,however ,the emerging complications 

would be prohibitive. 

Appendix I. An interpretation of the invariant W in Section 3 

In this section we shall interpret W in a natural fashion as a 

hermitean form on the space k ® (E,<l» 
o 

a 

1. The set H:= {(Si)iE~lsi E ko® k and 

k ® k-vector space with an obvious hermite an 
o 

(recall that for the fields k of chap. XII we do have the Schwarz 

inequality 
T 

< x, y>< x, y> ::.. < x ,x>< y, y> for all x,y E H). H is complete 

under the topology r induced by the positive definite form <,> (Notice 

that <x,x>1/2 need not be an element of k ® k • If, however, k 
o 0 
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happens to be dense in its real closure then by the Hauschild characte-

rization of these fields ([5J Satz 13) the completion ~ o by means of 

Cauchy systems is real closed; furthermore in the situation of interest 

to us ko will contain (2.5) a non eventually constant denumerable 

Cauchy sequence which implies that ~ = k . Thus in these cases o 0 

will be a complete normed vector space over 

<x x>1/2 E k for all x E H). , 0 

k ® k with norm 
o 

H 

2. Let V C (E,~) with V~ = (0) be an embedding which admits a 

standard basis ~ = (vi)iEN U (ft)tEJ . We fix some orthonormal basis 

(e i ) iEN of E and indentify the k-space (E,~) with a subset of the 

k ® k-space (H,<,» by letting x = Lee. E E (E;i~ 0) for finitely 
0 N l. l. 

many i only) correspond to (1 ® E;i) iE1N c H With no risk of con-

fusion we shall sometimes not distinguish notationally between E and 

1 Ii) E in H 

Now for 

that 

(zi)iEN any orthogonal set in H the sum LZ. will 
1 l. 

is Cauchy iff is Cauchy). Hence H is 

precisely the completion of E . We may apply this argument furthermore 

to the orthogonal set (Vi)iEN and have (since is a standard basis) 

x 
n 

(Al) for x E E 

x* E ~ C H 

the sum 

'V 

L~(X,V.)V. 
N l. l. 

(V the completion of 

(A2) x* - 1 ® x ~ V 

converges to an element 

V in H). We have 

Proof. For arbitrarly fixed j E Nand j < n we set 

• V. and have 
l. 

o + <x*-xn,vJ'> so/by the Schwarz inequality <x*-x ,v.><x*-x ,v.>'< , n J n J 

II x*-x 11·1 • Since II x*-x II ->- 0 for n ->- 00 the assertion is now evident. n n 

3. By (Al), (A2) we now have 

(A3) E C ~ ES ~~ C H . 
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If is archimedean ordered then we have of course H by 

standard arguments (For each non-void finite orthonormal set D in H 

one invariably has E <x,z><x,z>'< IIxll for all 
zED -

is archimedean we may call for sup and see that 

for B an arbitrary orthonormal set in H). 

We set 

(A4) 

x E H • Hence if ko 

E<x,z><x,z>' exists 
B 

and let be the projections corresponding to this decomposition. 

4. The invariant p qua hermitean form. Besides the form <,> we 

may introduce the hermite an form X on Ev by setting X(x,y) 

~<x,vi><y,vi>' (x,y E EV) • Obviously X(x,y) = <n~,n~y> • Another 

form may be introduced on k S E 
o 

by setting 

(AS) 

This gives the intended interpretation of the invariant ~ 

3.2.1: 

~(lSx,lSy) = - <n~J.x, n~J.Y> 

Restricting all forms <,>, X,~ to E = 1 ® E yields 

(A6) for x,y E E we have 

(A7) iP(x,y) x(x,y) - ~(x,y) (x,y E E) • 

If ~ vanishes on E then we have Parseval's identity: iP(x,y) 

For later reference we state explicitely 

X (x,y) • 

(AS) if and only if 
~J. ~ 
V = (0) , i.e. EV= V 

and prove the following 

5. Lemma. Let V W ~ WJ. (W some subspace of (E,iP» be such 

that VeE admits a standard basis. For e E E' V set Wl = W ~ k(e) 

If the embedding VeE satisfies one of the equi-

valent properties in (AS) then so does VI C E • In particular, VI C E 

admits a standard basis. 
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~~ ~ ~ ~ ~ 
Proof. Case l: e \l W . Let w E W "Wl so W = Wl $ k (w). On 

'" ~~ '" r-t '" "'1 - d hand we have 1 ® e E V = W + W = W + W W $ Wl ~ ko® ~ (the 2n 

equality because every subsequence of a Cauchy-sequence 
n T 

O:I;.C) 
1 ~ ~ n 

Cauchy) ; on the other hand we have (for otherwise 

is 

one 

'" 1 ® e E W 

Therefore 

since 

1 I!> w E 

e ~ W~ , which gives e ~ W~ 

'" "1 - '" "1 W $ Wl ~ ko® ke = Wl~ Wl 

contradicting e' V.1.J.). 

'" "1 '" "1. Ergo W ~ W c Wl~ Wl 

i.e. '" '" V C Vl • Hence '" (0) • From E C Vl one concludes that 

admits a standard basis. Case 2: e E W~~ is trivial since then ---

i. A characterization of the special case {l/J } = {O} 
lK 

The situation in which the semidefinite matrix l/J1K = A1K - 1 is 

the zero matrix for a ~-dense embedding VeE can be characterized 

by a locally convex topology associated with the embedding VeE . 

If VeE is ~-dense then ~ sponsors a non degenerate dual 

pairing and a weak topology a which is hausdorff: Let here a = a(E,V) 

be the coarsest locally convex topology which renders all linear forms 

(v E V) continuous (1.3); a subbasis of closed neigh-

bourhoods is formed by the sets {x E EI~(x,v)~(x,V)T ~ I} where v 

ranges in V Next to this topology we have on E the topology 

induced by the positive definite form ~ 

Theorem. Let VeE with 
~ 

V (0) be an embedding which admits 

a standard basis. Then the following statements are equivalent. 

o for all 1,K E J ; (ii) V is dense in (E,)J) ; (iii) 

)J-Cauchy sequences in E which converge weakly to 0 converge to 0 

This theorem is of particular interest in the light of theorem 

2.6 (in section 2) which says that one can have "total" orthonormal 

families with l/J1K arbitrarily prescribed. Only for l/J = 0 is such 

a family topologically dense! 
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Proof. (iii) ~ (ii). We approximate x E E • Let (v i) iEIN be an 

orthonormal basis of v . Set x. = x - EJ1'~(x,v )v 
J n n 

verges weakly to 0, i.e. we have 

(A9) for all n E .IN: lim ~ (x.,v ) 
j-+-co J n 

o . 

Since there is a standard basis the sequence 

is Cauchy and this is the same as to say that (Xj)jE.IN is Cauchy, 

(Xj).IN thus qualifies for (iii) and converges to o : x = E~(x,v )v 
.IN n n 

which means that V is dense in E as x was arbitrary. 

(ii =>- (i). From (ii) we obtain x = E~(x,v )v 
.IN n n 

and then 

Ilxll = E~ (x,v ) ~ (x,v ) T by standard arguments. Thus ~ (x,x) = X (x,x) ; 
.IN n n 

in other words y(x,x) = 0 for all x E E by (AB). This means ~lK = 0 

for all 1,K E J • 

(i) ... (iii). Let be given an £ > 0 and Il-Cauchy se-

quence which satisfies (A9). We have to show that -+- 0 for j -+- co 

Since we assume (i) we have by (A7) Parseval's identity in E, parti-

cularly 

Ilx.- Erl~(x.,v )v II = Eco+l~(x.,v )~(x.,v )T • 
J J n n r J n J n 

We write Xj = (xj-xN) + xN ; since (xj).IN is Cauchy we may pick 

so large that IIxj-xNII < £2 (all j > N). We may furthermore choose 

co T 2 
so large that Er+l~(xN,vn)~(xN,vn) < £ • We then have 

N 

IIx.-Erl~(X"v )v II < 4£2 • Since (XJ').IN satisfies (A9) by assumption 
J J n n -

we may finally choose j so large that 

IIx.1I < 9£2 • This shows that IIx.1I -+- 0 • 
J J 

IIErl~(x"v)v II < £2. Then 
J n n 

Appendix II. The proof of a theorem in Section 2 

r 

We shall prove a theorem of Sec. 2 which we set down here once more: 

Theorem. Assume that -+ Q = kO (the nonnegative elements of 

that kO possesses a noneventually constant denumerable Cauchy sequence. 

Let A be any positive definite JxJ matrix over ko ® k , card J ~ ~o ' 
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with A - ~ negative semidifinite. Then there is a positive definite 

hermitean k-space (E,~) which contains a standard basis m = (vi)N U 

U (f1)J with L-dense span of the (vi)N and with A as its associated 

matrix. 

Remarks. The assumption on the existence of at least one non 

eventually constant Cauchy sequence is clearly necessary; it makes sure 

that the elements of ko ' ko can be written as denumerably infinite 

sums without zero terms. 

The following situation will often occur: We are given a convergent 

series t = ~~ ti in k ® k and a sequence of 
o '\ > 0 in k and we o 

should represent t as a sum over k, t = ~~ri ' r i E k , \ri-ti \< 0i' 

This is indeed easy: Pick some fixed sequence (€i)iEN with €i + 0 , 

o < €i E ko . Choose r l E k with \tl-r l \ < min(€1,ol,02) . Assume we 

have already chosen rl, ... ,rn such that \ti-r i \ < 0i and 

\~~tl- ~~ri\ < min(€n,on+l) • t n+l + (~~ti-~~ri) lies in the 0n+l-disk 

of tn+l and we may pick r n+l such that itn+l-rn+li < 0n+l and 

\ "nl+l t,- "nl+l r,\' b't '1 11' '1 '( ~) ~ • ~ • ~s ar ~ rar~ y sma , ~n part~cu ar < m~n €n+l,u n+2 . 

The step may now be continued. ~ r· converges with t as its limit. 
1 1 

Proof of the theorem 

1. We shall show how to pick sequences a i = (aicr)crEN ' aicrE k 

such that all series converge and equal A1K • We shall do 

this in such a fashion that for any n,p E N the "tails" of the first 

(al,p+l ,a. lp+2 '···)' 

(Bl) (0. 2 1"") ,p+ 

(a 1"") n,p+ 

are linearly independent. This guarantees that we are going to have the 

situation of (2.4.3); in view of (2.4) our proof will be complete if we 
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can exhibit such sequences a i for i E J • It will be a step by step 

construction so we start by discussing the 

Induction assumptions. Assume that we have already found sequences 

such that ~ a aT = A (l,K < n), a l0 E k 
oEIN 10 KO 1 K 

and such that 

all tails (Bl) are linearly independent. 

We put down as a purely technical device the further induction 

assumption that for an infinity of 

a. = 0 • 
1.0 

o E IN all have their 

The subsequent proof takes also care of the case when a n+l is the 

first sequence to be picked, i.e. where no sequences have 

been picked yet. 

a n+l will be found in three steps. First step: We pick a sequence 

a n+l which behaves as it should according to (2.4) except that it 

has its coordinates a n+lo in ko® k • Actually we shall require that 

we have 

(B2) An+l,i (i=l, .•. n) 

(B3) 

Second step: We approximate by a sequence which still 

behaves correctly and which now has its coordinates in k • 

Third step : To get the desired a n+l we add a correction to in 

such a manner that (B2) is saved and such that ~a aT = A 
n+lo n+lo n+l,n+l· 

Remark. Steps 2 and 3 cannot be accomplished in one sweep: when 

approximating a n+l by an+l one can save the linear (B 2) but not 

at the same time equality in the "quadratic" (B 3) since is 

close to it is easy to save "<" in (B 3) • 

Step 1: choice of an+l . Let A be the positive definite matrix 

(AtK)l~l'K~n+l • There is a matrix 
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c such that 

[~ : J' A' n+l,n+l A' n+l,n+l 

is in k 
o 

and positive. Represent A' n+l,n+l as the limit of a conver-

gent sum L Y yT with Yo ~ 0 . Form a sequence 
aEIN a a 

in the following way: At the infinitely many a E IN where al, ••• ,an 

have their coordinates zero, we insert the Yo but take care to leave 

an infinity of these a~+lto be zero so as to save the induction as­

sumption. For all the other a we set a~+la = 0 . We have 

(i=l, ••• ,n) and <N I N I > = A' The sequence 
~n+l'~n+l n+l,n+l • 

a 1 I - AlaI - ••• -A nan n+l '2 an+l 

satisfies <a n+l,a i > = An+li (i=l, ••• ,n) and <a a > n+l, n+l = 

An+l,n+l -~ A' 4 n+l,n+l > 0 . In other words an+l satisfies (B 2) and 

(B 3) • Before going over to step 2 we need some preparations. 

2. We may pick positive 0, 01 E ko with <Cin+l,an+l >: lian+lli < -
02 
1 and 02 + 200 1 < An+l,n+l - Ii an+lli . We choose now a convergent 

series L 0(0) = 15 2 with o < 0(0) E k 
aEIN 0 

Pick a sequence of natural numbers N(l) < N(2) < such that 

{(all"'" alN(l»' ••• , (anl,···,anN(l»} 

{(alN (1)+1,··,a lN (2»' ,(anN (1)+1,···,anN (2»} 

{(alN(a)+l,···,alN(a+l»' ,(anN(a)+l,···,anN(a+l»} 

are all linearly independent seuof tuples. Notation: a(a):= m 

(amN(a-l)+l, ••• ,amN(a» • Accordingly we divide up the sequence an+l 

into adjacent tuples a:~~i of lengths N(l), N(2)-N(1), N(3)-N(2) , ••• 

There is a uniquely determined linear isomorphism 
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n (a) (a) a: k ~ k(a l , ••. ,an ) which assigns to an n-tuple 

(B4) 

t; to 

the 

(a) (a) N(a) h (8 1 , •.. ,8n ) a vector ~ such t at 

<a(a),a~a» = 8~a) 
1 1 

i = l, ... ,n 

We keep the notation II/l" for the extension (ie -ification) 
0 

(iC ® k)n ~ iC® (a) (a) 
We shall make our choice 

0 0 
k(a l , .•. ,an ) 

8 (a) 

Let 81~a) =<a(a l) ,a~a»; this can also be expressed by saying 
n+ 1 

of 

for 

-(a) ",,;(a)__ ('1)'" f lt' f a n+l • aEw~i An+li , 1= , •.. n 1S a re ormu a 10n 0 

(B 2) t; is continuous (1.3); there is a ~(a) > 0 in ko such that 

Notice that by the convergence of E lIa(a)1I (B 3) 
aEW n+l 

and the con-

vergence of E 0 (a) 

aEW 
the sum E iia(a)1I will be convergent (a 

aEW 
triviality if ko is archimedean) . 

- (a) Step 2: choice of a n+l . Choose n convergent series E 8 1 , •• 
aEW 

••• , E 8(a) in k with limits A +1 1, •.. ,A +1 such that 
aEW n n, n,n 

8(<1) := (8(~) , ••• ,8~a» satisfies 118(a)- 8(a)1I < ~(a) • These are our 

choices for the 8ia ) in (B4). We define a n+l by juxtaposition of 

the 

E 8 ~a) 
1 

aEW ( ) 
E 0 a 

aEW 

An+l,i (i=l, ••. ,n) ; 

02 • Expressing 

making use of the Schwartz inequality) 

An+l,n+l So satisfies (B2), (B3) in place of 

zeros at the right places a E W) • 

(and has 

Step 3: Choice of a n+l • There remains to adjust the "length" 

lI~n+lll • Choose a convergent series E K, = A - lI~n+lll > 0 in 
iEW 1 n+l,n+l 

k o with positive and in 

the theorem). Then there is a 

Q n k (0 = iC(+) by the assumption of o 0 
n, 

n i E W such k 1 contains ani-tuple 
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-
We fill into the "empty holes" of cxn+lthe components of these 

vectors Si but take care to leave an infinity of zeros . Call cxn+l 

the new sequence thus obtained from ~n+l . II cxn+lll exists, i. e. the 

infinite sum is convergent, and equals II~n+lll + LK. = A ; 
1N ~ n+l,n+l 

-
<cxn+l,cx i > =<cxn+l,cx i > = An+l,i (i=l, •• ,n). It is evident that the"tails" 

of are independent of those in (Bl). This terminates the proof 

of the theorem stated at the beginning of the Appendix. 

* 
9. Standard bases for arbitrary subspaces (Definitions and eXistence) 

In this short section we shall introduce the concept of a standard 

basis for an embedding V C (E,~) where V is an arbitrary subspace 

of E It will enable us to discuss the embedding entirely in terms of 

~-dense embeddings; the results of sections 1-7 will make it possible to 

give a complete set of invariants for the orbit of V under the ortho-

gonal group of E In this connection see the postscript on page 327. 

If dim V~ < 00 we shall have E = V~~~ V~ and the embedding 

VeE is completely described by the ~-dense embedding V C V~~ and 

by the isometry class of 
~ 

V Thus in order to exclude banalities in 

the sequel we shall put down the general assumption 

(9.0) dim V~ E {o,~ } 
o 

Standard bases for VeE (Definition). Let (E,~) be a ~­
o 

dimensional positive definite k-space where k is as indicated under 

the caption of chap. XII. Let VeE be a subspace satisfying (9.0). 

By a standard basis for the embedding VeE we mean a Hamel basis 

(9.1) 

of the space E such that we have 

(9.2) 

(9.3) 

(V i )1N is an orthonormal basis of V 

is an orthonormal basis of 
(and ¢ otherwise) 

~ 
V if 
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(9.4) (f l ) J is an orthonormal basis of some supplement of V 

in 
.1.1 

if V cf v.1.1 (and ¢ otherwise) V 

(9.5) (e l ) I is an orthonormal basis of some supplement of 
.1.1 .1 

V +V 

in E if 
.1.1 .1 

V + V cf E (and ¢ otherwise) 

(9.6) e l .1 fK (lEJ ,KEI) and furthermore, setting 

(9.7) ali = ~(fl,vi) , Sli = ~(el'Vi) , Yli = ~(el,wi) 

(9.8) 
n TnT n T 

(~laliaKi)n ' ~l: SliSKi)n ' ~l: YliYKi)n are Cauchy sequences. 
~ ~=l ~=l 

Some of these conditions may of course be vacuous, e.g. if E= V ~ V.1 

(0) then ~ reduces to 

~ = (vi)N U (fl)J and is a standard basis in the sense of 1.7. There 

always are bases ~ satisfying (9.2) through (9.6). 

Existence of standard bases 

Assume that a basis ~ as in (9.1) is a standard basis for 

VeE • ~ gives rise to .1-dense embeddings, in fact (1.7): 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(v i) iN U (f l ) J is a standardbasis for the .1 -dense embedding 

.1.1 
VCV 

(vi,Wi)N U (fl,eK)lEJ,KEI is a standard basis for the .1-

dense embedding V ~ v.1 C E , 

(Vi)N U (fl,eK)lEJ,KEI is a standard basis for the .1-dense 

embedding V c V ~ k(fl)J ~ k(el)I ' 

(Wi)N U (et)I is a standard basis for the .1-dense embed­

ding V.1 c V.1 $ k(e1)I • 

Theorem. Let (E,~) be as in 9.1 and S some arbitrarily fixed 

supplement of 
.1.1 .1 

V + V in E • The embedding VeE admits a standard 

basis if and only if the .1-dense embeddings V $ v.1 C E and V c V.1.1$S 

admit standard bases. 

Proof. Assume that (ri)N U (gA)L is a standard basis for the 
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~-dense embedding V $ V~ C E . Let (vi)N' (wi)N be orthonormal 

bases of 
~ 

V, V respectively. By (1.7.8) we have that 

(gA)L is still a standard basis for V ~ V~ C E • 

Consider the embedding V C V~~ ~ S • Since the orthogonal of V in 

V~~ e S is (0) we can find an orthonormal family (f l )J U (e l )I such 

that the span of the fl is a supplement of V in V~~ and the span 

of the e l is a supplement of V~~ in v~~es • By (1.7.8) (vi,wi)N U 

(f l ,eK)l E J, K E I 

ding V + V~ C E • 

is again a standard basis for the ~-dense embed-

(e l )I is a standard basis for VeE «9.8) is seen to hold since 

subsequences of denumerable Cauchy systems are Cauchy). 

ConverselY,if VeE admits a standard basis then by (9.8) it 

follows directly that V + V~ C E and V C V~~ ~ S must admit stan-

dard bases. 

Corollary. If there exists some supplement S of V~~ + V~ in 

E such that the ~-dense embeddings 
~ 

V + veE and V C V~~+ S admit 

standard bases then each of the (infinitely many) bases ~ of E 

satisfying (9.1) through (9.6) is a standard basis for VeE. 

10. The matrices associated with a standard basis 

Let the standard basis ~ of VeE be as in(9.1). We define a 

J by J matrix A , two I by I matrices B , C, and a I by J 

matrix D over k®k as follows: 
0 

(10.1) 
00 T 

A := «E. la i a i) EJ) 
~= 1 K 1,K 

(10.2) 
00 T 

B := «Ei=lBliBKi)l,KEI) 

(10.3) C := 00 T 
«Ei-ly i Y i) EI) - 1 K 1,K 

(10.4) 
00 T 

D := «Ei=lBliaKi)lEI,KEJ) 

A,B,C,D are called the matrices associated with ~ • Clearly, some of 
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the definitions may be vacuous. E.g. if 
ol 

V = 0 then 18 reduces to 

(vi)W U (ft)J and A is the only matrix defined; if volol = V then 18 

reduces to (vi)W U (wi)W U (et)I and B,C are the only matrices de­

fined. Notice that D exists if and only if A and B exist, i.e, 

if and only if J ~ ¢ and I ~ ¢ . 

Necessary and sufficient conditions for four j( ®k-matrices to 
o 

be the matrices associated with a standard basis. 

In the Theorem of section 9 we have seen that standard bases 18 

of VeE can be constructed by "superposition" of standard bases 18 1 , 

182 of the ol-dense embeddings V $ Vol C E and V C Volol ~ S respecti­

vely where S is an arbitrarly fixed supplement of Volol + Vol in E 

Let us start out with an arbitrary standard basis 18 of VeE 

as in (9.1). Set S = k(e1)I . We shall write down the matrices for 

the two dense embeddings with respect to the bases 181= (vi,wi)W IJ 

(et,fK)tEJ,KEJ' 18 2= (vi)~(et,fK)tEI,KEJ (obviously arranged): 

(10.5) 181 has the matrix Al [B + C 
trDT :) (embedding ~VolCE) 

(10.6) 18 2 has the matrix A2 
[:rnT :] (embedding VCvolol$S) 

Theorem. Assume that the field k satisfies j(+ = 6 (cf. (4» 
o 

and that ko possesses a non eventually constant denumerable Cauchy 

sequence. For I,J at most denumerable sets let four matrices A,B,C,D 

over k ® k in turn be J by J, I by I, I by I, I by J . Under these 
o 

assumptions there exists a positive definite hermitean k-space (E,V) 

which contains a subspace V such that A,B,C,D are the matrices 

associated with a suitable standard basis of the embedding VeE if 

and only if the following holds: 

(10.7) C is positive definite 

(10.8) (
B+C D) 

I-AI := 1 - j 
trnT A 

and hermitean 

is positive semidefinite and 
hermitean 
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(10.9) is positive definite and hermitean 

Proof of the Theorem. The necessity of the three conditions follows 

from (9.4), (10.5), (10.6) and the Corollary in 2.5. 

Assume conversely that the three conditions are satisfied.(]-Al )+A2 

is positive definite so ]-C is positive definite. ]-A2= (]-Al ) + (~ g) 
is positive semidefinite. Al= A2 + (~g) is positive definlte. Hence 

C,Al ,A2 qualify for the Theorem in 2.6. 

On a k-vector space E spanned by a basis ~ = (vi)~ U(wi)~ U 

(fl)J U (el)I we are going to define a hermitean form ~ • We declare 

(vi)~ U (wi)~ and (fl)J U (el)I to be orthonormal; furthermore 

o (IEJ, iE~). By the corollary in 2.6 we can define products 

I(el,vi ) , l(fK,vi ) E k such that (vi)~ U (e 1 ,fK)l EI,KEJ is a stan­

dard basis for the dense embedding k(v.)~,C k(v.) $ k(f )J $ k(e )1 
~J," ~.lN 1 1 

.I. 
and has A2 as its associated matrix. It follows already that k(vi)w = 

k(wi)iE~ . By the same corollary we can furthermore define products 

l(e 1 ,wi , E k such that (wi'~ U (e1 'I is a standard basis for the 

dense embedding k(wi)~ C k(wi)~$ k(e 1 )I and has C as its associated 

.I. 
matrix. It follows that k(wi)~ = k(vi)~$ k(f 1 )J . We may therefore 

set k(vi)~ = V , k(wi)N= V.I. , k(vi)w$ k(f 1 )J = V.I..1. • From 2.4.3 applied 

to the dense embedding V + v.I. C E with matrix Al we learn that the 

form ~ thus defined is positive definite on the whole space. 

Remark 1. Notice that the space constructed in the above proof need 

not be strongly universal. For this to be the case it is sufficient to 

assume that Q = k+ • 
o 

It is worthwhile to consider the special case where V = V.I..1. in the 

above theorem (or equivalently, J ¢ and I f ¢ , i.e. only the ma-

trices Band C are defined). We then obtain the 

Corollary. Assume that the field k satisfies -+ -
ko = Q and that 

kO possesses a non eventually constant denumerable Cauchy sequence. Let 
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B,C be two I by I matri.ces over k I8i k , card I ,. ~ • There exists 
o 0 

a positive definite hermitean k-space (E,~) which contains a ~-closed 

subspace V such that B,C are the matrices associated with a suitable 

standard basis of the embedding veE if and only if the following 

holds: 

(10.10) 

(10.11) 

B,C are positive definite and hermitean, 

1 - (B+C) is positive semidefinite. 

If furthermore k+ = Q then 
o is strongly universal. 

Remark 2. Let (as in section 2.7) Kl be the (open) convex cone 

of positive definite hermitean matrices A E (ko I8i k) IxI and K2 the 

(closed) convex cone of positive semidefinite matrices I-A, A E Kl 

-- 1 
K2 = I-Kl . 2 (Kl n K2 ) is then the largest subset S of Kl such 

that arbitrary pairs A,B E S will define a closed embedding with 

A,B its associated matrices. For given A E Kl we may pick B any­

where in the convex set [-A + (KIn K2 ) 1 n Kl 

11. The main theorem on arbitrary subspaces (Statement) 

Theorem. Let (E,~) be a positive definite strongly universal 

k-space with dim E = ~ ,IE UIU 
o 

and where the field k is as des-

cribed under the caption of Chap. XII. Assume furthermore that k sa-

tisfies (4). Let veE be a subspace with dim V~ E {O,~ } 
o 

and I,J 

sets with card I dim E/V~+VJ.~ , card J = dim vJ.~/v . Assume that the 

embedding veE admits a standard basis; then the associated matrices 

A,B,C,D are in turn J by J, I by I , I by I , I by J. Some 

of these matrices may not be defined depending on whether I = ¢ or 

J = ¢ or both. 

possess solutions A,B,C which share (Bl) p.300 and which are in turn 

J by l!II, I by l!II, I by l!II. Le.t in the sequel A, B , C be any such 

solutions. 
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Consider a second embedding VeE with analogous objects 

A, B, C, D • 

We assert: There exists a metric automorphism T of E with 

TV = V if and only if card I = card I , card J = card J and the 

following holds. 

If I f ¢ and J f ¢ (equivalently: all matrices A,B,C,D are 

defined) then there exist column finite matrices 

(11.0) r,n,~,3 with r,n bijective 

such that 

(11.1) A-I trn (A-]l) nT 

(11.2) ii-I trr (B_l)rT + tr~(A_]l)~T + trrD~T + tr~.trDT·rT 

(Ge) - tr33T _ trrc3T - tr3 ·trCT.rT 

(11.3) C trrcrT + tr rc3T + tr3 ·trCT· r T + tr33T 

(11.4) D trrDnT + tr~(A_I)nT 

If J = ¢ and I f 0 (equivalently: only Band C are defined) 

then there exist column finite matrices 

(Cl) 

(Cl') 

(Cl) is 

(11.5) 

such that 

(11.6) 

(11.7) 

r,3 with r bijective 

a-I 
C 

trr(B_l)rT _ tr33T _ tr rc3T _ tr3·trcTrT 

trrcrT + tr rc3T + tr3 .trCT. r T + tr33T 

or equivalently, 

(11. 6') B + C - ]I trr(B+C_I)rT 

(11. 7') C (trrc + tr3 ) tr (trrc + tr3)T 

obtained from (Ge) by deleting all terms which contain 

A,A,D,5,n,~ 

If J f ¢ and I = 0 (equivalently: only A is defined) there 

exists a column finite bijective matrix n such that 

(De) ( 
(11.8) 

(11.9) 

A-I 

dim V.1 dim V.1 . 
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(De) is obtained from (Ge) by suppressing all terms which contain 

B,B,C,c,D,5,r,~,E and by adding (11.9). 

If J = I = ~ (equivalently: no matrices are defined) then 

(11.10) dim VJ. 

* 

Table listing all cases of the theorem 

I¥-~, J¥-~ (<0> A,B,C,D defined): 

(0) 

I¥-~, J=~ «<!o B, C defined) : 

y 

(0) 

E 

I=~, J¥-~ (~A defined): V 
.lJ. or 

vJ. 

(0) 

E 

I=J=¢ ~ none defined): 

(0) 

V.l 

E 

V 

(0) 

E.=V 

(0) 

"General case" 

E ¥-
J.J. J. 

V + V 

V ¥-
J.J. 

V 

"Closed case" 
J.J. 

V = V 

(VJ. ¥- (0» 

"Dense cases" 
E = vJ.J.EB VJ. 

"Trivial cases" 

E=VEBVJ. 
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12. The proof 

We shall indicate the steps to be taken: details can be supplied 

by the reader who has gone through Sections 1 - 7. 

Necessity of the conditions in the theorem. If we switch from a 

standard basis ~ of some embedding V cE to another standard basis 

'" ~ of V C E one has 

(12.1) 

where 

(12.2) 

(12.3) 

(12.4) 

(12.5) 

(12.6) 

'" v. 
1. 

E<!> .. .,. 
j J1. J 

'" w. 
1. 

EIjI .. w. 
j J1 J 

HI. f. + EA. v. 
j J1 J j J1 J 

'" e 
1 

Er. e. + E6. f. + E3. w. + Ee. v. 
j J1 J j J1 J j J1 J j J1 J 

<!>,IjI,fl,A,r,6,3,e are column finite and <!>,IjI,n,r bijective. 

<!>.tr<!>T = 1 , IjI.trljlT = 1 

Ef := (<!>(~,~)) 
1 K 

E := (<!>(~_,~ )) 
elK 

computation of the matrices '" '" '" '" A,B,C,D '" associated with ~ from (12.1) 

and elimination of e and A by means of (12.4) - (12.6) gives formu-

las (Ge) in section 11. Thus, if there is an automorphism T of E 

with TV = V then ~ and ~ := ~T are standard bases for V C E and 

hence there are matrices (11. 0) satisfying (Ge) (or (Cl) , (De) respec-

tively according to which of A,B,C,D are defined). Furthermore 

dim E/v1J. + v1 = dim E/V10l + V1 , dim v10l Iv = dim V1J. IV , dim v1 = dim V1. 

Sufficiency of the conditions in the theorem. Let ~ = (vi)~ U 

(wi)~ U (f 1 )J U (el)r be the standard basis in the definition of 

A,B,C,D The first step to take is to change ~ to a standard basis 

such that the matrices '" '" '" '" A,B,C,D 
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- '" - '" (12.7) A = A, B = B, C 
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'" C D '" D 

This is accomplished just as in the proof of lemmalin sec. 5. Define 
00 _ _ _ _ L 

M1K E ~(g ,vi)~(g ,v.) where 
i=l 1 K ~ 

the with even subscript are the 

e K ' those with odd subscript the fK in the standard basis m which 

defines A,B,C,D. M1K is the positive definite matrix over k®k 
o 

dense embedding v c V~~ ~ k(e) A routine verification shows that 
1 I 

the difference 
co ~ 

r 1K := i:l~(gl'Vi)~(gK,vi) - M1K lies in k (the gl 

are analogous to 91 ). Cf. 5.4.5. Now the reasoning of 5.5 may be 

applied and we may assume that (12.7) holds, or rather, we may assume 

without loss of generality that we have from the beginning 

(12.8) A=A,B=B, C=C, D=D. 

Let then ~,~ be standard bases of veE, veE which have 

(12.8). We are going to change the bases in two successive steps. First 

we contemplate the dense embeddings t/ c t/$ k(e1)I ' V'" c V'" ED k(e1)I 

with associated matrices B = B . Lemma 3 in sec. 7 shows that there are 

standard bases ~',~',~' 

for m. , such that 

(12.9) ~(e!,wi') = ~(e' w~) 
• l' ~ 

We then consider the embeddings V c vAe k(e~)I ' V evA e k(e~)I 

We see (lemma 3 in sec. 7) that we may change lIl' ,~, to bases ~",iiI" 

where lB'" = (v':) U (w~) U (f") U (e") and similarly for 
~ ~ ~ ~ ~ J 1 I ' ij" , such 

that 

(12.10) 

Since all changes in this last step are made modulo 
.IL 

V , the equalities 

(12.9) are preserved, i.e. we shall have 
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(12.11) (lEI, iEJN) • 

Thus, when B,C are both defined then (12.10), (12.11) show that 

the obvious map l8" ... iB" induces an isometry T of E with TV = V . 

Assume that B or C is not defined. Then (12.10) shows that iB" .... iii" 

defines an isometry TO : V .... V . By assumption dim V~ 

so (1.5) V~ and ~ are isometric. Therefore and since E = V ~ V~ 

- -~ = V ~ V we see that T can be extended to all of E. Q. E. D. 

13. Embeddings that split 

We keep the notations of sections 9 and 10 as well as assumption 

(9.0). Forms and the field are as described under the caption of chap. 

XII. 

* 

The simplest case of a ~-dense embedding V C (X,~) , dim X ~O' 

has 

dim X/V = 1 • 

By taking orthogonal sums of at most countably many, say a l embeddings 

of this type and setting E =@~X ,V = $V 
1 1 l 1 ! l 

we obtain 

a dense embedding 

The simplest kind of a "non trivial" ~-closed embedding V C (X,~) has 

dim X/V+V~ = 1 . 

By taking an orthogonal sum of at most countably many, say a 2 embeddings 

of this sort and setting we obtain 

a closed embedding 

~ 

V2 C (E 2 '~2) ; dim E2/V2+V2 = a 2 • 

.l J.. 
We then pass to an orthogonal sum E = El ei E2 Eli E3 V 
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where Vl C El and V2 C E2 are either embeddings as above or else 

El = lO) or E2 = (0) but not both E = 1 
E = 

2 
(0) , and where (E3 ,4>3) 

is non degenerate and arbitrary up to a 3 := dim E3 $. ~O and a 3 

infinite when a 2 = 0 . We then have an embedding VeE with 

,;- ( .L n .L 11 
(13.1) = V2 E2) cD E3 V El (9 V2 

(13.2) dim V = (al+a2)~0 = ~O 

(13.3) dim 
.L 

a2~0 + E {O,~ O} V a 3 

(13.4) dim T/V = a l ::; ~O 

(13.5) dim E/V'" +,;- = a 2 ::; ~O 

Remark. If we have dim V.L so is an invariant ---
of the embedding; on the other hand if a 2 + 0 we may replace the 

.1. 
embedding V2 C E2 by V2 C E2 e E3 ' i.e. we may assume that a 3 = 0 

..L. 
(E2 and E2 $ E3 are isometric) in the above decomposition of E. 

Lemma 1. Assume that VeE is an arbitrary embedding but that 

we are not in the trivial case where E = V + v.L Then the following 

statements are equivalent: (i) there is an orthogonal decomposition of 

the space E , 

(13.6) E =$.L x with V =ffi(vnX) and 
1 1 

dim X I(X nV)+«X nV).L nX ) = 1 
1 1 1 1 

(ii) there is an orthogonal decomposition of E, 

(13.7) E 

where "VI C El" , "V 2 C E2" are .L -dense resp. .L -closed embeddings of 

the kind exhibited above or else El =lO) or E2 =(0) but not both. 

The proof rests on some crude combinatorial arguments and will not 

be written out. 
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Definition. An embedding VeE with V + VA f E is split if it 

satisfies one of the conditions (i), (ii) in lemma 1. 

Lemma 2. If the embedding VeE splits and admits a standard 

basis then there is a decomposition (13.6) where all embeddings 

V n X. C X. admit standard bases. 
~ ~ 

Proof. Consider a decomposition of E as in (13.7). By the remark 

after (13.5) we may assume that dim E3 E {O'~o} so that E3 is 

spanned by an orthogonal basis if E3 f (0) . The assertion now follows 

by making systematic use of the corollary in section 9. 

14. Conditions for a A-dense embedding to split 

Theorem. Assume that the field satisfies condition (4) and that 

V C (E,~) is a A-dense embedding which admits a standard basis. The 

following are equivalent. (i) The embedding splits. (ii) A suitable 

standard basis has a diagonal associated matrix A. (iii) The matrix 

A-10ver ko ® k ,where A is the matrix associated with any standard 

basis, can be diagonalised over k (i.e. there exists a columnfinite 

bijective matrix n over k with trn(A_fi)n T diagonal). 

Proof. (i) ~ (ii) follows by using lemma 2 in sec. 13 and the 

definition of A. (ii)=9(i): If A is diagonal then by the corollary 

in 2.6 there is a (strongly universal) orthogonal sum of dense embed-

dings V. C X. , dim X/Vi = 1 such that its associated matrix A is 
~ ~ 

A Since then (11.8) holds for n = .1l we conclude from the main theo-

L 
rem that there is an isometry T :$Xi ~ E with T8Av. 

~ 
= V So VeE 

splits. 

(i) =? (iii): Since we have proved (i)~ (ii) we obtain from (i) 

that there is a diagonal ii.- jL for suitable standard basis. Thus 
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- -tr , 
A-~ = r(A-1)r for some columnfinite bijective rover k by 

(3 -1.2) • 

(iii) ~(i): Assume conversely that trr(A_ l)r' is a diagonal 

matrix D for a columnfinite bijective rover k. D is negative 

semidefinite just as A-1. • Pick A. E Q "- { o} such that 
~ 

-1 
2 

The A. define a di,agonal matrix A that < Ai Dii ~ 0 so 
~ 

-1 < (tr ADA ') .. 
~~ 

$. 0 . Define A- 11. := trADA, = tr(r'A')"(A--1Hr'A') 

Again by the corollary in 2.6 there is a (strongly universal) (E,~) 

and a splitting embedding veE which has A as its associated matrix 

for suitable standard basis. By the main theorem VeE must split as 

well. 

Corollary 1. Assume that kO = K (i.e. kO real closed). Every 

~-dense embedding admitting a standard basis splits. 

Proof. (iii)==}(i) of the theorem. 

Corollary 2. The dense subspaces VeE of Corollary 1 which have 

dim E/v = n for fixed n ~ ~O form n+l orbits under the orthogonal 

group; the nullity of the semidefinite matrix A-.i is the only in-

variant. 

Example 1. Assume that in the commutative field k every positive 

element possesses asquare root. Let V C (E,~) be a dense embedding 

with standard basis and with ~ symmetric and dim E/v = 2 • If the 

embedding splits then by (iii) of the theorem there is a bijective 

2x2 matrix r which diagonalizes W 

Not all coefficients of the 

are linearly dependent over 

the case: 

Wij are zero. In other words, the Wij 

k • Assume conversely the latter to be 
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(a,S, Y E k and not all zero) . 

We assert that VeE splits. If ~12 = 0 we quote (ii) of the theo-

rem • Assume then that ~12 + 0 If Y = 0 then both a,S are non-

2 
zero (~11~22 - ~12 ~ 0 as ~ is semidefinite by 2.4.1) and we set 

Yll = _(_as)1/2 S-1, Y12 = (_as)1/2 a-l, Y21 = 1, Y22 = Sa-I. We 

have det(y ij ) + 0 o and may quote (iii) of the theo-

rem. If on the other hand Y + 0 , say Y = 1 , we set Yll = a , 

-1 
Y12 aa 'Y21 = 1 'Y22 13 where a is a nonzero root of 

x2S - X + a = 0 (the discriminant 1-4aS is positive since ~11~22 > 

= as - aa-l = a-l (a2 S_a) = a-l (a-2a) 2 
S~22) ) . Det(y ij ) 

+ 0 and again L Yrl~rsYs2 = 0 • 

Example 2. Let k be a proper subfield of R. Then [R:k] ~ ~O 

by Thm. 17, p. 316 of [6]. In the k-vector space R 
~O 

least 2 3-dimensional "disjoint" subspaces R 
t 

we can find at 

(R n R = (0) for 
t K 

1 + K) • In each R~ we pick three linearly independent vectors ~ll' 

~O 
~l2 '~22 which define a dense enbedding Vt C E . These 2 ernbed-

dings do not split and lie in different orbits. 

15. Conditions for ~-closed embeddings to split 

Theorem. Assume that the field satisfies (cf. 2.6) and 

that V C (E,~) is a ~-closed embedding which admits a standard basis. 

The following are equivalent. (i) The embedding splits. (ii) A suitable 

standard basis has diagonal associated matrices B, C • (iii) There 

exist columnfinite matrices r ,_ with r bijective such that 

(15.1) 

(15.2) 

Dl := tr rBr , - trss' - trres' - trs~rt\r' + i _ trrr' 

D2 := (trre + trS).tr (trre + erS) , 
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are diagonal ( C is some fixed solution of C·trC' C which shares 

(Bl) on p. 300 ); cf. (Cl) in the theorem of 11. 

Corollary. Let kO be real closed. Every ~-closed embedding 

(with standard basis) V C (E,~) with dim E/V+V~ < ~ splits. 

Proof. By the spectral theorem in 6.6 it follows just as in the 

commutative case that the hermitean matrices B, C can simultaneously 

be diagonalized. Hence we are in the situation (iii) of the theorem with 

B = 0 • 

Proof of the theorem. (i) ~(ii) follows by using lemma 2 in 13 

and the definition of B , C 

(ii) ~(i): One constructs a ~-closed split embedding V C (E,$) with 

B , C as associated matrices (use 2.6) and E, E isometric. By Sec. 

II, VeE will split. 

(i)=4(iii): We apply (i)-=9(ii) and (11.6'), (11.7'). 

(iii)~(i): Assume ° 1 ,°2 in (15.1), (15.2) to be diagonal. 02 is 

positive simidefinite and so is ] - (01+02) = trr(]_B_C)r' (] - B - C 

is positive semidefinite by (10.8». Hence 01 - 1 is negative semi­

definite. In fact we have that 02 is positive definite as r is bi­

jective. Pick a diagonal matrix A such that tlft02A' and tlft (°1-1) A' 

have diagonal elements in ]0,1] resp. 1 -1,01 . There is such a A 

over (]I. Oefine 
- tr , 
B-l:= A(Ol-])A • We find 

1 - B - C 

In particular, B + C - 1 is negative semidefinite. Band Care 

positive definite by our normalization of diagonal elements via A. 

Hence B, C qualify for the corollary in Sec. 10: there ~ a closed 

embedding with the matrices B, C , and it splits by (ii) ~(i) of our 
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theorem. Hence veE splits by Section 11. 

16. Parseval embeddings 

We consider the situation of Appendix I and shall make use of the 

terminology introduced on that occasion. Forms and the field are as 

described under the caption of Chapter XII . 

* 

Let V be an arbitrary subspace of (E,~) . If V is its (norm­

topology) closure in E we set 

(16.1) V" := V n E ("normtopology closure of V in E") 

V" is obviously an invariant of the orbit of V (under the orthogonal 

group of E). Let 

'7J (V; +, n, .I., ,,) 

be the smallest sublattice of the lattice L(E) of all subspaces of E 

which contains V and which is stable under the operations .I. and " . 

The lattice looks as follows 

E 

(V.I..1. + (v+v.I.)"),, 

(v.I..I.+v.I.)" 

v.I..I.+(v+v.I.)" 

(V+V.I.)" 

(0) 
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The verification is straight forward: ~-c10sed hyperp1ans in E 

are closed so ~-c10sed subspaces of E are closed; the inclusions given 

by the diagram are therefore correct and stability under CI is evident. 

Stability under ~ and + is evident too. The only non trivial point 

with n is the intersection V~~ n (V+V~)CI . Now - just as in Hilbert 

spaces - we have that the sum of two orthogonal and closed subspaces 

in E is closed, in particular V~~ n (V+V~)CI = V~~ n ~ --r 
(V+V ) . Hence 

if d = x+y with d E V~~ x E V 'J. , Y E V then y d-x E? n VU 

c~ n ~~~ (0) This gives 
~~ n (V+V~)CI ~~ n V- indicated V . V = V V as 

in the diagram. Finally we remark that (V~~+V~) n (V+V~)CI = V~ + V- by 

modularity and by what we just proved. The remaining intersections pose 

no problems. 

Remark. It is clear that the cardinal numbers defined by the above 

1attice]J - we mean the dimensions of quotient spaces of neighbouring 

elements in ~ - are invariants of the orbit of V under the orthogonal 

group. We shall now discuss special cases where these cardinal numbers 

turn out to be a complete set of invariants. 

Definition. Let veE be an arbitrary embedding which admits a 

standard basis. It is called parseva1 if (V+V~)CI = E (cf. 16.1) (V is 

then also called a parseva1 subspace). To motivate the terminology we 

remark that for any standard basis (vi)iE~ U (fj)J we have 

(16.2) if V~ o then {x EEl II xII 
co , 

= ~ iP(x,v.)iP(x,v.) } 
i=l ~ ~ 

Rad 'I' • 

Proof. If --- x E V- then (A 2) and so II xII 
co 

L iP(x,v.)iP(x,v.)' • Conversely, if the latter is the case then (A 7) 
1 ~ ~ 

we have ~)'(x,x) = 0 which py (A 6) means that 

Finally v" = Rad 'I' follows from (A 7) • 

1T~~ X 

V 
o , i.e. x E V 
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Thus if V c: E is .I.-dense and parseval then (vi)JN is a topo­

logically dense orthonormal set and we have Parseval's identity on all 

of E. 

16.3. Theorem. Let V c: E be an arbitrary embedding with a 

standard basis. If V c: E is parseval then ~(Vi +, n, .1., 0) has a 

diagram as follows 

(0) 

Furthermore, if the field has complete kO ' kO 

two cardinals 

(16.4) dim V.L.L IV 

kO (cf. 2.5), then the 

are acomplet~ set of invariants for the orbit of V under the orthogonal 

group of E. In particular the embedding splits. The embedding V c: v.L.L 

is parseval. 

~ Consider the matrices A, B , C , D associated with a 

standard basis for V c: E • By (A 7) we have (v+v.L)o = E if and only 

if the form ~ belonging to the dense embedding V + v.L c: E is the 

zero form. Hence by the theorem in sec. 10 we have (V+V.L)o = E if and 

only if either A, B , C , D are all defined and 

A =1 B+C 11.. D = 0 

or only Band C are defined and 
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B+C= :l 

or only A is defined and 

A = 1.. 

or E = V + V~ (in which case nothing remains to be shown). In all 

cases we may quote the theorem in Sec. 10: Set ~ _ = 0, n = i 

and pick r such that C = trrcr ' where C is an analogous object. 

There always is such a r as we have only one isometry class over k 

Hence any two embeddings with equal invariants (16.4) can be transformed 

into each other. Finally by Sec. 13 we see that for prescribed 

dim ~~/V , dim E/V~~+V~ there is a parseval embedding veE that 

splits. 

(16.5) Corollary ([8]). Let H be a real or complex separable 

Hilbert space and let Bl ' B2 ; Bl ' B2 be complete orthogonal sets 

such that their spans Vl , V2 ; Vl ' V2 in H satisfy Vl C V2 ' 

Vl C V2 , dim V2/Vl = dim V2/Vl Then there is a metric automorphism 

of H with TVi = Vi (i = 1,2) 

Proof. Apply (16.3) to the ~-dense parseval embeddings Vl C V2 ' 

Vl C V2 to get an isometry T : V2 ~ V2 with TVl = Vl • T can be 

extended to all of H. 

There is another instance where the cardinal invariants of 

~(V; +, n, ~, 0) are a complete set of invariants, to wit, 

(16.6) Theorem. Let V C (E,~) be a ~-dense embedding with a 

standard basis. (V; +, n, ~, 0) has the diagram: 

E 

VO (= closure of V in the norm topology) 

V 

(0) 
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If k has complete kO ' kO kO (cf. 2.5 ) then the two cardinal 

invariants 

(16.7) dim E/Vo , dim VO /V 

are a complete set of invariants for the orbit of V under the ortho-

gonal group of E. 

Proof. (16.3) 

(16.8) Extension Theorem. Let V, V be isometric parseval sub-

spaces of (E, ~) For T: V + V a fixed isometry the following are 

equivalent. (i) T is a homeomorphism with respect to the two linear 

a = 
2 

= a (~ I Volol) I V and dim Vol 
-ol 

dim V E {o,~o} • (ii) T can be extended 

to a metric automorphism of E 

Proof of (16.8) when Vol = 0 Assume (i). It is easy to deduce 

that dim E/V dim E/V Let e be a fixed element of E " V H = 

= T (eol nv) is aI-closed hyperplane of 
-olol n H -ol 

f (0) a V , H V = So H 

and thus T(eol nV) -ol 
n for = eO V suitable eO E E . Pick v E V , (eol) 

and A E k such that ~(e,v) ~(Aeo' Tv) ; set e = Ae O We now have 

~(e,v) ~(e, Tv) for all v E V In particular, if (vi)iEJN is an 

orthonormal basis of V and v. = Tv. then 
~ ~ 

i E IN 

We have thus shown that for arbitrary x E E there is some x E E with 

~(x,vi) = ~(x'Vi) , i E IN • The map T: x~ x is well defined as 

Vol = (0) ; it is injective as 
ol 

V = (0) and it is linear; the embed-

dings are parseval, T also preserves the form: 

00 T 
~(x,y) = L ~(x,v.)~(y,v.) = 

1 ~ ~ 

is surjective as T- l gives 

00 

L ~(x,v.)~(y,V.)T = ~(x,y) by (16.2). 
1 ~ ~ 

raise to the inverse assignment. 

T 
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Proof of (16.8) when 
.1..1. 

V = V • Assume (i). It follows that 

dim E/V+V.I. = dim E/V+V.I. • In contrast to the previous case we shall 

here have a recursive construction of the desired extension of T 

We shall enlarge V by adjoining a prescribed vector e outside of V • 

Let 
.I. 

V,V respectively 

TV i (i E IN) 

Case 1: e E E , v+v.I. We find (by the dense case already treated) 

a vector eO E E with ~(e,v.) = ~(eo'~') 
~ ~ 

(i E JI-.J) is unique 

modulo 
-.I. 
V We look for some with II ell Since (16.2) 

00 

lIell = L 
1 

have 0 

TOOT 
~(e,v.H(e,v.) + L ~(e,w.)~(e,w.) with both sums positive we 

~ ~ 1 ~ ~ 

< y ~(e,v.)~(e,v.)T = y ~(eo,~.H(eo,v.)T < lIell • There is 
1 ~ 00 ~ 1 ~ 00 ~ 

N E ~ such that L ~(eo,w.)~(eo,w.)T < L ~(e,w.)~(e,w.)T . Thus if 
N N+l ~ ~ ~ ~ ~ 

a := lIeo - L ~(eo,w.)w.1I we now have a < lIell Since (E,~) is 
1 ~ ~ N 

:-..J. n \ v (eo - l. 
1 

strongly universal there exists in 

w of length IIwll = lIell - a • We define 

Thereby we have extended T from V to 

By the lemma in Appendix I the embeddings Vl C E , TVl C E are 

again parseval. The isometriy T: Vl ~ TVl is still homeomorphic with 

respect to cr(~) : a map which is continuous on a cr(~) -closed hyper-

plane V of Vl is continuous on Vl since closed hyperplanes are 

neighbourhoods. 
.1..1. 

Vl = Vl • Therefore the embeddings Vl C E , TVl C E 

satisfy again (i) of the theorems and the step by step construction may 

be continued. 

Case 2 e E 
.I. 

is sufficient to take care of the V + V It ---
component of e in V.I. , so we assume e E V.I. As -.I. 

V is strongly 

universal (dim f/' = NO dim f/' dim 
.I. ,. 0) we find e E ~ with as = V 

II ell = lieU T extends to Vl := V E9 keel by sending e into e the 

extension is still weakly homeomorphic and the embeddings Vl C E , 
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TVI C E satisfy (i) of the theorem. 

Since dim V~ = dim V~ and dim E/V + V~ = dim E/V + ~ the steps 

described in the two cases may be repeated. Alternating between the 

roles of V, V one constructs ascending chains of ~-closed parseval 

spaces V C VI C V2 C ••• ~ V C VI C V2 c ..• together with a compatible 

sequence of isometries Ti : Vi + Vi such that UVi ~ E , UVi ~ E 

Proof of (16.8). If dim V~ o we have a proof. If V~ + 0 

then dim V~ = ~O • We may by (i) of the theorem and by the dense case 

already treated (parseval embeddings V C ~~ , V C V~~) extend T to 

an isometry 
~~ -~~ 

Tl : V + V • If we succeed in showing that is 

weakly homeomorphic we may quote the closed case already treated and 

extend Tl to all of E 

Continuity of Tl , T~l : Let be given the (subbasis-) neighbourhood 

e~ n ~~ • We are going to construct a neighbourhood e~ n V~~ with 

Tl(e~nv~~) e~ n V~~ It suffices to consider the cases e E ~~ , 

e ~ ~~ + ~ • The first is trivial. Let e ~ ~~ + ~ • It follows that 

there is e E E with ~(e,vi) = ~(e,vi) for vi' Tvi the members of 

orthonormal bases of V, V respectively. We test e~ n ~~ let 

Y E and set the embeddings V + V~ C E , 

"" L = L ~(e,vi)~(Y'v.) + 
i=l"" 1 

= L ~(e,v.)~(y,v.)L 
1 1 

i=l ~ ~~ 
~(~,') • So Tl(e nV ) C 

V + V~ C E are parseval we have 0 = ~(e,y) 
00 TooT 

+ L ~(e,wi)~(Y'w.) = L ~(e,v.)~(y,v.) + 0 
i=l"" 1 i=l"" 1 1 

= L ~(~'V')~("Vi)L+ L ~(~'Wi)~("w.)L 
1=1 1 i=l 1 

C e~ n V~~ • But both are hyperplanes in ~~ and therefore we even have 

equality. The proof of the extension theorem is thus complete. 

* 
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Postscript (concerning Section 11). In an interesting paper, "Sub­

spaces of positive definite inner product spaces of countable dimension" 

(to appear in Pac. J. Math.), W. Bani gives a classification in a diffe-

rent vein. Only the groundfield lR (or «:, H ) is admitted. The upshot 

is that, on the one hand, a large class of subspaces can be characte­

rized by cardinal number invariants and that, on the other hand, an 

attempt to classify all subspaces is - in a very precise sense - futile. 



CHAPTER THIRTEEN 

CLASSIFICATION OF ~-DENSE SUBSPACES WITH DEFINITE FORMS 

1. Introduction 

The fields k admitted in this chapter are the same as those of 

Chapter T.welve but with the additional proviso that k 
o 

is archimedean 

ordered. (E,~) will be a non degenerate hermitean space of dimension 

~o which is weakly universal and has 1 E II~II . In contrast to Chapter 

Twelve the space (E,~) is not assumed to be positive definite. 

We refer to Section 1 of Chapter Twelve for notational conventions. 

* 

As in chapter Twelve we are concerned with the problem of finding 

a complete set of orthogonal invariants for a subspace V of E. As 

told in the caption only ~-dense subspaces will be discussed. We $hall 

first reduce the problem by dismissing several easy cases that can 

arise. 

Case 1. Assume that dense subspaces V,V contain both infinite 

dimensional totally isotropic subspaces. Provided that dim E/V = 

dim E/V it is not difficult to give a recursive construction for an 

isometry T: E + E that maps V onto V. The nature of the under-

lying field is entirely irrelevant. This is a special case of results 

proved in Chapter Five, it will not be discussed any further. 

Case 2. Assume that dense subspaces V,V contain only finite 

dimensional totally isotropic subspaces. Let E be an orthogonal 
0 

of a maximal number of hyperbolic planes in V and E = E e E~ 
0 0 

V n E~ 
o is a dense subspace of E~ and anisotropic. It is obvious 

o 

sum 

that the problem of mapping V onto V isometrically is reduced to 

the situation where V and V carry anisotropic forms (restric-

tions of ~ ) • To this case we now turn. 
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Case 3. w1vxV is anisotropic. By Dieudonne's lemma it follows 

that W is definite on all lines in E . Since W is weakly univer-

sal so is w1vxv. Hence we conclude that wl vxv must be definite 

when it is anisotropic. Without loss of generality we may and we shall 

assume that/with the exception of section lO,we have 

(1.1) wl vxv is positive definite 

V will then admit an orthonormal basis (vi)iE~ It is not difficult 

to see that there are orthonormal bases (fl)lEJ that span supplements 

of V in E Thus 

satisfies the requirements for standard bases in XII.1.7. We shall keep 

the definitions of ali and A1Kn given there as well as the notion 

"standardbasis" described in (XII.1.7.6). (XII.1.7.8) will then remain 

valid here too. 

If there exists a standard basis for our VeE then (XII.1.7.S) 

does not, of course, hold any more; in fact we have the 

(1.2) Lemma. A - <I 
lK lK 

is negative semi-definite if and only 

if w is positive definite on all of E . 

~ If standard bases exist then the principal results on ~-

dense subspaces in Chapter Twelve continue to hold. These are 

(i): If TV = V for an isometry T E + E then the associated 

hermitean tensors A - <I , A - <I (which are over k ® k) are 
lK lK lK lK 0 

equivalent over k and, conversely, if we impose condition (4) of 

Chapter Twelve on the field ko we have (ii) that equivalence over 

k of these tensors guarantees that V and V belong to the same 

orbit under the orthogonal group of E (XII.3.2.3 and XII.4). 

~ Our discussion shows that we are left with the situation 

where wl vxv is positive definite but admits no standard basis (for 
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the embedding V C E). An instance of particular interest is that of an 

archimedean ordered k 
o 

m not being a standard basis then means that 

for at least one 1 E J the monotonic sequence (Alln ) nE1N is not 

bounded, i. e. "lim f1 = 00" • In order to illustrate what can be done 
n+oo 

lln 

in such cases we shall start out with the case 

dim E/V = 2 • 

As an application \'Ie shall derive from it general results for the 

situation where k 
o 

lR (section 9). 

In order that we need not interrupt the train of thoughts later on 

we start with an elementary section on an identity. 

2. Digression on Lagranges Identity 

In a commutative field one has the identity 

(2.1) 

It is a special case of the identity which expresses multiplicativity 

of the norm for Caley numbers ("octaves") (See [2J; it may also be con-

ceived as an instance of the Lagrange Identity in exterior algebra 

(cf. [3J page 155). Furthermore it is a rather special case of Pfisters 

theorem on products of sums of squares in commutative fields F: Let 

m = 2 n and 

such that 

E F ; then there exist z2, ••• ,zm 

222 
- (xlYl+···+xmYm) = z2+···+zm 

E F 

([sJ p. 297). We shall give here a generalization of (2.1) in a different 

direction (see 2.9 below) . 
( 

a 12\ 
= l all 

T 
Let A 

a 22J 
be hermitean over (k,T) , a 12 a 21 • Set 

a 21 

(2.2) A* ("adjoint of A") • 

For the non commutative fields k admitted in the present chapter we 
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see that D belongs to the center of k and A*A = AA* = D] 

Consider arbitrary elements trx 

as column vectors).we shall investigate the quantity 

(2.3) 

where <,> is the usual hermitean product in <x,y> 

Define 

(2.4) 

and its determinant Dl in analogy to (2.2). A straight forward veri­

fication shows that 

(2.5) 

(notice that xyz + (xyz)T = zxy + (zxy)T for x,y,z elements of the 

fields admitted in this chapter). 

On the other hand we have identically 

(2.6) 

Now the right end of (2.5) may be spliced with the left end of (2.6) , 

Remark. S is positive semidefinite because for arbitrary 

(2.7) trzszT = (Z,z)(y,y) - (Z,Y)(Z,y)T ~ 0 . 

Summarizing we have 

(2.8) Let A be an arbitrary hermitean 2x2 matrix and 0 its "de-

terminant" as defined in (2.2.). Let trx = (x l ,x2), try = 

be arbitrary. Assume that D ~ 0 • Define the matrix 

2 
(Yl'Y2) E k 

by (2.4) and 

let Dl be its determinant. Abbreviate S:= A~-A* , U := trX•Al ' 

V := trXA1 • s . Then we have Dl{trXAXT.trYA*yT - <x,y><X,y>T,O} 

Dl{trx (OlA -OA1)XT} D(U·S·trUT) + V·A .trvT > V'A .trvT (we have 

the inequality since S is positive semidefinite) • 
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Let now A be a positive definite matrix. In particular all ~ ° 
aI2 aI2 T D T 

and since ~xiaijxj all(xl+x2'all) (xl+x2'all) + all x 2x 2 we see 

that D > ° since the form is definite. Thus A will be invertible, 

-1 A* 
A = D and A- l is positive definite as well. Since 

Dl = D +tryA*yT = D(l+tryA-lyT) ~ D > ° we see that Dl 

is non zero and Al invertible. We may thus divide in (2.8) by Dl'D 

and obtain the announced generalization of (2.1): 

(2.9) Let A be a positive definite hermitean 2x2 matrix and 

X,y E k 2 arbitrary. With the notations of (2.8) we have proved 
A -1 

trXAXT.trYA-lyT _ <x,y><X,y>T = DtrX(~ _ ~)XT = u. ~ .truT+~.trvT>o 
1 D Dl Dl Dl -

and the left hand side is zero if and only if trX•Al • S = (0,0) • 

In case that T is the identity we can give a less involved 

formula. First of all we remark that 

(2.10) if (k,T) is commutative and (a .. ) an arbitrary hermitean 
~J 

2x2 matrix we have 

From this identity the verification of which is straight forward we get 

(2.11) Let T be the identity (possible only when k is commutative) • 

If is an invertible symmetric matrix we have 

trXAX.trZA-1Z _ <x,z>2 = ! (trXAZ)2 
D 

where D = det A ,X and Z = (zl,z2) in k2 are arbitrary and 

Z = (z2,-zl) • Thus the left hand side vanishes if and only if trXA 

and Z are linarly dependent. If A is positive definite then D > ° 
and the left hand side is non negative. 

For A =] we get back to (2.1). 
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Remark. If one merely wishes to show that the left hand side of 

the equation in (2.9) is non-negative one may proceed as follows. From 

(XII 6.9) it follows that an arbitrary hermitean mxm matrix A can be 

diagonalized over k ® k ; i.e. there exists an invertible mxm matrix o 

B over ko ® k with BA·trBT = D (diagonal). Assume that A is 

positive definite;then A-I exists and B.A-l.trBT = D- l since 

B. trB ]. D = /;2 for a diagonal matrix over k = lR • We now have 
o 

trXAXT.tryKyT_ <x,Y><X,y>T = truuT.trvvT _ <u,v><U,V>T (where 

tr U:= trX.trBT.A , trv := try.trBT.A-l) and this is non negative since 

for all positive definite hermitean forms X over the fields in this 

chapter we have the Schwarz inequality X(u,u)·X(v,v)-X(u,v)X(U,V)T~ o. 

3. The example "dim E/V = 2" The invariant {flij } 

We keep the notations of section 1 in chap. XII and assume that 

(3.1) is archimedean ordered, so 

Let V C (E,~) be a ~-dense subspace with 

(3.2) dim E/V = 2 

lR=k 
o 

3.3. Let (vi )iE1N be an orthonormal basis of V and {fl ,f2 } 

an orthonormal basis of some supplement of V in E , 

(3.3.1) 

We recall that for each n E 1N the Gram matrix (AtKn ) is positive 

semidefinite. Since V~ = (0) there is n E N such that the center o 

element of k, 

(3.3.2) 

is non zero. Henee 

tive definite and 

definite 

that (for 

for n > 

n > n ) 
- 0 

the 

D 
n 

hermitean 

invertible for 

n ; therefore 
0 

matrix A (A ) is posi-
n tKn 1<t,K<2 

(ef. 2.2) • 
=1 -

positive n > n A is 
0 n 

we find (ef. the remark after 2.8) 
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tr T T 
Y = (al ,n+l,a2 ,n+l) (cf. 2.4) • In other words Dn is monotonically 

increasing with n 

3.4. From the previous paragraph we conclude that the following 

are equivalent: (i) m is no standard basis, (ii) One at least among 

lim Alln ' lim A22n is 00, (iii) 
n-+oo n+oo 

lim D 
n n .... oo 

00 • 

3.5. From the identity (XII.6.1.1) we conclude that for X E k2 

an arbitrary "columnvector" the sequence is monotonically 

decreasing as n tends to 00 Therefore (3.1) the limit 

lR®k. 

For suitable choices of X we see that B := lim A~l exists in 

k ® k • For B = 
o 

B = lim 

n 
we have 

3.6. Consider now two ~-dense embeddings VeE, VeE with 

bases m,~ as in (3.3.1). We assume that m and hence ~ possessone 

(and hence all) properties of (3.4). We recall that if VeE should 

admit at least one standard basis then all bases m are standard 

bases. In our example we shall generally assume that there are no 

standard bases. If there is a metric automorphism T of E with 

TV = V then one finds an invertible N = (V ij ) l2i ,j22 

and a natural number nl such that with respect to the bases 

2 x 2 matrix 

(3.6.1) 

(cf.(XII.3.l». 

In Sec, 3 of Chapter XII where we did have standard bases one could 

let n go to infinity and from (3.6.1) derive a transformation for 

the $ij:= lim (Aijn) - 1 • In the present situation this makes no sense; 
n-+-oo 

however, by (3.5) we do have the existence of the limits 



335 

(3.6.2) 
Aijn 

11 .. := lim -0- E k ® k 
~J n+oo n 0 

We shall see in Sec. 6 below that (3.6.1) does indeed yield a trans-

formation law for the quantities 11 .. ; it will be akin to the trans­
~J 

formation laws of tensor densities (as arise e.g. in differential geo-

metry) in that the l1ij transform like a tensor but with an extra 

factor depending on the transformation matrix. 

3.7. The invariants. Consider the situation of the previous para-

graph. We decide for the l1ij (1~i,j~2) as the characteristic quan-

tities of the subspace VeE or rather - as the do depend on 

the bases ~ - for the class of (11 .. ) modulo the appropriate trans­
~J 

formations. 

There is an important argument in favor of the quantities l1ij 

In the proof of the main theorem in chapter XII a crucial rOle was 

1T m,n is essen-

tially defined by means of B. Thus the functions 1T of Lemma m,n 

XII.6.3 - associated with bases ~ of embeddings - are also defined 

when ~ is no standard basis; in fact 1T will continue to be of m,n 

major importance By ( 3.5) we have 

(3.7.1) 

(3.8) If admits no standard basis then o . 

Indeed, by (3.6.2) 111111 22 - 11121112T lim ~ = 0 
n-+-oo n 

4. A change of the basis in V does not affect the l1ij 

We keep the notations of the previous section and assert~ 

(4.1) If in (3.3.1) the basis (vi)N of V is replaced by 

another orthogonal basis (Vi)N of V then the l1ij of (3.6.2) are 

not changed. 
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It will be sufficient to show that for arbitrarily fixed X E k2 

the number trX·n.xT will remain unaffected, i.e. that we shall have 

(4.2) 

where 5 is defined with respect to ~ 

n .. v. 
j l.J J 

(i E IN) • 

4.3. We have 

(4.3.1) ati = ~(ft'Vi) = ~ntjAlj (t=1,2) 

and, since (vi)~ is orthonormal, furthermore 

(4.3.2) 

We abbreviate as follows 

(4.3.3) [t,i,n] := I:j=lntjAlj 

(4.3.4) for m,n E ~ A(m,n)tK := (I:~=1[t,i,n][K'i,n]T)1~t'K~2 

4.4. A(m,n) is a Gram matrix thus whenever its "determinant" 

T 
D(m,n) := A(m,n)11A(m,n)22 - A(m,n)12A(m,n)12 

is non zero then D(m,n) > 0 and A(m,n) is positive definite, 

-1 A(m,n) exists and is positive definite as well. Since the matrix 

(A .. ) 
l.J 

is row-finite each sum [t,i,oo] 

number of non zero summands and thus 

(4.4.1) D(m,oo) := lim D(m,n) 
n ... oo 

trivially exists. 

has only a finite 

Now if x E E satisfies x ~ vi for all i E ~ then x = 0 as 

V~ (0); from this fact one concludes that D(m,oo) cannot vanish for 

all m • Hence there is m E ~ 
o such that D(m,oo) '# 0 

therefore there exists no(m) E ~ such that 

(4.4.2) D(m,n) '# 0 for m > mo and n > n (m) 
- 0 

for m > m 
- 0 
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~. From (4.4.2) we obtain that 
-1 

A(m,n) exists and is positive 

definite for m > mo and n > no(m) . By the argument following 

(3.3.2) we have that D(m+l,n) - D(m,n) is nonnegative; therefore 

(4.5.1) D(t,n) > 0 for all t > m > mo and n > no(m) • 

We may therefore consider the function 

L(t,n) := trx.A(t,n).x, 
D(t,n) for all t > m > m and 

o 
n > no(m) 

Let us look, for some fixed t, at the matrices A(t+l,n) , A(t,n) • 

They are related just as Al and A in (2.4) (with e 1 ,t+l,n (m)]' 
o 

in the r61e of Y1) Hence we may argue as in (2.9) to conclude that 

L(t,n) - L(t+l,n) ~ 0 for t > m > mo and n ~ no(m) . Thus the non­

negative value L(t,n) decreases monotonically as t tends to 00 ; 

so by (3.1) there exists the limit (in k ® k) 
o 

(4.5.2) L(oo,n) := lim L(t,n) < L(t,n) 
t-+oo 

for all t ~ m ~ mo ' n ~ no(m). 

4.6. If in A(t,n) one expands the products e1,i,n]eK,i,n]' 

we see by (4.3.2) that 

(4.6.1) __ trx An X' L(oo,n) D 
n 

where An is, as usual, the matrix (L~ a .a'.) and D its 
J=l 1J KJ 1<1,K<2 n 

"determinant". If n -+ 00 then by (3.5) the right hand side in (4.6.1) 

has a limit which is < L(oo,n) ; the limit clearly is trXr2X' . Thus 

tr Xr2X' < L(oo,n) and by (4.5.2) we obtain 

(4.6.2) trXr2X ' < L(t,n) for all t > m > m and n > n (m) . - 0 - 0 

4.7. If n -+ 00 then L(t,n) converges to some limit L(t,oo) 

by (4.4.1) . trXr2X' s.. L(t,oo) by (4.6.2). Now L(t,oo) is by the very 

definitio!:s (4.3.1), (4.3) equal to trx.QtOX' 
A 

matrix (~) 0 Hence trXr2X' < trXQ X' for all 

t tend to 

Dt - t 

then Qt converges to Q so 

trXr2X' < trXQX' 

where 

t > m o 

is the 

If we let 
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The opposite inequality follows by a symmetric argument. This proves 

(4.2) . 

5. Transformation formula for Dn 

5.1. Let m.~ be two bases (3.3.1) for the embedding VeE with 

(5.1.1) (j=1,2) where N = (\I. ) 
Jr 

is invertible. By using the fact that (vi)W' {fl ,f2} , {fl ,f2} are 

orthonormal it follows that 

(5.1.2) A 
n 

1 = N(A _lI).trN, 
n 

(m>n ) 
- 0 

where no is sufficiently large (cf. XII 3.1.4) A is the Gram n 

matrix of 3.3. In order to express D (3.3.2) in terms of D we need n n 

5.2. Lemma on noncommutative 2 x 2 determinants. Let M '" (ab) 
cd 

be a 2 x 2 matrix. We define 

(5.2.1) := [-Cb if a = 0 

ad - aca-lb if a -F 0 

(5.2.2) If A is a hermite an 2 x 2 matrix then IM'A.trM'I-IAI~M= 0 

where ~M= aa"dd'+ bb'·cc'- ca"bd'- db'·ac' and ~M -F 0 for 

M invertible. 

The proof of this formula is elementary but somewhat tedious; it re-

lies essentially on the fact that the field (if not commutative) is of 

type (el,B) 
ko 

. Let A = (~, w) . Substituting the definitions for IAI v 

and I M·A·trM' I most of the terms on the left hand side of (5.2.2) will 

cancel by systematically observing that Tr(xyz) = Tr(zxy) where 

Tr(n) means n + n' ; in this way the left hand side of (5.2.2) is 

seen to reduce to 

- (ww'ca'bd'+ ww'dbTacT) = Trp'Trq - Tr(pq) - Tr(pqT) = 0 ; p = bTaw 

and q = dTcw . Q.E.D. 
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(5.2.3) ~. 1) One can almost get the formula (5.2.2) without 

computations by making use of the Dieudonne determinant (for a nice 

exposition of this determinant see[lJ p. 151): 

IMA.trMTI = IMI IAI ItrMTI·r l = IAI ·IMI ·ltrMTI ·r2 = IAI IM.trMTI ·r3 = 

IAI.fi.r4 where r l ,r2 ,r3 ,r4 E [k*,k*J , the commutator subgroup of 

k* = k" {O}. Since A is hermitean the two determinants are in k 
o 

so r 4 E ko n [k*,k*J ; therefore r 4 = ~ 1 since quaternions that 

are products of commutators are obviously of "norm" 1. 

2) The same conclusion as in the previous remark may be obtained as 

follows. One makes use of the fact that the algebra (a,S) is isomor­
k 

o 
phic to an algebra of 2 x 2 matrices over the commutative field 

k (Iii) by associating with a quaternion q = a + ia l + j(a2+ ia3 ) = 
0 

zl+ jZ2 the matrix r zl Z21 T 
w(q) 

lsz; 

where zl a - ial etc. 

z~J 
0 

If (qrs) is a hermitean 2 x 2 matrix over (~,S) and 
o 

I (qrs) I as defined in 5.2.1 then I (qrs) I E ko and for the usual de-

terminant of the 4 x 4 matrix (w(qrs» one finds 

det(w(qrs» = I (qrs) I 
2 

Therefore IMAtrMTj2 = det(w(M)w(A)W(trMT» 

jAj2.jMtrMTj2 = jAj2fi~ 

5.3. Consider now the situation of 5.1. By formula (5.2.2) we have 

(5.3.1) 

By the definition (5.2.1) we find IAn-] I 
larly for jAn-Ij ; expressing here Aiin by means of (5.1.2) we finally 

have from (5.3.1) 

(5.3.2) D 
n 

2 T 2 T 
1+ l: V l . (A. -0.) v l + l: V 2 . (A. -0.) v 2 + 

j,r=l J Jrn Jr r J,r=l J Jrn Jr r 
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5.4. Assume that the basis m for the ~-dense embedding VeE 

is no standard basis (cf. 3.4). Let ~ be a second basis for VeE 

satisfying (5.1.1). 

D 
(5.4.1) The limit p(m,~) := lim 

n+co 

n 
D E k ® k(= ffi®k) exists, and 

o n 

(5.4.2) 

(where 

(5.4.3) 

These assertions follow directly from (5.3.2) and the definition 

(3.6.2) . 

6. Transformation law for the quantities n ij 

As before we assume that VeE admits no standardbasis. 

Let m,~ two arbitrary bases for VeE, V~ = (0) , 

dim E/V = dim E/V = 2 • There is a uniquely determined, invertible 

2 x 2 matrix N = (Vij) over k such that 

We assert that 

fJ.' - LV .• f. E V 
J.J J 

tr , -
p·N·n· N where (5.4) p = p(m,m) 

Indeed, 

Qn - ~ 

by (5.1.2) we have for n ~ no (sufficiently 
D 
nn.N.nn·trN' - ~ N·trN' • As n + co both 

n 
infinity, 

n n 
hence the assertion. 

large) that 

D ,5 tend to 
n n 

7. The main theorem (dim E/V = 2; Dn + co) 

7.1. Theorem. Let (E,~) be a weakly universal k-space with 

dim E = ~o ' 1 E II ~II and where the field k is as described under 

the caption of Chapter Thirteen. Let V,V c E be positive definite 
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subspaces with dim E/V = dim E/V 2 , Vl. Vl. = (0) and such that 

there are no standard bases for the embeddings V C E, V C E • If there 

exists a metric automorphism T of E with TV = V then there exists 

an invertible 2 x 2 matrix N = (v .. ) over k such that 
~J 

(7.1.1) 

and 

(7.1.2) Qij 

(AN as in 5.4.2). Conversely, if the field k satisfies condition 

(4) in chap. XII then the two conditions will be sufficient for the 

existence of a metric automorphism T of E with TV = V • 

7.2. Proof of necessity. Let ~,~ be the two arbitrary bases with 

respect to which Q and 1'1 are defined. Let ~. be the "intermediate" 

terms of !!I' (Sec. 6) yields 1'1 

vially p > 0 and by (5.4.2) p is of the requisite shape. Since 

Qij = Qij we obtain (7.1.1) and (7.1.2). 

7.3. Proof of sufficiency. 1. In order to construct T we first 

show that we can introduce a basis lB' for VCE such that S"li,j= i'iij' 

In order to find ~. = (vi) iEJN U (fi,fi) we set v! = v. 
~ ~ (vi in 

basis ~ defining Q) and f1 = LV i / j + n 
Ll1;irvr (i=1,2) and seek 

to determine n and the 1;lr,1;2r (l~.r.~.n) such that {fi,f;P is 

orthonormal. The "orthogonality conditions" read ] +NA .trxT + 
n 

is the 2 x n 

and X is the 2 x n matrix (1;ir) . With the substitution 

Y := NAn + X the orthogonality conditions become 

tr T tr T 
y. Y =] + N(An-l)' N 

In other words, the given hermite an matrix M :=] + N(A _]).trNT 
n n 

the 

should, for suitable n, be expressible as a n-Gram matrix. In view 



342 

of the assumption (4) of chap. XII put down on k by the theorem this 

is the case (XII 1.5.1) if Mn is positive definite for some n . Mn 

Now M - ]I. 
n 

= IA -1I11'1 n N 
(Dn- Alln- A22n + l)I'IN by (5.2.2). Therefore we see that 

lim 0n/Dn exists and equals p of (7.1.1). As D 
n 

is nonnegative 
n+oo 
(n>n ) and 
-0 

p > 0 we have D > 0 
n 

for n > n o Hence we can find an 

orthonormal basis {fi,f2} (and hence ~'). By (6) we have ~'= 

tr , 
pN·~· N with P p (lil' ,~) • Therefore ?i = ~, . 

2. For the rest of the proof we may (by what we just proved) 

assume that 
?i = ~ . 

The construction of T is practically identical with the one given in 

XII 7.1; the only difference being that instead of "A = A "- which lK lK 

is meaningless here - we must work with the induction assumption 

"~ =?i " . We needed the assumption in order to conclude that 
lK lK 

(A- l )lK • By (3.6.1) we get this more directly 

from "~ =?i " • The only thing which remains to be done here is the 
lK lK 

non trivial verification that the induction assumption can be saved 

from one construction step to the next. Technically speaking, this 
A .. 

amounts to the following: By definition ~ij = lim ~]n . NOW, after 
n-+oo n 

the first step described in XII 7.1.1 the vector v l is chopped off. 

Setting a. 
~ 

ated matrix 

step have 

analogously 

Expanding 

= cfJ(fi,vl ) 

Aijn = 

~ij 

defined 

D' 
n 

A .. 
~]n 

= lim 

and 

(i=l,2) 

, - a.a. 
A! . 

~ ] 

..2:l!! 
D' 

n 
a i = a. 

~ 

one is therefore left with the associ-

• The question is: Do we after the first 

?i ~. ? Here 
~] 

and 

by the very construction 
D' 

n = 1 _ trX.A-lx, where 
Dn n 

are of course 

of XII 7.1.1. 

X= [:~) . 

In other words 
0' 

n 
D = 1 - TIln(l) > 0 by Lemma XII.6.3 • We obtain thus 

n 
the interesting formula (n+oo) 
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n' = n .. (I-TIl (1))-1 where n1~J' belongs to the 
ij 1) ,00 

(7.3.1) embedding k(vi)i~2 c k(vi)i~2 ~ k(f l ,f2) and TIm ,00 

is the function in Lemma XII.6.3. 

It is now evident that after the first construction step we shall have 

Q~. and hence the proof of the sufficiency is complete. 
1J 

7.4. Corollary 1. Let V,V C be as in theorem (7.1) and TV = V 

for a metric automorphism of E then p(l-trace Q) = (I-trace n)~N 

Proof. We have (Sec. 6) IAn-~1 = IAn-~I~N ; expanding this gives 

Dn - Alln : A22n + 1 = (Dn-Alln-A22n+ l)~n . Divide by Dn and factor 
D 

out n on the left. For n ~ 00 the assertion follows. Another 
Dn 

possibility is to divide (7.1.1) by p and use (7.1.2). 

7.5. Corollary 2. Let V C (E,~) be as in the theorem. The state-

ments "trace n = 0", "0 < trace n < 1", "trace n = 1", "trace n > 1" 

are properties of the orbits (under the orthogonal group of E) of V 

Proof. If trace n o then nIl = n22 = 0 ,hence n o by 

( 3 • 8). By (7. 1. 2 ) o for any VeE in the same orbit as V 

If trace n # 0 the assertions follow by checking the signature of 

both sides in the equation (7.4). 

8. Embeddings (dim E/V = 2, Dn ~ 00) that split 

For the definition of "splitting embedding" see XII 13. Corres-

ponding to XII 14 we have here 

8.1. Theorem. Assume that k satisfies (4) of Chapter Twelve and 

that VeE is a ~-dense embedding which admits no standard basis. Let 

dim E/v = 2 Then the embedding splits if and only if there is some 

invertible 2 x 2 matrix over k such that (7.1.1) holds and Q of 

(7.1.2) turns out diagonal. 

Proof. If VeE splits then we shall have p > 0 and Q dia-

gonal for suitable N. Conversely, if n12 = 0 ,then nlln22 = 0 by 
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(3.B), say !122 o We define an embedding VeE with 

a 2 ,2i-l 

and 

- -T 

o ~ al,2i-lal,2i-l = 00 and L a 2 2,a; 2' !1~11 if i ,1 ,l. 

otherwise. t'Je have n ij ~" (i=1,2). We now quote 
~J 

Theorem 7.1. 

The following theorem has no analogue when standard bases are 

present. 

B.2. Theorem. Let 

only if n12 = 0 or if 

Proof. If VeE 

v c (E,~) be as in B.l VeE 

-1 
!111!112 E k ([4], Satz B). 

splits iff and 

for some invertible N = (V ij ) . Multiplying this equation by !111 

yields (3.B) T T T 
(V ll!111+ V12!112) (!111V 21+ !112V22) = 0 hence either 

-1 
or !111!112 E k 

N :0[:er::::1 i:orO~:.: 0, ;ek::o;:}8:'~ei:ave 
we set 

and for p (7.1.1) we find p > 0 if A is chosen 

sufficiently small. We may thus quote 7.1 to conclude that n12 = 0 

for a suitable embedding. Hence VeE splits by B.l. 

B.3. Corollary. Assume that T is the identity and that every 

positive element in k is a square. If VeE is as in (B.l) then 

VeE splits if and only if !111,!122,!112 are linearly dependent over 

k [4],p.4B4). 

Proof. If VeE splits then the assertion follows from (B.2). 

Let conversely a!1 11 + S!122 + y!112 = 0 (a,S,y in k and not all zero). 

The case where !112 

and hence !111!122 ~ 0 

assumption that y2 

our relation by n ll 
-1 

other words !112!111 

o is taken care of by (B.l) so let !112 ~ 0 

Since n!1 _!12 = 0 
11 22 12 

it follows from our 

4aS is a square; on the other hand division of 

yields a + 8 (!112!1~i)2 + Y(!112!1~i) = 0 ; in 

solves the equation a + y~ + 8~2 = 0 • As its dis-

criminant is non negative its solutions are in k .In particular 

which brings us back to B.2. 
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9. An application to dense embeddings when ko= R 

In this section we assume that ko = ko = R , in other words, ~ 

is symmetric and k = R or ~ is hermitean and k is either ~ or 

~ = (~) with T the usual conjugation. Every k-space (E,~) is 

then weakly universal. As we assume that 1 E II~II we have that E is 
.L 

of the form E(+l) ~ E(_l) where the spaces E(+l) and admit 

orthonormal bases. Without loss of generality we assume that 

dim E(+l) = ~o • n_ := dim E(_l) is a uniquely determined cardinal. 

OUr results on the case "dim E/V = 2" enable us to completely 

discuss the .L-dense case where dim E/V is finite. This is accomplished 

by making use of splittings and of "combinatorial" considerations. Our 

first principal result is Thm. 9.2. 

9.1. The second part of 7.3 shows the following. If (Qij)1~i,j~2 

is diagonal for a certain basis ~ = (vi)N U {fl ,f2} then E splits as 

follows: 

we say that V C E splits with respect to fl and f2 • If 

for i,j = 1,2 then VeE splits with respect to each orthonormal 

basis {f l ,f2} which spans a supplement of V in E . 

The following situation will occur frequently below: V C E is a 

.L-dense embedding which admits no standard basis and there is an 

fl E E \ V such that 

for some (and hence each) orthonormal basis (vi)N of V If then 

{fl ,f2} is orthonormal and spans a supplement of V in E then 

VCE splits with respect to < co then 

(Incidentally, it is an exercise to directly 

show that and therefore Q22 
-1 

All in this case.) 
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9.2. Theorem. Every ~-dense embedding VeE with dim E/V 

finite and (V,~) positive definite splits (k one of ffi,~,H := 

(-1,-1) ) 
IR 

The proof will be divided into three cases. 

9.2.1. Case I l:~(X,V.)~(X,V.)T < 00 for all x E E'-V . 
~ ~ 

We quote (1. 3) . 

9.2.2. Case II: l:p(x,v.)p(X,V.)T = 00 for all x E E\V. We 
~ ~ 

proceed by induction on dim E/V . For m = 1,2 nothing remains to 

be shown (8.2). 

Let dim E/V = m+l and F some m-dimensional subspace of E 

contained in E \ V . Upon induction assumption there is a splitting 

m~ 
V$F=$ 

1 

~(fm+l,fi) 

(V.$ (f.)), V. ~-dense in V.$ (f.) • Let fn+l E E'(V+F), 
J J J J J 

= 0 l' (Kronecker). Consider in turn the m embeddings m+ ,~ 

V J' C V. $ k (f . , f 1) • 
J J m+ 

We claim that we can always arrange it so that all of these m 

embeddings are ~-dense embeddings. Firstly, it cannot happen that all 

of them fail to be ~-dense embeddings, for otherwise there exists 

with v. E V .• Hence the contradiction 
~ ~ 

f m+l + ~(aifi + Vi) E V~ . Secondly, assume therefore that 
~ 

VI C VI $ (fl,fm+l ) is ~-dense. This embedding is either of type 

n = 0 and splits with respect to {fl,fm+l } or else 

l:p(fm+l,Wi)P(fm+l,Wi)T is finite for some orthonormal basis (wi)lN 

of VI and hence by (9.1) it splits again with respect to {fl,fm+l}· 
~ 

In either case VI = V' (fj V" with f ~ 
m+l V' , fl ~ V" and 

V" C V" (fj k(fm+l ) is a ~-dense embedding. Thus if (zi)lN is any 

orthogonal basis of V" we shall have p (fm+l,zi') # 0 for infinitely 

many i' . Partition (zi)iElN into m blocks with each block contain­

ing infinitely many of these i' • Let v(l) , ... ,v(m) be the spans 

of these blocks, V" = v(l) i ... ~ v(m) • If we now, in the original 
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orthogonal decomposition of V into Vl ,·· "Vm , replace the 
.L 

Vl""'Vm in turn by Vl := V' ~ vel) V2 := V2 Ell (2) -V , ••• 'Vm := 

V ~ v(m) then all embeddings Vi C Vi + k (f i ' fm+l ) will be .L-dense 
m 

and 

Writing again Vj instead of we can now repeat the above 

combinatorial trick: All embeddings Vj C Vj ~ k(fj,fm+l ) are either 

of type n = 0 and split with respect to {fj,fm+l } or else 

.L 
~~(fm+l,wi)T(fm+l,wi) is finite for some orthonormal basis (wi)N 

of V. and hence (9.1) split again with respect to {fj,fm+l} . In 
J .L 

any case V. = V ~ V 1 with fm+l .L v. o ' f. .L V. l • We set Vm+l J jO j J m J .L 
~ V 

j=l jl 
and obtain the splitting m.L J 

E = (V ~ (fjll Ell (Vm+l EB(fm+l»' 
1 jO 

We are thus left with the general case: 

9.2.3. Case III: Let F be an arbitrary supplement of V in E • 

The set {f E FI~p(f,vi)P(f,vi)T < oo}is a linear subspace Fo of F • 

Let 
.L 

Fl := FO n F • We assert that there is a decomposition as follows. 

If this holds then we may apply cases I,ll to the embeddings V.C V.~F. 
J. J. J. 

respectively and obtain the assertion of the theorem. 

For the proof of (9~2.3.1) we assume that Fo ~~O}, Fl ~ (0) . 

Pick f E (V+FO), V with p(f,f) = 1 and set Foo = f.L n Fo • By· an 

induction assumption there is a decomposition of the required kind for 
.L 

the embedding V C V Ell (Foo~ Fl ) , V Ii) Foo~ Fl (Voo~ Foo) Ell (V1Ell Fl ) 

and, by case II, Vl C Vl~ Fl has a splitting vlEB Fl =~.L (VljEll (f j ». 

Precisely as in case II one now looks at the embeddings 

Are these embeddings .L-dense? We can always modulate them in the 

manner explained above in Case II and achieve density. Notice that for 

this one also has to take into consideration a splitting of 
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Voo C Voo $ Foo (which exists by case I). We may therefore assume 

without loss of generality that our embeddings are ~-dense and that 

they therefore split (by the results of Sec. 8) with respect to {fj,f} 

respectively. The desired decomposition for is now ob-

tained just as in Case II. 

Remark. In the Introduction to the chapter we gave a reduction of 

our investigation to the case where (1.1) holds. The discussion given 

there shows that we have splittings in the cases dismissed. Hence 

Theorem 2.9 actually holds whether (V,~) is definite or not. We formu-

late this important result in the following 

9.3. Corollar:l/:. Let k be one of lR,C ,IH with obvious involution 

and (E,~) any non degenerate N 
0 

-dimensional hermitean space over k . 
If VCE is a subspace with m = dim E/V ~ 00 and V~ = (0) then the 

embedding VCE splits, i.e. there is an orthogonal decomposition 

(Cf. Sec. 14 in Chap. XII.) 

E = ;~ 
i=l 

(V.$ k(f.», V 
~ ~ 

m 
~ V. 

i=l ~ 

Having established the existence of splittings we shall now be in 

a position to introduce and discuss orthogonal invariants for embeddings: 

9.4. Definition. Let V C E have V~ = (0) and dim E/V ~ No 

Let (Vi)iEIN be some fixed orthonormal basis of V. Then the set 

is a linear subspace of E • On 

V3 x V3 we consider the hermitean form ~ given by 

00 

~(x,y) 
T 

L p(x,vi)f(y,v.) - ~(x,y) • 
i=l ~ 

We set VI := rad ~ • Obviously V C VI • We let furthermore V2 be 

some arbitrarly fixed maximal subspace of V3 on which ~ is negative 

semidefinite. We put n i = dim Vi/Vi _l where Vo = V and i = 1,2,3 ; 

furthermore we set n4 := dim E/V3 • 
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By XII 1.6 Vl does not depend on the basis (vi)iE~' neither 

does ~ by the same token. Therefore nl ,n2 ,n3 are well defined and 

depend only on the embedding VeE • Obviously 

(9.5) 

V2 is a maximal positive definite overspace of V in E, hence a 

norm topology can be introduced in V2 • Vl is the closure of V in 

this topology (as we have shown in Appendix I of chapter XII). V3 is 

the maximal overspace of V such that the embedding V C V3 admits a 

standard basis (cf. XII 1.7.8). 

9.6. Let us now look at a ~-dense embedding VeE with 

dim E/V = 1 We introduce the element 

S = Ep(f,v.)~(f,v.)T E ffi U {oo} 
~ - ~ 

where f is a vector with ~(f,f) 1 and not in V and where 

(vi)~ is an orthonormal basis in V It is not difficult to see that 

the square class of (S-l) in ffi U {oo} does not depend on the basis 

(vi)~U (f) chosen to describe the embedding. It is easy to prove that 

this square class constitutes a complete set of orthogonal invariants 

for the orbits under the orthogonal group in the set of positive defi-

nite ~-dense hyperplanes in E • Thus there are four orbits, correspon-

ding to the square classes (in ffi U {oo}) of 

-1, 0, 1, 00 • 

Representatives in the orbits are embeddings veE with S in turn, 

1 say, 2 ' 1 , 2 , 00 • The corresponding 4-tuples (nl ,n2 ,n3 ,n4) intro-

duced in definition 9.4 above are in turn (0,1,0,0), (1,0,0,0), 

(0,0,1,0), (0,0,0,1) • Hence we see that in a splitting 
m 

E = $~ (V $ k(f 4 » of a ~-dense embedding VeE with finite dim E/V 
i=l i 4 

the cardinal counts how many summands will be in the first orbit 

above, n2 tells how many summands fall in the second orbit above etc. 



350 

We are now ready to show 

9.7. Theorem. Let k be one of R,~,H with obvious involution 

and (E,~) a non degenerate No-dimensional hermite an k-space. The 

quadruple <nl ,n2 ,n3 ,n4> introduced in 9.4 characterizes the orbit of 

V (under the orthogonal group of E) in the set of positive definite 

subspaces V of E with V~ = (O) and 0 < dim E/V < 00 • 

Proof. If V and V are such spaces and in the same orbit then 

any isometry T of E maps V3 of definition 9.4 onto (V}3. Hence 

n4 = n4 • Sylvester's law of inertia applied to the form ~ of 9.4 

-gives n i n i (i=l, 2,3) 

Assume conversely that n i n i (1~i~4) for the two embeddings 

VeE, VeE respectively. As the latter split by 9.2. we can match 

summands of splittings in such a way that an automorphism T of E 

can be defined by sending summands onto each other (cf. the end of 9.6). 

The proof is thus complete. 

9.8. Remark. The dimensions (ni }1<i<4 of 9.4 can of course be 

introduced for k an arbitrary field as admitted in Chapter thirteen. 

They are however not immune to extensions of the field. We shall des-

cribe here an example of an embedding VeE with n 4 = 2 such that 

after a transition of the ground field k c R to R the R-ification 

has n 4 = 1 • On a k space E = Ve k(f l ,f2) where k C R , k ~ R 

define a symmetric ~ by declaring a basis ~ = (vi}N U {f l ,f2} to 

be a basis for the embedding VeE and 

l3 i where we pick the sequence (l3 i }N with limit 13 E R, k 

where 

in R. We have V~ = (O) 

-1 
ex 

2 
1: (13-l3 i ) • In view of 8.2 the em-

bedding does not split. Hence by the remarks in 9.1 we cannot have 

n 4 = 1 • As obviously n 4 ~ 0 we have n 4 2 • But over R the em-

bedding does split, so then we shall have n 4 = 1 • 
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10. Counting orbits of ~-dense subspaces 

in arbitrary hermitean spaces over ffi, ~ or IH 

Let the field k be one of ffi,~, ~ with obvious involution. 

For a change let (E,~) be an arbitrary non degenerate ~o-dimensional 

hermitean space over k. So as remarked at the be-

ginning of Section 9. Without loss of generality we assume that 

dim E(+l) is infinite. n_ 

termined cardinal between 

:= dim E (-1) 

o and ~ 

( "the index of E") is a well de-

o 

We then have 

Theorem. We consider ~-dense subspaces V C E with finite 

m dim E/V . (V,~) may be definite or not. If the index n_ of E is 

~o the orbit of V under the orthogonal group of (E,~) is charac-

terized by m : all ~-dense subspaces of E of 

one single orbit. If 

are decompositions 

where E o 

E 

is a sum of 

n -

= E 

i 

< OX> then the index of 

~ 

061 El with V = E 61 0 

hyperpolic planes (i 

equal codimension form 

V is finite and there 

V n El , 

is a ~-dense embedding with (V n El'~) positive definite. The numbers 

n l ,n2 ,n3 ,n4 of Def.9.4 are defined for V n ElC El and they do not 

depend on the particular decomposition of E into Eo 61 El . The orbit 

of V is characterized by the index i of V and the numbers 

Furthermore, if r:= min{m,n then there are precisely 

1 
6(r+l) (r+2) (3m-2r+3) 

different orbits of ~-dense subspaces V C E with dim E/V = m . 

Proof. If the index n of E is ~ 
o then V contains an in-

finite dimensional totally isotropic subspace and there is preCisely 

one orbit for fixed m = dim E/V by Cor. 1 to Thm. 1 in Chap. V. 

We are left with the case n < OX> • Consider an instance with 
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i = n in other words El is positive definite. Each sunnnand Sj -
Vl~ (f j ) of a splitting of V n El C El is therefore positive de-

finite and there are 2 possibilities for each S. 
J 

, viz. nl = 1 or 

Hence we find m + 1 orbits when i = n • Consider next 

the case with i = n_- 1 . All Sj with the exception of precisely 

one, say Sl , are positive definite. For Sl there are two possibi-

lities, namely n3 = 1 or n4 = 1 . Hence we have 2·m orbits when 

i = n_- 1 . In this fashion we find the number of all orbits, 

r+l 
1 (m+l) + 2·m + ••• + (r+l) (m+l-r) = Ll v (m+2-v) 

11. Applications to the theory of divergent series 

It would lead us too far astray if we wanted to delve into the 

theory of divergent sequences and series here. Suffice it to say that 

our results of this chapter yield results on divergent series. As an 

illustration we may consider Theorem 8.1 which may be rendered as 

follows: 

If 
1 m (ti)N, ••• ,(ti)N are arbitrary sequences of reals such that the 

E (Alt~ + ••• + Amt m)2 diverges for arbitrary Al, ••• ,Am E R 
i=l ~ i 
there is a row-finite orthogonal matrix (a ij ) A, trAA = 1 

sum 

then 
co 1 

(Lj=laijtj) iEN such that the transformed sequences , ... 
m co m h ••• ,(ni)N = (Lj=laijtj)iEN are pairwise orthogonal in the sense t at 

n~·n~ = 0 for all i and r ~ s • 

Indeed, we may define a ~-dense embedding VeE with dim E/V = m 

via a standard basis (vi)iEN U (fj)l~j~m by setting $(fj,vi ):= ti 

It has so that it splits with respect to any m-tuple 

spanning a supplement of V in E • In particular it will split with 

respect to fl, ••• ,fm • This translates as stated above. 



353 

References to Chapter XIII 

[1] E. Artin, Geometric Algebra, Interscience Publ. NY (1957). 

[2] F. van der Blij, History of the octaves in Simon Slevin, Wis- en 

Natuurkundig Tijdschrift (Groningen) 34e Jaargang Avlevering III 

Februari 1961. 

[3] W. Greub, Multilinear Algebra, Springer Verlag NY (1967). 

[4] H. Gross, Eine Bemerkung zu dichten Unterr~umen reeller quadra­

tischer R~ume. Comment. Math. Helv. 45, 472-493 (1970). 

[5] T.Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, 

Inc. Reading (Mass) 1973 • 

Postscript. Our "lazy" treatment of subspaces in the indefinite 

case, namely via codimension 2 plus combinatorial arguments prohibits 

a discussion of subspaces of infinite codimension. However, according 

to W. B~ni, Theorem 9.7 holds for infinite dim E/V as well. See a 

forthcoming paper where he also includes the discussion of subspaces 
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CHAPTER FOURTEEN 

QUADRATIC FORMS 

Introduction 

Quadratic forms are closely related to orthosymmetric sesquilinear 

forms and, to a large extent, they behave very similarly. In fact, the 

two concepts partly overlap (cf. Example 2 in Section 3 below). For the 

purpose of illustration we start with the classical notion of a quadrat-

ic form 

Q: E ... k 

on a k-vector space E over a commutative field k of arbitrary char-

acteristic. The map Q is called a quadratic form if 1) we have Q(AX) 

A2Q(X) for all A E k, x E E , and 2) the assignment ~: 

(x,y) ~ Q(x+y) - Q(x) - Q(y) from E x E into k is bilinear (~ is 

called the bilinear form associated to Q; it is, by necessity, a 

symmetriC form). Thus, by definition, we have the formula Q(x+y) 

n 
Q(x) + Q(y) + ~ (x,y) It is easily generalized to finite sums E S.X. 

i=l 1. 1. 

n 
Q( E S .x.) 

i=l 1. 1. 
£ s~Q(x.) + E s.s.~(x. ,y.) 

i=l 1. 1. l~i<j~n 1. J 1. J 

Let us give some examples. 

Example 1. Let (el)lEI be a basis of the k-vector space E . 

Put some ordering < on the index set I. Choose any matrix (a ) 
lK 1,KEI 

over k where the entries a lK with 1 > K are zero. A typical vector 

x E E is a linear combination LS e with only finitely many Slf 0 ; 
1 1 1 

hence we may define 

Q(ES e ) 
1 1 1 



355 

and verify that 1) and 2) are satisfied. From the definition we obtain 

Q(e l ) = a and, for 1 < 
1 1 

K , '¥(el,e K) = '¥(eK,e l ) = a For example, 
lK 

in a plane E = k(e l ,e 2 ) we may choose (a l K) = (~ ~) and we have for 

x = 1:1el + 1: 2e 2 E E 

Q(x) 
2 

131: 2 + 1:11:2 (0) ai;l + 
2 

Example 2. Take any symmetric bilinear form ~ and define Q(x) := 

~(x,x) . Condition 1) obviously holds and '¥(x,y):= Q(x+y) - Q(x) - Q(y) 

is indeed bilinear because '¥(x,y) = 2~(x,y) . If char k + 2 then the 

process is reversible. We can recapture from Q the original form ~ , 

1 
~(x,y) = 2'¥ (x,y) . Here we gain nothing new by the introduction of 

quadratic forms. If, on the other hand, the characteristic of k is 2 

then the associated form '¥ is identically zero. Hence the manufacture 

of quadratic forms by applying the "squaring process" to symmetric bi-

linear forms will never produce, e.g. a quadratic form of the kind (0) 

(with associated form '¥(x,y) = 1: 1 n2 + i;2nl ). Of course, we could apply 

the squaring process to forms ~ which are not symmetric (say the form 

with matrix (alK)lEI in the first example). Artin says in his book on 

geometric algebra that this is not desirable since such a ~ would not 

be uniquely determined by the quadratic form ([lJ, p. 110). Yet, this 

is exactly the course on which we shall embark in the following sections. 

In this introductory chapter we shall present the concept of quad-

ratic form as advanced by J. Tits (in Sections 2.2, 2.3 of [3J) and 

C.T.C. Wall [4J and discuss a few related concepts as far as needed in 

subsequent chapters. We are aware of the fact that the definition of 

quadratic form presented is not the most general, even for vector spaces; 

yet the concept is general enough for the purposes of this book. 
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Assumptions. In the whole chapter k is a division ring with 

an antiautomorphism ~ ~ ~* whose square is inner, ~** = £4~£ and, 

furthermore, ££* £*£ = 1 for some £ E k • Sesq*(E) is the addi-

tive group of all *-sesquilinear forms on the k-vector space E - non-

orthosymmetric forms included. Quadratic forms will be defined in terms 

of the structure (k,*,£) • 

* 

1. Symmetrization 

We define a map 

by setting 

(1) (11<1» (x,y) := £<I>(y,x)* 

Together with <I> the function 11<1> belongs to Sesq*(E) • We shall 

verify linearity inthe first argument: (11<1» (AX,y) = £(<I>(y,X)A*)* = 
-1 

£A**<I>(y,x)* = £.£ A £<1> (y,x)* A (11<1» (x,y) • The other defining proper-

ties are equally obvious as is the fact that 11 is involutorial, 

(2) 11 • 11 1. (identity) 

Definition 1. 11 + 1 is called symmetrization operator. 

We observe that im(1T+:Il) consists solely of £-hermitean forms. 

Indeed, if ~ = (1I+~)<I> then 

~(x,y) (11<1» (x,y) + <I>(x,y) £<1> (y,x)* + <I>(x,y) 

~(y,x) (11<1» (y,x) + <I>(y,x) £<I>(x,y)* + <I>(y,x) 

and therefore £~(x,y)* = £(<I>(y,x)**£* + <I>(x,y)*) 

= £(£-l<l>(y,x)££* + <I>(x,y)*) = ~(y,x) • 
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Furthermore, all forms ~ = rr~ + ~ are trace-valued, ~(x,x) = 

~~(x,x)* + ~(x,x) 1 and it is not difficult to prove that rr + ~ applied 

to Sesq*(E) produces all ~-hermitean trace-valued forms (cf. Step I 

in the proof of Thm.l below). 

2. The process of squaring 

In the additive group of (k,*,~) we consider the subgroup 

(3) 

Let kiP be the factor group and a ~ [a] the canonical map. 

With given ~ E Sesq*(E) we associate a map 

Q E -T kiP 

by setting 

(4) Q(x) := [~(x,x)]. 

We find Q(x+y) = [~(x,x) + ~(y,y) + ~(x,y) + ~(y,x)] 

Q(x) + Q(y) + [~(x,y) + ~~(y,x)* - ~~(y,x)* + ~(y,x)] 

Q(x) + Q(y) + [~(x,y) ] for ~ := (rr+~)~ the symmetrized ~ • 

We next observe that for all 

APA* E P Indeed, if P = ~s* - S 

pEP 

then 

and all A E k we have 

APA* = ~.~-IA~·s*A* - ASA* 

~A**S*A* - ASA* = ~(ASA*)* - (ASA*) E P • Hence, for nonzero A , we 

obtain an automorphism of the group kip by [a] ~ A[a]A* := [AaA*] 

Therefore, we obtain by (4) that Q(AX) = [A~(X,X)A*] = A[~(X,X) ]A* = 

AQ(X)A* . 

Summary. With each ~ E Sesq*(E) we can associate the pair (~,Q) 

where ~:= (rr+1)~ is the symmetrized of ~ in the sense of the pre­

vious section and where the map Q is defined by (4). ~ and Q satis­

fy the following relations 
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(6) 

(7) 

Q(x+y) 

Q(Ax) 

'¥(x,x) 
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Q(x) + Q(y) + ['¥(x,y)] , 

AQ(x)A* , 

Q(x) + £Q(x)* 

where (7) is short for "'¥(x,x) = ~ + £~* for all ~ E Q(x)" . (Notice 

that P consists of anti symmetric elements p in the sense that £p* = 

- p .) 

It is to be expected that the surprisingly natural formulae (5), 

(6), (7) will pass the trial of the pyx as "axioms" for the concept of 

a quadratic form. 

3. The concept of quadratic form 

Let Q be the subset of im(~+~) x (k/p)E of all pairs ('¥,Q) 

which satisfy (5), (6), (7). We shall now, have a look at the assignment 

Sesq*(E) ... Q 

defined by 

<I> f+ ('¥ ,Q) 

where '¥:= (~+~)<I> and Q is defined by Q(x) := [<I> (x,x) ] Q is an 

additive group and the assignment is a group homomorphism. We have 

Theorem 1([4J p. 246). 

Sesq*(E)/im(~-1) "" Q. 

Proof. Since (~+~).(~-~) = 0 by (2) the kernel of the assign­

ment contains im(~-~) and we obtain a homomorphism 

K: Sesq*(E)/im(~-1) ... Q 

1) K is epimorphic. Let (e1)lEI be a basis of E . Order the 

index set I . Since '¥ satisfies (7) we have '¥(e1,e 1) = 1.1 + £A~ 
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for certain Al E Q(e 1) . Define a sesquilinear form by 

( 

j 
A if 1 = K 

1 

1> (e1,e K) '¥ (e1,eK) if 1 < K 

l 0 if 1 > K 

It is readily verified that '¥ = (rr+l)1> Furthermore, by the definition 

of 1> we find for a typical element x = 1:1; e 
1 1 1 

that 1>(x,x) 

1:1; 1>(e ,e )1;* + 1: 1; 1>(e ,e )1;* = 1:1; A 1;* + 1: 1; '¥(e ,e )i;* 
1 1 1 1 1 l<K 11K K 1 1 1 l<K 11K K· 

In other words, by using (5) and (6), 

[1>(x,x)] 1:Q(i; e ) + [ 1: '¥(1; e ,i; e )] = Q(1:i; e) Q(x). Thus we 
1 1 1 l<K 11K K 1 1 1 

have shown that ('¥,Q) is the image of 1> under K 

2) K is injective. Assume that '¥ = rr1> + 1> and Q are both 

identically zero. We have to show that there exists X E Sesq*(E) with 

1> = rrx - X E im(rr-:ll) . Since Q = 0 we have 1>(e 1 ,e 1) E P, i.e. 

1>(e 1 ,e 1) £A* - A for certain A E k If we define X by 
1 1 1 

X (e1,eK) := A ( l=K) , x(e1,e K) := 0 (1 < K) X (e1,e K) := -1> (e1,eK) 1 

( t>K) then we have (rrx-x) (e1,e K) = 1> (e1,e K) for all pairs 1 , K 

o ). Thus 1> E im(rr-~) and K is shown to be 

a group isomorphism. This proves Theorem 1. 

Definition 2 ([4] p. 245, [3] p. 23). An element 1> + im(rr-1) in 

Sesq*(E)/im(rr-1) or - equivalently by Theorem 1 - a pair (,¥,Q) con-

sisting of a trace-valued £-hermitean form '¥ and a map Q: E ~ k/P 

which satisfy (5), (6), (7), is termed quadratic form on E P is 

the additive subgroup {£i;*-i; 1;Ek} of k). (E,'¥,Q) is called a 

quadratic space if ('¥,Q) is a quadratic form on E . 
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In the following we shall rarely conceive of a quadratic form as 

being an element in the cokernel of TI - ~ ; we give preference to the 

(~,Q) - interpretation and we think of ~ as measuring angles between 

vectors and of Q as measuring lengths of vectors (cf. Lemma 1 below). 

Let us look at some special cases. 

Example 1. If (k,* ,E) (k,id,l) then k is commutative and 

we are back in the classical situation described in the introduction: 

P is {O} so Q maps into k; the axioms (5) and (6) are the usual 

ones and (7) is superfluous as it follows from (5) in this case. 

Example 2. If char k f 2 or if the center of k is not left 

pOintwise fixed by * then there exists a Y with Y + y* 1 Take 

-1 
where a* and aa a = a + 1 y ="2 or, if the characteristic is 2, y 

a f a* is an element of the center ( a* a* + a** = a* + E 
-1 

aE a 

For any such y each E-hermitean form ~ is the symmetrized of y~ 

~ = (TI+:ll)y'l' Therefore, the map Q: E ~ kiP defined by Q (x) := 

y~(x,x) + P turns the pair ('l',Q) into a quadratic form. Further, 

ker (TI-1\) c im (TI+1l) and hence equality. In particular, if char k f 2 

we may choose 1 
y = 2 and from the decomposition 

we see that Sesq*(E) = im(TI+L) + im(TI-~) and therefore 

Sesq*(E) ker(TI-JL) (!) ker(TI+lI.) ker (TI-1l.) EEl im (TI-1l) 

) . 

Thus, in any case, if there is such a y then symmetrization is a group 

isomorphism between Q = Sesq*(E)/im(TI-~) and ker(TI-1) . Furthermore, 

each endomorphism E ~ E which preserves 'l' preserves (~,Q) 

Example 3. If char k = 2 then the inclusion im(TI+~) c ker(TI-~) 

can be proper. The first set consists of all trace-valued E-hermitean 

forms, the second set is made up by all E-hermitean forms. 
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In particular, if (k,*,E) = (k,id,l) then im(TI+~ is the set of all 

alternate forms and ker(TI-~) is the set of all symmetric forms. We 

furthermore call to attention that P , as defined by (3), coincides 

with the subgroup T:= {S+ES* sEk} of traces when the characteristic 

is two. Hence, whenever X is a subspace in a quadratic space (E,~,Q) 

such that ~ is identically zero on X then Q maps X homomorphic-

ally into the k-vector space SiT, SiT c kiT = kiP . 

We finish this section with a formal definition. 

Definition 3 ([2J p. 54). A quadratic form (~,Q) on E is 

called degenerate if and only if the sesquilinear form ~ is degenerate; 

we also say that the quadratic space (E,~,Q) is degenerate if the form 

~ is degenerate. Orthogonality with respect to the quadratic form 

(~,Q) is the same as orthogonality with respect to ~ Thus (E,~,Q) 

is degenerate if and only if E~ f (0) (Notice that ~ is a symmetric 

relation because ~ is E-hermitean by Definition 1). If (El'~l,Ql) , 

1 E I , is a family of quadratic spaces then its (external) orthogonal 

sum is the quadratic space (E,~,Q) with (E,~) the (external) ortho-

gonal sum of the sesquilinear spaces 

l:Q (x) for x E E 
1 1 1 1 1 

4. Isometries between quadratic spaces 

Q(l:x ) .-
1 1 

A map D: E + E is called isometry between the quadratic spaces 

(E,~ ,Q) (E,~,Q) if and only if D is vector space isomorphism which 

satisfies (8) and (9): 

(8) iii (Dx,Dy) ~(x,y) for all x, y E E 

(9) Q(Dx) Q(x) for all x E E 

Sometimes we speak of isometries relative to (~,Q) if it is desirable 



362 

to distinguish them from isometries between the underlying sesquilinear 

In the situation of Example 1 in the previous section we have 

(9) ~ (8) ; in Example 2 we have (8) ~ (9). In the general case we need 

both conditions. The following easy lemma shows the salient features of 

an isometry. 

Lemma 1. (E,~,Q) and (E,~,O) are isometric if and only if there 

are bases (e 1 )lEI I (e 1 )lEI of E and E respectively which are 

"congruent" in the sense that the following two conditions hold: 

(8' ) 

(9' ) 

~(e ,e ) 
1 K 

O(e ) 
1 

Q(e ) 
1 

for all 1 + K I 

for all 

Proof. By the axioms (5) I (6) I (7) it follows that 

satisfies (8) and (9). 

Definition 4. A vector x in a quadratic space (E,~,Q) is called 

singular if Q(x) = [0] (hence a singular element is necessarily iso-

tropic relative to ~ in view of axiom (7)). A subspace X C E is 

called totally singular if Q vanishes identically on X (if not 

char k + 2 & ~ alternate then we have the implication "totally singu-

lar ~ totally isotropic"). A plane E is called hyperbolic for (~,Q) if 

it admits a basis {el, e 2 } of singular vectors with ~(el,e2) = 1 . 

The proof of the following Lemma 2 is left to the reader. 

Lemma 2. A quadratic plane (F,~,Q) is hyperbolic iff it is non-

degenerate and contains a nonzero singular vector. If the quadratic 

space (E,~,Q) is nondegenerate and contains a nonzero singular ele-

ment then E is spanned by a basis of singular vectors. 
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Lemma 3. Assume that the nondegenerate quadratic space (E,~,Q) 

has dim E = ~o and contains an infinite dimensional totally singular 

subspace. Then (E,~,Q) is an orthogonal sum of hyperbolic planes 

(relative to (~,Q)) • 

Proof. Assume that finitely many pairwise orthogonal hyperbolic 

planes F I , ..• , Fm C E have been constructed. In order to establish 

the lemma it suffices to show that there is a further hyperbolic plane 

which contains a previously fixed nonzero vector 

a E EI . Because EI must contain singular vectors different from zero 

and because it is nondegenerate, EI is spanned by singular vectors 

(Lemma 2). As EI is nondegenerate a cannot be orthogonal to all 

singular vectors in EI . Hence a can be completed to a nondegenerate 

plane Fm+l C EI that contains a singular vector. Fm+l is hyperbolic 

by Lemma 2. Q.E.D. 

Remark. By Lemma 3 all ~O-dimensional nondegenerate spaces 

(E,~,Q) which contain an ~O-dimensional totally singular subspace 

are isometric. There are division rings (k,*,E) such that each quad-

ratic k-space satisfies the assumption of Lemma 3. The simplest examples 

are the commutative (k,id,l) with di~S/T = [k : k 2 ] finite. The 

proof is straightforward. Another example is obtained if we let k be 

the quaternion division algebra k (~'OX) where the center kO is 

the rational function field ~(X) E = I and * the usual conjuga-

tion in k It is straightforward to prove that )..)..* ranges over all 

of kO if ).. varies in k • Hence it is clear that any hermitean form 

over (k,*,l) in at least two variables has a nontrivial zero. Hence 

an ~O-dimensional space (E,~,Q) over (k,*,l) will contain infinite 

dimensional totally isotropic subspaces V. As di~S/T = I < 00 it 

follows that, in turn, each such V contains infinite dimensional 

totally singular subspaces. Hence we may quote Lemma 3 to conclude 
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that there is only 1 isometry class of nondegenerate ~O-dimensional 

quadratic spaces over this quaternion division ring k . 

Definition 5. The isometries of a quadratic space (E,~,Q) onto 

itself form a group under composition. This group is called the ortho-

gonal group of (E,~,Q) . 

We terminate this section by describing certain isometries which 

are found in the orthogonal group of every quadratic space (E,~,Q) 

Let 0 f a E E . If we should be in the situation that the subgroup 

P = {Ei;;*-i;; i;;Ek} reduces to {O} , i.e. (k,* ,E) = (k,id,l) , assume 

furthermore that a is nonsingular. Hence we may pick 

(10) a E Q(a) __ {O} 

and define a map 

(11) Q x 
a 

E ... E by 

-1 
x - ~(x,a)a a 

The maps defined by (11) are called reflexions. We shall now veri-

fy that they are elements of the orthogonal group of (E,~,Q). (Notice 

that ~(a,a) = a + Ea* by (7) and Q(a) = [a] .) 

-1 -1 
First: Q(Qax) = Q(x) + Q(~(x,a)a a) - [~(x,~(x,a)a a)] 

Q(x) + ~(x,a)a-l[aJa*-l~(x,a)* - [~(x,a)a*-l~(x,a)*J = Q(x) • 

Second: 

-1 -1 
~(x,a)a ~(a,a)a* ~(y,a)* By using ~(a,a) = a + Ea* we obtain for 

the last term the expression 
-1 -1 

~(x,a)a* ~(y,a)* + ~(x,a)a E~(y,a)* 

-1 -1 
~(x,a)a* ~(y,a)* + ~(x,a)a ~(a,y) since ~ is E-hermitean. Ergo 

with 

Third: Q 
a 

is linear, obviously. Assume Qax = 0 . Hence 

A = ~(x,a)a-l . Therefore A = ~(Aa,a)a-l = A(a+Ea*)a- l = 

x = Aa 
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A + A£~*~-l whence A 0, i.e. x o • Thus fl ~ is inj ective. For 

given y E E put x Y + ~a with ~ 
-1 -1 -1 

'(y,a)~ (l-'(a,a)~) and 

have fl~x = Y • Therefore is epimorphic. Hence fl 
~ 

is an isometry. 

The hyperplane H:= a~ is the set of fixed points of fl 
~ 

so 

fl~ induces an automorphism on the one-dimensional quotient space E/H 

We distinguish between a being isotropic and a being anisotropic. 

If a 

fl a 
~ 

a 

x 

#=q.L 

a ~ H 

is isotropic, a E H , then 

x 
, 

, , 

fl x 
~ 

,,." 
// 

~ ____ ~ ______ .a=fl~a 

#=,z..L 

a E H 

induces the identity on 

E/H we speak of a (orthogonal) transvection. If a is anisotropic, 

a f H , then induces a dilatation on E/H with ~ = 

_£~*~-l . We see that fl is not, in general, an involution in the 
~ 

orthogonal group. However, if ~ E Q(a) then £~* E Q(a) , because 

~ = £~* mod P , and we verify that 



366 

5. A remark on forms in characteristic two 

By now we have become acquainted with three kinds of "forms" in 

spaces E over division rings (k,*,s) of characteristic 2, to wit, 

1. trace-valued s-hermitean forms ~, 

2. quadratic forms (~,Q) 

3. non-trace-valued s-hermitean forms X. 

Although the three types do often behave similarly they are marked­

ly different objects of study. This becomes particularly manifest if we 

pass to infinite dimensions. Let us consider here the problem of classi­

fying subspaces modulo the action of the associated orthogonal group. 

In order to enhance the fundamental divergence of one case from another 

we choose the classical setting of a commutative field, say k an 

algebraic function field of finitely many variables over an algebraical­

ly closed field of characteristic 2, and we let the identity of k be 

our involution * and s = 1 so that all forms ~ , ~ , X are sym­

metric bilinear. Let furthermore, in each of the three cases, E be 

nondegenerate and of dimension ~O and FeE a subspace. 

In the first case the orbit of F is characterized by seven 

cardinal number invariants (Cor. 2 in V.2). We refute the possible 

objection that alternate forms have a "trivial" theory by the remark 

that we can switch to other stable hermitean forms without essentially 

upsetting the result and its proof. 

A rather more complicated result holds in the second case. There 

is a complete set of invariants of the orbit of F (Thm. 2 in XVI.4). 

Besides a finite number of isometry classes which inevitably must make 

their appearance, and a finite number of obvious cardinal number in­

variants, there emerges, as a final invariant, a lattice of linear sub­

spaces in the k 2-vector space Q(FiOFii ) of the shape 
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There are no relations between this lattice and the other invariants 

in the set besides obvious ones; the lattice can be chosen freely in 

the k 2-vector space Q(F~nF~~) . One should compare the nondistributive 

52-element lattice in XVI.2 with the distributive l4-element lattice in 

V.2 (a sublattice of the former). These lattices closely reflect the 

intricacies of the proofs that go with the classification problem. The 

two diagrams manifest, to our opinion, the increase in complexity in 

the transition from trace-valued hermitean forms to quadratic forms. 

The trend is not apparent in finite dimensions; it may be that our 

experiences run athwart to some expectations. 

As is to be expected, on the other hand, the third case of non­

trace-valued hermitean forms is the least tame among the three. For no 

fields do we have a general classification of subspaces. In Chapter VIII 

we have treated the case of totally isotropic F • The complexity of 

this special case is roughly the same as that encountered in the classi­

fication problem in quadratic spaces. Yet the study of non-trace-valued 

forms is by no means an academic one. If, in characteristic two, we 

investigate a trace-valued hermitean form and a self-adjoint endo­

morphism U then the hermitean form ~l (x,y) := ~(Ux,y) is usually 

not trace-valued any more (see IX.4 for such a situation). 

* 
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APPENDIX I 

THE DIMENSION OF S / T AND A THEOREM ON 

DIVISION ALGEBRAS IN CHARACTERISTIC 2 

1. Let ~ ~ ~* be an antiautomorphism of the division ring k 

whose square is inner, 
-1 

~** = € ~€, and assume that €€* = €*€ = 1 

Let S := {~Ek I €~*=~}, T:= {~+€~* I ~Ek} be the additive sub-

groups in k of "symmetric" elements and "traces" respectively. We 

have T C S and the factor group turns into a vector space under the 

composition A(O+T) = AOA* + T (AEk, oES) The dimension of this 

vector space is an invariant of the "similarity class" of the structure 

(k,*,€) • Indeed, if (k'·'€l) satisfies 

for all ~ E k and some fixed nonzero "multiplyer" Il then we observe 

that for the subgroups Sl' Tl relative to (k,"€l) we have 

furthermore, the map SiT ~ SliTl defined by 

o + T 1+ Oil + Tl 

is a k-vector space isomorphism (the only nonobvious point is linear-

ity: (A(o+T))1l = AOA*1l + Tl = AOllt + Tl = A (OIl+T l ) . We want to show 

that dimksiT is a power of 2 if it is finite and not zero. By the 

previous considerations we may, for this purpose, assume without loss 

of generality that (k,*,€) = (k,·,l) by letting Il = €*o for some 
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2. We need a lemma. Recall that a central simple algebra A of 

finite dimension over its center ko has [A:koJ a square (this 

follows from the Wedderburn-Artin theorem) • 

Lemma. Let A be an algebra which is central simple and of 

finite rank 
2 

r over its center ko . Let * be an involution of A 

which leaves ko pointwise fixed. Then the dimension of the ko-linear 

subspace S {I;EA I 1;*=1;} has dimension ~ r(r+l) 
1 r(r-l) := or 2" 

only 

A 

A 

the first case is realized if r is odd or char ko 2 . 

Proof. Let ko be the algebraic closure of ko . The algebra 

is central simple and of dimension r2 over ko . Hence 

* extends to an involution * on A 

such that the center of A is left pointwise fixed under and we 

have that S := {~E A I ~*=~} is equal to ko ® S • In sum, it suffices 

to prove the assertion of the lemma for the matrix ring A = lJIatr (ko ) 

where ko is assumed algebraically closed. 

Let tr be the antiautcmorphism of A which sends each x E A 

into its transpose. By the theorem of Skolem-Noether the assignment 

x ... tr(x*) of A into A must be inner; there exists a E A such 

that 

(1) x* 
tr -1 

a· x·a for all x E A 

Since * is involutorial, x = a.tr(a- l ) .x·traa-l for all x E A , 

hence tr -1 y:= aa belongs to the center. From tr2 = 1 we obtain 

furthermore that y = ~l : the matrix a is symmetric or skew. 

We can make yet some further normalizations. Let c be an in-

vertible matrix in A. Then 
-1 

cp: x .... CXc is an automorphism of A 

and -1 a a := cp.*.cp an involution. For S· := {xEA I x =x} we find 



S' = ~(S) , hence di~ S 
o 

instead of (1) we find 

(2) 
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di~ S' • We may replace 
o 

(for all xEA) , b 

* by 

tr c·a· c 

Suppoae that char ko + 2 . If a is symmetric then we can pick 

c such that b turns out the unit matrix (because ko is algebraic-

ally closed). In that case f3 tr and S' consists of all symmetric 

matrices; therefore dim S' 1 If, the other hand, "2 r(r+l) on 

skew then c can be picked such that b takes the form [_~ ~) 
1.. is the unit matrix of size r by l r I th t b- l = -b "2. n a case 

x = [~~) we find 

= ( trw 
tr 

- v 

tr ) - u 
trt 

a is 

where 

. For 

Thus xES' if and only if w = trt , tr 
u = - u v 

tr - v. As a 

consequence we obtain that dim S' = ~ r(r-l) • 

Suppose that char ko = 2 . We can pick c in (2) such that b 

is either the unit matrix or b = (~ ~) . In either case we get 

dim S' = 1 r(r+l) 
2 

. Q. E. D . 

3. We now return to the division ring k in the first section. 

We shall assume that k is of finite dimension over its center ko ; 

Remember that dim SiT + 0 implies that char k = 2 and that * is 

of the so-called first kind, i.e. * leaves the elements of the center 

ko fixed. For this situation we establish the following product formu­

la. 

Theorem. If [k:ko ] = r2 < 00 and 0 < dim SIT < 00 then 

(3) 
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in particular, both r and dim SIT are powers of 2. 

Proof. We shall consider three vector space structures on the 

factor group SIT, to wit, 

over operation dimension 

k 

ko 

ko 

We have 

Now m = di~ S - di~ T 

1 00 
2 r(r+l) . The map ~ » 

A (cr+T) = AcrA* + T n 

~. (cr+T) = Acr + T m 

A (cr+T) = A2cr + T s 

2 1 
s = n·[k:ko ] = n·r • Thus n = ~ 

r 
By the lemma in Section 2 we have 

is ko-linear, its kernel is 

di~ S 
o 

Sand 

its image is T , ergo di~ T 
o 

di~ k - di~ S =t r(r-l) • Thus 
o 0 

m = r . This proves (3). Since [ko:k~] is obviously a power of 2 

when finite the same must hold of r and dim SIT by (3). 

Remark. The immediate conclusion from (3) that r is a power of 

2 is well known from the theory of the Brauer group BR(ko ) each 

prime divisor of the "index" r divides the exponent of k (= order 

of the class of k in Br(ko » (cf. e.g. [l],Theorem 17, p. 76 or [2], 

Satze 1 and 2, p. 58, 59 or [3], Lemma 4.4.5, p. 120). Thus if k ad-

mits an antiautomorphism that leaves the elements of ko fixed then its 

exponent is of course s 2 and consequently r must be a power of 2. 

Example. Let Xl' ..• , Xn ' Y be algebraically independent 

over ~2 set ko = ~(Xl' •.. 'Xn'Y) and let the quaternion division 

k -- (lk'oY) algebra be equipped with its "conjugation". For this k 

we have di~S/T = 2n by (3). 

* 
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CHAPTER FIFTEEN 

WITTs THEOREM IN FINITE DIMENSIONS 

1. Introduction 

Witt's Theorem tells that any isometry between subspaces in a fi­

nite dimensional space E can be extended to an element of the ortho­

gonal group of E. Geometric algebra in finite dimensions pivots on 

this theorem. Much of the effort put in this book has been aimed at 

discovering and proving analogous theorems in countable dimension. In 

this chapter we discuss the finite dimensional case. 

As "space" in this book always means vector space the reader who 

is interested in generalizations of this important theorem to quadratic 

modules is advised to consult [2, 6 , 9 , 11] where he may find further 

references. 

We shall first give a proof for quadratic forms in the sense of 

J. Tits and C.T.C. Wall as explained in the foregoing chapter (Defi­

nition 2 in XIV. 3 ) • This means that we cover besides the classical 

results in [1] and [13] the situation of quadratic forms over fields 

which are allowed to be skew. However, we need hardly retouch Chevalley's 

proof in [4] (also reproduced in [3]) in order that it cover this far 

reaching generalization. Furthermore, we do need the result in situa­

tions where the form is degenerate on E (e.g. at the end XVI.7)i in 

characteristic 2 it cannot be deduced from the result in the nondege­

nerate case. Again, it is very easy to adapt Chevalley's proof to the 

degenerate case. As is well known, it also covers the analogous situa­

tion for trace - valued sesquilinear forms. 
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Thus there remain the sesquilinear forms in characteristic 2 

which are not trace-valued. These are harder to deal with but they do 

not, to us, seem less appropriate than trace-valued forms. Theorem 3 

below is on par with its classical trace-valued counterpart; it appears 

for the first time in [8] where the proof is founded on work in [12]. 

We shall present Bani's version of Chevalley's proof. 

2. Witt's Theorem for finite dimensional quadratic forms 

and for trace-valued.sesquilinear forms 

In this section (E,~,Q) is a quadratic space over the division 

ring (k,*,E) as defined in Chapter XIV (Definition 2 in Section 3). 

In the following theorem ~ may be a degenerate form. Notice that in 

characteristic 2 two supplements of Ei in E need not be isometric 

relative to Q Therefore we cannot chop off the radical Ei and in 

this fashion reduce the mapping problem to a problem between non-

degenerate spaces. 

Theorem 1 ("Witt"). Let D: F ... F be an isometry of the sub-

spaces F, F in the finite dimensional quadratic space (E,~,Q) In 

order that D admits an extension to an operation of the orthogonal 

group of (E,~,Q) it is necessary and sufficient that D maps Ei n F 

onto Ei n F . 

Proof ([4J). We start with the observation that D can certainly 

be extended to F + Ei . Hence we may assume without loss of generality 

that Ei C F and Ei C F Then we proceed by induction on the dimen-

sion n of F/E i • If n o the assertion is trivial. Let n ~ 1 

and Fl be a hyperplane of F with Ei C F 
1 

Set Fl := D(Fl ) The 

restriction Dl of D to Fl is an isometry F ... 
1 Fl which maps 

Ei onto itself. By induction Dl extends to an isometry D2 of all 

of E If D21F = D we are done. Let D21F f D and consider 
-1 

D2 0 D 
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This application leaves Fl pOintwise fixed. Suppose that it can be 

extended to an isometry D3: E + E . Then D2 0 D3 extends D. Our 

argument reduces the problem to the case where DIF is the identity 
1 

on Fl ; in other words, U:= ker(D-l) is a hyperplane of F • 

Consider then the l-dimensional space G:= {Dx-x I xEF} Assume 

that F' C E is any subspace with F' ~ G and F' n F = (0) F' n F 

Then 

(1) '!' (Dx,y) '!'(x,y) for all x E F, Y E F' 

We assert that D can be extended to an isometry 0: F e F' + F e F' 

by leaving F' pOintwise fixed. By (1) it is obvious that D respects 

'!' . Concerning Q we find for all x E F, x' E F' that Q(x+x') = 

Q(x) + Q(x') + ['!'(x,x')] 

['!'(Ox,Ox')] = Q(D(x+x')) 

Q(Dx) + Q(x') + ['!'(Dx,x')] = Q(Dx) + Q(DX') + 

Notice that after any such transition from 

D to D we have G = {Dz-z I zEFeF'} 

We next convince ourselves that 

(2) '!'(Dx,Dy-y) -'!'(Dx-x,y) for all x , y E F . 

Indeed, '!'(Dx,Dy-y) = '!'(Dx,Dy) - '!'(Dx,y) = '!'(x,y) - '!'(Dx,y) -'!' (Dx-x ,y) . 

In particular U ~ G . We shall now distinguish two cases. 

~: F ~ G~ . By (2) therefore F ~ G~ . Let F' be a supple-

ment of U in G~ Then F' n F C G~ n F = U hence F' n F = 

F' n F n U = (0) . Similarly one sees that F' n F = (0) As we have 

seen above we may extend D to an isometry D: F e F' + F e F' . Now 

F e F' contains the proper subspace G~ = U e F' and G~ is a hyper-

plane. Ergo F e F' = E and we are through. 

Case 2: F C G~ . Hence F C G~ by (2). As G C F + F we obtain 

G C G~ ; in fact G is even singular: for Dx-x a typical element of 
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G we find Q(Dx-x) = Q(Dx) + Q(x) + [~(Dx,-x) ] and, because 

~(Dx,-x) = ~(x+(Dx-x) ,-x) ~(x,-x) Q(Dx-x) Q(Dx) + Q(x) + 

[~(x,-x)J = Q(x) + Q(x) + [~(x,-x)J Q(x-x) = 0 

We now show that F and F possess a common supplement F' in 

G~ • This is trivial when F F Let F + F Then F = U ~ (x) 

F u ~ (x) . Obviously x + x f F x + x f F so F ~ (x+x) = 

F ~ (x+x) . Adding to (x+x) a supplement of F + (x+x) in G~ gives 

what we are looking for. By the argumentation following (1) we can ex­

tend D to an isometry D: F ~ F' ~ F ~ F' . If G~ (= F~F' = F~F') 

is all of E we are done. This shows that we have reduced the proof 

of the theorem to the following problem: 

Given is a metric automorphism D of the hyperplane F 

maps E~ onto E~ . Prolong D to an isometry of E . 

G~ which 

Let z E E, z f F • Assume that we can find z' E E such that 

(3) ~(x,z) ~(Dx,z') for all x E F 

and 

(4) Q (z) Q (z') • 

Any vector z' with (3) is in E..... F . Otherwise z' = Dw for some 

w E F hence z - w E F~ by (3). Because F~ G c G~ F we obtain 

z E F contradiction. Thus E = F ~ (z) F ~ (z'). By (3) and (4) we 

can extend D to all of E by sending z into z' . We are left to 

show the existence of such a z' . The map F + k defined by x ~ 

-1 '¥(D x,z) is linear and vanishes on E~ since D- l maps E~ onto 

E~ Hence it is the restriction of a linear map f: E ... k with 

EJ. f and therefore of the kind x ~ '¥(x,z") Le. 
-1 

c ker , '¥(D x,z) 

'II (x,z") for all x E F This yields '¥(x,z) = 'II (Dx,z") for all 

x E F . For 0 + g E G we set z' = z" + ~g . Since g ~ F the vector 
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z' satisfies (3). Therefore zP ~ F so '(z",g) + 0 • Because g is 

singular as we have seen it follows that 

Q(z') = Q(z") + ['(z",g)l*] 

and it is clear that 1 can be specified such that Q(z') has a pre­

scribed value in k+/T. Thus we can satisfy both (3) and (4) and the 

proof of the theorem is complete. 

We shall list some of the celebrated consequences of Theorem 1. 

Corollary 1 ("Cancellation Theorem"). Let (E,',Q) be of finite 

dimension and nondegenerate. If E = F + F~ G + G~ and F ~ G then 

F~ ~G~. (Here ~ means isometry relative to (',Q).) 

Corollary 2. Let (E,',Q) be as in Corollary 1. All maximal 

totally singular subs paces of E have the same dimension and are 

permuted transitively among themselves by the operations of the ortho-

gonal group of (E,',O) • 

Corollary 3. Let E be finite dimensional and ,: E x E ... k a 

nondegenerate e:-hermitean form. assume that char k + 2 If D: F ... F 

is an isometry relative to , between the subspaces F , F c E then 

D can be extended to an isometry of the whole space (E, ') In partic-

ular F~ and F~ are isometric (isometry with respect to , ) . 

Indeed, if , is e:-hermitean then the pair (',Q) with Q(x) := 

1 2 '(x,x) + P is a quadratic form in the sense of Chapter XIV (P is 

the additive subgroup {e:~*-~ I ~Ek} of k). Furthermore, an isometry 

relative to , is an isometry with respect to (',Q) . Hence we may 

apply Theorem 1 to F, F in (E,',Q) • 

A theorem analogous to Corollary 3 holds in characteristic 2 

provided the e:-hermitean form , is assumed to be trace-valued. 
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Indeed the proof of Theorem I goes through if we just forget about Q 

and take isometry with respect to the sesquilinear form ~ . We then 

have to replace (4) by the condition ~(z,z) = ~(z' ,z') Since 

~(z",g) f 0 and ~(g,g) = 0 we can again set z' = z" + Ag and, 

by trace-valuedness of ~, solve for A from ~(Z"+Ag,Z"+Ag) = ~(z,z) 

This establishes 

Theorem 2. Let E be finite dimensional and ~: E x E + k a 

nondegenerate £-hermitean form; assume that char k = 2 and ~ is 

trace-valued. If D: F + F is an isometry between subspaces of (E,~) 

then D can be extended to an isometry of the whole space. (In partic­

ular F~ and F~ are isometric.) 

In all results of this section we can leave the dimension of E 

completely arbitrary as long as the dimension of the subspaces F , F 

is kept finite. This is entirely obvious since we can chop off from E 

a finite dimensional orthogonal summand which contains both F and F 

We remark furthermore that (in this general setting) Theorems I 

and 2 are still equivalent with their corresponding Cancellation 

Theorems. The proof is the same as that given in the Introduction to 

Chapter V. 

3. A Witt type theorem for finite dimensional 

non-trace-valued sesquilinear forms 

We place ourselves in the situation of Theorem 2 above and we keep 

k of characteristic 2 but allow the form ~ to be non-trace-valued. 

Let, as usual, T be the additive subgroup in (k,*,£) of all traces 

~ + £~* . For any subspace X in (E,~) we let X* = {xEX I ~(x,x}ET}; 

dim X/X* ~ dim S/T . We recall that E*~ is left pointwise fixed under 

each operation of the orthogonal group of (E,~) . Thus, if D: F + F 
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is to be extended to an element of the orthogonal group we must obvious-

ly have that 

F n E*.1. and D: F -+- F leaves F n E*.1. 
(5) 

pointwise fixed. 

We shall prove the remarkable 

Theorem 3 ([8) ). Let (E,~) be a nondegenerate E-hermitean form 

of finite dimension and not necessarily trace-valued. An isometry D: 

F -+- F between subspaces F, FeE can be extended to an isometry of 

the whole space if and only if (5) is satisfied. 

Corollary 4. Let (E,~) in the theorem be of arbitrary dimension 

but keep dim F finite. Then the conclusion in the theorem is still 

valid. 

Proof of the corollary (Bani). The basic idea of the proof is 

obvious. In order to realize it, let H be the set {H C E 

F + F C H H + H.I. E, dim H < oo} • Obviously E* = \JH* so E*.I.n F 
H 

HEH} . As dim F is finite and the system H*.1. nF (HE H) 

is directed there is a smallest element, H*.1. n F = E*.1. n F • There is o 

an analogous object Hl for F, Hi.l. n F = E*.1. n F . Now each H 

with Ho + Hl C H E H has the requisite property: E = H $ H.I. , 

dim H < 00, H*.1. n F = E*.1. n F = E*.1. n F = H*.1. n F because of (5). 

We can now apply Theorem 3 to F, F C (H,~) and join the extension 

of D (to the space H) with the identity on H.I.. Q. E. D. 

Let S be the subgroup {~Ek I E~*=~} of symmetric elements in 

k ; the factor group SIT is a k-vector space under the composition 

A(s+T) = AsA* + T (AEk) Each subspace X in (E,~) has its "value 

space" {<I> (x,x)+T XEX} in the k-space SIT. Set R:= E* n E*.1. 
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and consider any metabolic decomposition of E with respect to R, 

(6) E 

It is very easy to show that the isometry class of (E,~) is character-

ized by the value space of E in SIT and the isometry classes of El 

and E2 (endowed with the forms induced by ~ ) . This elementary fact 

will not be used in the proof of Theorem 3 ; we shall use it in the 

proof of the Corollary 5. Here we may point out that if it is assumed 

that F ,F belong to E* ([12J, Theorem 1.2.1) then the assertion 

of Theorem 3 reduces immediately to the trace-valued situation of Thm. 2 

by using decompositions (6) and the remark that follows (6). Unaware of 

[7,8] we had realized that the assertion of Theorem 3 invariably holds 

for arbitrary F ,F provided that dim E/E* = 1 by dOing computa-

tional work on the lattice V(F,E*) ~-stably generated by F and E* 

(cf. [5J). Still unaware of the work of Pless, Bani found 

the general theorem and observed that, once more, it flows from 

Chevalley's proof of Theorem 1. (Incidentaily, if F is assumed trace-

valued then V(F,E*) is of course the "free" modular lattice generated 

by the chains F C E* and E*~ C F~ and hence distributive. This 

accounts for the easy reduction possible in the special case F, F C E* 

mentioned before.) M. Studer finally drew our attention to [7] and [8]. 

Proof of Theorem 3 (Bani) . The first remark is that D: F ... F 

can certainly be extended to an isometry F + E*~ -+- F + E*~ by leaving 

E*~ pointwise fixed. Indeed, if f E F then f + Df E E* which means 

that <l>(f,e) = <l>(Df,e) for all e E E*~ By (5) this extends D 

Thus we can start the argumentation in the proof of Theorem 1 by assum­

ing that E*~ is in F and left pointwise fixed under D. We proceed 

by induction on the dimension n of F/E*~ • For n = 0 the assertion 

is trivial. 
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Assume then that n ~ 1 and let Fl be a hyperplane of F with 

E*~ C Fl and proceed as in the proof of Theorem 1. Everything remains 

unchanged except for discarding Q and having to satisfy 

(7) '!' (z, z) '!' (z' ,z') 

instead of (4). As earlier we find z" E E with (3) and have z" E E 'F 

by the argumentation that follows (4). Ergo '!'(z",g) + 0 . Since 

z + z" E U~ by (3) (U is the hyperplane in F of pOints fixed under 

D we have z + z" E E* as E*~ C U by the opening remark in this 

proof and the choice of Fl ; in other words, 

(8) '!'(z,z) = '!'(z",z") mod T. 

Hence, as in the proof of Theorem 2, we set z' z" + Ag and can solve 

for A in condition (7). Q. E. D. 

Corollary 5 ([5J). Let k be a perfect commutative field and 

<1>: E x E .... k a nondegenerate, not necessarily trace-valued, symmetric 

bilinear form on the finite dimensional space E. Two subspaces 

F , FeE" belong to the same orbit under the action of the orthogonal 

group if and only if there exists a lattice isomorphism T: V (F ,E*) .... 

V(F,E*) which in turn sends F, E* , F~ , E*~ into F, E* , F~ E*~ 

and which respects the two indices dim(rad F) , dim(F*/rad F*) 

~. If F, F fall into the same orbit, DF = F for an 

element of the orthogonal group of (E,'!') , then D induces a lattice 

isomorphism T with the properties mentioned. Assume conversely that 

there is such aT. We have a decomposition 

.L .L 1. 
F rad F EB (REBR' ) EB Fl EB F 2 with 

(9) F* rad F EB R EB Fl and 

F n F*~ rad F EB R EB F 2 
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It follows that the two indices mentioned fix the isometry class of F 

because dim R , dim F2 E {O,l} can be told from the lattice. Hence, 

by T , there is an isometry D: F ~ F . How does D operate on 

E*~ n F ? If it should happen that E*~ c rad F then E*~ c rad F by 

T and we can pick D such that it leaves E*~ pointwise fixed. If 

E*~ - \vhich is (0) or I-dimensional - is in F ..... rad F then 

E*~ c F ..... rad F by T and we can arrange the decomposition in (9) 

such that E*~ c Fo E*~ C Fo a supplement 

of rad F in F 

F .... F it maps 
0 0 

E*.L = F*~ n Fo 0 

pointwise fixed. 
~ 

(REIlR') Ell El ' 

which contains 

the space E*.L 

If F*~ n F is 
0 0 

If F*~ n F is 
0 0 

E*~ ) D induces an isometry Do: 

onto itself because E*~ = F*~ n F 
0 0 

anisotropic, then D must leave it 
0 

isotropic, then we decompose E = 

D R = E*~ we have 
o 

JOining Dl and 

, 

DoiREIlR' yields an isometry E .... E which necessarily leaves E*~ point­

wise fixed. Hence D leaves E*.L pointwise fixed. In sum, it follows 
o 

from T that there is an isometry D: F .... F which qualifies for Theo-

rem 3. 

Remarks. 1. The often mentioned "counter example" to Witt's state­

ment in the non-trace-valued case, namely (a) ~ (a) & (a) ~ (a,a) ~ 
~ 

(a) Ell P, P a hyperbolic plane and a E S' T , simply ignores (5). 

2. The lattice V(F,E*) in the corollary is always finite for 

[k:k2] = 1 . If F t E* & F~ t E* & rad F = rad F* & rad(F.L) = rad(F~*) 

then it has 28 elements; in all other instances it has less elements. 

V(F,E*) is distributive if and only if either F C E* or F~ C E* 

Proofs can be performed "synthetically" or "analytically" (i.e. by 

making use of appropriate decompositions of E relative to F). 
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CHAPTER SIXTEEN 

ARFs THEOREM IN DIMENSION ~O 

1. Introduction 

In the whole chapter k is a field of characteristic 2 and 

S ~ s* an antiautomorphism of the field whose square is inner, s** 

-1 
E SE and, furthermore, EE* = 1 for some E E k . Let as usual S:= 

{s E k I s = ES*} and T:= {s+ ES* I S E k} be the additive subgroups 

in k of symmetric elements and traces respectively. The factor group 

S/T is a k-1eft vector space under the composition A (o+T) = AOA* + T 

(oES, AEk) . Let (Q,~) be a quadratic form on the k-vector space 

E i.e. Q is a map from E into the factor group k/T and ~: 

E x E ~ k its associated E-hermitean form. For X C E an arbitrary 

subspace we define the "kernel" 

K(X) := {x E X n x.l I Q(x) O}. 

K(X) is a linear subspace with 

dim rad X/K(X) ~ dim S/T . 

We shall assume in the whole chapter that dim S/T < 00 • Hence 

dim rad X/K(X) will always be finit~, in other words, totally isotropic 

subspaces are "almost" totally singular. This assumption is also essen-

tia1 for the computation of the lattice in Section 2 below. From Section 

3 onward we shall assume in addition that (k, *, E) is such that 

there is only one isometry class in dimension 
(0) 

~o of nondegenerate trace-valued E-hermitean forms. 

Condition (0) is tantamount to assuming that each trace-valued ~O-form 

admits infinite dimensional totally isotropic subspaces. Since S/T is 

assumed finite it will follow from (0) that in dimension ~O there is 
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only one isometry class of nondegenerate quadratic spaces (E, 'I' , Q ) • 

An immediate but important consequence is the following stability prop­

erty: if X C E is infinite dimensional and nondegenerate and FeE 

finite dimensional then X n F~ will contain nondegenerate planes 

spanned by singular vectors. 

The topic of this chapter is the characterization of a single sub­

space veE - modulo the action of the orthogonal group of E - as 

given by Glauser in [3] *) The orbit of a subspace veE is, in es­

sence, characterized by the isometry classes of V and V~ , a family 

of four cardinal numbers and a distributive lattice of height 7 con-

sisting of subspaces in the value space SIT. In case of a "perfect" 

division ring (dim SiT = 1) we have the two isometry classes and a 

collection of' eleven cardinals. 

2. Glauser's Lattice 

In what follows V(V) is the smallest sub lattice in L(E) (the 

lattice of all subspaces of E) that contains the subspace veE and 

is closed under the operations ~ and K (as defined in the introduc-

tion) . 

Theorem 1. If dim SiT < then V(V) is finite; it is given by 

the diagram below. If dim SiT ~ 7 (hence ~ 8) then each nondegenerate 

quadratic k-space (E,'I',Q) of dimension ~O possesses subspaces V 

such that all 52 elements of V(V) are different spaces in E. 

The theorem as well as the following diagram can be found in [3] • 

*)This is a Witt type problem. Whenever we wish to stress the fact that 

the underlying space is a quadratic space proper and not a sesquilinear 

space we refer to "Arf". 
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52 
a. The ~-stable and K-stable lattice 

51 
c. of a single subspace V in a 

50 
d 

quadratic space of arbitrary di-
49 

h+k 48 
mens ion 

47 

e. 46 
.e. 

45 
p 

44 
m 43 

41 42 
n 40 

.e. 39 

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

~ 

52 51 51 50 49 48 42 51 X 51 50 49 48 42 51 50 50 50 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

49 48 42 47 47 47 47 46 42 51 50 49 48 42 47 47 46 42 

36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 

47 46 42 45 42 42 41 39 39 39 37 36 30 29 28 27 1 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(0) 

K(V) 

radVnK(V)J.J. 

radVnK«radV)J.J.)J.J. 

radVflK (VJ.) J.J. 

radV 

v 

K (V) J.J. nK (VJ.) 

radvnK (V) J.J.+K (V) J.J. nK (VJ.) 

11 radvnK (VJ.)J.J.+K (V)J.J. nK (VJ.) 

12 radV+K(V)J.J.nK(VJ.) 

13 V+K (V)J.J. nK (VJ.) 

14 K(V)J.J.n(radV+K(VJ.)) 

15 K ( (radV) J.J.) 

16 radVnK(V)J.J.+K«radV)J.J.) 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

radvnK (VJ.) J.J. +K ( (radV) J.J.) 

radV+K{ (radV)J.J.) 

V+K ( (radV) J.J.) 

K{VJ. ) 

radVnK(V)J.J.+K{VJ.) 

~ J.J. J.J. J. 
radVnK ( (radV) ) +K (V ) 

radvnK (VJ.)J.J.+K (VJ.) 

radV+K (VJ.) 

J. 
V+K(V ) 
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27 

28 

29 

30 

31 

32 

33 

34 

35 

K{V) 
J.J. 

K ( (radV) J.J.) J.J. 

{radV)J.J.nK(VJ.)J.J. 

(radV) J.J. 

V+{radV)J.J. 

radVnK{{radV)J.J.)J.J.+K{VJ.)+K(V)J.J. 

radvnK {VJ.)J.J.+K (VJ.) +K (V)J.J. 

radV+K (VJ.) +K {V)J.J. 

V+K(VJ.)+K{V)J.J. 

K (VJ. ) J.J. 

37 (radV+K{VJ.))J.J. 

38 V+K{VJ.)J.J. 

39 rad(V-) 

40 V+rad (VJ.) 

41 V-J. 

44 

45 

46 

47 

48 

49 

50 

51 

52 

J. 
V+V 

rad(V-)J. 

(radV)J.nK(VJ.)J. 

K (VJ. ) J. 

(radV) J. 

K (VJ.) J. + (radV) J. 

K{ (radV)J.J.)J. 

K{V)J. 

E 

A table for the operation K is not needed; as it turns out, all 

totally isotropic elements of the lattice are contained in rad(VJ.) , 

hence 
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The proof of Theorem 1 is left to the reader; it is not difficult 

but time-consuming (cf. VIII.3). We shall, however, make the following 

comment which helps getting down to the pith of the matter. We say that 

dim x/y < 00 for two elements x, y in a (arbitrary) modular lattice 

L with 0 and 1 if and only if y ~ x and there is a finite maximal 

chain jOining y with x 

mapping ~ such that O~ 

Assume that L is equipped with an anti tone 

1 , l~ = 0 and x ~ x~~ for all x. Thus 

~~ is a closure operator. Assume that it satisfies the axiom 

x = x~~ & dim(xVy)/x < 00 => (xvy)~~ = X V Y . 

Let furthermore K: V ~ V be a map which satisfies (notation: rad x 

x A x~) 

rad x ~ rad y ~ K(x) = rad x A K(y) 

and the following finiteness assumptions 

dim(rad X)~~/K(X)~~ < 

dim K(x)~/(rad x)~ < 00 

dim rad(x~)/K(x~) < 00 

Then the sublattice of L which is ~-stably and K-stably generated by a 

single element v is given by the above diagram. This has been verified 

in [2J. The above finiteness conditions are responsible for the finite­

ness of our lattice; the precise values of the dimensions are irrelevant. 

This is the reason why the upper bound 52 for the cardinality of V(V) 

in Theorem 1, does not depend on dim SIT . This upper bound does not 

depend on dim E either; dim E may be uncountable in Theorem 1. 

3. Invariants of a subspace 

We refer to the legend that goes with the diagram in the previous 

section. Let (r/s) be the dimension of the quotient space X/Y where 

X , Y E V(V) have the numbers rand s respectively assigned to them. 
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We formally introduce the following "indices": 

a := (2/1) 

(1) 6 := (7/6) 

b := (3/2) 

9 := (8/2) 

C. := (4/3) , d:= (5/4) , e.:= (6/5) 

h :=(21/15), 1. :=(27/14), Iz :=(36/33) 

f. :=(39/37), m :=(42/39), Yl :=(41/40), p :=(45/44) . 

One proves that 

(15/8) = (14/9) = (17/14) 

(2) (46/45) 

(50/49) 

f. 

d 

(47/46) = e. 

(52/51) = a 

(51/50) = c. 

(48/46) h+1z , 

Countability of dim E which we shall assume henceforth - is used in 

proving (2) only inasmuch as it guarantees the inequality "dim E/X.l ~ 

dim X" . For arbitrary dim E one would have to introduce a few more 

indices such as (52/51) , etc. 

By (2) all dimensions dim X/Y for nested elements Y C X E V(V) 

can be expressed in terms of the indices introduced in (1). Besides these 

indices we get some more obvious invariants of the subspace V by con-

sidering the map Q restricted to the space 39 = rad(V.l) . As ~ van-

ishes on this space we have for all x E 39 that 0 = ~(x,x) K + £K , 

K E Q(x) ; therefore, Q(x) E SIT c kiT and the map Q: 39 + SIT is a 

homomorphism of k-vector spaces; its kernel is the space 21. Thus we 

have the following image in L(S/T) 

(3) 

Q(39) 
f. 

Q(6) 
e. 

Q (36) 

Q(29) 

(0) 

This lattice is an invariant attached to the orbit of V 
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For two subspaces V, VEE to belong to the same orbit it is 

necessary that V and V are isometric. The isometry class of V has, 

essentially, no bearing on that of V~ . Therefore, we are going to 

assume in one lump that V ~ V and V~ ~ V~ . There is some overlapping 

with the lattice in (3). From V ~ V we obtain that Q(6) = Q(6) ; from 

V~ ~ V~ we get Q(39) Thus it will be sufficient to make 

assumptions on Q(3) , Q(4) , Q(5) , Q(27) , Q(36) . Except for one very 

degenerate case (Case II in Theorem 2) it will be seen that we have 

collected a complete set of invariants for the orbit of V. This is 

remarkable. For there are many more obvious invariants: instead of merely 

considering the space K(X) c rad X take, in each totally isotropic X, 

the inverse image of the full lattice L(S/T) under the map Q: X ~ SIT. 

This will, in general, furnish an infinitude of subspaces in each totally 

isotropic X E V(V) ; one may then pass to the ~-stable lattice generated 

by all these spaces, etc. The reason why we do not have to penetrate 

into this thicket of invariants - it is fixed by the invariants which 

we have picked beforehand - is once more the assumption on the finite-

ness of dim SIT • 

4. Characterization of the orbit of a subspace (Theorem 2) 

We shall prove the following 

Theorem 2 ([3J). Let V and V be infinite dimensional sub-

spaces of a nondegenerate quadratic space (E,~,Q) of dimension ~O over 

a division ring as specified in the introduction. Assume that V ~ V 

and V~ ~ V~ . We distinguish two cases. 

Case I. dim V/rad V + dim V~/rad(V~) = ~O . In order that there 

is an isometry 
~ 
T: E ~ E 

that the following hold. 

with ~ -TV = V it is necessary and sufficient 
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(i) Q(radVnK(V)~~)=Q(radVnK(V)~~) ( "Q ( 3 ) =Q ( 3) ") 

(ii) Q(radVnK((radV)~~)~~)=Q(radVnK((radV)~~)~~) ("Q(4)=Q(4) ") 

(iii) Q(K(V)~~)=Q(K(V)~~) ("Q(27)=Q(27)") 

(iv) Q(radVnK(V~)~~)=Q(radVnK(V~)~~) ("Q(5)=Q(5) ") 

(4) (v) Q(K(V~)~~)=Q(K(V~)~~) ("Q(36)=Q(36) ") 

(vi) 9 (V) =g (V) 

(vii) h(V)=h(v) 

(viii) 11 (V) =11 (V) 

(ix) p(V)=p(V) 

Case II. dim V/rad V + dim V~/rad(V~) < ~O . In order that there 

is an isometry '" T: E ->- E with '" -TV = V it is necessary and sufficient 

that (i), (ii), (iii), (vi) hold and, furthermore, 

(x) ("47 "" 47") . 

In Case II of the theorem we have 

(5) d h k 11 = P o . 

Since 6 < 00 and m < 00 by assumption we can chop off (finite dimen­

sional) supplements of rad V in V and rad(V~) in V~ respectively. 

Since V "" V, V~ "" V~ we may, by the finite dimensional case of Arf's 

theorem (Chapter XV) assume without loss of generality that, in addition 

to (5), 

(6) m o . 

If (5) and (6) hold then V(V) has the shape 
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52 
a 

51 

47=50 
e 

48=31=V~=rad(V~) 

47=47~ 

(7) 

(0) 

It is not difficult to see that, in general, the isometry class of 47 

is not determined by the data (4) when (5) and (6) are assumed. 

Let us look at (7) in the important special case where dim SiT I. 

If b + e + ~ f 0 then the space 28 = rad 47 contains a vector x 

with 1 E Q(x) . In that case we can find a totally singular supplement 

p of 28 in rad(V~) , dim P = e . If pI is any supplement of rad(V~) 

in 47 then P $ pI is nondegenerate and a sum of hyperbolic planes 

k(ri,ri) with singular r i ' ri . Thus the isometry class of K(V~)~ 

is still determined by the data (4) in the theorem. On the other hand, 

if b + e + ~ = 0 in the lattice (7) then (4) does not determine the 

isometry type of 47 Example: Take E = k(r,r ' ) a hyperbolic plane 

with Q(r) = I and V = (r) ; here the index e is 1 and all other 

indices are zero. The isometry class of k(r,r ' ) = 47 depends on Q(r ' ) 

which we have not specified. This legitimizes assumption (x) in Case 

II of Theorem 2. Furthermore, we have established the following 

Corollary. Assume that in addition the division ring has 

dim SiT = I (e.g. a perfect commutative field with E = 1 and 1 as 

involution). Let (E,~,Q) be a ~O-dimensional nondegenerate quadratic 
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space. The orbit of a subspace VeE under the action of the ortho-

gonal group of E is characterized by the collection of the following 

invariants. 

a) The fourteen indices (cardinal numbers) a, b, c, d, e, 6, g, 

h, i, k, i, m, n, p defined by the lattice V(V) (cf. (1), (2)); 

8) the isometry class of V~ in case 0 < m < 00 

y) the isometry class of V in case 0 < 6 < 00 (~ d h k 

i n = p = 0) ; 

0) the isometry class of the space 47 K(V~)~ in case 

0 ~ m+6 < and e f 0 and b = c = d = h = i = k = i = n = p 0 

5. Proof of Theorem 2: Construction of the initial triple 

It is presupposed that the reader is familiar with the proof of 

Theorem 1 in Chapter IV. 

* 

Assume that we are given two subspaces V V in E which satis-

fy (4) in Thm. 2. We first construct two finite dimensional isometric 

subspaces Wo ' Wo in E . It will be the germ of an isometry E ~ E 

which maps V on V • 

We start out by having a look at 

v (V) of Section 2. We claim that there 

ments C , C with 3 Eli C = 4 and 

~'6 in the lattioe 

~ are isometric supple-

4 Because Q(4) = Q(4) 3 EI> C 

and Q(3) = Q(3) we can pick any C and find a suitable C i.e. such 

that Q(C) = Q(C) 

We write 9 = 8 Eli B, 15 = 8 Eli C" . Hence dim C" = c . We have 

9 Eli C = 10, 9 Eli C" = 16 , therefore 17 = 8 Eli B EI> C Eli C" Let 
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{x. I 1 ~ i ~ c} be a basis of a supplement of 9 in 14 • Because 
l. 

Xi E 17 we can decompose 

with Yi E 8 , b. E B , c. E C , c l: E C" We set c ' := Yi + c l,' 
l. l. l. i l. 

{c! 
l. I 1 ~ i ~ c} is a basis of a supplement C I of 8 in 15 , 

15 = 8 ES C' Moreover, c. + c! = x. - b. E 14 We see that {ci + c! 
l. l. l. l. l. 

1 ~ i ~ c} is the basis of a supplement of 9 in 14 

In exactly the same manner we obtain a supplement C' of 8 in 

15 , and bases (ei ) , (e!) of C and C' respectively, such that 
l. 

(c\+cl) is a basis of a supplement of 9 in 14 Because C eoC by 

definition of C and trivially C I eo C I by total singularity we obtain 

an isometry y: C ES C' eo C ES C' such that y(c i ) = c i ' y(el) = el 

Hence it is clear that 

(9) y(14 n (C ES C'» 

In a similar fashion (with less difficulties however) we deduce 

from the assumptions in Theorem 2 the existence of supplements B and 

B , V and V , E and E , I and I , K and K , L and r with 

2 ES B 3 2 ES B 3 B eo B 

4 ES V 5 4 ES V :5 V eo V 

5 ES E 5 ES E - E E 6 6 eo 

14 ES I 27 14 ES I 27 I eo I 

33 ES K 36 33 ES K 36 K eo K 

37 ES L 39 37 ES r 39 L eo I 

We set 

W := B ES C ES 
0 

C I ES V ES E ES 1 ES K ES L 

W := 
0 

B EB C EB C' EBVEBEEBI EB K EB r 
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As all spaces in Wo are pairwise perpendicular, and similarly in Wo 

we obtain an isometry 

(10) '" T 
o 

by joining the isometries B ;:, B , , ... • Let At+A 

be the natural lattice isomorphism T: V(V) + V(V) which sends V into 

V • We assert that 

(11) ~ (W n A) 
o 0 

for all A E V(V) 

(12) (Wo + A) n (Wo + B) 

(Wo + A) n (Wo + B) 

Wo + (A n B) 

W + (A n B) 
o 

for all A B E V(V) 

(13) for all A B E V(V) 

As an illustration we shall verify (11). 

Let A = 14 14 n (B+C+C '+" ·+L) B + 14 n (C+C'+···+L) 

B + 14 n (C+C') • The assertion now follows from (9). 

Let A = 27 • 27 n (B+C+C'+"'+L) = 27 n (B+C+C'+1) 

(B+1) + 27 n (C+C') (8+1) + (27n(C+C')nl7) = (B+1) + 14 n (C+C') 

hence the assertion by (9). 

Let A + 14 , 27. If A is not one of 14 , 27 it is clear, 

by distributivity, that in A n (B+C+C'+"'+L) we may omit those 

summands of Wo which lie "above" A in the lattice. E.g. if A 18 

then we find by making use of modularity that A n (B+C+C'+"'+L) 

(B+C+C'+V) + 18 n (E+1+K+L) and 18 n (E+1+K+L) (0) • 

6. Proof of Theorem 2: The general step in Case I 

We assume that we have constructed finite dimensional subspaces 

W , W.c E and an isometry ~: W + W which extends (10) and which satis-

fies the three conditions analogous to (11), (12), (13). Given a pre-

scribed vector x E E ,W we now show how to pick x E E such that '" T 
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can be extended to an isometry W ~ (x) ~ W ~ (x) which again satisfies 

the conditions (11), (12), (13) with W ~ (x) in lieu of W, etc. 

Let then M = M(W,x):= {A E V(V) I x E W+A} • M is a filter in 

view of (12) and, because V(V) is finite, it has a generator D = 

D(W,x) • In case D is jOin reducible, say D 

D2 + D we express x as x = xl + x 2 + w (wEW 

duction on the height of D we can adjoin xl 

Dl + D2 with 

xiEDi ) . By 

to W and then 

Dl + 
an in-

x 2 

D 

to 

The real task is of course with D a join-irreducible element 

Since Wo ' as defined in the previous section, is contained in 

W the only candidates for jOin-irreducible D as generators of M(W,x) 

are the following spaces (use the diagram in Section 2 and the legend 

that goes with it) 

(14) 2 , 8 , 21 , 7 , 42 , 41 , 45 , 46 , 47 , 48 , 50 , 51 , 52 

We may assume that xED . In order to find x we proceed as 

follows. As ~: W ~ W is an isometry for the quadratic form (~,Q) it 

certainly is an isometry for its associated trace-valued form ~ . Hence 

by the constructions performed in IV.5 we can find a vector 

xED" (D + W) o 0 

with - 'V 
~(XO,TW) = ~(x,w) for all w E W (here i5 is the element of 

V(V) that corresponds to D DO is its antecedent). We shall now 

look out for a vector xl such that xl E j(.L n 
0 

W.L n D and Q(xl ) = 

Q(x) + Q(xo ) Such element will enable to extend "-an xl us T to an 

isometry for Q by sending x into x + xl In order to save induc-
0 

tion assumptions (12) and (13) we have to pick xl such that 

(15) 
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Let us go through the list in (14). Spaces 2, 8, 21 are totally 

singular, hence we are done with x = 1 
0 If 0 < 6 < 00 we chop off 

a supplement of rad V in V and may assume 6 E {o,~o} . If space 7 

shows up then 6 ~O Let F be a supplement of rad V in V The 

radical of F -.I. n W.I. is finite dimensional. -.I. n W.I. n x Hence F n x 
0 0 

contains an infinite dimensional nondegenerate space P P contains 

with 

but one isometry class in dimension ~ o 

totally singular because there is 

(by our assumption on the 

fields in this chapter). Thus P 

prescribed length Q(Xl ) E kiT 

contains vectors of arbitrarily 

As dim P = ~O we can certainly satis-

fy (15) by a suitable choice. This takes care of space 7 = V . Candi­

date 42 = V.I. is treated alike. The same with 41 = V.I..1. (it does not 

show up when 6 = 0 for 6 < 00 implies n = 0). The argument above 

with space 7 can be repeated for all the remaining spaces 45, 52 

in (14): as 6+m = ~O each of these spaces X has dim X/rad X = ~O 

From (15) it follows that D is the generator of the filter 

M(W, XO+x l ) and this in turn makes the verification of the induction 

assumption (11) quite easy (refer to IV.5). The verification of the in-

duct ion assumption (12) - with W ~ (x) in place of W - runs smooth 

because filters M with generators D from the list (14) are prime 

(i.e. the elements in (14) are join-prime). This is exactly what our 

construction of W in Section 5 was aimed at. We refer to IV.5 for 
o 

details of the calculation. The verification of (13) is mutatis mutandis 

that of (12). 

The proof of Theorem 2 in Case I is thus complete. 
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7. Proof of Theorem 2: Case II 

The program is the same as that outlined at the beginning of the 

previous section. In Case II we assume that (S) and (6) hold. By looking 

at the diagram (7) we see that the join-irreducible D which are candi-

dates for generators of the filters M(W,x) are the spaces 2, 8, 47, 

Sl, S2 . The first two among them are totally singular and nothing re-

mains to be done in these cases. As 6 < 00 and dim V = ~O we have 

a = ~O hence we have again no problem with condition (lS) when D = S2. 

We are left with the two "hard" cases 

D 47 , Sl • 

We shall not meet a new kind of problems here. The solution in 

Case II is simply more cumbersome because it is indispensable to closely 

look at the lattice. This is necessary because we lack the buffer spaces 

between rad V and V (and between rad(V~) and V~) which freely 

allowed for correction manoeuvers in Case I. 

Solution for D = Sl. Let x E Sl _ (SO+W) be prescribed. We 

first find a vector Xo E 51 , (SO+W) 

w E W . (This by the method of IV.S.) 

with 

This means that Xo forms the correct "angles" 

for all 

and has 

the right location vis-a-vis the lattice V(V) • There remains to adjust 

the "length". If 

with 'I'(X ,t) = 1 
o 

Q(x ) = Q(x) o we are done. Otherwise pick 

(possible because x f SO = lS~). For o 

t E lS 

K E Q (x) , 

KO E Q(xo ) we set xl := (K+KO)t ; the vector Xo + xl is in 

Sl '(SO+W) and has the right length Q(XO+Xl ) = Q(x) • We may have 

altered the angles somewhat: decompose W = (WnlS~) ffi Vl W = 

relative to W n I5~ the angles do not change if we 

switch from Xo to Xo + xl and the rest can be remedied as follows. 
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By the choice of we have VI n 15~ ; (0) we also have 

(0) since otherwise Xo + xl E 15~ + VI C 50 + W 

contradicts the choice of x 
o Hence we can find X2 E 15 with pre-

scribed angles on VI e (Xo+Xl ) . The obvious choice is 

(16) 
P(X 2 ' ~w) = P(x,w) + P(XO+X l ' ~w) 

P(X 2 ' Xo+Xl ) = 0 . 

The vector satisfies all requirements: 

Q(x) 
- 'V 

P(x , TW) P(x,w) for all w E W, x E 51 , (50+W) . This 

solves the case where D 51 . We see that in Case II (6+m < 00). the 

only critical case which remains is D = K(V~)~ = 47 . Hence we have the 

Corollary. Let e = 6 = m = 0 (and hence d = h k = .e. = n = 

p = 0 as well). In order that there is an isometry of E which maps 

V onto V the conditions (i), (ii), (iii), (vi) in (4) of Theorem 2 

are necessary and sufficient. 

* 

solution for D = 47 The plan is to reduce the problem to the 

situation of the Corollary by chopping off 2·e-dimensional orthogonal 

summands of E. 

Because 47 ~ 47 there are isometric supplements of 

28 in 47 and 28 in 47 respectively. Then we have 

(17) E K e K~ 
o 0 

K e K~ 
o 0 

By Arf's Theorem (for finite dimensions) we have K~ ~ K~ . It is obvious 
o 0 

however that these supplements have to be chosen suitably if we are to 

arrive at an isometry E ~ E which maps V onto V. We should like 

to have that 
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(18) 
v (VnK) $ (VnK~) 

o 0 

V n KO ::0 V n KO 

v 

in order to make some use of (17). If (18) can be achieved then we ex-

tend the isometry between v n K o V n K o to an isometry Ko ::oK 
o 

(by Arf's theorem). Provided that there is an isometry K~ ::0 K~ 
o 0 

which 

maps v n K~ 
o 

onto V n K~ we can simply join the two isometries to 
o 

get an isometry of E which, by (18), maps V onto V • Our proviso 

is easily taken care of: if (18) can be achieved then V := V n K~ in 

EO := K~ and Vo .= V n K~ in Eo 

Corollary and we are done. 

o 0 

K~ (::0 Eo) will qualify for the 

Thus we are left with the following task: Show that isometric K o 

and Ko can be chosen such that (18) holds. Let 

be the isometries guaranteed by the assumptions of Theorem 2. Choose 

supplements V2 of 5 in 6 and Kl of 21 in 28 , say K = 1 

B + C + I (Sec. 5) • The assignement T 3 (x+y) := Tl(x) + T 2 (y) for all 

x E V2 , Y E Kl defines an injective isometry 

T3 : V2 $ Kl .... 47 . 
For, Tl must map a supplement of 5 in 6 into a supplement of 5 

in 6 as it respects Q. T2 preserves, of course, the radical of 

T3 (Kl ) our assertion is clear. By Arf's Theorem as formulated in Chap. 

YR we can extend T3 to all of a supplement P of 21 in 47 : For, 

let P be a supplement of 2T in 47 that contains T3 (V2$Kl) 

P ::0 P because 47 ::0 47 Kl is the radical of P and T3 (Kl ) is 

the radical of p Since the domain of T3 contains the radical of P 

and T3 maps it onto the radical of P it is now clear that T3 can 
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be extended. From the existence of this extension we learn that we can 

enlarge V2 to a supplement K 
o 

of 28 in 47 which is mapped -

under this extension of - onto an isometric supplement K 
o 

of 

28 in 47 

E K Ell KJ. K Ell i<J. , 
0 0 0 0 

K 2:oK hence KJ. -J. 
T3 2:oK 

0 0 0 0 

V (VnK ) + (VnKJ.) , to wit, V V2 Ell 5 
0 0 

(5 C 47J. C KJ.) 
0 

; similarly 

V (Vni< ) + (VnKJ.) , namely, V T 3 (V 2) Ell 5 
0 0 

vJ. (VnKo ) Ell VJ. n KJ. 
0 

28 K((rad(VnKJ.))J.J.)J.J. 
0 

K(VJ.)J. K Ell 28 
0 

Since VJ. C K(VJ.)J. we read off that VJ. n KJ. c 28 and hence VJ. n 
0 

KJ. 
0 

= 

28 (Mutatis mutandis for V n KJ. in KJ. .) This tells us in one stroke 
0 0 

that the subspace V := V n KJ. in E := KJ. has "47 = 28" which is 
0 0 0 0 

precisely the situation of the Corollary above. Our task is thus fin-

ished and so is the proof of Theorem 2 in Case II. 

8. The irreducible objects 

Let (El'~l,Ql) (lEI) be a family of nondegenerate quadratic spaces 

over the same division ring and V 
1 

a subspace of E • If E is the 

(external) orthogonal sum of the E 
1 

we call (V,E) the sum of the pairs 

pair (V,E) is called reducible if 

that K(VJ.) = K(V~) + K(V~) and the 

1 

and V the sum r.V 
1 

in E 

(V 1 ,E l ) , (V,E) = r. (V ,E ) 
lEI 1 1 

it is a sum (VI,EI ) + (V2 ,E 2) 

dimensions of both Q(rad(V~)) 

Q(rad(V2 J.)) in the value space SIT are nonzero. 

then 

A 

such 

and 

One can give a complete collection of isometry classes of irre-

ducible pairs (V,E) by listing canonical representatives with 
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dim E S ~O; it can be found in [4]. As a result of the endeavor one 

obtains the following corollaries. 

Corollary 1. Let (E,Q) be a nondegenerate ~O-dimensional quad­

ratic space over a division ring as specified in the introduction and 

V an infinite dimensional subspace. Then the pair (V,E) is isometric 

to a finite sum of irreducible pairs from the list; the summands are not 

(and cannot be) uniquely determined in general. 

Corollary 2. Let V and (E,Q) be as in Cor. 1 and ~ the 

associated sesquilinear form. The following are the only relations among 

the indices defined in (1) of Section 3. 

l. b + e + d + e. + -t + k + ,e ~ dim SiT < 00 

2. a < =>b e = 9 -t 0 

3. 6 < 00 =>d h k ,e n = p 0 

4. h < =>d k 0 

5. m < '" => P 0 

6. a + 6 < 00 =>m = ~O 

7. m < 00 & ~ is alternate ~ m is even 

8. 0 < 00 & ~ is alternate ~ 6 is even 

* 
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APPENDIX I 

QUATERNIONS IN CHARACTERISTIC 2 AND A REMARK ON 

THE ARF INVARIANT A LA TITS 

1. The multiplication table of quaternions is well known if the 

characteristic is not 2. To be sure, the table does remain meaningful 

if 2 = 0 l but the resulting algebra is commutative. On the other hand, 

if we think of the quaternion algebra as a crossed product of a sepa-

rable quadratic extension of the center with its Galois group then this 

also makes sense for arbitrary characteristic and, this time, we obtain 

a noncommutative structure when the characteristic is 2. One is lead 

to an (associative) algebra of dimension 4 over its center K which 

possesses a basis eO' e l ' e 2 ' e 3 with the following multiplication 

table (a,B E K) 

eO e l e 2 e 3 

eO eO e l e 2 e 3 

(1) e l e 1 aeO+e 1 e 3 ae 2+e3 

e 2 e 2 e 2+e 3 BeO BeO+Bel 

e 3 e 3 ae 2 Bel aBeO 

Definition. Let K be a commutative field of characteristic 2 

d B (UK' B) an a, two elements of K. An algebra of quaternions is 

a 4-dimensional K-vector space with a basis eO ' e l ' e 2 ' e 3 and 

equipped with a K-bilinear multiplication such that the elements e i 

multiply according to (1). 

Given any K and a, B E K the bilinear extension of (1) to 
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turns out associative. Hence there always is a quaternion algebra 

[ a~S) 

If we replace e l by ei := e l + eO we obtain from (1) a table 

relative to the new basis {e O,ei,e2 ,e3} and we see that this new 

table is just the "transpose" of the old one. In other words, the 

assignment eO " e l ' e 2 , e 3 H- eO ' ei ' e 2 ' e 3 induces an iso­

morphism of [a~S) onto the opposite algebra [a~s)O . In short, 

(2) 

is an involutory antiautomorphism of [a K, S) Calculation gives 

(3) 
q ~ qq* is multiplicative. 

Example. Let KO be any commutative field, char KO = 2 , and 

K = KO(X,Y) where X, Yare algebraically independent over KO . 

The algebra [XK' Y) is a division ring because we find that qq* = 0 

if and only if q 

-1 

o ; hence for q + 0 we have 
-1 

q = Ilq* where 

11 = (qq*) 

Remark 1. Let A be any noncommutative division ring of charac-

teristic 2 with center K and A ~ A* an antiautomorphism which leaves 

K pointwise fixed. Assume that (A,*) is reflexive in the sense that 

AA* belongs to the center for all A E A From (A+l) (A+l)* E K we 

conclude that A + A* E K for all A E A Hence each A E A is qua-

dratic over K, A2 + (A+A*)A + AA* = 0 . One can prove that A is 

a quaternion algebra and * coincides with the "conjugation" defined 

in (2) ([lJ, p. 72 and p. 84). 

Remark 2. In [2J (Theorem 7, p. 205) I. Kaplansky proved that if 

a commutative nonformally real field of characteristic not 2 admits a 
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unique quaternion division algebra over K (up to algebra isomorphism) 

then each nondegenerate form over K in dimension 4 is universal, i.e. 

has vectors of any length (see also [4J p. 152 and pp. 319-324 for the 

relevance of this topic). H.A. Keller proved the corresponding result 

for K of characteristic 2 ([3J, Teorema 1, p. 79). A spandy new proof 

had to be devised for this purpose. 

2. Let k = (a~8) be a division algebra, char K = 2 . We shall 

consider 2-dimensional k-spaces E equipped with quadratic forms 

(~,Q) in the sense of Definition 2 in XIV.3. We choose E = 1 in 

the underlying structure (k,*,E) and let * be as defined in (2). 

We see that the additive subgroup P = {E~*-~ ~Ek} coincides with 

the center K of k. For A E k we let [AJ be its class in k/P 

Let be a basis of E and a , 8 symmetric elements in 

k, a = a*, 8 = 8* We define a quadratic form (~,Q) on E by 

setting 

(4) 
Q(gl) = [aJ, Q(g2) = [8J , 

~(gl,gl) = ~(g2,g2) = 0, ~(gl,g2) 1. 

With each "symplectic" basis in E of the kind (4) we can associate 

the element 

T(a8) := a8 + (a8)* • 

Let G be the additive subgroup {~2+~ I ~EK} in K . It is not 

difficult to verify that the class of T(a8) in the factor group K/G 

does not depend on the symplectic basis chosen; i.e. this class is an 

invariant attached to the plane (E,~,Q) . (Use the fact that the group 

of symplectic 2x2 matrices is generated by matrices of the type 

[~ ~) , (0 ~) , (~ ~) .) We call this class the Arf invariant of 



410 

(E,o/,Q) . This definition is obtained by particularizing the definition 

by Tits (Corollaire 4, p. 37 in [5J) to the present situation. In the 

classical situation of a commutative field one has the fundamental fact 

that two planes (E,o/,Q) , (E',o/',Q') are isometric if and only if 

they have equal Arf invariants and contain a vector e E E, e' E E' 

of common length, Q(e) = Q' (e') (for this reason the Arf invariant 

is also called pseudo-discriminant). We shall now show by an example 

due to H.A. Keller that in the nonclassical situation this fundamental 

property of the invariant is lost. 

3. We keep k as in the previous section and consider a second 

plane (E',o/',Q') with Q(gi) = [aJ, Q(gi) 

is a symplectic basis of E' relative to 0/' 

T(aS) = T(ay) and E, E' being nonisometric. 

We shall arrange for 

Suppose that (E,o/,Q) and (E',o/',Q') are isometric. Then by 

Witt's Theorem (Thm. 1 in XV.2) there must exist an isometry 

g 1 r>- g i, g 2 1-+ wg i + g i . 

It follows that w = w* and aw·aw + aw = a(S+y) + au for some u E K. 

Thus, in order to produce our counter example it suffices to exhibit a 

quaternion algebra k over K and symmetric elements a, S , y E k 

with T(aS) = T(ay) such that 

(5) 
2 s + s = a(S+y) + au 

admits no solution S for any u E K . 

IVe start out with a field kO sharing the following property: 

there is d E kO such that the equations 



(6) 

(7) 

(8) 

x 2 + x 

x 2 + x 

2 x + x 
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1 

d 

1 + d 

have no solutions in kO . An example would be kO = ~2«X» with 

d = x-I (write x as a powerseries and check the parity of the lowest 

exponent of X in x 2+x). Set K = ko«t» • The equations (6), (7), 

(8) remain unsolvable over K (if x = atn+ ••. solves one of the 

three equations we must have n=O so x2+x = (a2+a)+ ••• and we find 

a solution in kO ' contradiction). In particular, as (7) is unsolvable 

over K, we find that k:= (d~t) is a division algebra because 

AA* 0 (AEk) if and only if A = 0 • Let then eO = 1, e l , e 2 

e 3 be a basis of k as in (1). We choose 

(9) 
-1 

a = 1 + t e 2 1, y = 1 + e 2 . 

We have T(aS) T(ay) o . We assert that (5) has no solution in k 

for any u E K 

Indeed, taking traces in (5) we obtain T(~)2 + T(~) o and we 

shall therefore distinguish between two cases. If T(~) = 1 then 

~* = ~ + 1 and so ~~* = ~2 + ~ l therefore 

~~* = a(S+y) + au 

The right hand side is in the center if and only if u = t so we obtain 

-1 2 
~~* = t(l+t e 2 ) = 1 + t Because T(~) = 1 the element ~ is of 

1 + t . 

But this is impossible because of the unsolvability in kO of (7) and 

(8). (We leave the caulking to the reader.) If, on the other hand, we 
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should have that T(s) = 0 then s2 + s = ss* + s • We put ss* = ~ 

and multiply the equation ss* + s = a(B+y) + au by its conjugate. 

We obtain 
222 

~ + ~ = a (B+y+u) , thus 

Let u = ytn + .. , E K, Y E kO~ {OJ • If n ~ 0 then the right hand 

side in our last equation is a power series in t that begins with a 

negative odd power of t; this yields a contradiction, obviously. 

Therefore n > 0 and the right hand side is of the form 1 + ••• ; 

this time we arrive at a contradiction because of the unsolvability 

of (6) over ko ' Q. E. D. 

Summary. We have specified two quadratic planes (E,~,Q), 

(E',~',Q') over a suitable quaternion division algebra such that E 

and E' contain vectors e E E, e' E E' with Q(e) = [aJ = Q' (e') 

and have equal Arf invariants, T(aB) - T(ay) mod G and such that 

E , E' are not isometric relative to the forms Q, Q' • 

* 
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