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Preface

For about a decade I have made an effort to study quadratic forms
in infinite dimensional vector spaces over arbitrary division rings.
Here we present in a systematic fashion half of the results found du-
ring this period, to wit, the results on denumerably infinite spaces
U‘RO— forms"). Certain among the results included here had of course
been published at the time when they were found, others appear for the
first time (the case, for example, in Chapters IX, X, XII where I in-
clude results contained in the Ph.D.theses by my students W. Allenspach,
L. Brand, U. Schneider, M. Studer).

If one wants to give an introduction to the geometric algebra of
infinite dimensional quadratic spaces, a discussion of RO-dimensional
spaces ideally serves the purpose. First, these spaces show a large
number of phenomena typical of infinite dimensional spaces. Second,
most proofs can be done by recursion which resembles the familiar pro-
cedure by induction in the finite dimensional situation. Third, the
student acquires a good feeling for the linear algebra in infinite di-
mensions because it is impossible to camouflage problems by topological
expedients (in dimension RO it is easy to see, in a given case, wheth-

er topological language is appropriate or not).

Two more remarks are in order. Since classical Hilbert spaces have
either finite or uncountable dimensions there will be no overlapping
with Hilbert space theory here. And, finally, we wish to point out that
we have made no steps to generalize away from vector spaces even in

cases where such a possibility was in view.

The manuscripts for the book have been critically read and reread
by Dr. Werner Bdni. He has eliminated a large number of errors. Yet of
greatest importance to me has been his acute mathematical judgement on

disputable matters in the texts. I express my warmest thanks to him.

Zurich, March 1979 Herbert Gross
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INTRODUCTION

No one would assert that finite dimensionality is an intrinsic
feature of the concept of quadratic form. Yet, apart from a very small
number of results (see References to Chapter XI ) there has been, as
far as we know, only Kaplansky's 1950 paper on infinite dimensional spa-
ces pointing our way, namely in the direction of a purely algebraic
theory of quadratic forms on infinite dimensional vector spaces over
"arbitrary" division rings. Such a theory would, naturally, leave aside
the highly developed theory of Hilbert spaces and its relatives, Krein
spaces, Pontrjagin spaces (see [2] for an orientation on these topics).
Furthermore, when we speak of infinite dimensional geometric algebra
we do not, in this book, mean discussion of the ramifications into geo-
metry of hypotheses belonging to set theory nor, reversely, the study
of axioms forced upon set theory by geometry. We simply mean that the
(algebraic) dimension of the quadratic spaces is allowed to be infinite.
Many problems of the finite dimensional setting remain perfectly mean-
ingful and invite an investigation when the finiteness condition is re-
moved. Our results show that it is possible to generalize, without rare-

fying, classical results from finite dimensional orthogonal geometry.

There are also rather specific problems which call for a bit of
general theory. As an illustration consider the classification problem
of hilbertean spaces in the sense of [8] (A nondegenerate quadratic
space E 1is called hilbertean if for all subspaces X of E that are
closed, X =X'“' (biorthogonal), we have E =XEBXJ' ; loc. cit. p. 177 .) .
A complete classification would be of some interest to quantum logic.
Nobody has been able to produce an infinite dimensional hilbertean spa-
ce other than classical Hilbert space (real or complex or quaternionic).
Under certain additional restrictions it has, in fact, been possible to

prove that there are none (cf. [3],[5],[9] in Appendix I to Chapter I).



These proofs resemble "proofs by circumstantial evidence": a number of
exotic possibilities has to be ruled out in order to get at what looks
like the probable issue. The elimination requires knowledge about "ar-
bitrary" forms. (Incidentally, either outcome of the classification

would be exciting: the existence of an infinite dimensional hilbertean
space other than Hilbert space or else the characterization of Hilbert

space by the property <{(hilbertean) .)

Apart from a few glimpses into the uncountable (e.g. in the intro-
duction to Chapter II or in Section 8 of Chapter X} infinite dimension

in this volume means dimension X, . Our text does not presuppose any

0
knowledge about proofs in finite dimensional orthogonal geometry; how-
ever, the book is intended for readers who are acquainted with some of
the classical results. Where should motivation for our endeavor come
from if not from finite dimensional geometry! For the novice we mention
that [1] [3] [4] [5] [6] [7] are a few of the excellent texts that treat
finite dimensional orthogonal geometry. On the other hand, we do assume
thorough familiarity with linear algebra. On a very few occasions we

do assume a superficial acquaintance with topology. Besides the charac-
terization of isometry classes of quadratic spaces we have focused our
main effort in this book onto the characterization of subspaces in quad-
ratic spaces (modulo the action of the orthogonal group associated to
the space). Problems of this and related kinds are often referred to by
using the adjective "Witt" (adjectives which cannot be negated should

be spelled with capital initials). By using the table of contents it is

easy to locate where what is being proved.

Needless to say that there is a number of pretty and unsolved prob-
lems in connection with RO— forms (let alone the higher dimensions) .
Perhaps we shall write up a list some day. Here is a sample which I

found several years ago and which has already puzzled some specialists:



Is there any commutative field which admits no anisotropic RO- form but

which has infinite u-invariant., i.e. admits , for each n€N , some

anisotropic form in n variables?

[1] E. Artin, Geometric Algebra. Interscience Publ. New York 1957.

[2] J. Bognir, Indefinite inner product spaces. Ergebnisse Band 78,
Springer, Berlin Heidelberg New York 1974.

[3] J.W.S. Cassels, Rational Quadratic Forms. L.M.S. Monographs vol. 13
Academic Press, London New York 1978.

[4] M. Eichler, Quadratische Formen und orthogonale Gruppen. Grundleh-
ren Band 63, 2. Aufl., Springer, Berlin Heidelberg New York
1974.

[5] 1I. Kaplansky, Linear Algebra and Geometry. Allyn and Bacon, Boston
1969.

{6] J. Milnor and D. Husemoller, Symmetric Bilinear Forms. Ergebnisse
Band 73, Springer, Berlin Heidelberg New York 1973.

[7] ©0.T. O'Meara, Introduction to quadratic forms. Grundlehren Band 177
Springer, Berlin Heidelberg New York 1974.

[8] V.S. Varadarajan, Geometry of Quantum Theory, vol. 1. van Nostrand
Princeton 1968.

Postscript. A fortnight after the above introduction had been
written Hans A. Keller sent me a detailed description of an infinite
dimensional hilbertean space different from the classical Hilbert spa-
ces. (Ein nicht - klassischer Hilbertraum, pp. 1-16, letter to the au-
thor dated March 20 1979.) Refer to a forthcoming publication.



CHAPTER ONE

FUNDAMENTALS ON SESQUILINEAR FORMS

Introduction

Chapter I contains some of the basic concepts and facts upon which
subsequent chapters are built. The reader will find the terminology and
notations that are used throughout the text. A number of fundamental
definitions have been inserted in later chapters; whenever it had been
possible to introduce a concept right where it is needed without inter-

rupting the flow of ideas we have postponed its introduction.

On a very few occasions in this book we have made hints about ques-
tions relating to spaces of nondenumerable dimension (and made referen-
ces to the literature; see e.g. the introduction of Chapter II). A num-
ber of references to work on sesquilinear spaces of ‘uncountable dimen-
sion, upon which we shall not touch, is given in the bibliography at
the end of this chapter; these are [3], (10] , [11], [14] , [16] , [20},

[24] ’ [28] ’ [37] ’ [42] .

1. Orthosymmetric sesquilinear forms

1.1 The underlying division rings. Let k be a division ring. A

bijection v : k — k is called antiautomorphism if v (a+8) =v{a)+v(B)

and Vv(aB) = v(B}v(a) for all o, B € k . If k is commutative then
the identity map is an antiautomorphism (it may be the only one as is
witnessed by k = Q,R ); if k is skew then there may be none (see
Appendix 1). All division rings in this book are assumed to admit anti-
automorphisms. Antiautomorphisms permit the convertion of left vector
spaces into right vector spaces and vice versa: if E 1is a k-left vec-
tor space and x € E we set XX := v_l(x)x and verify all axioms of a
k-right vector space. For example, the set E* = Homk ({E,k) of all

k-linear maps f : E — k naturally is a k-right vector space under



pointwise addition and multiplication by scalars from k ; it can be

made into a k-left vector space by defining Af = fv(iA) , i.e.
(A£)(x) = £(x) - v(}) for all x € E .

Notation: Sometimes we write A° instead of v(}A) , especially so

if the antiautomorphism is written as X + A* or X k> X

1.2 The concept of sesquilinear form. Let v : k — k be an anti-

automorphism of the division ring k . With the k-left vector space E we
associate its dual E* , converted into a left vector space via v as
explained above. Both spaces being k-~left vector spaces it is possible

to consider linear maps
 : E — E* |
Each ¢ gives raise to a function & : E x E — k by setting

(1) (x,y) = oy (x) .

The map ¢ is additive in both arguments; it is linear in the first

and v - semilinear in the second argument:

(1) d(x+y,z) = d(x,z) + %(y,z)
(x,y 2z € E)
(ii) P(x,y+2z) = o(x,y) + o(x,2)
(iii) d(Ax,vy) = A% (x,vy)
v (x ,y€E ; A € k)
(iv) P(x,Ay) = 0(x,y) A

Any map % : E x E — k which satisfies the four conditions (i)

through (iv) is called a sesquilinear form with respect to v (ses-

quiv = 1in ; from the Latin) . For fixed (k,v) we let Sesqv (E)
be the additive group of all such forms. If & € Sesqv (E) and y € E
are kept fixed then x +— &(x,y) is a linear map @y : E— k by (1)

and (iii). By (ii) and (iv) we see that vy +— Qy (from E into E* )



is linear if E* is considered as a left vector space as in 1.1 . Thus
¢ is obtained from ¢ : y — ¢y via (1) . We see that (1) establishes
a bijection between the set of linear maps ¢ : E — E* and the set

Sesqv(E).

If v 1is the identity, which forces k to be commutative, then

we obtain the concept of bilinear form.

1.3 Orthosymmetric forms are € - hermitean. Let @E%m“m.We

say that the vector =x € E is perpendicular - or orthogonal =~ to the
vector y € E if and only if &(x,y) = 0 , and then we write x ty .
In this book we are interested only in forms ¢ for which . turns

out a symmetric relation,
(2) X 1y <=> y 1X (axiom of orthosymmetry)

Forms with this property are termed orthosymmetric (4 - symmetric for
short). If ¢ is orthosymmetric and Y ©€ E we define Yl , as usual,
to be {x € E|o(x,y) =0 for all y € Y} ; if y € E then yl is

fy}t . If Y is a subspace we call ' the orthogonal complement of Y

in E , or simply the orthogonal of Y in E . We have for all X, Y CE

(3) x ¢ v = y' < x*

(4) X < (X7)
from which we conclude

4

(5) x* = wxhHht

Indeed, (3) applied to (4) yields o in (5); application of (4) to x*

gives the converse inclusion in (5). This establishes (5). In the fol-~

1l
lowing we shall save on brackets, X = (Xl)l

etc. From (3) and (4)
it follows furthermore that

(6) (x+y)* = xt* n ¥'.



Proof. Since Xl n Yl c Xl we obtain X C XLL (e (Xl n Yl)l by

(3) and (4) and, symmetrically, Y < (Xl ny')' sothat x +y <
(x* n y*)* . Therefore, by (3) and (4), x'ny*c(x*nyh)*t c x+um)t .
On the other hand, X € X+Y so (X+Y )l c Xl by (3) and, of course,

(x+Y)* € Y* by symmetry. Thus (x+v) cx*ny*.

Notice that we cannot prove the dual property m(xny) = xteyte
in this style: Interchanging + and N corresponds to switching from
C to O ; but axiom (4) is not immune to turning around < . (In fact,
the attractiveness of the infinite dimensional theory of forms derives,
to a large extent, from the fact that this property does not carry over
from finite dimensional geometry.) We now turn to the assertion in the

caption.

Theorem 1. Let ¢ € Sesqv(E) be orthosymmetric and assume that

dim E/E' > 1 . Then the square vz is an inner automorphism of k ,

2 -1

(7) vi(Xx) = € Ae (for all X € k ) , further
(8) vie) e = e+ vle) = 1 ,
and ¢ satisfies
(9) oy , x) = € 0(x LY (for all x,y € E ) .
Proof. Let Eo be a supplement of E' in E ; dim Eo 2 2 by

assumption of the theorem. For fixed y € E0 we consider the linear
maps x > ¢(x,y) and xm— v _1(®(y , X)) from E into k . By or-
thosymmetry their kernels coincide so the two functionals are propor-
tional: there is nonzero u(y) €k such that &(x,y) =[v_l(®(y,x))]u(y).
How does u depend on y ? For Yy ¥, € Eo we have 0&(x ,yl-fyz) =
[v-l(<1>(yl Yy X ))]u(y1 ty, ) : on the other hand @(x,yl) + ®(x,y2)
ey x N Tulyy) + vVHO(y,%)) luly,) . Assume first that

Yy 1Y, € E, are linearly independent. We assert that u(yl) = u(yz) .



Indeed, we cannot have yll c y2'L or yzl c yll for otherwise there
would be a nonzero linear combination ny¥q + nyy, & E which is impos-
sible since Eo n E* = (0) . Hence we can pick x € E perpendicular to
one of the y's and not perpendicular to the other. Substitutions of
such x 1lead to u(yl) = uf Yy *tY, ) = u(yz) . If, on the other hand

¥y and y, are dependent, then we pick 2z € EO not on the line (yl)
and conclude u(yl) = u(z) = u(yz) by the former result. Thus ¢&(x,y) =
v i(e(y,x))1u for all x € E,y € E, . Since this equality holds tri-
vially when y € E' we conclude that it holds for all y € E . Setting
€ := v(u_l) we obtain (9). Applying (9) twice yields &(y,x)= e@(x,yw =
eled(y,x) V)Y = evz(é(y,x))v(e) for all x,y € E . For arbitrary A€k
there exist x,y € E with &(y,x) = X . Choosing A =1 yields

1 =¢-v(e) , hence (8) and A = svz(k)e_l for all X € k (as asserted

by (7)) . This finishes the proof of Theorem 1.

We call e - hermitean any sesquilinear form ¢ € Sesqv(E) which
satisfies (9); such forms are orthosymmetric, obviously. Furthermore,
{9) implies (7) and (8). Therefore, instead of speaking about orthosym-
metric forms we may just as well consider e - hermitean forms attached
to a structure (k,v, e) that satisfies (7) and (8). In particular,
with each orthosymmetric form (which has dim E/ E' > 1) is associated,
via Theorem 1, the additive subgroup S of k consisting of the sym-

metric elements,

(10) s:={tek| E=¢ec&” }

and the subgroup T © S of traces,
(11) T:={E+ecE | E€k ]} .

If the characteristic of k is not 2 then T = S because each symme-

tric £ is of the form £ = (%) + e(%g)v ; if the characteristic is 2



then the quotient S /T is a crucial object ( Chapters VIII, IX, XIV,
XVI) . We still may have S = T 1in characteristic 2 ; e.g. whenever
there exists an element Yy in the center with vy # yv (if &£ € s then

. -1
E=n+en’ with n:=y(y+y ) ) .

Remark 1. Bourbaki ([6] , p. 49), in his definition of ¢ - hermi-
tean form, stipulates that ¢ belong to the center of k . The antiau-
tomorphism v is then an involution by (7), vz = 1 . We have no need

to make such an assumption.

Definition 1. A sesquilinear space is a pair (E, ®) where E
is a k-left vector space and ¢ : E x E — k an € - hermitean form in

the sense of (9).

If there is no risk of confusion we shall often speak about the
sesquilinear space E and omit mention of the form; we shall sometimes
use the terms "space" and "form" interchangeably, e.g. we shall say
that the form is R - dimensional when we mean that the space has dimen-

0

sion Ro ; etc.

In euclidean 3 -space (R ,%) , where ¢ 1is the inner product
("dot product") @((xi),(yi)) = igl XY, o0 the number &(x,x) is the
square of the "length" of the vector x (®(x,x) is sometimes called the
norm of the vector x = (xi)) . Most of the division rings admitted in
the theory of forms are such that ®(x,x) will not be the square of
anything in k so that there is no analogue of the classical length.
Because "norm" has too many meanings already we simply call length of
x the element [x| := ®(x,x}) . A vector of length 1 is called a unit
vector. By ||E|] (or {¢]] )} we mean the set {[x[||x € E v {0}} of
lengths of all nonzero vectors, i.e. the set of all elements in k
that are nontrivially represented by ¢ . Notice that [[¢]] €5 as ¢ is

e-hermitean. Similarly, for FCE a subspace, |F||:= {||f]]|£€ F\ {0}}.
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1.4 Zoology of forms. Let & : E X E — k be an e - hermitean

form with respect to the antiautomorphism v . If € = 1 then the form

is called hermitean. If € =1 and v = 1 (possible only when k is

commutative) then @ is called symmetric. If € = -1 the form is
termed skew-hermitean; if € = -1 and v = 1 the form is termed skew-

symmetric. A form ¢ which has &(x,x) = 0 for all x € E is termed

alternate; we have:

If the restriciton of ¢ to the subspace X CE 1is alter-
(12) nate but not identically zero then ¢ is skew-symmetric

on the entire space E ; in particular, k is commutative.

Indeed, pick x,y € X with ¢(x,y) =1 . Then, for all X € k ,
0=]rax+y] =0+0+2x+er’. Hence & = -1 (substitute A = 1)

and therefore Av =X, i.e. v =1,

Alternate forms are skew-symmetric; if char k # 2 then the con-

verse holds true too. As a corollary of Theorem 1 we note

Let ¢ € Sesq](E) be orthosymmetric and assume that

(13)
dim E/ El >1 . Then ¢ is symmetric or alternate.

Indeed, if ¢ 1is not alternate, then for some nonzero &(x,x) we have

®(x,x) = ¢®(x,x) by (9), hence € =1 .

1.5 Scaling of forms. If & € Sesqv(E) and u € k\ {0} then the

right multiple ¢l := ép belongs to Sesqv (E} where
1

(14) v, M =y tyvou

If, in addition, ¢ 1is e - hermitean then ¢l is el-hermitean with

€, = €V (u_l) U . We assert:
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Let ¢ be €-hermitean. If ¢ 1is not skew - symmetric then

there are ul € k\{0} such that Ql = Qul is hermitean;
if Ql is not symmetric then there are u, € k\{0} such
(15) that ¢2 = @luz is skew - hermitean (relative to antiauto-
morphisms which differ among themselves by factors which
are inner).
Proof. If ¢ is not skew - symmetric then there are a,b €E
with ®(a,b) % -%(b,a) so p := &(a,b) + €d(a,b)’ % 0 . We have
epv =p and AT i= (p Ap—l )v defines an involution <t : k — k re-
lative to which @l := @ul ’ ul = pv , turns out hermitean. Assume
then that @l (or any hermitean form) is not symmetric: there are
@« €k with o' $+ o so B :=a' - at 0. setting A% := 81278 de-
fines another involution of k with respect to which @2 = le turns

out to be skew - hermitean.

The transition from & € Sesqv(E) to ¢l = du € Sesqv (E) ,
1
with vl defined by (14), is called scaling. Certain properties are
immune to scaling, e.g. " % is orthosymmetric"; others are not, e.g.

"${x,x) = 1 has a solution". For the behaviour of S, T in (10) , (11)

under scaling see Appendix I to Chapter XIV.

1.6 Existence of € - hermitean forms. Let ¢ € Sesq,(E) and

(el)16 1 be some fixed basis of E . Incidentally, all bases in this

book are bases in the sense of linear algebra (so-called Hamel bases) :
each x € E is a finite linear combination of some e, - Thus, if an-

other basis (fl) is introduced, f. = I a eK, then the "matrix"

1€1 1 1K

A= (a ) is row- finite: in each "row" all but a finite num-
k1, €1 —_—

ber of entries from k are zero (meaning, as usual, that for each

1 € I there are finitely many Kyreeor¥y, such that %l = 0 for all

kK €I \{Kl;...,Kn} ). Clearly, such a substitution matrix A need not
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be column-finite. We abbreviate Y1K:= ®(e1,eK) and call C :=(Y1K)1 KET
’

the matrix of the form ¢ relative to the basis (e1)1€ T (the hybrid

quantities of old. see [1] , § 10, pp.51).For x =L Ele1 , vy =L nle1

two typical elements of E we find, by sesquilinearity,

@ = *
(16) (x,y) 1,|<Z€I £1Yu<”»<

As there are only finitely many nonzeros among 51, n the double sum
in (16) makes sense even if C has infinite rows and columns. If ¢

is € - hermitean then trC = gC¥*,

= *
(17) Yic EVe -

Conversely, we can use (16) , (17) in order to define e - hermitean forms
on any vector space E over a field (k ,*,e) where (7) and (8) hold,
i.e. (A*)* = e_ll e and e*e= ge* =1 . In this connection the

following Theorem by Albert is relevant ( [1] , Thm. 19, Chap. X) :

Let the division ring k be finite dimensional over its cen-

ter. If k admits an antiautomorphism leaving every element
(18)

of the center fixed then k admits an involution of the

first kind (i.e. leaving every element of the center fixed).

For proofs of this theorem see also [21] , [38] . Thus, over such k we

can define e - hermitean forms, and then quite a few. (Cf. Appendix I)

Definition 2. A basis B = (el) of a sesquilinear space

1€1

(E, %) is called orthogonal basis if e, Le, for all 1 $ « in I,
i.e. if the matrix of the form & with respect to B is diagonal.

If card I ( = dim E ) £ RO we sometimes write o = ( Oy reses an) or

d = ¢ URASREEE Y where a, = Q(el,el) and (e1)1€ I is an ortho-

gonal basis for & . B is called orthonormal if it is an orthogonal

basis consisting of unit vectors, i.e. Q(el,eK) = 61K (Kronecker) .
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Definition 3. Let (E,®?) be a sesquilinear space and X ©E a
subspace. The radical rad X of X 1is the subspace xnx* ; X is
called nondegenerate iff rad X = (0) .

In particular, E 1is nondegenerate if and only if et = (0) , i.e.

the zero vector is the only vector perpendicular to all of E . If E
is nondegenerate we call ¢ nondegenerate (since subspaces are always
equipped with the restricted forms we say that ¢ is nondegenerate on
X iff X is nondegenerate etc.). If C is the matrix of ¢ with re-
spect to some basis B then we see that E is nondegenerate if and

only if C has full rank for any choice of B : if finitely many rows,

say (Y1K)K€ I for 1€J = {11,..., 1n} , were linearly dependent,
i.e. § AIYIK = 0 for all k€I and for suitable xl (1€J) , not all

zero, then I Alel 4+ E . The argument may be reversed. Since C is an
¢ - hermitean matrix we may furthermore confound left row- rank and

right column - rank.

2. Trace =valued forms and hyperbolic planes

Let ¢: EX E — k be ¢-hermitean with respect to some division
ring (k,*,e) . A vector x € E is called isotropic iff &(x,x) = 0;
the space E is called isotropic if it contains a nonzero isotropic

vector. A subspace X C€ E 1is called totally isotropic if X < Xl; i.e.

if ¢ wvanishes on X x X .

Definition 4. A nondegenerate plane is called hyperbolic if it is

spanned by two isotropic vectors.

Thus a hyperbolic plane P always admits "canonical" bases such

that the matrix of the form takes the shape
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we see that ||[P| = T where T is as in (11).

Lemma 1. Let (E,®) be a nondegenerate isotropic space over
(k ,*,e) . The following are equivalent: (i) E admits a basis consist-
ing of isotropic vectors and each nondegenerate isotropic plane in E

is hyperbolic; (ii) JlE| €T (T as in (11)) .

Definition 5. ([9], § 10). An ¢ -hermitean form ¢ which satis-
fies (ii) in Lemma 1 is called trace - valued ("for each x there is

such that ©&(x,x) = £ + g&*).

Proof (of Lemma 1).Assume (ii). Let ¢(x,x) =0 and ©&(x,y) +O , say
¥(x,y) =1 for given x,y€E . The equation [y-&x||=0¢(y,y) - (E+cE*) =0
can be solved for & by (ii) so the plane k(x,y) is hyperbolic. In
particular, E contains two isotropic vectors x,x' with &(x,x"') =1.
If z 1is any vector we set X" = z-gx-g'x'. It is very easy to verify
that we can solve (by (ii)) the equation [|x"||=0 for ¢ and ¢' .
Hence 2z = gx+r'X' +x" 1is a sum of three isotropic vectors. Since the
set of isotropic vectors in E is thus proved to be a set of generators
we can select a basis of the required sort. This establishes (ii) = (i).
Assume (i). We have to show that ¢&(x,x) 1is a trace for arbitrarily
fixed x € E . This is obvious for x = 0 . If x # 0 then any basis
of E will contain a member e with &(x,e) ¥ 0 since E is nonde-
generate. By (i) we may assume e isotropic so k(x,e) is a nondege-
nerate isotropic plane and hence hyperbolic: there is an isotropic vec-
tor ax+Be not on the line (e) , i.e. with a % 0 . This means that
0 =[x + ot g e| from which we conclude that the equation &{x,x) =
£ +e¢&* has the solution § = —a_l B &(e,x) . This completes the proof

of the lemma.

We shall see that trace - valued forms have a theory which is con-

siderably different from that of non - trace - valued forms. By an earlier
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remark (made just after (11) ) forms are invariably trace - valued when
the characteristic is not 2 or when the center is not left pointwise
fixed (this takes place when k 1is commutative and * is not 1 ).

If the characteristic is 2 and ¢ is symmetric then ¢ is trace - va-
lued if and only if & is alternate (because zero is the only trace in

this case).

Definition 6. A symplectic basis of a sesquilinear space (E,?)
is a basis {rl,r{ | 1€ 1} with ¢(r1,r{) =1 for all 1€ I and all
other products between members of the family equal to zero (symplectic =

intertwined ; from the Greek).

Clearly, if E admits a symplectic basis {rl,r{ | 1 € I} then E
is the orthogonal sum of the hyperbolic planes P1 spanned by {rl,r;L
E=@ P1 . Conversely, if E 1is such a sum and each P1 is spanned by
the isotropic basis {rl,r{} with @(rl,r{) = 1 then the family

{rl,r{l 1 € I} is a symplectic basis.

The two halves of a symplectic basis of E (if there is such a

. N s - | -
basis) span totally isotropic subspaces, R = k(rl)1L €1’ R' = k(r]) ¢ T

E = R® R' . Notice that by nondegeneracy it follows that R' = R and

R'‘Y = r" .

Notation: It is convenient to write A é B if in the sum A @ B
1
we have A C AL and B < BL ; this is in analogy to A @ B where

1 1
ACB and B CA .

Remark 2 ( [41] , Satz 15 , p.39).Let * be an involution on k
and card k > 5 . Let a; = u + p* a, =0+ o* be nonzero elements
in k . Pick v in the prime field of k such that v# 0 , vzu +o#% 0,
vzu* -o04$0 . For El € k\{0} a given element determine 52 from

2
52(\) H+0o) + Elalv = 0 . Then we have
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Elag g+ 0a, 0% = (g +vEy)ay (§+VvE)* + Eja, £F

with £l~+v £2 + 0, 52 # 0 . Iteration of this procedure (and Sec. 1.5)

shows: If el

€ - hermitean form ¢ = ( al reeer @y Y and if there exists a point % 0

ooy en is an orthogonal basis of the trace - valued

™3
o™
o

on the quadric ¢(x,x) = ¢ then there exists a point x = on

the same quadric with gi $4 0 forall i=1,...,n.

3. Positive forms

If the underlying division ring has the additional feature of ad-

mitting an order structure then we can single out "positive" forms.

Definition 7. Let & : E x E — k Dbe ¢ - hermitean over (k,*,c).
Assume that k contains a (Hilbert -~) ordered subdivision ring (ko,<)

such that [E|| © kO . We say that ¢ 1is definite [semidefinite] iff
(19) Il - llyll >0 [ 2 01 for all x,y € E\{0} .

If ¢ is semidefinite and then, for all x € E , “x” is either in-
variably > 0 , or 20 , or <0 , or £ 0 then ¢ is called (accord-
ingly) positive definite, positive semidefinite, negative definite, ne-

gative semidefinite.

Remark 3. A Hilbert ordering on a skew field k (=division ring)
is defined just as on a commutative field: k = k\{0} 1is assumed to
contain a subset P - whose elements are termed positive - such that
the following "axioms" hold: for all «,B€P and all ¥y € k either
YE€P or -y €pP,0+B€P,a B_l € P ., In other words, P is an
additively closed multiplicative subgroup of k and of index 2 in k.
If a-B € P then one writes o > 8 or B < o and the usual laws on
inequalities can be verified. The reader who is interested in the exi-

stence of such orderings may jump to Section 4 in Chapter XI .
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Example. Let (ko,<) be some ordered commutative field and o,8

negative elements of ko . The 4 - dimensional ko—algebra (gftﬁ) of
so - called (generalized) guaternions g = EO + Elel + £2e2 + €3e3

( Ei € ko) has the multiplication table e1e2= —e2el= e3, ei= o, e§= 8.
The assignment g F= a = go - glel -52 e, - £3e3 is an antiautomor-
phism (called "conjugation" ) . One finds that N(q) := q& = &q =

502 - aéjlz - 8522 + a8£32 . Thus N(g) £ 0 if and only if g = 0 be-

cause a, B < 0 . Therefore each nonzero g has an inverse q_l=N(qfl§
and k is a division ring. We now define hermitean forms ¢ :EXE — k
over (k, ,1). By choosing diagonal the matrix (¢(e1,eK) ) of Y

(with respect to some basis (e.)

i I) and with positive diagonal ele-

ments @(el,el) € ko = S the form turns out positive definite. If

x =1 q e isa typical vector we have Ixfl = = o(e ,e ) N(g) £ 0 iff

x =0 .

By scaling the hermitean form in the example we get new (e - her-
mitean) definite forms. There are no other skew examples by the follow-

ing

Theorem 2. Let & be hermitean over the division ring k with
involution * . Assume that k contains a ( Hilbert -) ordered division
subring (k_,<) with el < k, - If k is noncommutative and ¢ de-
finite on at least one line then k = (gﬁtﬁ) with suitable negative
arsB € ko and * is the usual conjugation., If * 1is not 1 but k
commutative and ¢ 1is definite on at least one line then k = ko(/V)

for some negative y € k and (a+b/y)* = a-b/y for all a,be€ L

It is a very easy exercise to prove the assertion in the commuta-
tive case; in the skew situation it follows from a result by Dieudonné

([7] , Lemma 1, p. 367 and [8] , Sec. 4, p.677) as we shall show.
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Lemma 2 (Dieudonné). Let (k,*) be a noncommutative involutorial

division ring with center C . Let [S] be the ring generated in k
by the subset S of * - symmetric elements. Then either [S] = k or
else char k # 2 and k = (g%rg) for suitable ao,B € C and * is

conjugation.

Remark 4. Notice that in the case of a quaternion algebra k in
characteristic 2 ( Appendix I to Chapter XVI) we have dimC S =3

and [S] = k .

Proof of Theorem 2 in the noncommutative case. There exists
vy € Jeff \ {0} . For any a € S we have

o= (v s Bvley Tt + Brr- v Hvay e - 3ydx € ol - floff - Jlof < L

Thus S < ko and therefore [S] < ko . We first show that [S] = k is
impossible. Indeed, as * is not 1 there exists A #0 with A* = -}
so |Iax| x| = —()\“x”)2 . If we had k = k_ then x| - %]l woula

be negative for all x € E thereby contradicting the assumption on de-

and * 1is con-

finiteness. Hence k 1is a quaternion algebra (aé B)
jugation by Dieudonné's Lemma. Again, since ¢ is definite on some 1li-
ne (x ) the term "qx0||= N(q)"xoﬂ may not change sign as g ran-
ges in k ; therefore o, 8 must be negative elements of C N ko .
Since k_ contains N(q) for all g € k ( k_ contains N(q)”xou

2
and is a division ring) it contains in particular C = C - 02 . On the

other hand, ko cannot properly contain C : We have seen that k $ kO
so assume that [ko :C] = 2, say kO = C(q) . The discriminant of the
quadratic equation X2 - (q-+a )X + N(q) = 0 (over C ) for the ele-
ment ¢ is the square of the "pure" quaternion g = a , hence equal to
an invariably negative element 6 = o Ef + B E; - oB Ef . Hence

ko =Cc(/6) cannot be ordered. Thus we have proved that ko =C .

This finishes our proof.
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Let (k,*,e¢) be as in Definition 7 and ¢ : E x E — k an

€ ~ hermitean form. If there is an orthogonal decomposition
(20) E = E, & E

such that the restriction of & to E+ X E+ is positive definite and

the restriction to E_ x E_ 1is negative definite then the pair

1
(dim E+, dim E_) is uniquely determined. Indeed, if E = F+ ®F_ is a
second decomposition of the same kind and, say, dim F+ + dim E+ ; €.9.

dim F_>dim E_, then F, N E_ % (0) which is absurd. This uniqueness

is known as Sylvester's law of inertia. The spaces E+ » E_ in (20) are

by no means unique.-

Remark 5. The concept of positive form in the sense of Defini-
tion 7 has its legitimation by the positive symmetric forms. In Appen-
dix 1 we present a different kind of order structure which seems parti-

cularly appropriate for the study of forms over noncommutative fields.

4. Dense subspaces

In this section (E,?) is an e - hermitean space. The map ~  which
assigns to each linear subspace X © E its biorthogonal, X X := Xll,
satisfies all the axioms of a so - called closure operation: (i) X © X,

(i1) X = X, (iii) if X S Y then X € ¥ . Hence

Definition 8. A subspace X of a sesquilinear space E is

called 1 - closed ("orthogonally closed") iff X = x*tt ; a subspace Y

is called i1 -dense iff its 1-closure is all of E , Yyt = g (in par-

ticular if E is nondegenerate then Y is i - dense iff Y' = (0) ).

In Section 8 below we shall define a topology o¢(®) that can be
introduced on any sesquilinear space (E,®) and such that xtt is the

closure, in this topology, of the linear subspace X . Here we show
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that each infinite dimensional (E,?) contains proper subspaces that

are 1 - dense.

Lemma 3. Assume that (E,%) is nondegenerate and of infinite di~

mension. Then there are 1 - dense subspaces Y © E with dim E/Y=dimE.

Proof. Assume that we are given an infinite dimensional subspace
F CE with the property that F ¢ B for all hyperplanes H of F .
It follows that the map which assigns to each x € E the linear map
f = ®(f,x) , defined on F , is an epimorphism of E onto F* :=Homk(F.k).

The kernel is F' , thus we obtain dim E/F'= dim F* ; a fortiori

dim E 2 dim F* = (card k)dlm Fsaimr . Therefore, if we pick a sub-
space F € E with dim E = dim F then F must contain a hyperplane

1t . . 1 1 .
H such that H <€ F ©H :+ in particular H™ = F~ . Now we can descri-
be how to find t~dense Y © E of large codimension. Since dim E is
infinite, we may in manv ways decompose E into a direct sum E =
EB{F1|1€I} such that card I = dim E = dim F, for all 1 € T .

1

There are hyperplanes H, © F  with Hf =F .Set Y :=@ {H1[1 € 1}.

We find dimE/Y=f1=dimE and Y = NH'=NF'=(aF ' =£' = (01 .
I AL Tt

5. Finite dimensional subspaces

In this section (E,®) is a nondegenerate € - hermitean space. We
establish a small number of very basic facts used extensively but tacit-
ly throughout the rest of the book. The first observation is

If X CE has finite dim X then E = X @& X* if and only
(21)

if X 1is nondegenerate.
Indeed, if there is such a decomposition then rad X © rad E = (0) by
the nondegeneracy of E . Assume conversely that €yreeer®y is a basis

of the nondegenerate X . This means that the homogeneous system of n



21

n

equations Zlgj_ei 1 ej (j=1,...,n) has only the trivial solution
i=

(gl,...,En ) = (0,...,0) . Hence for fixed 2z € E we can always solve

the n inhomogeneous equations z - I Eiei 1 ej (j=1,...,n) for

1
the unknowns El,..., En . Therefore E CX + X .

If rl,..., T, is an orthogonal family of linearly inde-
(22) pendent isotropic vectors in E there exists an orthogonal

family yl,..., Y, in E with @(ri,yj) = 6ij (Kronecker) .

Indeed, if n =1 this is obvious by nondegeneracy of E . Upon induc-

tion assumption we find mutually orthogonal € E such

Xy veeor X g

that @(ri,xj) = sij , 1 £ i, £ n-1 . Hence the plane Pi spanned by

: L p s - 1 1

ri ,xi is nondegenerate and Pi 1 Pj (i #j) . Hence X : lPle...e Pn_l
n-

qualifies for (21) : E = X @ x* . The vector r :=r - I &(r (X)) T,
n i=1 n 1 1

is in x* ;i r is isotropic and xt nondegenerate, thus there is

i . - . =
Y, € X with @(r,yn) 1 ; therefore @(rn,yn) 1 and r; Ly, for

i=1,...,n-1 . Again by (21) E = Pn @ Pﬁl and once more we apply the

. . . 1 . 1
induction assumption to rl ,...,rn_l € Pn to find Yl ,...,yn_l EPn.

The family (y.)

i’1<i<n has the requisite properties.

Combining (21) and (22) we obtain the

Lemma 4. Let Z be a finite dimensional subspace in the nondege-

nerate ¢ - hermitean space (E,%) . If r is a fixed basis of

precer Iy

rad Z and Zo a fixed supplement of rad Z in Z then there exist

1 . -
mutually orthogonal vectors Yyreeer Yo € Zo with ¢(ri,yj) = Gij
(Kronecker) , 1 € i,j € m . Thus there is a decomposition

_ 1 I 1 4
(23) E = k(rl,yl) & ... b k(rmrym) (3] ZO ® EO .

Indeed, E = Zo ) Zal by (21) as Zo is nondegenerate; then we can

. 1
apply (22) to Tyreeey r, in ZO .
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From (23) we read off:

If E is nondegenerate and 2 © E is finite dimensional
(24) then dim E/ zt = dim 2 (if E is degenerate we have

dim E/ z* < dim 2 .

Let Z be the span of the linearly independent vectors

(25) zl ,...,zn € E ( E nondegenerate) and al ,...,un €k .
There exists z € E with @(z,zi) =0y for 1 £ 1 £n .
Proof of (25). It suffices to prove the assertion for arbitrarily

fixed basis of 2 and arbitrary oy . Use (23).

Remark 6. If we deal with trace - valued forms then by Lemma 1 in
Section I.2 we can choose the vectors Y, in (22) and (23) to be iso-
tropic. Thus a finite dimensional nondegenerate alternate space is an

orthogonal sum of hyperbolic planes (choose n maximal in (22) ).

Lemma 5. Let F be an arbitrary subspace in the nondegenerate
space (E,%) . There exists a nondegenerate subspace G € E with F © G

and dim G/ F € dim rad F .

Proof. Let (r1)1€ T be a basis of R :=rad F . If I is fini-

te let G =F & k(yi)iE I where the y; are as in (23). If I 1is in-
finite let J be the set of all finite sets of vectors o card J =

card I = dim R . Let W be a supplement of R' in E . By (22) we

find for each $§ = {rll""’rlm} €J aset T(S) = {y11""’Y1m} cw
such that @(rli,ylj) = 6ij . Let H be the span of the set
U{T(S) | S€J}. We have H €W and dim H<dim R.Because WNR"= (0)

it is easy to verify that F @ H is nondegenerate.



23

6. Closed subspaces

In this section (E,®) 1is an € - hermitean space. By making use of
the isomorphism theorem A+B/A = A/ANB for subspaces A,B CE

we obtain some basic facts about i - closed spaces.

Let UCV CE be subspaces with dim V/U < «» , Pick a supple-
ment X of U in V . We have U'/v*=vu'/ (w+x)t =vu'/vtnxt =
ut+ XJ'/XJ' CE/ XL . In particular dim UJ'/V'L < dim E/XJ' . Hence by
(24) dim UJ'/V"' € dim X = dim V/ U <« and the argument may be repea-

ted with v' c UL C E . Threefold repetition yields

11

(26) Qim (v+uth) suttcdim vt /ot = @imut/vt s @aimv/U .

Lemma 6. If UCVCE (E degenerate or not) and dimV/U < o
then (26) holds. In particular, if U is 1~ closed then V is 1 - closed

and dim ut/v' = dimv/U .

Indeed, if U = UJ"l then we have equality throughout in (26). If

we assume E nondegenerate then U = (0) is 1 - closed, hence

Corollary 1. All finite dimensional subspaces in a nondegenerate

space are .- closed.

Corollary 2. If (E,%) is nondegenerate then the following are

11

equivalent: (i) dim E is finite, (ii) X = X for all X CE ,
(iii) if XS E & X $ E then X' $ (0) .
Proof. (i) => (ii) by Corollary 1 ; (ii) => (iii) is trivial ;

(iii) => (i) by Lemma 3.

Corollary 3. If (E,9) is degenerate and F is finite dimen-

sional then Fll =F + rad E .
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Proof. E* = rad E is closed, so F + rad E is closed by Lemma 6

. 1L . . . ,
and thus contains F . The converse inclusion is obvious.

Lemma 7. Let (E,®) be an ¢ - hermitean space (degenerate or not)

with the property that for all subspaces X we have
(27) dim E/x* g dim X

(this always takes place if E can be decomposed into a direct ortho-
gonal sum of finite dimensional subspaces). Then for all subspaces
UCVCE we have (26). Thus, if E 1is nondegenerate we see (choose
U = (0) ) that dim V = dim v** for all V € E ; a fortiori dim W =

dim E for all i1 - dense subspaces.

Example. We shall give an illustration concerning (27). Let k
be an uncountable commutative field and a , b cardinals with
&o £a < b <card k . Let V,W be k-vector spaces, dimV = a ,
dim W = b . Select subsets I ,J Sk such that card I =a,card J =b,

(w ) be ba-

1+ K + 0 for all 1€I , xk€J . Let then (v1)1€ T’ Jeeg

ses of V and W respectively. We now consider symmetric bilinear
forms & on V@ W which have @(Vl,WK) = @(wK,vl) = (1'FK)-1 . If
v =1Z Alvl € V has precisely m nonzero coefficients Al then, if
vV o1 wK for at least m different «€J , it follows that v = 0 . This
simply obtains from the fact that any nxn determinant

det(——l——) = T (1.-1.) T (x,-x.) 1 (1.+|<.)_1

LitKy i<y i 3 i<y i3 4,3 13

is nonzero for different Tqreeerly and different Kpreeerky o In par-
ticular, v N w' = (0) and, symmetrically, W0 vt = (0) . If we assume

(w )

g is orthogonal, then we

that at least one of the bases (vl)

I I
can verify that (Ve@W, &) is nondegenerate. Thus we may in particu-

o
lar choose V and W totally isotropic for ¢ , E = V@ W.
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We then have V'=V,W'=W . Therefore dimE/V'>dimV , dimE/W’ < dimW.
This illustrates that we can find in the same nondegenerate space (E,?)
all three cases dim E/ xt E dim X (on the other hand, (27) may actual-
ly hold in spaces which are very far from admitting orthogonal bases;
we refer to Example 2 in the next chapter). For a further example see
the space (FéE* ,®) defined in Remark 9 of Section 8 below.

If VCE is t-dense and F ©€ E finite dimensional then
(28) L1

(VAF")" =F .
Indeed, since dim V/VN F' = dim V+F"'/FL < dim E/F'L =dim F < » we
may quote Lemma 6 and obtain dim (V(]Fl)l/vi'§ dim F , i.e.
dim (VAF')™* < dim F since V' = (0) . Since F c (VAFY)* we have

equality as asserted.

We now turn to a lemma of eminent utility for geometric construc-
tions. The following situation often occurs. Given n 1linearly indepen-
dent vectors f1 ,...,fn in a space E and scalars al ,...,an € k
one should find a vector x inside some prescribed subspace V C E

such that we have

(29) o(x ’fi ) = oy (i=21,...,n) .

By (25) we know that there always exist x € E which satisfy (29); the

problem is to pick x in V . We have

Lemma 8 ([22] , Lemma 5, p. 12). Let F be the span of linearly
independent vectors fl,..., fn in the nondegenerate ¢- hermitean space
(E,?) . Let V be a subspace of E . In order that for arbitrarily
prescribed Op reeer € k there exists x € V with (29) it is neces-

sary and sufficient that vinFE = (0) .
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Proof. Suppose (29) holds for x €V and randomly given O rever O e
A nonzero vector 4 = I Bifi € VINF would yield a nontrivial relation
. Hence we must have VLFIF = (0) . If this is as-

d(x,d) = 0=2ZL a,8

*
i7i
sumed then V+F* is 1 -dense; but V+F' modulo the closed F' is fi-
nite dimensional by (24), hence v+F' is also i-closed by Lemma 6.
Therefore V+F' = E.Pick some x in E which has (29) and decompose,

f =v+f' with ve€ v, f' ¢ F' . The vector v responds to the problem.

We finish this section with a lemma on it - closed supplements. Its
proof uses a technique which is of independent interest. We first for-

mulate our assertion.

Lemma 9 ( [32] ). Let (5,5) be an € - hermitean space which admits
an orthogonal basis, E a subspace and both ? and ¢ := EIEX g non-
degenerate forms. Let E = F@ G be a given decomposition of E . Then
there exists a decomposition E = FOQ(S with Fo c rptt (the biortho-

1B
gonal in (E,%) ) and F0 NE = Fo .

Corollary. Let (E,®) be a nondegenerate e - hermitean space
which possesses an orthogonal basis. If the subspace G © E admits a
totally isotropic supplement it admits a totally isotropic i - closed

supplement.

Indeed, if F is totally isotropic in Lemma 9 then so is Ft

and hence Fo as well.
In order to prove Lemma 9 we first establish another lemma.

Lemma 10 ( [32] ). Let H be a linear subspace of E and (61)16 J

a fixed basis of E . With x € E associate the finite set M(x) =
{1ed] £ $ 0 in the representation x =1I E e, }. Then H possesses
J
i h
a basis (hK)KE T such that for all k€I we have M( K) ¢
u M(h1) | 1€ 1 ik} } .
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Proof (Lemma 10). Adjoin a new index , to the index set J ,
Jg :=J U {,} and wellorder Je such that , 1is the first element.
Define a map y : E — Jb as follows: with each nonzero x € H asso-
ciate the largest index in M(x) ; furthermore u(0) = , and, if

x § H and M(x)Nu(H) $# @ , then let u(x) be the largest index in

M(x) Nu(H) , otherwise (i.e. if M(x)Nu(H) = @ ) let u(x) = , .

We first observe that for each X € E there is x' € E with

x' £ x (mod H) and up(x') = , . If u(x) = , we may of course choose
x' = x ; if u(x) $ , then there is ' € H with p(x) = u(yl) . We
can determine a scalar Al such that u{x) ¢ M(x-—Alyl) ; i.e. we

shall have u(x-—klyl) < u{x) . The step may be repeated. Since there
are no infinite descending sequences in Jo we arrive at

uix - Alyl— cee — Anyn) = , after a finite number of steps.

Next we show: for each k € y(H) and « + o there is 2z € H with

L]

u(z) = k and M(z) N {1 € u(H) ] 1 <k} =@ . Indeed, H_ {y€H|uly) <k}

is a linear subspace of H . Let 2z' € H with u(z')

K . By what we
have just proved there is z €H with z=2z' (mod HK) and M(z) nu(HK)= @,
and we have u(z) = u(z') =k . For each k € T := u(H) \{,} define

A = {y €H|uly) =, 1¢M(y) for all 1€ u(H) and 1<K}.AK#¢

by what we have shown. Pick one hK from each AK to obtain the fami-

ly (hK)KE T There remains to show that (hK)KG ; isa basis of H .

It is obvious that (hK) is linearly independent since each

k€I

hK has some e1 in its representation hK =1z Eme1 which does not
o

show up in the representations of all the other h1 . Let then Ho be

the span of (h ) , H ©H . For x € H there exists x' € H with
K'k€l [¢]

X' = x (mod Ho) and M(x')l]u(Ho) =@ . If we had x' + 0 then

u({x') € M(x') and thus M(x')flu(Ho) = M{x") N u(H) + ¢ , contradiction.

Thus x' =0 , i.e. x € H0 . This establishes Lemma 10.
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Proof (Lemma 9). Here we let (e1)1€.3 be an orthogonal basis of
E , (fK)KE K a basis of F and H := Fllf1G . We choose a basis
(hI)IE T of the kind constructed in the previous proof: u(hl) =1,
u(HEA{0}) =T cJT, v ¢ M(hl) for all v €I and v % 1 . We now set

f':=f -3 A h with A determined such that &(e ,f') = 0 for
K K 1K 1 1K v K

all v€I (this is possible since ¢(ev,fK) $+ 0 for finitely many v

Ly
only). Let F0 be the span of the fg . We have E = Foe(s, FO CF .

L1=1=
There remains the assertion on Fo EEqng

1=1= L 1= 1=1l= L1l=
Wehave F cFEEQNE ,Fr cr E,6 so P EEcp E,
[o] o) [o] [¢] [o]
L=1= LL= 14 11 1=1=

F EEnEgcF EnE=F <cF .Let x€F EE NE but assume
[o] [o] (o] o)

x ¢ F_ . Decompose x =y +z,y €F ,2€G, z +0.as z € H.\{0}
we have u(z) = 10 € I (for some 10 ) , i.e. 5(e10,z) + 0 . On the

other hand, a(elo,f = 0 for all k€K (by construction of the fg).

')

K
1=1= =1

Thus z ¢ FoE E .| A fortiori z ¢ FOE E N E contradicting the choice

1=1
of x . Therefore 2z =0, i.e. Fo EEneE = Fo as asserted.

7. Isometries between sesquilinear spaces

et ¢ : EX E — k , 3 : Ex E— k be e-hermitean forms over
(k,*,e) . The spaces (E,?%) and (E,a) are called isometric iff there
is a k- linear bijection ¢ : E — E satisfying 5(mx,¢y) = ¢(x,y)
for all x,y € E; ¢ is called an isometry. If it is clear from the
context what the forms are we may simply say that E and E are iso-
metric (notation E =E ). If E = E we also say that the two spaces
are of the same isometry type or that they belong to the same isometry

class.

Consider a family F = (f1) of linearly independent vectors

1€1
be an analogous object in E . On says

in E and let F = (f1)1€ 1

that F and F are congruent if

(30) <I>(f1 ,fK) = <I>(f1 ,fK) (1,k €1 ) .
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If we let F and F be the linear spans of F and F , @o , 50
the restrictions to F x F and F x F of ¢ and 3 respectively,
then it is obvious that the assignment f1 — fl induces an isometry
of the spaces (F,¢o) , (F,Eo) . Conversely, each isometry between ses-

quilinear spaces maps the bases of one space onto congruent bases of

the other.

The isometries ¢ : E-— E of (E,?) onto itself form a group

under composition, called the orthogonal group of the sesquilinear

space (E,®) . A collection of objects that characterizes the orbit of
a subspace F (in the set of subspaces of E ) under the the action of

the orthogonal group is called a complete set of orthogonal invariants

of F ; these invariants determine the position of F inside E wup to

isometric automorphisms of E .

Remark 7. There is an enormous literature on the orthogonal groups
in the finite dimensional case. As a first orientation the reader may
consult [9] , [33] . There is a zoology of groups that runs parallel to
that of forms (symplectic groups, unitary groups, ... ); for lack of
results in the infinite dimensional case we do not need it here. (In-
vestigations into the infinite dimensional case are e.g. [18],([19],[31],

[36] ; the matter will not be pursued in this book.)

The most fundamental theorem in the theory of finite dimensional
sesquilinear forms is Witt's theorem. It will frequently be used in

subsequent chapters. In order to state it we introduce

Definition 9. Let (E,%) be an ¢ -hermitean form over (k,*,¢c)
and T ={ £+e&*| £€k } the additive subgroup of traces in k . The
linear subspace E, := { x € E| ¢(x,x) € T } is called the trace - va-

lued part of E .
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Lemma 11. Each element ¢ of the orthogonal group of the nonde-

L
generate space (E,?%) leaves E, pointwise fixed.

Proof. ¢ maps E, onto E, hence E:' onto E:' . Let z¢ E:
and x € E . As ¢x - x invariably belongs to E, we have
0 = d(pz,px-x) = ¢(2,x) - d(pz,x) = ¢(z-92,x) ,i.e. z-pz€radE= (0).

Theorem 3 ("Witt"). Let (E,®) be a nondegenerate ¢ - hermitean
space. An isometry Pyt F — F between finite dimensional subspaces
F,F C E can be extended to an element of the orthogonal group of

(E,9) if and only if the following condition is satisfied

FNE,=Fn E:’ and ¢, F— F leaves

(31) N
F N E, pointwise fixed.
Corollary ("Cancellation Theorem"). Let (E,®) be a nondegenera-
te ¢ - hermitean space. If E is decomposed, E = F & F'L =G GL with

F, G finite dimensional isometric subspaces of E, , then FL =gt .

The proof of Theorem 3 is given in Chapter XV where the topic is

treated in a broader context. Here we shall make a few comments.

First, if forms are assumed trace - valued, i.e. E = E, , then (31)
is vacuous and the assertion of the theorem is classical. (Generalizing
away from finite dimensional E as long as dim F is kept finite is a

triviality in the trace - valued situation.)

Second, if forms are not trace - valued the result appears in [35].
The special case where dim E/E, = 1 is assumed had been treated in-
dependently in [34] and by the author. For further details, e.g. when

F € E, 1is assumed, see Chapter XV .

Third, in the case of trace - valued spaces Theorem 3 and its cor-

lary are equivalent statements. In fact, Lemma 4 in Section 5 immediately
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reduces the extension problem to the cancellation problem. This is not

so in the general case.

Forth, the above corollary on cancellation is identical with Kap-
lansky's Lemma 2 in [22] ; his (purely computational) proof is that
fast that we believe every student of the field should know it. It runs
as follows (cf. [23] pp. 34-38): Choose congruent bases in F and G
and join them with bases of F* and G' in order to obtain two bases

of E . We get two matrices M,N of ¢ which split, M:=[§ g} ,N==[8 g}

and which are congruent under some matrix P , P°MP N , where

P° := tr(M*) . Split P into the same size blocks, P = [3 §

0.,

] and ex-

pand P°MP to get W°AW + Y°BY = A , WAX + Y°B1Z

X®AW + Z°BY =0 , X°AX + Z°BZ = C . For arbitrary U (same size as

A ) one then checks the identity:

(2° + X°U°Y°) B (2 + YUX) = C + X°RX

where R := U°AU - (U°W° + 1) A (WU + 1) .

The problem is to find U such that R =0 (for then B and C will
be congruent, i.e. Ft = ¢t ). Now it is obvious (by an induction argu-

ment) that the corollary has to be proved only when F cannot be fur-

ther (orthogonally) decomposed into proper subspaces. In other words,

A is 1 by 1l or else A is [2 é] and (k,*,e) = (k,1,-1) and thus
k commutative. If A is 1 by 1 and not W =1 = -1 then one of the
equations WU + 1 = + U can be solved for U and R is zero; if, on
the other hand, W =1 = -1 then R = U°A + AU + A and this can be

made zero by the very assumption on trace - valuedness of the subspace F.
In the 2 by 2 case left we may first dismiss the possibility of alter-
nate E , for then Fh =gt simply by equality of dimensions (Remark 6

in Section 5). Thus we are left with <char k¥ = 2 . We first note that

L°AL = A for any 2 by 2 matrix L with determinant 1 . We can get



32

R =0 by solving LU = WU + 1 for U ; and solution is impossible

only when W + L 1is singular for every such L . But there is always

10 11 10 01 11 01
L among [0 l]' [0 l]' [1 l]’ [1 0] ’{l 0) '[l l] to make W + L non-

singular.

Fifth, there do exist infinite dimensional trace - valued spaces
such that the cancellation theorem holds for arbitrary dimension of F;
i.e. cancellation is possible (unconditionally) just as in the finite
dimensional case. These are the "generic" spaces in [18] ; the cancella-

tion property is verified in ([40] .

Example. Let k be commutative and of characteristic 2 and
 =(lys(l)e(l) . Thus, if €, reyr ey is an orthonormal basis we
can introduce the new basis el+e2+e3 ,el+e2 ,el+e3 to get an iso-
metry (l)é';(l)é'é(l) e (l)éH » H a hyperbolic plane. The assignment

. 1 .
wo : el — el-he2-+e3 violates (31) because E, contains el-Fe2-+e3

but not el . Hence there is no extension of qg and, in particular, no

cancellation.

We finish this section with a concept closely related to that of

isometry:

Definition 10. Let (E,®) and (E,3) be sesquilinear spaces
over division rings k and k . The two spaces are called similar iff
there exists an isomorphism «k : k — k of division rings and a k - se-
milinear bijection ¢ : E — E and some fixed nonzero o € k ("multi-
plyer for ¢ ") such that for all x,y €E wehave 5(CPX,CPy) = @(x,y)K' o3

¢ 1is called similitude.

If (E,%) and (5,5) are similar, then each similitude ¢ : E—E
induces a bijection $ between the sets L(E) , L(E) of linear sub-

spaces in E and E respectively; in fact, $ is a lattice isomorphism
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because it obviously respects the operations sum and intersection. Fur-
thermore, ¢ respects the orthogonality relations 1t given on L(E),
L(E) by ¢ and 3 . However, interest is directed in the opposite di-
rection: 1If, for any nondegenerate (E,?¢) ,(5,5) of dimensions at
least 3 over division rings k and k , there exists an "ortho - iso-
morphism" ¢ between the lattices L(E) , L(E} then ¢ must be in-
duced by a similitude ¢ , in particular, (E,?) and (E,@) are simi-
lar. This follows easily from the First Fundamental Theorem of Projec-

tive Geometry ( [2] , p. 44 ). For the discussion of a related consequence

of the Fundamental Theorem see Theorem 1 in [15] .

Remark 8. It is not difficult to arrive at the appropriate ver-
sion of Theorem 3 for similitudes. Let (E,%) and (5,5) be nondege-
nerate sesquilinear spaces over k and k respectively. If Pq :F — F
is a similitude relative to a fixed isomorphism «k : k — k and with
multiplyer o between finite dimensional subspaces F C E ,E C E then
there exists an extension ¢ : E — E of ?, that is a similitude re-
lative to k and with multiplyer o if and only if the following are
satisfied: There exists at least one similitude ¢ : E — E relative
to k and with multiplyer o and F N E*' = (w_lf ) N E** and ?q
coincides with ¢ on F N E* (Apply Theorem 3 to the isometry

Voo, t T WTEE) )

8. The weak linear topology o(é) on (E,¢)

Let K be a topological division ring and E a K- vector space.
A topology t on E is called a vector space topology if the two com-
position laws (x,y) M x+vy , {(\,X) — AX from E x E and K x E
into E are continuous ( E x E and K x E carrying the product topo-
logies). Since then, for fixed b € E , the map x > b+x is a homeo-

morphism of E into itself we obtain a neighbourhood basis for b
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simply by translating a neighbourhood basis ®8(0) of the origin to

b+8(0) ={b+U|UES™BO)} .

The only vector space topologies which we shall consider here are
linear vector space topologies in the sense of Lefschetz ([27], Chap.II,

§ 25). This means the following additional features:

1. The division ring carries the discrete topology.

2. There is a neighbourhood filter consisting of linear subspaces.

We shall not by definition require that linear topologies be hausdorff.
Thus, if 98 = { Uu| a € A} is any filter basis consisting of linear
subspaces in E we gain a linear topology T on E by declaring

b + 8 to be a neighbourhood basis ®8(b) of b € E . This topology is
hausdorff iff N Ua = (0) . Each neighbourhocod b + U of b € E is
both open and closed; hence if 1 is hausdorff then E is totally
disconnected. Finite dimensional (E,t) are discrete if hausdorff;
thus the concept is of interest only in the infinite dimensional case.

A linear vector space topology T 1is induced - as is every topology
of a topological group - by a uniform structure on E , a basis

{Noa la €A} for a uniformity being given by N, = {(x,y) €EXE|x-y€ Ua} .

Thus it will make sense to talk about Cauchy filters, completions etc.

Let us look for a linear topology T on sesquilinear spaces (E,9)
that makes & separately continuous, i.e. makes continuous, for all
y € E , the maps x — o(x,y) , x> &(y,x) . Let y be fixed. Since
$(0,y) = 0 and {0} 1is a 0-neighbourhood of 0 € k there must be a
0 - neighbourhood U of 0 € E with o(U,y) © {0} , i.e. UCcy' .
Hence we see that the neighbourhood filter $(0) for <t must contain
at least all orthogonals yl (y €E) if T 1is to render ¢ sepa-

rately continuous. But 1T 1is separately continuous if we let
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{y*|y € E} be a subbasis for $(0) . Hence, the T thus defined is

the coarsest such topology.

Definition 11. Let (E,%) be an ¢ -hermitean space (degenerate
or not). The linear topology on E which has all linear subspaces y'L
(y € E) as a subbasis of a neighbourhood filter of 0 € E (equiva-
lently: which has all orthogonals Ft , where F runs through the fi-
nite dimensional subspaces of E , as a 0 -neighbourhood basis) is
called the weak linear topology o¢(¢) associated with (E,%) . Thus,

o{®) 1is hausdorff if and only if & is nondegenerate.

The first observation of interest is

(32) The o(%) - closure of a linear subspace X C E is xtt .

Proof. Let X be the o(8) -closure of X . We have X 1 X by

c 1L

separate continuity. Conversely, to see that x'tcX let =z X and

L

F be a typical (%) - neighbourhood. For f_ ,..., fn a basis of a

1

supplement Fo of X*NF in F we let a; = @(z,fi) ;, 1 £1i<n.

Trivially XlI]FO = (0) so, by Lemma 8, there is x, € X with

1
®(x,,£.) = a, . In other words, z-x, € F ! | Because z 1X' and x., 1 X'
1°71 i 1 o 1
we have in fact that z - X € ¥t . Therefore (z-FFl) nx + $ ; z is

an accumulation point of F .

If YCE is a subspace and f : Y — k a o0(%) - continuous li-
near function into (the discrete) k then the kernel X = ker f is
0 - closed. Assume that £ is not identically zero, thus Y = X @& (y) ,
f(y) = 1 . There exists 1z € x* \ylf, say ¢(y,z) =1 . We see that the
map X k» ®(x,z) is o(9) - continuous on E and extends f to all of E.
What we have seen can also be put as follows: if X 1is a 1-closed
subspace of E and y ¢ X then there exists a - closed hyperplane H

.L)'

with X C€H and y ¢ H (namely =z Finally, this can also be



36

expressed as follows
(33) If F=F"CE then F=nN{HE|H'™ =H> F & dim E/H=11}

We see that the injection E — E* = Homk(E,k) which sends a vector y
into the linear map x — &¢(x,y) 1is onto the supspace E'<C E* con-

sisting of all ¢ (%) - continuous functionals on E .
The next observation of interest is
(34) If ¢ is nondegenerate and (E,c(®)) complete then dimE <« .

Proof. Endow the algebraic dual E* = Homk(E,k) =Tk (card I =
I
dim E ) with the product topology w of the discrete topology on k .
Consider the mapping ¢ : E — E* defined by x + &¢(.,X) = (<I>(e1,x))1EI

where (el) is some fixed basis of E . ¢ 1s injective because

1€T
® 1is nondegenerate. From the definition of the topologies it is imme-
diate that ¢ is homeomorphic onto the image; ¢ is in fact a dense

embedding (for, density is here tantamount to Lemma 8). Hence E = E¥*

if E 1is complete.

Remark 9. It may very well happen that (E,®) contains an infi-
nite dimensional subspace which is complete under the topology induced
by o(@) . Let us give an example. The algebraic dual F* of a k-left
vector space may be turned into a left k - space by means of an involu-
tion v : k — k of the underlying division ring k (cf. Sec. 1.1).
Hence we may form the direct sum E = F @ F* and define a hermitean

form. & on E by
P(E+f' ,g+g') := g'(f) + v(E'(9))

for all f£,g € F and £f',g'€ F* . Here the subspace F* 1is complete
under the topology o¢(¢) restricted to F* (cf. [26], § 10.10); this

is not difficult to verify.
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We always have o(9] ) € o(@)IH for H a subspace of (E,®) .

Hx H

(Strict inequality is witnessed by H = F* in the above example (Re-

mark 9).) Equality holds only when trivially so:

(35) o (o] 0(9)], if and only if H + H' = E .

H><H)

Proof. We begin by noting that the assertion can be reduced to
the case of nondegenerate & . Hence o(®) is hausdorff and so is
c(@)[H . If we assume equality of the two topologies on H then

) is hausdorff and thus @] nondegenerate, HNH' = (0) .

olely, g HxH
Let E = Hg@ G for some supplement G with H' € ¢ . We show that

G € H' . Let g € G and consider glrlH which is, of course, 0(<I>)|H -
closed and thus o(®|, . ) -closed: there must be h € H with h'nH-=
glf]H . Hence H' contains a suitable linear combination a«h + g . If
g were not in H' then a ¥ 0 and he€nt+G = ¢ , thus héGcnH= (0),

contradiction. Hence G < H' and E = H + H' .

Lemma 12. Let V, V be subspaces in the nondegenerate sesquili-
near space (E,®) . If there is an isometry ¢ : V =V which is a ho-
meomorphism with respect to the topologies a(¢)|v and 0(®)|§ then

we have dim (rad V) /(v+v') = dim (rad V)%/(T+%%).

Proof. We first show that dim E/V-kvl = dim E/Gi—Gl . Let

(v) be a basis of V and v_ := 9ov_ . A minimal family (e )

Tt 1€l 1 1 K'k €K
of vectors in E \(VWPVL) such that the v{‘n V and the eélﬂ v
(1€I, €K ) add up to a subbasis of the zero - neighbourhood filter
of o(@)]V is a basis of a supplement of v+v' in E . ¢ maps all

e;' NV into a system S of U(@)[G-open neighbourhoods which, to-

gether with all G{Ln V form a subbasis for the zero — neighbourhood

filter of 0(®)l§ . Since the elements of S are c(¢)|§-closed hyper-

planes of V they must be of the form x: nv .
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As S is minimal all these vectors x1 span a supplement of Vvt
in E . Hence dim E/(V*—Vl) = dim E/(G+—§*) . Now we can arrange it so
that certain among the e . span a supplement of v+v' in (rad V)l .
Since ¢ 1is an isometry we shall have rad V © e:'ﬂ V if and only if
rad V c xﬁ'ﬂ vV i.e. x1€ (rad G)l . Thus e — X, maps a supplement
of Vv+Vv' in (rad v)' into a supplement of V+V' in (rad V)% .

Hence the assertion.

Corollary. The existence of a ¢ as in Lemma 12 implies that for
closed V , the dimensions of quotient spaces of neighbouring elements
in the lattice generated by V wunder the operations + ,0, 1 (taking

the orthogonal)

(rad V)l
v+vt
vit o v vt
L
rad V = rad (V")

(0)

coincide with the corresponding cardinals for v except, of course,

for dim Vl/rad(vl).

Lemma 12 is the natural background for Allenspach's Theorem 4 in

Section 5 of Chapter X.

Remark 10. It is a little hard for the beginner to visualize the
linear topology o(®) . Nevertheless, since topology is such a sugge-
stive language, it sometimes helps to find and to motivate proofs if
104 is remembered as the closure of the topology. Here is a simple
example of what we mean. Let F, G, H be t-closed subspaces in a non-

degenerate space (E,®) with F ©€ H and such that GJ'+HJ' =F .
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We assert: if G+H 1is r-closed then F+G 1is 1 -closed. A proof for
this can be figured out but it will hardly be straight forward. Provi-
ded one knows that "gt+H'=E" simply means that °(¢)|G-+H is the
product topology of c(@)]G and c(@)|H (Theorem 2 in Chapter X) then
the proof of the assertion becomes natural and easy. Similar remarks

could be made on other occasions. Section 7 of Chapter X is a good ex-

ample of a topologically motivated deduction of algebraic results.

9. Orthostable lattices of subspaces

An abstract lattice is a partially ordered set (V,£) such that

each set {a,bl ©€ V possesses a least upper bound (supremum) ¢ and

a largest lower bound (infimum) d (standard notation ¢ = a Vb ,

d =a Ab ). Example 1. V is the set L(E) of all linear subspaces
of a vector space E and £ on UV 1is <€ ; it follows that XVY=X+Y
and XAY = XNY for all X,Y € L(E) . Example 2. V is the set
L;;(E) of all 1 - closed subspaces of a nondegenerate sesquilinear
space (E,?) and £ on V is again £ ; it follows that here XVY =
(X+Y )LL and XAY = XNY . Most of the lattices of interest to us
are complete which means that arbitrary sets of lattice elements pos-

sess suprema and infima (this is the case in the two examples above).

A lattice is called modular if it satisfies the

modular law: a

IA
aQ

=> f(aVvb) Ac=aVv (bac) ;

it is called distributive if it satisfies the stronger

distributive identities: (avb) A (aVve) aVv (bac) ,

(aAb) V (aAc) =a A (bVve) .

(Actually, the two distributive identities are equivalent in any lat-
tice, if one holds for all terns a, b, c then so does the other. This

does not mean that they are equivalent for fixed elements a,b,c .)
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Both of the above lattices L(E) and LLL(E) fail to be distributive

(unless, of course, dim E =1 ). L(E) 1is modular; on the other hand,
Lll(E) is modular if and only if dim E is finite by the Theorem of
H.A. Keller ([12], [25]1).1In a lattice which fails to be modular the

concept of a modular pair is of interest. This topic is taken up in

Section 3 of Chapter X.

Definition 12. The lattices (V,g) and (V,é) are isomorphic,

and the map ¢ : V — V is an isomorphism, if ¢ is a bijection such

IA

that x €y in V iff ¢x € oy in V . The lattices (V,s) , (V,s

are antiisomorphic (or dually isomorphic), and T : V-—V is an anti-

isomorphism (or dual isomorphism), if <1 1is a bijection such that

X y in V iff 1ty € tx in V ; if in particular (V,s) = (V,2)

[T

and T is an antiisomorphism with t2 = identity then 1 1is called

polarity.

The assignment X — x* is a polarity in the lattice L;;(E) of
Example 2 . If the space is anisotropic, then this polarity is a so -
called orthocomplementation in the lattice. We shall make no use of

this particular kind of polarity.

If (E,®) is a sesquilinear space then X Xx* is an antitone
mapping 1 : L{(E) — L(E) . We shall be interested in the sublattice

of subspaces

V of L(E) orthostably generated by a family (V1)1€ I
of E . By this we mean the smallest sublattice V of L(E) that con-
tains V1 for all 1€I and which contains along with each element X

its orthogonal X' . Sometimes it is convenient to formally require

that the spaces (0) and E are elements of V also.

In the case where (E,%) is finite dimensional, the concept of
orthostably generated sublattice of L(E) reduces to the concept of

1 1 1
sublattice because of the rules (Xﬂ}()‘L = Xli-Yl, (X+YyY)y =X"Ny ,
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both of which hold when dim E is finite. Thus, the lattice V= U(Q)IEI

orthostably generated by the family (Ek) simply is the sublattice

1€1

. A L
in L (E) generated by the two families (F1)1€ I (F1)1 €1 "

Example 3. The lattice V = V(V) orthostably generated by one
single subspace V of a nondegenerate sesquilinear space (E,®) is
finite and distributive. It consists of the following fourteen elements

1,11

(the proof is straight forward): (0) ,vovt, (vovty Lvinvtt, vt v,

1,14

ER
v+ (vavht, ve (viavth) ,vevt, vt vt

tavt, wevhtt, vnvht L E
A diagram is given in Section 2 of Chapter V below. Since V 1is the
union of two chains it is easy to see that the distributive identi-
ties are satisfied (because there are always two comparable elements
among a,b,c in the identities). It is a good exercise for the be-
ginner to figure out examples where all fourteen spaces in the above
list are different. The lattice appears in [22] . If we have two gene-
rators, then the lattice orthostably generated will, in general, be in-

finite and nondistributive. Of this treat the following two examples.

Example 4. In [4] , p. 64 it is shown that the "free" modular
lattice with four generators is infinite by making use of the fact that
the harmonic net generated by a complete quadrangle is infinite. The
four generators may be picked as lines U1 ,U2 ,U3 ,U4 in the vector
space E = 513 . Let then E* := Homk (E,k) be the algebraic dual and
define a symmetric nondegenerate bilinear form ¢ on E @ E* as ex-
plained in Remark 9 of Section 8, namely &¢(e+e',£+£f') = £'(e) +e'(f),
where e, f € E and e',f' € E*. In E ® E* consider the two subspa-
ces Ul @ U; R U2 [2) U; where, for X € E , we set X° := X' N E* =
{f €E*|f(x) = 0 for all x € X } . With respect to & we find

oyl _ <L oyl _ ° *) = o oyt _
(U, ® U) U N (Ee U) N (U,® EX) =0, ® UP, (U, ® U))

U3 ) U; . Therefore, the orthostable lattice VUV generated in the
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6 - dimensional space (Eg@E*,9) by the two subspaces Ul 2] U; B 02 [2) U;
contains U3 5] U; ' U4 @ Uf . Hence, by the previous remark on Ul ’UZ‘

U3 ,U4 , it will be infinite (watch the "components" in E of the four
particular lattice elements Ul ] U; yess ). If we allow for infinite
dimensions of (E,®) then we can give examples of orthostable latti-
ces ! with two generators such that V has infinite chains. Here is

an example due to my former student Vinnie Miller.

Example 5. Let (ei)i.EmI be a basis of the k - vector space E ,

k a commutative field. Define a symmetric form ¢ on E x E as fol-

W[

lows: @(ei,ei) =1 for i=<n(n+l),n€N , and @(ei,ei) = 0 other-

wise; furthermore & ( ) = <D(e2i,e2j+ 1) = Q(eii-j’ei4-j) and

) for 1i,3j €N . Set

€217%2

o ( ) = (e

i+j+l’ej_+j+1

G :=k (e

€2i+1'%29+1

F:=k (e ) ) (thus FNG= (0)

2i " 21 +171i20 7 2i+1 - %21+2'iz 0

. _ s 1
and dim E/F® G = 1 ). One verifies that F = k(eZi)iz 0 !

1 _ 4 - 1 $ - -
G~ = k(ezi+l)i 50 (thus (F +G) F NG (0) so @ must be non
degenerate) . Define recursively Ao := F and, for s € N , A4s+l

- 1 _ - 1
By NF v Bygyp B P Flr Byg 3 "By, 06 v Bygyg = Byguy + 6 -

It is routine to verify that for all s € N we have

k(e )

Bgs+1 20(i+s) ~ S2(i+s)+1l’iz o0

Thus we get the infinite and properly descending chain Al o AS > A9:>."

in the lattice V(F,G) - stably generated by F and G . Notice that
both F and G are 1 -closed. Furthermore F + F' = E so
GN{(F+F') = ¢, whereas GNF + GNF' = (0) . We see that V(F,G)

is not distributive.

Definition 13. Let (V,S) be a lattice and 1+ : V — UV an anti-

tonemap ( x £y => y £X such that

(36) x £ (x*)* (x€V) .
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If x = (xl)l we call x closed; if x s yl we say that x and vy
are perpendicular (notice that x £ yl is a symmetric relation). Let
(Vl,gl) be a second lattice equipped with an antitone 1,8 V1 — V1
and satisfying (36) . Then (V,<,1) and (Vl,él,ill (or simply V and
Vl if there is no risk of confusion) are ortho - isomorphic, and
o : V — Vl is an ortho - isomorphism iff ¢ 1is a lattice isomorphism
with 1109 = 901 . We recall that, from (36), it follows that

111 1

X =X and u<Vy)l = xtaA yl for all x,y € V (cf. the proof

of (6) in 1.3) .

The answer to the following question is overdue by now: Why are we
interested in orthostable sublattices of L(E) when E is a sesquili-
near space ? Suppose that - for some reason - we wish to classify, say,
pairs of subspaces F,G in E modulo the operations of the orthogo-
nal group of E . In different terms, given a second pair F,G ; we
are to decide whether there exists an isometry ¢ : E — E with oF = F
and @G = G . Assume that there is such a © . Since it respects the
form on E it will not only send F in F ,G in G , FNe in FNG
etc., it will send F' into F- , F'NG into F'NG , etc. In short,
¢ will induce a lattice isomorphism ® : V(F,G) — V{F,G) between the
lattices orthostably generated by the pairs. This produces a host of
"obvious" invariants of the pair F, G or, more correctly, invariants
of the orbit of the pair under the action of the orthogonal group (on
the set of pairs of subspaces). In other words, we get obvious (=neces-
sary) conditions for such a ¢ to exist. Besides the lattice V(F,G),
which is an invariant attached to the pair F, G , let us mention a few
other typical invariants as will turn up again and again. Foremost
among these are the dimensions of the quotient spaces X/Y defined
by neighbouring elements Y & X in the lattice; the cardinals dimX/Y

are not changed under ¢ (we call them indices).
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-~

Further invariants are the isometry classes X of the elements

X € V(F,G) . These invariants reveal little about how X is immersed
into E . An invariant of X that is sensitive to the "surrounding"
space is, e.g., the subset N {|XNF'||F CE & dim F<w} of the
underlying division ring (such invariants might be called "arithmeti-
cal" in contrast to the above ‘"cardinal" invariants and "metric" inva-
riants). There is no limit to dreaming up invariants. However, the uti-
lity of a characterization theorem depends entirely on the choice of

the invariants. It should be possible to handle the invariants in appli-

cations and they should permit insight.

It is plausible that a thorough knowledge of the lattice V(F,G)
would shed light on the problem of classifying pairs (classification
has been possible, thus far, for special classes of pairs only, say for
disjoint, modular and dual modular pairs. Cf. Chapter VI ) .

Chapters IV, V, VI, VII, VIII, IX and XVI are motivated by the plan to
use lattices as the principal guide on our expeditions. We hasten to
adé that the idea to proceed along this line is quite easy to have. But
as easy as it is to make such a plan as difficult it is to actually

carry it out.

Whereas the lattice LlL(E) has - at least in the case of an an-
isotropic space E - been the object of study (see Chapter II.14 on
ortholattices in [4] ), it appears that lattices equipped with just an
antitone mapping <+ satisfying (36) have received no attention worthy
of note. Our results on the classification of subspaces in a sesquili-
near space bear out, however, that the contemplation of LLL(E) and
sublattices of it are of little use, even in very special circumstances.
On the other hand it becomes clear, that lattice theoretic results on

lattices with antitone 1 would be susceptible of application in view

of Chapter IV below.
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We terminate with a very interesting result on lattices and forms.

Remarks on a representation theorem. 1In this short remark we

shall freely use the terminology in Maeda's book [30] . The object of

discussion is the following

Representation Theorem ("Birkhoff - v. Neumann"). Let L be an

irreducible, complete AC-lattice of length 2 4 equipped with a pola-
rity &+ : L — L . Then there exists a division ring k with an anti-
automorphism * , a k-vector space E and an orthosymmetric sesquili-
near form ¢ : ExE — k relative to * such that (L,1) 1is ortho-

isomorphic to the lattice Lll(E) of 1 -closed subspaces in (E,®) .

The assertion of the theorem coincides with Theorem (34.5) in [30]
or Theorem 4.4 in [29] if "polarity" is replaced by "ortho - complemen-
tation" (One has to pay heed to certain differences in terminology;
cf. Remark (8.20) in [30] ). In order to obtain the above sharpened
version one merely needs to generalize, say, Theorem 5.1 in [29] to
the case of polarities in lieu of orthocomplementations. This is not
difficult (as a matter of fact, an assumption on anisotropy of the form
is alien to the issue at hand). A different proof may be modelled on
Maeda's account of (34.5) where the required form is defined "locally".
(The principal ingredients in the above representation theorem are the
result proved in the Appendix of [5] to the effect that polarities of
L(E) , for finite dimensional E , are induced by sesquilinear forms
(cf. Prop.1l p.102 in [2]) and, on the other hand, the Representation

Theorem for DAC - lattices proved in Chapter VII of [2] (cf.p. 302)).

By the results proved in [17] it is furthermore possible (see [13])
to formulate, in lattice theoretical terms, conditions on the lattice

in the above Representation Theorem which are necessary and sufficient
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in order for (E,®%) in the theorem to turn out "euclidean" [ to turn
out "preeuclidean" ] . Here (E,%) is termed euclidean iff E splits
into an orthogonal sum of finite dimensional subspaces; (E,®) is called

preeuclidean iff (E,®) 1is a subspace of some euclidean space.
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APPENDIX I

A DIVISION RING WHICH ADMITS NO SESQUILINEAR FORMS

AND A REMARK ON BAER ORDERABILITY
Introduction

We reproduce here a classical example of a 9-dimensional division
algebra k over 0 ([2] pp. 73-75). Any antiautomorphism of k must
leave the center @ pointwise fixed, hence there are none by Brauer-
group theory. However, this can directly be established as we shall
see below. By a slight variation of the construction we obtain an
example used by Holland in [4] to exhibit some features of Baer order-
ability. As we believe this concept to be of importance to the theory
of quadratic forms we shall draw up a docket on the matter. We could
have shortened our description by quoting various standard theorems
of Algebra (such as the Skolem-Noether theorem) as we have done in
other appendices. However, by keeping computations elementary here we
intended to offer to the beginner some examples of skew fields (other
than Hamilton's quaternions) which he can actually handle knowing basic

facts about field theory only.

1. Dickson's Example. Consider in € the cubic extension K of

Q0 defined by the polynomial

(1) £x) = x> +x2 - 2x -1

It is irreducible over @ for, if it has a decomposition it has a

linear factor and hence a root r = % €0, n, m relatively prime.

Because the coefficient of X3 is 1 substitution shows that r must
be in Z . Since all coefficients are integral r must divide the

constant term. But £(tl) # 0
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6 4
If 0+%1 is a 7™ root of unity in €, 0 + 0° + 0%+ 0%+

92 + 0 + 1 =0, then we consider the numbers

(2) u = 0 + 06 . v = 02 + 95 , W = 03 + 94 .

We have u + v + w= -1 . A short calculation shows that u2 =2 +v,
v2 =2 +w, w2 = 2 + u ; furthermore uw =u+w, vw=u+ v,

uw = v + w . By adding the last three equations we obtain uv + vw + wu =
-2 ., Finally uvw = (utw)w = uw + w2 = (v+w) + (u+t2) =1 . Thus u , v ,

w in (2) are the three roots of f in (1l).

We define a @Q-linear automorphism o¢: K - K by setting og(u) = v ,

u and we find for N(A) := X-G(A)-OZ(A) , Where A =

o(v) =w , 0o(w)

Xu + yv + zw 1is a typical element of K (x,y,z € Q) , the expression
(3) N = x" + y3 + 23 - 4(x22+y2x+zzy) + 3(x2y+y22+22x) - XyZ

Let %k be a 3-dimensional K-right vector space with basis {ao,al,az} .
We define a multiplication on K by first defining it for basis vectors
and then extending it to arbitrary vectors. The a; are to be multi-

plied according to the table

%o 1 | %2
ag a, a; a,
a; al a, 2a0
a2 a2 2a0 2al
For arbitrary X € K we set down the further rules (ai}\)a0 = (aiao)k ’
- _ 2 .
(ai)\)al (aial)o(k) . (aiA)a2 = (aiaz)c () where o is the auto-

morphism operating on K as defined above. Arbitrary vectors in k
are now multiplied distributively. One checks that an associative ring

is obtained. It has a unit element 1, namely 1 = a; i if we write a
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instead of a, then a, = a2 and a3 = 2 . What we have defined here
is the so-called crossed product of the (normal) extension K of @
with its Galois group {1,0,02} . (Here the Galois group is cyclic;

standard notation for k is (K/Q,0,2).) k 1is obviously an algebra

of dimension 9 over the field @ .

What is the center of k ? Let x € k~Q . The field Q(x) < k
is not all of k as k is not commutative. Therefore [Q(x):Q0] = 3 .
Hence Q(x) 1is maximal as a commutative field contained in the Q-
algebra k . Hence x cannot commute with all elements of k . Thus

the center of k 1is @ .

Finally we show that k 1is a division algebra over @ . It
suffices to show that every nonzero element x in k admits a right
inverse. This in turn will follow if we can show that left multiplica-

tion x £ »xf 1in the K-right vector space k is an injective endo-

L:
morphism. Now it is very easy to compute the matrix of X relative

to the basis 1 , a , a2 . Setting x = AO + akl + a2A2 we find

2
X 20(A2) 20 (Xl)\
(4) det(xL) = det |[A 0(10) 202(A2) = N(AO) +
2
[AZ o(xl) o (XO)

2 2 2
2N(Al)+4N(A2)-2(AOG(Al)U (A2)+0(A0)0(A1)A2+0 (AO)Alo(AZ)) .

We can show that det(xL) is nonzero by a "parity check" as follows.
First we may assume that AO ’ Al ’ Az have integral components with
respect to the basis {u,v,w} of K . Secondly, by multiplying x
from the left, if necessary, by a suitable power of a_l we may
achieve that XO = xu + yv + zw has not all its components x , y , 2

even. A direct inspection of (3) now shows that N(Ko) is odd in this

case. Thus by (4)



53

(5) det(xL) = N(AO) =1 (mod 2)

and so Xp is an automorphism. Q. E. D. We have shown that k is

a 9-dimensional division algebra over its center @ .

2. There is no antiautomorphism. Let Jj: K » k be any injective

homomorphism; 1 := jnUoj_l is then an automorphism of the subfield
j(K) € k . By the Skolem-Noether theorem this automorphism is induced

by an inner automorphism of k , i.e. there exists x € k such that
(6) x 13(E)x = j(0(5)) for all & €K .

We can establish the existence of such an x directly as follows:
Suppose we have two elements o , B € k which have the same irreducible
cubic polynomial h € Q[Y] . We want to show that there is vy € k such
that y Loy = 8 . Let h(Y) = Y2 + rY2 + sY + t . Then 0 = h(a) - h(g)
= [a(o®+agt8®) - (®+aB+8%) 8] + rla(a+B)~(a+B)B] + s(a-B) . Set y =
az + af + 82 + r(o+B) + s . We have ay = yB . If vy + 0 we are done.
If y =0 we can interchange the roles of o and B to get a y'
with By' = y'a . If y' 40 we are done. If y' =0 then vy = v'
which means that of = Ba ; i.e. B € Q(a) . In that case we insert an
intermediate element ¢ which has h as its minimal polynomial over
0 and which is not in Q(a) . By the foregoing o and 6 are then
conjugate and so are B and § and hence we are done. There are such
§ : Pick some Yy € k with Y_laY + o . Then for all natural n , m

and n ¥ m we have (Y+n)_lu(y+n) + (Y+m)_la(y+m) . Not all of these

conjugates of a are in @Q(a) . This establishes (6).

If we particularize j in (6) to the embedding K < k then we
already know that we can choose x = a 1in (6) because £a = ac(f) by
the construction of k . By the extension theorem just proved we can

also extend an arbitrary Jj: K - k to an inner automorphism of k ,
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v ey = §(E) for suitable y € k and all £ € K . Substitution into
(6) shows that ay and yx differ only by a factor 2z which is in
K . Thus, if we pass to the determinants of the K-endomorphisms k -+ k
induced by the left multiplications we find det(xL) = det(aL)'det(zL) =
2N(z) by (4). We have proved:

for each injection 3j: K+ k and x € k with (6)

(7)
we have det(xL) = 2N(\A) for some X € K .

Direct inspection of (3) shows that ([2], p. 75)

T

If 0% X €K then N(\) = 8 -% ; r,s,tes

(8)
and s , t odd.

The conjunction of (7) and (8) exhibits a quality of non-symmetry
of k , or rather, of non-antisymmetry. Assume by way of contradiction
that *: k + k were an antiautomorphism. Since a_lga = o(§) for all
£ €K we find a*f*a* L = g(£)* , i.e. ar~L qualifies for x in (6)
if j 1is the restriction of * to K . Hence det(xL) is of the

a*-l . But a and a* have the same

shape described in (7) for x

minimal polynomial over @ and hence they are conjugate by what we

have proved further up; consequently det(ai) = det(aL) = 2 . This
means that % (= det(ai—l)) is of the shape 2N(A) where N(X) is

as described in (8), a flagrant nonsense.

Thus we have shown that Dickson's 9-dimensional algebra k over
Q0 admits no antiautomorphism whatever. Hence we can define no sesqui-
linear forms over k . In the next section we shall see that a small

change in the construction allows for antiautomorphisms.
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th
3. Modifying Dickson's example. We keep working with a 7 root

of unity 04+ 1 in € and let « := 0 + 0% + 0% . We find w? + @ =

2(06 + 95 + 64 + 03 + 62 + 0+ 1) -2 =-2; thus w 1is a root of

X2 + X + 2 € O[X] . The other root of g is

il

g(X)
w* = -p -1

where * 1is complex conjugation in C€ ; hence * 1is an automorphism

of the quadratic extension
Z = Q(w) .

The cubic f in (1) remains irreducible over 2 . Thus with u as

defined in (2) we define
K := Z(u) = Z(u,v,w)

and we have [K:2] = 3 . Now we define k as a K-right vector space

spanned by a basis a, = 1, a; =a, a, = a2 and with a multipli-

cation almost identical with that in Dickson's example. We merely re-

place “a3 = 2" by

(9} a’ = Y  where Y Ji

l

Here o0: K » K remains just as beforeysit sends u , v , w into
vV , W, u respectively. We obtain a 9-dimensional algebra over the

center Z .

Is k a division algebra? Again, it suffices to show that

det(xL) $ 0 if x_ is the endomorphism £ w xf£ in the K-right

L
vector space k and x + 0 is in k . Dickson's argument that
followed (4) above can be reproduced by making use of the fact that

the ring R := Z[w] = {n+mw | n,m€Z} is euclidean and has % as its

field of quotients. Indeed, let for a =n + mw € R la] be its usual
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complex norm, la|2 = (n+mw) (n+me*) = n? - nm + 2m® . For nonzero

a , b € R compute ab_l = r + sw which is in Z . Then pick t =

p +gqu € R with |p-r| = % , |g-s| = % and, if (r,s) happens to
be the center of some square in the tessellation of the plane € by
Z x Z , require furthermore that (p-r){g-s) = +% (only the vertices
in the southwest or northeast of the squares are eligible). We then

2| -1 2 2

invariably have |a-tb|2 = |b]“]ab "-t|” < |b]® . Thus R is euclidean

and has unique factorization into primes in R . E.g.,
2 = ww¥

is the decomposition of 2 into prime numbers in R . Call an element
r=n+mw € R even if w 1is a factor in r . Thus if r 1is even
then w|r so w|n thus mw*]nz (by taking norms in € ) and thus

2|n in % . The argumentation can be reversed and we see that
(10) wlpn+mw in R < 2|n in Z .

In other words R/wR = Z/2% . Hence we are able to repeat the parity
check in the formula for det(xL) for which, this time, we obtain
2

det(x_ ) = N(X) + YyN{( A ) + ¥ N(AZ) -
(11) by L 5
Y(XOU(Xl)O (Xz) +0(A0)0 (Xl)kz'fﬁ (KO)KIO(XZ)) .
After some simple normalizations we may assume that the components of
the Ai are all in R and, furthermore, that x , y , z in AO =
Xu + yv + zw are not all even elements in R . Now, if we had that

det(xL) = 0 then we would obtain the following congruence in R ,

0= w*2det(xL) = w*2N<A0) (mod w) .

"
1]

Hence N(AO) 0 (mod w) . But from (3) we see that N(AO)

3 3 2 2 2 1

x3 +y +z +xXy+yz+ 2 x+ xyz = (mod w) since at least one

of x , vy, 2z is odd in R .
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We have established that k is a 9-dimensional division algebra
over its center 2 . And this time there exists an antiautomorphism!

We define
(12) a* = a = a =

and extend * by additivity and anticommutativity to all of k ,

2 * = 4% 4+ )k -
(13) (AO + akl + a Az) AO Ala + Aza

(recall that A* is the complex conjugate of A € K ) . It is not
difficult to verify that (12) and (13) define an antiautomorphism of

k . Furthermore (x*)* = x for all x € k . Notice that the involution
* does not leave the center pointwise fixed (of that kind there still

can be none).

We end this section by the following remark ([4]). If x =

AO + akl + aZAZ € k then an easy computation shows that the coefficient

= 0 i * i * 2 2 * *
of 1 a in xx is AOAO + 0 (Al)o (kl) + o(xz)c(kz) . Therefore,
an equation of the type
(14) xXx* + yy* + --- =0

. 2 2
i 3 * * *
in k yields an equation AOAO + 0 (Al)o (Al) + G(AZ)G(AZ) +

2 2
* * * e s = i
UOUO + 0 (ul)o (ul) + o(uz)c(uz) + 0 in K © € . Because such
an equation in € entails AO = Al = Az = U, = U, = U, = ... = 0 we
see that (14) implies

(15) X = y = ... = 0.

4. Baer ordered *-fields. The crossed product (K/Z, o, con-

w
)
structed in the previous section was presented in [4] to exhibit some
salient features of Baer orderability; Holland calls Baer-ordered an

involutorial division algebra (k,*) that contains a subset 1 with
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the following properties

(i) T cs :={g€k | g*=¢}
(ii) 1 €em, o0 ¢

(iii) T +T c X

(iv) ollo* € 7T for all p % 0

(v) -T UT =s~{0}

If A, u € S then one defines X >u if X - u € I etec. The notion

was articulated by Baer in [1l, Chapter IV, Appendix 1, p. 127-128] .

Orderability in this sense is an adequate concept if one wishes
to talk about positive hermitean forms. In the commutative situation
the concept had been put to use by Prestel in [7], [8]; for a survey

in the commutative case one should consult [6].

A Baer ordered (k,*) is called archimedean when 0 < X < % for
all n=1, 2, ... implies XA = 0 . The following characterization

is proved in [4].

Theorem [4]. An archimedean ordered *-field is *- and order iso-
morphic to a subfield of the real numbers R , the complex numbers C

or the real guaternions H .

Since all semiorderings on algebraic number fields are orderings
in the usual sense by a result of Prestel ([7] Korollar 1.5) the theorem

has.the following

Corollary [4]. Other than a quaternion algebra, no finite dimen-
sional noncommutative *-field central over an algebraic number field

admits an ordering in the sense of Baer.

From this result it follows directly that the 9-dimensional *-field

k central over the algebraic number field 2 , as detailed in the
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previous section, admits no ordering in the sense of Baer. On the
other hand, we have seen that k is formally real in the sense that
in.x; = 0 implies xi = 0 . Thus formal reality does not, as in the
Artin - Schreier Theory, imply orderability. (Orderability does, of
course, imply formal reality by properties (ii) and (iv).) See also
Section 5 in Appendix 1 to Chapter II where an example of a noncommu-

tative involutorial division ring is given that is formally real and

Hilbert ordered.

We refer to another example in [4] of a Baer ordered field (k,*)
(loc. cit. pp. 215~219 ). It is of interest to us because it provides
a noncommutative field, other than gquaternions, that admits positive
hermitean Ro— forms and is such that we are able to give a reasonable
classification of 1 - dense subspaces (along the line of Chapter XII.S8

below) .

We terminate this section by pointing out that in [5] Baer order-
ings have been put to use in the problem of classifying the infinite
dimensional hermitean spaces E that possess the following property

on subspaces X C E :

(16) if x*™ =X then X@x*=E .

This problem has turned out to be surprisingly difficult. Although no
orderings or topologies are involved in (16) progress has been made so
far only under additional provisos involving orderings or Baer order-

ings. See [3] and [9] where the same problem is investigated.

See furthermore the postscript added to the introduction of the

book on page 3.
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CHAPTER TWO

DIAGONALIZATION OF RO-FORMS

1. Introduction

In this chapter we shall prove that Ro-dimensional sesquilinear
spaces are orthogonal sums of lines and planes and we characterize the
cases where a decomposition into mutually orthogonal lines is impossible.
The problem of "normalizing" bases brings us to stability and the be-
ginner is confronted with the first Ping-Pong style proof with its
characteristic back-and-forth argument (Theorem 2). These matters are

basic and their knowledge is tacitly assumed in the rest of the book.

Diagonalization of forms in dimension Ro is a simple affair.
However, in order to grasp just how exclusive the property of admitting
decompositions into orthogonal summands of small dimensions (i.e.

smaller than that of the entire space) really is, the presentation of

some examples from the uncountable is enlightening. Here they are.

Example 1. Let k be an uncountable field of any characteristic

and (e ) the basis of a Rl—dimensional k-vector space. We define

17 1€1
a symmetric form by setting @(el,eK) = X{I,K} where the family X{llK}
is algebraically independent over the prime field in k . (E,®) turns

out nondegenerate and in [8] we established that it enjoys the following

outlandish property on subspaces X C E :

(1) dim X = R, = dim X* =< R, -

In particular, we see from (1) that (E,®) possesses very few ortho-

gonal splittings,

(2) E = x ox*t = dim X < « or dim X! < » .
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Needless to say that there can be no orthogonal decomposition of (E,9®)

into finite dimensional subspaces. Incidentally, by using this construc-
R
2 1 nondegenerate symmetric Rl-forms over the

field € which are not isometric, surprising since there is but 1

tion one can exhibit

isometry class in each dimension =< R (Remark: One can construct

0 *
spaces with (1) over finite and countable fields also; however, a little

more imagination is needed being that short of scalars. See [1].)

Example 2. Let J be a well-ordered set of cardinality Rl '

I:=Jx4&, (el) the basis of a vector space E . Order I 1lexico-

1€1
graphically, (u,m) =< (v,n) iff u < Vv orelse p=v & m<n . We

equip E with the symmetric bilinear form ¢ defined by

m if (u,m) = (v,n)

¢ (e Fx:] ) =
(,m) "7 (vym) n if (wm) = (v,n) .
Set
= - + 2 - .
D m) Caom-1) % am T S (umel)
We see that we have secured dual systems: Q(el,hK) = GIK (Kronecker)

for all 1, « € I . Observe that the hK span a proper subspace of
E . The existence of such a dual system provides for many properties
shared by spaces with orthogonal bases. Thus, we see that here ortho-
gonal decompositions abound; e.g.,
(3) for all 1 € I : E= & (eK) é ® (eK-el) .

Ks1 K>1
In sharp contrast to Example 1 we see furthermore equations such as
dim X = dim x** , dim E/Xl = dim X to hold for arbitrary subspaces

X (use (3)). Yet E admits no orthogonal basis ([2], pp. 36-37).

Example 3. Let (E,@) be a nondegenerate space which is spanned

by an uncountable orthogonal basis (el) . Let E be the hyperplane

1€1
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spanned by all e, - el0 , v €I . This hyperplane (E,?%) admits no
orthogonal decomposition into finite dimensional subspaces, in spite of
the fact that it appears as a subspace in a space with such a decomposi-
tion ([7], Satz 1 p. 105). In this respect it radically differs from

the first two examples which both cannot appear as subspaces in ortho-

gonal sums of finite dimensional spaces.

Remark. The three examples invite for an investigation into the
existence of orthogonal bases when dimensions are uncountable.or of
embeddability into spaces admitting such bases. This is beyond the
scope of this book, and we refer to [2, 3, 7, 9, 10, 14]. My discover-
ing Example 3 gave the motivation to look for a theory. E. Ogg - then
a student in my algebra class - after listening to the topological
setting of the density theorem for irreducible modules, came up with
the startling idea to use the countable analogue of the weak linear
topology of the sesquilinear form in order to attack the existence
problem on orthogonal bases. It was a marvellous idea [14]. For a

survey on the emerging theory one should consult [3].

2. Diagonalization

Our starting point is the following fundamental

Theorem 1. Each sesquilinear space of dimension at most Ro is

a direct orthogonal sum of lines and planes.

Proof. Let E0 be a supplement of E* in the sesquilinear space

E (dim E < RO) . We shall construct a decomposition of Eo into mutu-
ally orthogonal lines and planes and join it with any direct decomposi-
tion of E into lines in order to get a decomposition of E of the

required sort. The proof is modelled on the well-known Gram-Schmidt
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orthogonalization process ([5], [15]).

For the construction we need a countable family (ei)iGI of

generators of E0 (e.g. a basis of E0 ) . Choose the index set I
to either be IN or a finite initial segment of IN . We show how to

for some J < I , of nondegenerate lines and

get a family (F,)

j'jes ’
planes Fj in EO such that, for all m € I , we have
1 AL
(4) if i <m then e, € F, & -+ & F .
i 0 m

For any such family the subspace @ F. contains all generators ey
jeg

and therefore is the entire space Eo; thus E°= ® F. then is a de-

jeg

composition of E of the required sort.

0

How shall we define a family of such Fj ? If the first generator

e is not isotropic we let F0 be the line (eo) ; 1f o happens
to be isotropic then there is x € EO not perpendicular to €5 (be-
cause EO is nondegenerate) and we let FO be the span of e and
x (it is nondegenerate). Assume that for some m € I (e.g. m =0 )

we have defined mutually orthogonal nondegenerate lines and planes

FO ’ Fl y eae 4 Fm such that (4) holds. The sum S := FO ® --- & Fm

L
is nondegenerate and of finite dimension so E0 =8 ®S8' . If s' = (0)
we let J = {0,...,m} and we are through. Assume that S' % (0) whence
m+l € I and el = S + s' for some s €S, s' €85' . If s' =0

we let Fm be any anisoﬁropic line or hyperbolic plane in S' ; if

+1
s' ¥ 0 but isotropic then there is x € 8' not perpendicular to s'

and we let Fm be the span of s' and x ; finally if s' is not

+1
isotropic then we let Fm+l be the line (s') . In sum, we see that
we can extend the sequence F0 7 oees 4 Fm by a further nondegenerate
(line or plane) Fm+1 , perpendicular to FO ;o eee 3 Fm , such that

(4) holds again with m+l in lieu of m . In other words, the step
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can be repeated, and at most card I times so if I is finite; if
I =N then we can procure in this fashion, say by Zorn's lemma, a
denumerable sequence (Fi)iGN such that for each m € N condition
(4) is satisfied. This terminates the proof of Theorem 1.

The following corollaries to the theorem give precise information

as to when a space is an orthogonal sum of lines, i.e. admits an ortho-

gonal basis.

Corollary 1. If (E,?) is nondegenerate and finite dimensional
then the following are equivalent: (i) there is no orthogonal basis

in E, (ii) ¢ is alternate.

Proof. The implication (ii) = (i) is obvious. Assume that ¢
is not alternate. By Theorem 1 E = i§iFi , dim Fi < 2 . Planes which
are not alternate split off a nonisotropic line so that we may assume
all planes Fi to be alternate. If there is none we are done. Other-
wise the field is commutative and ¢ skew-symmetric on E . As & is
not alternate it follows that the characteristic is 2 . Let Fl = (yl)
be one of the anisotropic lines and {y2,y3} a basis of an alternate
plane Fn , @(yz,y3) =1 . Set a = @(yl,yl) . The basis {el,ez,e3}
of Fl é Fn defined by e =Y, + ay; r €, =Yy, + v, + ayy s ey =
¥y + ¥, is orthogonal. By repeating the procedure we introduce an

orthogonal basis in E . We have thus shown that not(ii) = not(i) .

Corollary 2. Let (E,?) be nondegenerate and Ro—dimensional.
There is no orthogonal basis for E if and only if we are in one of
the following two situations (1) & is alternate, (2) & is skew-
symmetric but not alternate (hence the field commutative and of charac-

teristic 2) and E* is i-closed and dim E/E* is finite (here E¥*

is the subspace of all isotropic vectors).
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Proof. A) We begin by showing that there can be no orthogonal
basis if we are in one of the two situations. This is obvious if ¢
is alternate. Assume therefore that we are in case (2). As E is non-
degenerate and dim E/E* < » (by assumption) we must have dim oL P
A fortiori R := rad E* is of finite dimension and thus there is a

L
metabolic decomposition E = (R&R') & E0 . Since E* cR* =R ® E0 we

1nd
see that E* = R @ (EO)* . We read off E** =R @ (EO)* 0%0  yhere we

1
abbreviated X' n EO as X 0 . since E* = E**?t

1nd
that (Eo)* 070 - (EOV ,i.e., (EOV is an orthogonally closed subspace

in case (2) we see

i
of (Eg,%q) , 9 := o] . Since rad(Ej)* = (0) and dim(E))* 0 <

0 EOXEO
1
dim E** < ® we see that (Eo)* 53] (EO)* 0 is closed and dense in Eo ’
i.e.
* *10
EO = (EO) @ (EO) .

Suppose by way of contradiction that E admits an orthogonal basis

4
(e,) . Bach element of some arbitrary fixed basis of (R®R') ® (EO)* Y

Ci’ieN
is a finite linear combination of some ei . Hence there is N € IN

such that we have for all i > N
€ ' »10y4 *
e, (ROR' & (Eo) )¢ o= (Eo) .

In particular, e; is isotropic for i > N . But this is impossible
for members of an orthogonal basis of a nondegenerate space. Thus there

is no orthogonal basis in the second case.

B) Assume conversely that there is no orthogonal basis and that
E is not alternate. By Theorem 1 the space E 1is an orthogonal sum
of lines and planes. Nonalternate planes admit orthogonal bases; hence
there must be alternate planes in the decomposition. Therefore ¢ is
skew-symmetric on E . As ¢ is not alternate (by assumption) we must

A
have characteristic 2 . There is a decomposition E = El & E2 where
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E admits an orthogonal basis (e,) and E is an orthogonal
1 1 iEIl 2

sum of alternate planes Pj . If Il were infinite then there would

be enough ey to delegate a different e, to each of the Pi . In
ey é Pi we could introduce orthogonal bases - as we had done in the
proof of Corollary 1 - and thus procure an orthogonal basis for E .
Contradiction! Therefore dim El < = , Because E2 C E* this means

dim E*/E2 < dim E/E2 = dim El < » ; hence E* is i-closed because E2

is closed. Furthermore, dim E/E* < dim E/E2 = dim El < «© ., This shows

that we are in case (2) of Corollary 2 . Q. E. D.

Corollary 3. In a trace-valued sesquilinear space ef dimemsion,§R0

which is not alternate every subspace admits an orthogonal basis.

Proof. If (E,?) possesses a subspace without orthogonal basis
then (by Corollaries 1 and 2) ¢ must be skew-symmetric on all of E

and hence alternate if ¢ is assumed trace-valued.

Since nondegenerate alternate planes are hyperbolic we have the

following immediate consequence of Theorem 1:

Corollary 4. A nondegenerate alternate space of dimension < Ro

is an orthogonal sum of hyperbolic planes.

3. Stability (Definition)

We turn to the existence of normalized orthogonal bases in non-

degenerate R -dimensional spaces (E,?%) . We assume in the first place

0

that the forms are symmetric and that the characteristic of the under-

lying field k is not 2 . (E,9) will then admit orthogonal bases.
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If k possesses square roots Ai for each length @(ei,ei)
where (ei)iEI is an orthogonal basis then we can, of course, intro-
duce the orthonormal basis fi 1= A;lei , ¢(fi,fj) = dij (Kronecker) .
If k contains an element o which is not a square, then we can de-
fine symmetric forms of arbitrary finite dimension admitting no ortho-
normal bases: Simply let the matrix M of ¢ with respect to some
basis be diagonal and, say, M = diag[a,l,1,...,1] . If M' is the
matrix with respect to some other basis then detM' = a(detA)2 where
A is the substitution matrix; thus M' = diag[1,1,1,...,1] is im-
possible. Contrary to what one would expect we shall see that in dimen-
sion RO the following does occur: there are fields k which do not
have square roots for all elements and yet each R0~dimensional (non-
degenerate) symmetric form ¢ admits an orthonormal basis. As an
illustration of how such a thing can come about we establish the follow-
ing closely related fact ([4] Thm. 8.1 p. 567):

Each positive definite Q-space of dimension

(5)

Ro admits an orthonormal basis.

The proof will rest on the classical fact that each indefinite -form
in 5 variables has a nontrivial zero ([13]; [16] Thm. 22, p. 41).

In particular, if ¥ 4is any positive definite form in 4 variables and
o € Q@ 1is positive then VY represents o Dbecause %W - xg is inde-
finite (specifically, each positive o 1is a sum of 4 squares). From

this it is obvious that each X -dimensional positive definite @ - space

0
has |E|| = 0"  (the positive rationals) and thus enjoys the following

property (cf. 1.4 in [6] 146-147)
For each o € |E| and each finite dimensional subspace

(6)
F € E there exists nonzero £ € F* with (f,f) = a .
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Proof of (5). Assume that we have determined an orthonormal system

f0 ) eae g fm in the positive definite Q-space (E,9) (dim E = RO) .
Let e, be the first member of some (previously fixed) countable set
of generators of E not contained in the subspace S := (fo) é "'é (fm).
Thus, if we decompose er =x+y, x€8, yE€ st then vy + 0 . We

shall show how to find a 4-dimensional space F C st spanned by an

f £ and such that y € F .

orthonormal basis fm+l v f fm+3 S

We shall then have e_ € 5] (f.).In this fashion we can obtain a de-
1<i<m+4

numerable sequence (fi)m such that @(fi,fj) = 6ij and the subspace,

$(fi) contains a set of generators for E , i.e. is all of E ; (fi)]N
N

is then an orthonormal basis for E .

In order to find F we first use the fact that each 4-dimensional

Q-space H spanned by an orthonormal basis contains a vector hl of

prescribed positive length al := ¢(y,y) . Complete hl to some ortho-

gonal basis hl , h2 ’ h3 , h4 of H and set ai : ®(hi,hi) , 1=
Iy

2,3,4 . Obviously, if in the subspace S~ N1y

* of E we can find any

three mutually orthogonal vectors g, v g3 v 9, with @(gi,gi) = a
(i = 2,3,4) then the subspace F of gt spanned by vy , g, 1 I3 5 9y
will admit an orthonormal basis. Are there such gi ? Why, this is ob-
vious by (6) because a, € Q+ = |lEll : just pick 9, » 95 1 9y of the
requisite lengths in turn in (S+(y))l , (S+(y)+(92))l '
(S+(y)+(gz)+(g3))* respectively. This establish (5). The decisive

property (6) used in the proof warrants the following

Definition 1. A nondegenerate No—dimensional sesquilinear space

(E,?) 1is called stable in itself, or just stable for short, if it

satisfies (6). Observe that the defining property (6) can be rendered

equivalently as

(7) el = f\{nF*” | FcE & dim F < dim E} .



70

Cf. the definition in VII.4,.

Examples. 1) Over any given division ring (k,e,*) we can de-
fine stable e-hermitean forms. For B € S := {E€k ] eE*=£} we let
{B;...) Dbe the orthogonal sum of RO copies of the e-hermitean line
{(B) . Then every orthogonal sum B?;(B,...) , where card I < RO , is

a stable space.

2) Each nondegenerate trace-valued ts-hermitean Ro—form $ that
possesses infinite dimensional totally isotropic subspaces is stable

with
(8) IEl =7 = (MVF*] | aim F < =) .

Here T = {f+ef* | g€k} 1is the additive subgroup of traces in k .

Indeed, let Wc W' € E and dim W = R If FCE has finite dim F

0 *
then dim(Flnw) is infinite for F1 any supplement in Ft of rad(Fl).
Hence F' contains hyperbolic planes and therefore HFLH =T . In Sec-

tion 1 of Appendix 1 we have listed large classes of commutative fields

k such that each nondegenerate symmetric Ro—form over k is stable.

3) We have just proved that definite forms over @ in dimension

RO are stable.

4. A stable form is determined by the elements it represents

The following theorem brings out a salient feature of stability.
The structure (k,e,*) is kept fixed and we discuss the stable e-

hermitean Ro—forms admitted by it.

Theorem 2 ([12], Thm. 1.1). A stable e-hermitean space (E,9)

is determined up to isometry by the subset [E[ of k .
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In order to prove Theorem 2 we shall use a strategy different from
that in the proof of (5). Instead of trying to construct, in each space,
an orthogonal basis which exhibits a special arithmetic feature, we
shall directly set up an isometry between any two stable spaces E , E

with |E| = J|E]] . We shall give the proof at a leisurely pace because

the arguments will be used in condensed style over and over again in

this book.

Proof. Let E , E be stable with [E|| = |E] . Let (e) s eny ¢
(éi)i€lN be any countable sets of generators for E and E respec-
tively. Our objective is to construct nested sequences Foc:FlC:FZC ‘e
and §0 Cflcifzci... of finite dimensional nondegenerate subspaces
and a sequence of isometries ?,; Fi + Ei such that the following
holds: (i) \”)Fi = E,\v/ Fi = E, (ii) P41 extends P, 0 P4 Fi= @y -
Then we can define an isometry ¢: E » E simply by defining ¢x as
¢jx where j is any natural number with x € Fj .

We may start with FO = (0) = GO and ¥g° 0 — 0 . Assume that
we have constructed Fi ' fi ' 9y for 0 <ism. Let e, be the
first generator not in Fm . We shall try to pick finite dimensional

- - 1
nondegenerate isometric spaces X C F; , X C F; such that e, GFHfBX .
We then set Fm+1 = Fm ® X and extend P to Fm+l by joining Cn

with any isometry ¢: X - X ’ ¢m+l(f+x) = ¢mf + Px (£ EFm, x€X) .
This will be the (m+1)St construction step. In the (m+2)nd step

we pick the first generator és not contained in Em and we repeat

+1

the procedure with reversed sides: we try to pick isometric nondegener-

A R . 5 =4 - 1=
ate finite dimensional spaces YCFm YCF'L such that e _€F eY;

+1 ' m+l s Tmt+l

t F = F 1= F ¥
we then se 2 Fm+l &Y, Fm+2 Fm+l ® Y and extend ¢m+1
to Fm+2 by joining Pl with any isometry Y - ¥ . This bouncing

back and forth between E and E is necessary to make sure that both

unions \v}Fi ’\“}Ei will exhaust the entire spaces.
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It is sufficient to carry out the (m+l)St step. Since E =

F_ & F*
m m

we decompose e, =X +y (x.EFm, y'GF;) . We have vy + 0.

o := ®(y,y) is nonzero we let X = (y) . Because o € ||E| =
(A\HF || where F runs through all finite dimensional F c E there
is y in ﬁ; with ®(y,¥) = o . Set X = (§¥) . Then y ~ § defines
an isometry ¢: X » X and we are done in this case. Assume then that
a =0 .If E should be alternate, |E| = {0} = |E| , then E is
alternate too. It is clear that y is contained in a hyperbolic plane
X c F; and we may let X be any hyperbolic plane in the alternate
space f; i X = X obviously. If E is not alternate then, by stabil-
ity, F; is not alternate and y is contained in a nondegenerate plane
. By stability and |[E|

X that admits an orthogonal basis x X

17’ 72
- o - : e - - -
lE| there is %) € F with 0(x;,x;) = 0(x;,x,) and x, € (F & (x,))

with ¢(x2,x2) = @(xz,xz) . Hence the plane X := k(xl'XZ) is isometric

4

to X . This terminates the proof of Theorem 2.

= |E|| for arbitrary positive

Remarks. (j) We know that [E|
definite Ro—dimensional Q-spaces E , E . Thus it follows by Thm. 2
that any such E 1is isometric to a space E spanned by an orthonormal

basis. This establishes anew - lut in a different vein - property- (5).

(jj) Equality (7) remains perfectly meaningful if we let dim E
be uncountable. Theorem 2 continues to hold for uncountable dim E
and with stability interpreted via (7), provided E is assumed to
split into an orthogonal sum of finite dimensional subspaces. Partial
isometries between any two such stable spaces E , E , with le| = |E],

are defined only on orthogonal summands-.of dimensions smaller than

dim E = dim E . They can be extended by adding No suitable dimensions
at a time in such a fashion that the domain of the extended isometries
again turn out to be orthogonal summands in E and E respectively

(we satisfy some kind of union-of-chains condition). It is clear that



73

by picking up all F_, fK of some previously fixed orthogonal split-

1
tings, E = elFl ' E = elfK (dim F1 and dim §K finite) we can sweep
1 K

out E and E by a nested sequence of partial isometries and thus

procure an isomerty E = E .

Corollary. Let E be of dimension RO . nondegenerate, trace-

valued. If E contains an infinite dimensional totally isotropic sub-

space then it is an orthogonal sum of hyperbolic planes.

For certain investigations we need rather special stable spaces,

which we define now.

Definition 2. A nondegenerate X _ -dimensional sesquilinear space

0

(E,?) 1is called strongly (weakly) universal if for all nondegenerate

infinite dimensional subspaces F we have ”F“ = ”E” ( ”E” c

lellu - fi=ll ) .

A weakly univexsal space is always trace-valued because it must

be alternate when the characteristic is 2 by the following

Theorem 3. a) If (E,%) 1is strongly universal and not alternate
then it is anisotropic and an orthogonal sum of lines ({a) for «
any fixed element of “E” . b) If (E,?) 1is weakly universal and
o € “E“ - {0} then there is an orthogonal #a- basis (ei) , i.e.

¢(ei,ei) € {a,-a} for all i .

A proof can easily be devised along the line of that of assertion

(5); it will not be written out.
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5. Quasistability

This important concept is due to Maxwell [12].

Definition 3. A nondegenerate X _-dimensional sesquilinear space

0
E 1is quasistable if it is the orthogonal sum of a finite dimensional

space and a space that is stable (in itself).

Example. All (nondegenerate) symmetric Ro-forms over Q are
quasistable., Indeed, since any such ¢: EXE + Q@ admits an orthogonal
basis E splits, E = E+ é E_ , where ¢ is positive definite on E+
and negative definite on E_ . If one of the indices n, :=dim E_,

n_ :=dim E_ 1is zero, then the form is definite and stable by (5). If
both dimensions are infinite then ¢ is stable by the corollary to
Theorem 2. Hence we are left with infinite n, and finite nonzero n_
- or the other way round - and then ¢ is quasistable. This proves the

assertion. The important thing is that we can still introduce canonical

bases. Consider, as an example, the quasistable Q-space
N
(=2) & (1,...) .

We chop off a 4-dimensional orthogonal summand (1,1,1,1) £from the
stable summand E+ = (l,...) fixed in the above decomposition, E+ =
(1,1,1,1) é E1 . The indefinite form (-2) é (1,1,1,1) represents all
of @ Dby Meyer's result mentioned in the remark following (5). Thus

there is a vector of length -1 or, for that matter, any previously

fixed negative rational, which can be completed to an orthogonal basis,
L L
(-2) & (1,1,1,1) = (-1) ® (0,2,(13,(14,0.5)

Because the "indices" n_ , n_ are invariants all o, must be posi-
tive; thus, if we join (a2,a3,a4,a5) with El we do get something

positive definite, i.e. something which again admits an orthonormal
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L
basis, (a2,a3,a4,a5) ® El = (l,...) . The result of the manoeuvre is

the isometry
(-2) é (1,...) = (-1) é'(l,...>

over Q . If n_ 1is greater than 1 then the procedure can be re-
peated n_ times. Thus we have established the following companion
to (5) (cf. [11] Thm. 4 p. 6) :

Each nondegenerate Q- space of dimension

(9)

¥, admits an orthogonal *1- basis.

Remark. The example illustrates the utility of the concept of
quasistability. For "suitable" fields, such as @ , one can prove the
existence of canonical bases for quasistable forms even when these
forms fail to be stable. The first steps in this direction are found
in [11]; the clear distillate of a number of investigations into the
classification of Ro—forms by various authors is contained in [12].
This and further results that have emerged are the topics of Chapters
VII and XI below. Notice that the case of symmetric quasistable forms

leaves really only two options for k , to wit, k either formally

real or else of characteristic 2, by the following observation:

If k 1is a commutative nonformally real field
of characteristic not 2 then each quasistable
(10) symmetric space over k 1is an orthogonal sum
of hyperbolic planes (and thus, in particular,

a stable space).

Indeed, this follows immediately from the corollary to Theorem 2.
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6. Weak stability

As our results in Chapters VII and XI show the following weakening

of guasistability is justified (cf. the definition in VII.4).

Definition 4. A nondegenerate X _~dimensional sesquilinear space

0
(E,?) 1is called weakly stable in itself, or just weakly stable for

short, if (ﬁ\{“FLH | FCE & dim F<dim E} =: [E| is nonempty.

Lemma. Assume that (E,%) has dim E = RO . If the characteristic is
not two then the following are equivalent: (i) the space (E,®) is weakly

stable, (ii) (E,9) admits an orthogonal summand that is stable in itself.

In characteristic two weak stability of E is easily seen to be
equivalent with {0} © ”E”°° ; i.e. with the existence of an infinite
dimensional totally isotropic subspace in E . More can be said when

{0} ? ”E”w ; cf. Chapter VIT.

The proofs are left to the reader; there are no snags.

7. A lemma on supplements

Let (E,®) be a nondegenerate sesquilinear space of dimension
Ro and XcYCE infinite dimensional subspacesf G 1is a supplement
of X in Y, H 1is a supplement of Y in E , o and 8 are ar-
bitrary in [JE[/~{0} if such there are. The following lemma mentions

various possibilities as to how G and H may be chosen. (For a typi-

cal application see the proof of the theorem in XII.S.)

Lemma. (i) If dim X/(X'NX) 4is infinite then G and H may
be chosen with G 1 H .
(ii) If Xx* = (0) and ¢ is not skew symmetric then G and H

may be chosen nondegenerate and with G 1 H .
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(iii) If ¢ 1is anisotropic and strongly universal then we may
choose G 1+ H and G , H spanned by orthogonal bases (gi)I ’ (hj)J
respectively with Q(gi,gi) =a , ¢(hj,hj) =B (i€1, jeEJ) .

(iv) 1f x' = (0) and ¢ is strongly universal then we have the

same conclusion as in (iii).

(v) If & is trace-valued and X contains an infinite dimen-
sional totally isotropic subspace W with W N (X nx*) = (0) then we

may choose G & H totally isotropic.

Proof. (i) Assume that we have found finite dimensional spaces
Gn B Hn C E satisfying the following induction assumption:
GnCY,GnﬂX— (0) ,HnﬂY— (0) ,GnJ.Hn,GnﬂY (0) ,HnﬂX (0).

We may start with Gn = Hn = (0) . Let 2z be a prescribed vector with
z €Y , zéx® G, -

There exists x € X with x + z € H; . Set Gg = Gn @ (x+z) . We have
to deal with the possibility that G! N ¥* 4 (0) . In that case
X +z € Gn + Y* . We first claim that

i 4 1
'+ + .
(G H) N X ¢ Gn Y (c G_+X)

Indeed, an inclusion would mean that dim X/(XI\X‘) <« , contradicting

assumption (i). Hence we may pick t € (Gr'l-i-Hn)l N X with t ¢ Gnd-Y* .

-— 1_
Set Gn+l = Gn @ (x+z+t) . Gn+1 N Y" = (0) . If, on the other hand,
1
+ + = -
X 4 $ Gn Y we set Gn+l Gn ® (x+z) . We then proceed to con
struct Hn+l ] Hn such that YeBHn+l contains a prescribed vector

z' $ Y & Hn . As before, there is y' € Y such that the space Hﬁ

] ] 4
Hn ® (y'+z') is 1 to Gn

" ).

If H N x* % (0) we proceed as before: there is t' € (G,

. Y
(we have just proved that Gn+lr1Y
Y
l+Hn) ny,

[ 4 - i v 1 . ;
t' & H o+ X and we set Hooy H & (y'+z'+t') ; otherwise we set
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= v L . . -
Hn+1 Hn . We have now constructed Gn+l ’ Hn+l satisfying the in

duction assumption and such that X & G , Y®H contain the
n+l n+l

prescribed vectors z , z' . In this manner we find sequences (Gn) '

(Hn) such that X+¢ and Y+H , where G :=UGn,H :=\JHn ,con-

tain previously fixed bases of supplements of X in Y and Y in E

respectively.Furthermore G L H . This proves (i).

(iii) If dim E/Y = dim Y¥/X is infinite then G , H as con-
structed in the previous proof admit bases of the requisite shape by

strong universality.

Assume then that, say, dim Y/X is finite. Y is nondegenerate

and of dimension X so it has orthogonal basis (gi) with

0
Q(gi,gi) = o . Hence there is a finite dimensional supplement G0

of X in Y spanned by some of the 9; - If dim E/Y is infinite

we may proceed just as in the proof of (i) and construct G = G0 ’

H = \ijn . This time we start the recursive construction with the
pair G0 ’ H0 = (0) . ¥© then admits a basis of the required sort.
We are left with the situation where dim E/Y is finite as well.
Assume then that we have found some finite dimensional Hn spanned

by an orthogonal basis (hj) with ¢(hj,hj) =8, Hn ny= (0 ,

Hn 1 G0 . We show that if Y @ Hn # E we can yet find another vector
vyéye H with o(y,y) =8 and y € (G0®Hn)* . (Repetition of the
argument dim E/Y times will provide the requisite basis, 6 H = \v}Hn .)

Now (G0®Hn)* admits an orthogonal basis whose members y satisfy

¢(y,y) = B . Hence we are stuck only when
Iy
(G,®H )" < Y@®H .

If this takes place then Y & Hn is i1-closed. Furthermore (Y(BHn)* [

G0 @ Hn cY ® Hn so (YEBHn)* =0 as ¢ 1is anisotropic. Hence
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Yo Hn = E . This proves (iii).

(iv) Let us keep the notations in the proof of (i). We shall in-
dicate the modifications needed here. Suppose we have found finite di-
mensional Gn , Hn C E satisfying besides the former induction assump-

tions the further requirement that

Gn ’ Hn are nondegenerate.

We had shown that we can find vectors u € X, v € ¥ such that Gﬁ =
Gn ® (z+u) , H; = Hn ® (z'+v) satisfy the old induction assumptions

in liewu of G, H .
n n

If now Gﬁ should be degenerate then its radical R is one-di-
mensional. There exists a vector 1 € Y N Hﬁl with 1 € R* (for oth-
erwise RCH' and so H! NY % (0) , contradiction). If dim Y/X is
infinite we can escape from X : if (GAG)(l)) N X+ 0 we switch from
1 to 1' where 1 -1'E€ (G!'IQ)HI'IGJ(l))l NY and 1 - 1" € X8 G; . We

have shown: if dim Y/X 1is infinite we can find Gn+1 > Gn which is

+ : = ¥
nondegenerate and satisfies Gn+l cy , Gn+l nx (0) , Gn+l 1 Hn .

Provided that dim E/Y is infinite as well then a nondegenerate space

H D H' can be found such that G and Hn satisfy the induc-

n+l n n+l +1

tion assumptions. G := \H/Gn , H := \E/Hn are infinite dimensional
and nondegenerate and admit bases of the required form by strong uni-
versality. If, say, dim Y¥/X is finite we find a G0 just as in the
proof of (iii). If dim E/Y happens to be infinite we construct a non-
degenerate H := K;)Hn as we have just explained in detail. We are
left with the case where dim E/Y is finite as well. We proceed as in

the proof of (iii). This terminates the proof of (iv).

(ii) The proof of this assertion is actually "contained" in the

reasoning given in the proof of (iv). We leave it to the reader to
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write out details.

(v) Again we consider ascending sequences Gn ' Hn . This time
we stipulate that they satisfy besides the old induction assumptions
(spelled out at the beginning of the proof of (i)) the additional re-

quirement

(G +H)NX=¢(0) ; 6. cGe*, H cH®*.
n n n n n n

First we find (just as in (i)) a vector u € X such that the spaces
Gh := Gn + (z+u) , Hn satisfy besides the old conditions the further
stipulation

z+udLG +H .

We then consider an auxiliary supplement Xl of xNx* in X such thatWCXI
Now Xln uﬁlwﬂn)L contains a nondegenerate subspace X, with finite

N W+ (0) and so, by trace-valuedness, X, con-

dim Xl/XO' Hence X 0

0
tains hyperbolic planes. Thus there exists t € X N (G$+-Hn)l with
$(t,t) = = ¢(z+u,z+u) . G; = G @ (z+u+t) is totally isotropic and
perpendicular to Hn . Some further manipulations are needed when
K¥;®Hn) n x* is not (0) . Assume therefore that we had z + u + t €
G+ H_+ X* . Because the inclusion " (G"+H )*nw c© G_+H + xt on

n n n n n n
contradicts the fact that W N (X ﬂX*) = (0) we may pick w €
G"+H)Y* nw, w € G +H +Xx* ., Switching from G" to G" :=

n n n n n n

+ i m myd "oy n,Xl = LI

Gn ® (z+u+t+w) gives Gn (Gn) and (Gn Hn) (0) n sum,
we have shown that we can find Gn+l such that Gn+l ’ Hn satisfy all
our induction assumptions again and furthermore 1z € X:®Gn+l . Similar-
ly we find a Hn+l . In this fashion we secure a sequence of totally
isotropic spaces Gn & Hn such that the spaces G := \ijn , H :=\V)Hn

are supplements of X and Y in Y and E respectively. This termi-

nates the proof of (v).

The proof of the lemma is thus complete.
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APPENDIX I

A FEW EXAMPLES OF "SUITABLE" FIELDS
Introduction

Beginners are usually at a loss when they should produce examples
of division rings which exhibit certain arithmetic features. For their
convenience we have assembled here a number of examples. In the first
three sections we stay commutative. The fields in the first four sec-
tions are such that all nondegenerate symmetric (hermitean) Ro—forms
turn out stable or quasistable. Since so much in this book depends on
stability of some sort or another it is important to ascertain that
examples abound. Everywhere enough hints and references are given so
that the student can find his own way into the literature. Only in Sec-
tion 5 did we give proofs. There we describe a Hilbert ordered non-

commutative involutorial division ring which allows for anisotropic

hermitean forms of arbitrary (finite or infinite) dimension.

1. Commutative nonformally real fields (characteristic # 2)

In this section we shall list some commutative fields k which

enjoy the following property ([6] pp. 5, 6):

There is a natural number m(k) , depending on the field
(0) k only, such that each symmetric form over k in m+l

variables has a nontrivial zero.

We assume throughout that the characteristic is not 2 unless explicite-

ly stated otherwise.
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1.1 Nonformally real fields k with finite multiplicative group

ﬁ/k ( = the nonzero elements modulo square factors ) . These fields
are called Kneser fields (notice that char k + 2 is assumed).
Here we have m(k) = |k/ﬁ2‘ ; for an elegant proof due to M. Kneser

see [7]. Examples are: algebraically closed fields (lﬁ/ﬁ2| =1) ;

finite fields (|ﬁ/ﬁ2[ =2) ; if k is any example and K k( (X))

is the field of all formal Laurent series a X' + arﬂxr+1 + oo (re€m),

under the usual series addition and series multiplication and with

coefficients from k , then K 1is another example and |R/R2
ZIR/EZI ; this shows that there are examples with arbitrarily prescribed
order lﬁ/k2| (notice that this order is necessarily a power of 2 be-

cause each element of the group has order 2).

Further examples are the fields k which are complete under a

discrete rank 1 valuation w and with finite residue class field K

(of arbitrary characteristic). Here |E/ﬁ2| = 4(card K)w(Z) For a
proof see [12, Thm. 63:9, p. 163] . In particular, |ﬁ/ﬁ2| = 4 for
the p-adic completions k = Qp when p * 2 and [R/ﬁz! =8 for

k = Qz

Additional examples are provided by maximal algebraic extensions
of any algebraic number field (= finite extension of @ ) in its p-adic
completions for p any finite spot. These are instances of so-called

Hilbert fields investigated in [3].

Remarks. (i) The behaviour of fields with finite ﬁ/ﬁz under
field extensions has been investigated in [5 pp. 298-307]; for more
comprehensive results consult [8 pp. 202-203; see in particular the
proof of Thm. 3.4, p. 202, for a well motivated proof of our Lemma 2

in [5 p. 2981]].



85

(ii) The following question is natural: Let K be a finite ex-
tension of k . If ﬁ/ﬁz is finite, is R/ﬁz necessarily finite? In
[5] this is answered in the affirmative when [K:k] = 2 . In a letter
to the author Pfister [15] proved that ﬁ/Rz is infinite when K =

@(%5) and 6 is the quadratic closure of @ . For generalizations

of this result see [8 Thm. 2 and Cor. 3 p. 219].

1.2 The Ci—fields. The study of these fields was started in
[9]. Improvements are contained in [11]. For further developments and

references see [17] and [10] (not listed in [17]).

A field k of arbitrary characteristic is said to have property
C0 if every £ € k [Xl,...,Xn] which is nonzero and homogeneous of
degree d , with n=d > 1 has a nontrivial zero. For natural i > 0
we say that k has property Ci if for each pair (d,n) of natural
numbers = 1 with n > di every f € k [Xl,...,Xn] which is nonzero
and homogeneous of degree d has a nontrivial zero in k . Theorem:
Let k have property Ci ; if K 1is an algebraic overfield of k
then K is Ci ; if K 1is a transcendental extension of k of trans-

cendence degree r then K 1is Ci+r (Thm. 2a, p. 238 in [11]).

We are, of course, interested in the case with d = 2 . As an
illustration we mention the following corollary of the above theorem.
Corollary: Let k be any function field in r variables over a
finite constant field. Since k 1is Cr+l every symmetric form in

r+l

more than 2 variables has a nontrivial zero. (For r = 1 this is

a classical result of Hasse theory; cf. Thm. 66:2, p. 188 in [12].)

In analogy to Lang's theory Pfister defines a field X to be Cg
i
if any system of r quadratic forms over K in n common variables:

has a nontrivial simultaneous zerc in K provided that n > r-2:L
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He proves the following Theorem: Let p be a prime, let X be a p-

field, let fl""’fr be forms of degrees dl,...,dr over K in n
common variables. Suppose n > r and p T dl""’dr . Then the system
f. = ... =f =0 has a nontrivial solution in K . (Here K is

1 r

called a p-field if all finite extensions of K have p-power degree.)

Corollary: A p-field with p % 2 is a cg -field ([16]).

We terminate this cursory enumeration by referring to Remark 2
in Appendix 1 to Chapter XVI where an entirely different sort of fields

with property (0) is mentioned.

2. Commutative formally real fields

If a field k satisfies (0) in the previous section then each
nondegenerate symmetric form in m(k) variables represents 1 . There
can be no instance of a formally real field k with this property
because k admits negative definite forms. Thus, a natural modifica-

tion of (0) for formally real fields is as follows ([6] p. 6).

There is a natural number m'(k) , depending on the

field k only, such that each nondegenerate symmetric
(1)

form over k in m' variables represents 1 or -1

(or both).

By Hasse-Minkowsky theory we know that @ satisfies (1) with m'(Q)=4 .
By Hasse-Minkowsky theory it follows further that e.g. each irreducible
polynomial £ € Q[X] of odd degree and with only one real root 6 € R
vields a formally real field Q(8) with property (1) and m' = 4.

(See e.g. [12] Thm. 66:1.)
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Nondegenerate symmetric Ro- forms over fields with (1) turn out
quasistable and are therefore easy to classify. Each nondegenerate sym-
metric form Y in, say, m' variables will represent g or =g (consider

the form %4’ and apply (1)). In particular a (nondegenerate) RO- form

will represent a or =-o (or both) for o arbitrary in k\ {0} .

Formally real fields with (1) admit, nota bene, at most one order-
ing, because for each a either o or -o is a sum of m' squares. This
is not, however, crucial for quasistability: our lemma in XI.8 gives
a handy criterion for fields with more than one ordering to be such
that all nondegenerate R _- forms turn out quasistable. For further ex-

0

amples of real fields of interest in this connection refer to XI.3 .

3. Commutative fields in characteristic 2

Any commutative field k with <char k = 2 has a known classifi-

cation of the symmetric X - forms over k when the degree [k:k2] of

0
k over its subfield of squares is finite (Lemma 4 (v) in VII.8) . It
is not difficult to produce examples of such fields. If k itself is

finite or if k 1is algebraically closed then [k:kz] = 1 , obviously.

If Xl""’xn are algebraically independent over k and k is the

rational field k(Xj,...,X ) then [K:k°] = [k:k’1-2" (because a
- - € €
basis for k over k2 is provided by the elements a-Xl1 D -Xnn

where ej = 0,1 and where a runs through a k2-basis of k ). Thus
we have examples with [k:kz] any prescribed power of 2 (notice that
[k:k2] invariably is a power @f 2 if finite because all elements of
k are guadratic over the subfield k2 ). On the other hand, finite

algebraic extensions will not alter this degree. Let k be a finite
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algebraic extension of k . We can express [E:kzj as [E:EZ][EZ:kz]
2
]:

[k:k2] . Hence any algebraic function field k in n variables over

and as [E:k][k:kzj ; because [Ez:kzj = [k:k] we find that [k:k

a finite (or algebraically closed) constant field has [k:k2] =20
Observe that [E:Ezj < [k:k2] for arbitrary algebraic extensions k
of k by what we have proved; < 1is witnessed by the transition to

the algebraic closure of k .

4. Involutorial division rings

suitable for isotropic hermitean forms

One can contemplate division rings (k,*) which satisfy a prop-
erty entirely analogous to (0); we merely replace "symmetric" in (0)
by the adjective "hermitean". One possibility to construct such (k,¥*)

is to start out with a suitable commutative field k (such as

0
described in Section 1) and then pass to a quaternion algebra k over
ko if such there is. k may then be equipped with the usual con-

jugation & » & or with an involution * of the kind

for some fixed quaternion o € k . (These make up all possible involu-
tions that leave the center fixed; in fact, one can always choose o
such that o = -a . See (1], Thm. 11, p. 154. Notice that the "norm"
N: £ w EE* derived from * is not multiplicative if * is not con-
jugation.) As an illustration we shall give one example; we leave all

proofs as exercises.

. Let k tati field of ch isti
Example e 0 be a commu ive fie of characteristic not

2 in which -1 1is a square and where the multiplicative group of non-

zero elements modulo square factors has finite order n . Assume that
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k0 admits a quaternion division ring k over k0 . (Take e.g. k0 =
Qp where p =1 (mod 4) ; cf. Sec. 1.1.) Let *: k » k be an arbitrary
involution that leaves the center fixed. Then each hermitean form over

(k,*) in n2 + 1 wvariables has a nontrivial zero.

Remark. One can modify the previous example so that involutions
are obtained which do not leave the center fixed (cf. Thm. 21, p. 161

in [1]). More generally, the following result can be established.

Theorem. Let (k,*) be any involutorial division ring (of
arbitrary characteristic) of finite dimension over its center C . Let
S = {g€k | £*=f} be the set of symmetric elements and Cii=Ccns.
If there is some fixed m € N such that each symmetric form in m + 1
variables over C0 is isotropic then there exists m' € N such that

each (trace-valued) hermitean form in m' + 1 variables over k' is

isotropic.

A crude estimate of m' in the theorem is m' = (m+l)n where
n = [T:CO]; we hasten to add that this is not the most economic choice

(compare with the above example).

5. A formally real involutorial division ring

If *: k » k 1is an involutory antiautomorphism of the division
ring k then (k,*) 1is called formally real if an equality inx; =90
implies X, = 0 for all i . If * is the identity, and hence k
commutative, then we get the usual concept of a formally real field.
Owing to the formal reality of R we thus see that Hamilton's real
quaternions M are a formally real field with respect to the usual
conjugation. We point out that (k,*) may very well be formally real

but (k,°) , where o’ = ua*u~l for some fixed nonzero u , need not
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be formally real.

In this section we present with some detail a formally real
division ring (k,*) which admits an ordering in the sense of Hilbert
(see XI.4), i.e., the positive elements of k form an additively
closed subgroup of index 2 in the multiplicative group of k . Our
example is a subfield of Hilbert's famous ordered skew field. However,
we do not know whether the involution can be extended to Hilbert's

field.

5.1 Ore rings. An integral domain R is called right Ore ring
if aR N bR # {0} for a , b € R := R~{0} . Each right Ore ring can
be embedded in a "field of fractions" as follows. Define an equivalence
relation on R x R as follows: (a,b) ~ (c,d) if and only if
bd'=db' & (b',d’ Gﬁ) entails ad' = cb' . The equivalence classes
can be added and multiplied as follows: (a,b) + (c,d) := (ad'+cb',bd"')
with bd' = db' ; (a,b)(c,d) := (ac",db") with bc" = cb" . The
inverse of (a,b) is (b,a) (for a + 0) . One checks that everything
is well defined and the set of classes is a division ring. It is de-

noted by Rﬁ .

An integral domain R which is not right Ore contains elements
a, b with aR N bR = {0} . It follows that the elements a'b (n =
0,1,2,...) are right linearly independent, hence R contains right
ideals of arbitrary rank. In particular, every right Noetherian integral

domain is a right Ore ring.

If a right Ore ring is also a left Ore ring (Ra N Rb # {0} for
a, bc¢ R) then there are two fields of fractions, the right field of
fractions Ré as described and - with the obvious changes - a left

field of fractions ﬁR . Straight forward verification shows that
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ﬁR and Rﬁ are isomorphic under the map

(2)
Rx R D (a,b) + (d,c) € R x R where ad = bc .

5.2 Involutions. If o: R > R is an involution of the right Ore

ring then ¢ can be extended to an involution of the division ring Rﬁ

([aD.

Proof. Since aR N bR #+ {0} if and only if Ro(a) N Ro(b) % {0}
we see that a right Ore ring with involution is always a left Ore ring
as well. We consider the two fields of fractions R§ and ﬁR . If
(a,b) = (c,d) €. R,  then bd' = db' and ad' = cb' for suitable
b' , 4' € R and therefore o(d")o(b) = g(b')o(d) and o(d')o(a) =
o(b"Vo(c) with o(d'),o(b') € R . In other words, (o(b),o(a)) =
(o(d) ,0(c)) in ﬁR . Thus the assignment (a,b) € R x R #
(6(b),0(a)) € R x R is a bijection between the equivalence classes
of Rx R and R x R and thus a map of Ré onto ﬁR ; we call it
¢ . Substitution of the definitions yields ¢((a,b)+(c,d)) =
¢((a,b)) + ¢((c,d)) and ¢((a,b)-(c,d)) = ¢({(c,d))¢((a,b)) . Thus
¢ 1is an antiisomorphism of Rﬁ onto ﬁR . Combination with (2) yields

the desired extension of ¢ to Rﬁ :

(3) c(%) = % with o(a)d = o(b)c .

5.3 The example. We see that all we need in order to have an
ordered division ring with involution is an ordered Ore ring R with
. . a
an involution (" B >0 <> ab > 0 " extends the ordering of R to

R§ ) . We construct one as follows.

In the polynomial ring @[x] we define an injective homomorphism

. i i i
by setting w: Zrix s Zzlrix . Let then t be a new indeterminate;

we consider the set R of all polynomials f = Zaitl with coefficients
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ay € 9[x] . A noncommutative multiplication between f , g € R 1is

defined by £fg = chtk where

(4) .

Q
1]

I a,0 (b.) .
i+j=k J

In particular tx = 2xt in R . Addition is defined as usual. R is
an integral domain. Q[x] 1is noetherian and so is R by the Hilbert
basis theorem just as in the commutative case. So R 1is right Ore by
5.1. Since @ is ordered @Q[x] is ordered by defining £ > 0 iff
the coefficient of the lowest term in £ is positive. An ordering of
R 1is obtained from that of @[x] by the same procedure. Finally we

obtain an involution ¢ of R by setting

(5) o: Zai xltk 24 Zai xkt1 (a,

k k 1k€Q) :

We £ind o (f+g) = o(£) + o(g) , o(fg) = o(g)o(f) , o =1 . Thus we

have shown that for this particular polynomial ring R the involutorial

division ring (Rﬁ' o) admits an ordering in the sense of Hilbert ([4]).

5.4 Formal reality. By an induction on n one proves, by using
the left Ore condition, the following "common denominator theorem"

for Rﬁ in 5.3 :

l,...,Xn € Rﬁ
1

such that A, = r ty (l<i<n) .

For A there exist r, tl,...,tn € R

(6)

We are now able to establish

(7 1£ 2A.2% = 0 then A, = 0 (all i) .
11 1

Assuming that not all Ai in (7) are zero we study the typical Ailg

in that sum. By (6) we assume that all Ai are polynomials u =

Zajkxjtk (ajk € § and depending on i ) : write the Ai with common
; _ -1 . o
denominator, Xi =y uy (ui,rGR) 3 EA,Ai

-l,0 _
1 ) =0

_ =1 [of
=r (Zuiui)(r
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ui =0 . Let n, be the smallest exponent Jj + k with

ajk $ 0 in the polynomial By and n the smallest among the finite-

implies ' & wy

ly many n, . Thus by the definition of n :

i

there is a triple (i,j,k) with 3j+k = n and
(8)

ajy $ 0 in My -

The sum of terms of "weight" 2n in uiug is

S (2n)

where the sum extends

S(2n)
g 2(m=3) (n=3") s RS LSRN ES IS A
j.n=j 73',n=3'

over all 3j,j' with 0 <j <n and 0 < j' <n . Now 0 = I uiuz =

z s(2n) + s where all nonzero monomials in s have an exponent > 2n .
Therefore, I S(Zn) = 0 and, if we collect the coefficient of xntn ,
we see that ,E 2(n—3)(n-j) a? . =0 . Thus a, . = 0 for all

j=0 j,n=j j.n=j

j=20,1,...,n and all u contradicting (8).

5.5 Summary. We have shown that there exist noncommutative in-
volutorial division rings (k,*) which are formally real and which
admit an ordering = in the sense of Hilbert. Owing to the formal
reality we can define anisotropic hermitean forms ¢ = T Eisz over
such (k,*) . Such forms will, however, be indefinite with respect
to < . For, as k 1is skew, there exist a with o # a* ; say o < a* .
Thus if B8 := o - a* then BB* < 0 . On the other hand, if vy |is
symmetric, then yy* = yz > 0 . Thus the anisotropic ¢ changes sign

on every l-dimensional subspace.

For an account on Ore rings, based on the work in [13] and [14],

one may consult [2].
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CHAPTER THREE

WITT DECOMPOSITIONS FOR HERMITEAN RO—FORMS

1. Introduction

Forms are e-hermitean ; if o > a* 1is the antiautomorphism
of the underlying division ring we let T := {a + ea*|a € k} be the
additive subgroup of "traces" in k. Traces are symmetric elements of k
but the converse does not hold when the characteristic is two.

*

Isotropic vectors play a distinguished role in the theory of forms and
so do totally isotropic subspaces in a sesquilinear space. The theorem
on Witt decompositions is an eminent tool in the classical theory of
finite dimensional quadratic spaces. Results on Witt decompositions of
infinite dimensional spaces E turn out to be of equal prominence for
the handling of totally isotropic subspaces. Let us first give a defi-
nition.

For (E,®) a non-degenerate sesquilinear space and R < R'CE a

totally isotropic subspace we say that E admits a metabolic decompo-

sition for R if E contains an orthogonal family of planes

P.= k(ri,ri) such that their sum possesses an orthogonal supplement in
E and R is the span of the ry - If we let R' be the span of the
ri we have in particular a decomposition

L
(0) E=(R@&R') ® Eo .

Since E 1is non-degenerate all planes Pi must be non-degenerate and
thus Rl= R ® Eo and Rll= R in (0). We see that a metabolic decompo-
sition of E for R forces R to be 1-closed (Remark: if the totally
isotropic R 1is not 1-closed one will use metabolic aecompositions for
the totally isotropic Rll and then study the location of R within

'L Iy
R L). We say that E admits a Witt decomposition for the totally iso-

tropic R if there is a metabolic decomposition with all Pi hyperbolic



97

planes. In particular R' may then be chosen totally isotropic in (0).
In fact, we can equally define a Witt decomposition of E (for R) by
requiring the existence of a decomposition (0) with R' some totally
isotropic space: If E is non-degenerate and R' totally isotropic
then it follows from (Q) that R = Rl'L and that therefore R ® R' 1is an
orthogonal sum of planes Pi as specified. If the form on E is trace-
valued (always the case when char k # 2) then the planes P, are in-
variably hyperbolic and one need not distinguish between metabolic de-
compositions and Witt decompositions.

In this chapter we are interested in the existence of Witt decompo-
sitions. Kaplansky has shown ([3], p.13,Thm.7) that L-closed totally
isotropic R & E always admit metabolic decompositions when dim E ¢ NO.
The short proof of this fact will be reproduced below (Theorem 3 ). By
what we have said before this answers the question of Witt decompositions
for trace-valued forms. When char k = 2 then forms need no longer be
trace-valued and the problem becomes considerably more difficult. We
shall solve here the general problem by giving appropriate conditions
for Witt decompositions to exist. This settles the issue in countable

dimensions.

2. The lattice that belongs to the problem

For X any subspace of the non-degenerate e-hermitean space
(E,) we let X* be the linear subspace {x € x| ¢(x,x) € T}. Obviously
X* = X 1 E* ., To E* belong in particular all isotropic vectors of E ,
e.g. E*' N prt < g , so that the radical E* N E* is t-closed
being equal to the closed radical of E*'L .

If E possesses a Witt decomposition (0) for the totally isotropic

subspace R then we read off that

(1) R+ E* =&

Fy
(2) R + E* = (R N g*x)*
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Observe that R = R'* by (1) and (2): B* N E* = (0) by (1) and

R + E** is closed by (2) and thus contains RL*.

Theorem 1. Assume that R < Rl C E satisfies (1) and (2). Then the
lattice V(R,E*) orthostably generated in the lattice L(E) of all sub-

spaces in E by R and E* 1looks as follows

(0)

0y 1| 2| 3(4|5|6|71(8([9(1l0|11]12]13{14(15|16]{17
X |17|1615]11{14 10 |5 |4 |3 (25| 3| 4] 2| 4} 2] 1|0

The proof of the theorem is left to the reader. In contrast to dis-
discovering the diagram it is routine to verify its correctness by making

use of the modular law etc.

The interesting point about this lattice is that it looks just as
it ought to look if E had a Witt decomposition for the subspace R .
Indeed, if (0) is assumed with a totally isotropic R' then it is very

easy to jot down V(R,E*) ., This fact motivated our search for a proof
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of sufficiency of (1) & (2). Our result is the following

Theorem 2. (Witt decomposition). Let R be a totally isotropic
subspace in the non-degenrate c¢-hermitean space E over the division

ring k . Assume that dim E g X . Then (1) and (2) are necessary and

0
sufficient in order that E possesses a Witt decomposition with respect

to R .

Remarks 1. Whenever ¢ is trace-valued, E* = E , then condition
(1) is empty and (2) reduces to R = R'* so that we obtain Kaplansky's
result of unconditional existence of Witt decompositions for closed
totally isotropic subspaces in trace-valued spaces.

2. Let ¢ Dbe symmetric, E spanned by an orthonormal basis,
dim E = NO r k algebraically closed and char k = 2 . Then E* is
a hyperplane with E*'L = (0) . No maximal (with respect to < )
totally isotropic R & E satisfies (1) & (2) whereas all finite di-
mensional totally isotropic R © E do satisfy (1) & (2). Hence the
spaces R admitting a Witt decomposition are not inductively ordered.

3. There are examples where either of (1) and (2) fails but not the
other; there are also examples where (1) and (2) hold and all eighteen

elements of the lattice are different spaces.

3. Metabolic decompositions

We reproduce the anounced result of Kaplansky (Thm.7 in [3], p.13;

cf. [1], p.78, exercise 13).

Theorem 3. Let E be a non-degenerate sesquilinear space of
. . L .
countable dimension and R < R < E a t-closed subspace. Then E admits

a metabolic decomposition

1

L ]
(3) E = (? k(r;,ri)) ®E k(r.)

o ' ilijer = R

Proof. We construct such a decomposition recursively.
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Suppose we have constructed finite dimensional non-degenerate

subspaces S§,T with the following (induction) properties

m
1 L
s+tT , TSR , s=@ k(r;,r)) , (8+7T) N R=k(r;,...,r ) SR,

Let (e,)_. be some fixed basis of E and e, its first member not

i'I
1
contained in S + T . We shall determine spaces K , L < (8§ + T)
such that S' := S ® K and T' :=T ® L will again satisfy the in-

duction assumptions ( with §' , T' in lieu of S , T ) and such that

that e, € 8' + T' . In this fashion we achieve a decomposition (3)
with E0 =uUT |
1
Since E = (S + T) + (S + T) we may decompose e, + e~ X + y

and "adjoin" only the component y + S ® T to the space S + T in the

following construction step.

L
Case 1: y€R . (8+ 7T is non-degenerate and thus contains

y' with o¢(y',y) =1 . Set S' s ® k(y,y') , T' =T . How large

can (S' + T') N R get? Let d = s+tiy+tA'y'+t € S'+7' be an element
of the intersection. Since t € T' =T & R* and d€RC ™ we find

0 =6¢6(d,T) =0+ 0+ 0+ &(t,T) so t =0 as T is non-degenerate.
Hence 0 = &{(d,y) = 0 + A+0 + A'+1l . Therefore d - Ay =s € SN RC
k(rl,...,rm) by induction assumption. We see that (S' + T') NR=

k(rl,...,rm,y) . The remaining induction assumptions are obvious in

this case.

Case 2: vy € R* <~ R . Notice that y R+ 85 + T (indeed, by

modularity, ((R+ S+ T NT)NER = (R+8S) NR =R+SNRCSR .

Therefore, and by L-closedness of R+ S+ T , (R+ S + T)l ¢ yl .

L

Pick a vector t € (R+ S + T) with o(t,y ) #0 . If y is iso-
tropic we set T' =T @ k(y,t) otherwise simply T' =T @ k(y) ; in
both cases S' =S . It is not difficult to again verify the induction

assumptions.
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Case 3: y € E ~ K- . Notice that y ¢ R +s+T=R +5
1
(since (RL +s) N k(rl,...,rm) = Rl) . Therefore, and by the closed-
1 ) 1 1 1
ness of R + S + T , we can pick a vector r € (R + S + T) ~ ¥ .
We set S' =8 ® k(r,y) , T'=T,and easily verify all induction

assumptions.

Corollary 1: If the space E in Thm.,3 is trace-valued then there
is a Witt decomposition for every t-closed totally isotropic R . The
orbit of R in L(E) wunder the orthogonal group of E is therefore

1
characterised by dim R and the isometry class of R .

For the proof of Theorem 2 we need a lemma to which we now turn.

4. A lemma on orthogonal separation of totally isotropic subspaces

The proof of the following lemma is valid for arbitrary character-
istic. We shall need it when char k = 2 . For characteristic not 2

there are much more general results in this direction (Chapter VI).

Lemma 1. Let (E,®) be non-degenerate and R,S totally isotropic

subspaces with Rt S8 ; dim E g NO . There exists an orthogonal de-
1
composition E = El @ E, with R < E; and S < E, if and only if
L1 11 L1 L n
(R + S) =R + 8 and R + S =E .

Proof. The necessity of the two conditions is obvious. For the
proof of the converse we may assume without loss of generality that R
and S be closed. We choose a metabolic decomposition of E with

L
respect to R, E = (R® R') ® E and let S be the projection of

0 1
S onto E0 . As R+ S =R+ sl is closed we obtain that Sl is
closed; so there is a metabolic decomposition of EO for Sl . Thus
there are mutually orthogonal planes k(ri,ri) (1 € I) and k(sj,si)

(j € ) with R the span of the ry and Sl the span of the sj and

and Si the span of the 53 ) we have a

(for R' the span of the r

Gt~ -

L
decomposition E = (R ® R') (Sl ® Si) ® El . Without loss of generality
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o= 1 = ' - ;
¢(ri,ri) 1 @(sj,sj) for all i € I and j € J .

For each j € J there is x4 € R such that the family S5 + Xy

(j € J) spans S . Set xj = Zajnrn . Since by assumption Rl + S'L is

all of E we have in particular R' & (R + Sl + Si + El) + SL = Si + Sl.

In other words, for each i € I, there exists some yi € Si such that

r! +y, LS .8Set y, =JB, s' . It follows that 8., + o., = 0 which
i i i imm ij Jji

shows that matrices (aij) and (Bij) are both row- and column-finite.

If we let R" be the span of the ri oy (i € I) then we have that

R+ R" + S + El . Does there exist an orthogonal projection of Si on-

to R+ R" ? We see that sé + Egjnrn 1 R+ R" if and only if

Ein + Bnié(si,si) = 0 . Since (Sni) is column-finite we can solve for
Ein and get finite sums zginrn . Hence R + R" admits an orthogonal

supplement that contains S . QED.

5. Reducing the proof of Thm.2 to the case of a non-degenerate E*

We call § the radical E*" N E* of E* .

Let R S E be the subspace of Theorem 2 and assume (1) and (2).

1L 1L 1
We have R =R and S = S . Furthermore R 1 S as RCE* & S

1 1 1
and by (1) weget R + S 2 R + E* = E . Thus in order to show that
the pair R,S qualifies for the lemma there remains to prove closedness

of R + S . We choose some fixed metabolic decomposition for R ,

0 (notation: X .= x* N E, )

1
(4) E= (RO R'") ©E

Intersection with E* of both sides in (2) gives us the equality

1 1 1
R+ S= (R NE* NE*, hence by (4) R+ s =[(R+E)N E*]” N E* =
[r + (Ea)]l N E*¥ = R + rad (ES) . Since E0 is an orthogonal summand
in E the closure of the space rad (EB) can be computed in EO with

respect to QIEO x E. . By the remark made at the beginning of Sec.2

0
rad (Ea) is therefore closed and hence the sum R + rad (EB) is closed

in view of the splitting (4). We have thus shown that
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(5) R+S=R+rad (E)) = (R+ 8"

Incidentally, we have also seen that (2) implies
L

(6) R+ 6§ = (R#*) *

which has a natural interpretation: The right hand side in (6) is the
closure of R C E* with respect to the restriction ©&* := ¢|E* x E* ,

A subspace X © E* closed with respect to &* will, of course, contain
the radical of the space E* , S € X . Hence the conclusion (6) of (2)
forces the closure of R in (E*,9*) to be as small as it can possibly

be. In particular,
(7) if rad E* = (0) then R is closed with respect to &% .,

Since R and S qualify for the lemma there is a splitting

L
E = E2 & E3 with R & E2 and S < E3 . E3 has a metabolic decomposi-

tion for S . Relabeling summands we thus have a decomposition

1

1
(8) E=(s®s')®E , RCE, (notation: Xt =x"NnE )

1 1

1
By using (8) and the fact that E*C g =g @& E1 , and hence E* =

s ® EI , it is easy to justify the following

Conclusion. Let @1 be the restriction of @ to El X El . If

El admits a Witt decomposition with respect to R then so will E .

Since Ei is non-degenerate and since it follows from (1) and (2) that

we have (1,) R + E* = E and (2

1 1 1 1

therefore suffices to prove Theorem 2 under the assumption that E* is

) R+ Ef‘ﬂ = (g't n Ei)"1 it

non-degenerate.

6. Discussion of properties (1) and (2) when E* is non-degenerate

The following result is the fundament of the proof in the next

section.

Lemma 2. Let dim E < X and assume (1),(2) and E*' N g* = (0).

0

Let A,B < E be finite dimensional non-degenerate subspaces with the
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following properties:

A1 B, ACE*, A is hyperbolic with AN R a
maximal totally isotropic subspace of A ,
L
B< R , Bn(R+E*L)=BnE*l,
Then we have
1
(1) for every 4 € A" N E* there exists e € E* N R
L
such that d + e € (A + B)

(IT) for each z € (A + B)L there exists

XERln(A+B)'L, yGE*ﬂ(A+B)l with z =x +y

Proof. Let G be a supplement of E* @ E*L in E . (1) says
that we may pick G < Rl. By (7) there is a metabolic decomposition
of E* with respect to R ; since A is the sum of finitely many
hyperbolic planes k(ri,ri) (i=1,...,m) with r, € R we can use A

as an initial stump of a metabolic decomposition of E

E*

®r') B ¢t N @ ® o' " @
(9) (R R'") H = P k(ri,ri) H=A i k(ri,ri) H
E

(E*&)E*L)@G, cer ’ R=Gi9k(ri)

L
What does now condition (2) mean for (9)? We have R =RO®H® E* &g

soby (2) R+E* = (R NEY' = RO H)"' =ROE* ® (H® G) N H .
Therefore
(10) (H® ¢ NH = (0)

Let (bj) be a basis of a supplement of Bl (R & E*l) in B.
BCR =RO®HE®E* ® G ; so we break the bj accordingly into

components, bj =r, + hj + ej + gj and let C be the span of all

projections hj + gj (they are linearly independent). Thus C < H® G .
We try to pick the required vector e € H , hence it will have to
satisfy @(e,bj) = —@(d,bj) , i.e. @(e,hj + gj) ought to have pre-
scribed values. We can certainly find a vector e' in E which has

1
the required angles with C . Since C is finite dimensional C + H
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is closed and so by (10) G ra=( s+ttt = 0t =E.
Hence we decompose e' , e' =e'' + e € C1 + H . Since BNl (R + E*l)
=B N E*'L by the assumption of the lemma and d € E* we see that

d + e is orthogonal to ali/of B . This proves (I). To prove (II) we
may start out with vectors x, € R ro¥ € E* with z = X, +y, by
virtue of (1l). There is r € RN A such that x, + rt A . Set c =

1

X, +r, d= y1 - r . We have d, c € I-\'L since d + ¢ € A+ by

1
assumption. By part (I) there exists e € E* N R* with 4 + e € (A + B)
With x :=d + e and y :=c - e we satisfy (II).

By the lemma we have one half of the following

Corollary. Let R & E be totally isotropic, dim E < RO and A ,
B as in Lemma 2. Then (1) & (2) is equivalent with the validity of

(I) & (II) for all A , B .

To show the remaining (easy) half of the corollary one chooses
A =B = (0) to obtain (1) from (II). Hence we may use a decomposition
(9) and set A = (0) in order to obtain (10) from (II). But (10) and

(2) are equivalent if (1) holds.

7. Proof of Theorem 2 when E* is non-degenerate

Assume that dim E < No and E* N E*l = (0) and, furthermore,

that (1) and (2) holds.

We build up a Witt decomposition for R recursively. Assume that
we already have determined finite dimensional non-degenerate subspaces

A, BSE with

AL B, ACE*, A hyperbolic and A N R a maximal
1
(11) totally isotropic subspace in A, B R ,

B N (R+E*L) =B N g

Let (ei) be a fixed auxiliary basis of E and e, the first
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member not in A + B . We shall determine finite dimensional subspaces
X, Y < (A + B)L such that A :=A ® x , B, := B ® Y will again satisfy
(11) and have e. € Al + Bl . In this fashion we obtain a decomposition

1
E=(R+R'Y ®E R® R' € E* . Although the plan of the proof is

0 14
quite obvious there will be a number of details to pay attention to.

As E

1
(A + B) + (A + B) we may decompose e, and adjoin its
component z in (A + B)L to the space (A + B) . We shall distinguish

between three major cases just as in the proof of Thm, 3.

Case 1. z € R~ {0} . since E* = A + (Al N E*) is non-degenerate
we find 4 € E* N A" with o(z,d) = 1 . By (I) of Lemma 2 there is
e € E¥ N Rl such that e + d € (A + B)l . Hence k(z,d + e) 1is a
hyperbolic plane in (A + B)L . If we set A' :=A + k(z,d + e) and
B' := B then we have z € A' + B' and all induction assumptions are
easily seen to hold again.

Ccase 2. z € R'~ R . It follows that
(12) z¢ R+A+B
It may happen that z € B + R + Ex" s, Z2=b+r+e' (b€B, r€R,
e' € E¥") . It then follows that r 1 A+ B . If r + 0 then by
Case 1 there is a hyperbolic plane k(r,r') + A + B . What do we then
know about z-r ? Since riB we have z~r L+ B ; as z-r € B+E*" also
z-r1 A . Since k(r,r') ©E* N B we have z - r L k(r,r') . In
total we have z - r € (Rl ~R) N (A + k(r,r") + B)l which shows that
with z - r we are still in Case 2. What we have shown is that (in the

present case)

(13) if =z happens to be in B + R + E*"  then without loss

1
of generality z € B + E* .

Now if 2z 1is non-isotropic we set A' := A and B' := B + (z).
1

1
If 2z is isotropic then by (12) we may pick z' € (R+ A + B) ~z2 .
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We set A' := A and B' := B ® k(z,z') .

Let us verify the induction assumption on B' 11 (R + E*l) in this
last case. For a typical vector g of this intersection write gq :=b +
Az + puz' =r + e (b€B , x€R , e‘EE*l ) . 2z 1is isotropic (hence in
E*) and multiplying it with r + e' therefore yields 0 = u . Hence
Az € B+ R+ E*l ; SO Az = bl + e" (bl € B, e" € E*l) by (13). Since

b+ iz € R+ E*' we obtain b + b E(R+E*l)nB=E*lnB by

1
induction assumption. Therefore q := b + Az = (b + bl) + e" € E*l
Ergo g € B' N E*l . The remaining induction assumptions are readily
seen to hold. This terminates Case 2.

Case 3. z § . By (II) of Lemma 2 z = x + y for some
x € RN (a+B)" and y € E* 0 (A + B)" . Since z ¢ R' we have
vy § R' and thus we find r € R N A" with ®(r,y) =1 so that k(r,y)
is a hyperbolic plane in (A + B)l . Set A' :=A® k(r,y), B' :=B.,.
If x happens to be zero then we are done: z € A' + B' and all
induction assumptions are easily seen to hold. If x %+ 0 then the vector
Z; T X - d(x,y)r is in RL n(a' o B')l and thus qualifies either for

Case 1 or Case 2 so that by some additional steps we may adjoin zy to

A' + B' . This terminates Case 3.

The proof of Thm 2, in the case of non-degenerate E* is thus

complete. By Sec.5 this proves Theorem 2 in full generality.

8. Some general remarks on the proof of Theorem 2

We see fit to include a comment on the rationale behind the proof
of Theorem 2 as against some proofs given in later chapters. Note first

the following obvious consequence of Theorem 2:

Let R be a totally isotropic subspace of the non-degenerate
e~hermitean space E(dim E < RO) with (1) and (2). Then the
(14) .
orbit of R (under the orthogonal group of E) is character-

ized by the cardinal dim R and the isometry class of R" .
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Assuming that we had a direct proof of (14) could we then obtain
Theorem 2 as a corollary ? Given a Li-closed R & Rl < (E,%) we certainly
have a metabolic decomposition E = (R ® R') é E0 . Define a new form
Y on E x E by setting V¥ identically zero on R' x R' and have it
coincide with ¢ on RX R, RXR', RXE;, R‘XEO and E, x E, .
The space (E,¥) is non-degenerate and Witt decomposed with respect to
R . Obviously, if (E,%) does admit a Witt decomposition for R then
(E,8) and (E,¥) are isometric. Conversely: provided that (E,Y¥) , as

defined, turns out to be isometric to (E,®) then it follows without

further ado from (14) that (E,?) admits a Witt decomposition with
respect to R . We would have liked to present a proof of Theorem 2
along this line instead of directly setting up the required decomposition
as we have done in the present chapter. In fact, all the many normal
forms effected in subsequent chapters are obtained by applying the

strategy just outlined, to wit,

l. characterize orbits by certain invariants ("uniqueness"),

2. construct a specific normal form with prescribed invariants,

in order to conclude that in all instances we can exhibit a normal form.
We have not succeeded in finding such a proof of Theorem 2 in the general
case. However, when dim S/T is finite then there is such a proof (2];
it will be given in Chapter VIII as a special case of a more general
result. (The finiteness assumption on dim S/T implies that (E,%) is
quasistable in the sense of Chapter VII if it contains a totally iso-
tropic R . If, in addition, R satisfies (1) and (2) then we are also

able to establish the isometry (E,¥) = (E,¢).)

For further remarks on decomposition theorems in general see

[4], 5-6.
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CHAPTER FOUR

ISOMORPHISMS BETWEEN LATTICES OF LINEAR

SUBSPACES WHICH ARE INDUCED BY ISOMETRIES

1. Introduction

Let E be a vector space over the division ring k and L(E) the
lattice of all linear subspaces of E . If E is a vector space over
the division ring kK and «t1: L(E) - L(E) a lattice isomorphism then
by the Fundamental Theorem of Projective Geometry ([1] p. 44) 1 is

induced by a semilinear map T: E -+ E if we assume that dim E >3 .

Here we shall investigate questions of the following kind. Assume
that t: V » U is a lattice isomorphism merely between sublattices of
L(E) and L(E) respectively but assume E and E equipped with non-
degenerate (orthosymmetric) sesquilinear forms ¢ and ® respectively.

Then ask: is 1 induced by a similitude T: E - E ?

It is not to be expected that these problems have an easy and uni-
form answer. We shall start out with the special case of alternate forms
and look for t: V » V which are induced by isometries. The result is
Theorem 1 below. If there are "enough" isotropic vectors available in
E and E then our construction holds also for nonalternate forms. Our
main result is Theorem 2 in Section 8. Chapters V, VI and VIII bring
applications to this result. Of course we restrict ourselves here to

countable dimensions ([4], p. 3 contains a nice example in arbitrary

dimensions) .

2. The kind of lattices admitted

T

If t: V>V is induced by an isometry T: E > E, i.e., X =
{Tx|x € X} for all X € V , then 71 extends to all of L(E) and

obviously commutes with orthogonal complementation. Therefore, it is
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natural to restrict our attention to orthostable lattices:
(0) €V and E€ V and if X € V then X € V .

Furthermore, if it is induced, then 1 must preserve rank, in particu-
lar it must preserve indices, i.e. dimensions of quotient spaces Y/X

for neighbouring elements X ¢ Y of V . Since T - when it is in-
duced - also extends to a lattice isomorphism between the complete ortho-
stable lattices generated by V , V in L(E) and L(E) respectively

it is appropriate to assume at the outset that V is complete as a sub-

lattice of L(E) . Indeed, easy examples show that, in general, the
indices of V will not determine the indices in the complete sublattice
generated by V . As we assume that dim E < RO all chains in V will
be denumerable so that it is sufficient to check V for being a o-

lattice in the sense that every denumerable subset has an infimum and

a supremum (see also Section 7 below).

Definition. An element D of a lattice V 1is called compact if
Dc I A1 for an arbitrary family of A1 € V implies that D & Al +
+ e+ An for finitely many among the A1 . A complete lattice is
called algebraic (or compactly generated) if every element is the join

of compact elements. An element D € V 1is called join-irreducible if

D=A+B, A€V, B¢€V implies that D=A or D =B ; it is called

join-prime if DCA+B, A€V, B€ V implies DS A or DgB.

We now put down the conditions on the lattice V which make

possible the geometric constructions in this chapter. They are:

(1) join-irreducible compact elements are join-prime,

(2) compact elements are joins of join-irreducibles.

We shall often have to deal with finite lattices |V satisfying
(1) and (2). The adjective "compact" is then redundant and by (1) & (2)

every element of V is a join of join-prime elements. Hence V must be
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distributive by the following

Lemma 1 ([5]). A lattice in which every element is a (finite or

infinite) join of join-prime elements is distributive.

Proof. We first show that a g b+tc implies a < (aab) + (aac)
in such a lattice. Indeed, let X(a) be the set of all join-prime
elements < a'. a = I{x|x € X(a)} by assumption. If a < b+c then
Xx £ ag btec for all x € X(a) hence x < b or x £ c and thus x <
(anb) + (aAc) . Ergo a = Ix < (anb) + (anc) as asserted. Now if our
lattice were not distributive it would contain a five element non-
distributive sublattice <3>b or a five element nonmodular lattice

both not enjoying the property just established.
However, the same conclusion holds for the nonfinite case as well.

We shall list the pertinent results here.

Lemma 2 ([5]). Let I be an algebraic modular lattice and ¢ a
compact element of L which is a join of join-irreducibles. Then c¢ is

a join of join-irreducible compact elements.

For a proof we refer to [5]. Clearly, by the two lemmas every al-

gebraic modular lattice with (1) and (2) is distributive.

A lattice is called completely distributive if (for I , J # g)

the following identity holds,

. . - SIA .
/\{Z{aijlj € J¥|ie€ 1} =2{ {ai¢i|i € 1}|p: T + J} .
In [6] (Statement 3.2 page 320) the following result is proved:

Lemma 3. An algebraic lattice is completely distributive if and

only if each compact element is a join of join-prime compact elements.

Hence we see, by Lemma 2 and 3, that modular algebraic lattices

with (1) and (2) are even completely distributive. We said before that
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we would stick to complete sublattices of L(E) . Now L(E) is clearly

algebraic and in order to round off our digression on lattices we shall

prove

Lemma 4. A complete sublattice S of an algebraic lattice L is

algebraic.

Proof. For ¢ € L define & =A{x € S|x 2 ¢} . If ¢ 1is compact
in L then & is compact in S . Furthermore if a € Sc L is a join
of compact elements c, in L then c1 < a and so el < a . Since

thus as.Ecls Eéls a we obtain a = 261 .

We summarize: The lattices V which we are going to deal with in
this chapter, to wit,complete sublattices of L(E) that satisfy (1) and
(2), are completely distributive. Conversely, each completely distrib-

utive complete sublattice of L(E) satisfies (1) and (2).

3. Statement of Theorem 1 and an outlay of its proof

No assumption is made on the characteristic of the field.

Theorem 1. Let E be an alternate space with dim E < NO and

vV , V orthostable complete sublatticesof the lattice L(E) of all

subspaces of E . Assume that +t1: V - V is a lattice isomorphism which
commutes with orthogonal complementation and which preserves indices.
In order that <t be induced by an isometry T: E +» E it is sufficient

that V satisfies (1) and (2).

In order to prove this theorem we are going to construct by in-

duction two ascending chains W0 < Wl < w2 G eee w0 < wl = w2 & ...

of finite dimensional subspaces of E and a sequence of isometries

T,: W, » W, such that T,
1 1+

i i is an extension of Ti . We shall arrange

1
for LJ Wi and LJ ﬁi to be all of E so that the Ti define an
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isometry T: E » E . Furthermore the Ti are going to be "compatible"

with the given lattice isomorphism 71: A+ A (ae v, A € U) :
(3) Ti(Wi na)y = Wi na for all A€ V .

If such sequences Wi ’ ﬁi exist at all then there will be many
possibilities of selecting them. We try to construct them in such a
manner that the following distributivity holds for arbitrary families

of elements A1 [ A

(4) Q(wi+A1) = W, +()a

1 1

and, of course, the corresponding property for each ﬁi of the second

sequence.

In order to describe this construction it is sufficient to discuss

the ith step. If we drop subscripts we are left with the following task.

4. The construction problem

We are given finite-dimensional subspaces W , WC E and an

isometry T: W - W with

(3") T(WNA =wnA'  (for all A€ V)
(4") (YW +a) =w+(a

1 1 1 1
(4") Q (W+Aa) =W+ QAU

where (AI) ’ (ZO) are arbitrary families in V and V respectively.
There is furthermore given a vector x € E ~ W . One then has to (I)

specify in E a finite dimensional subspace W1 D W® (x) , (ITI) con-

struct a subspace W such that T extends to an isometry T,: W, - wl

1 1

1’ Tl satisfy again (3'), (4'), (q).

1

and, (III) verify that Wl , ﬁ

We shall now adduce some equalities for dimensions of spaces that

will show up in the course of subsequent constructions. These equalities
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are consequences of (3') and the properties of 1 . For A € V let again

A €TV be the image of A wunder the given lattice isomorphism t: V » V .

We have

(1) For all A€ V : dim A/A N W = dim /A N W

Proof. A/(A N wl) £ (A + WL)/WL . Since for r-closed V we have
dim U/V = dim VL/U* we obtain dim A/(A N WL) = dim W/W N Al and

similarly dim A/ (A N Wl) = dim ﬁ/(ﬁ n il) . The lattices are ortho-

n _1 - -
stable so A ¢V, A €V and, since T: W-> W satisfies (3'), we

have W/W N AL z ﬁ/ﬁ n XL . Therefore (i).

(ii) For all A , Ao € UV with AO S A : dim((A0+W) n A)/A0 =
dim((A,+W) N A)/A, -

~

Proof. By (3') (W N A)/(WN Ay (WNna/Wn AO) s0

(Ay + (WNA)) /A, g (EO + (ﬁni))/io hence (ii) by modularity.

(iii) For all A , AO € I with AO c A

dim( (A +W)NA) / (A +W)NA) O W

dim( (A +W)NA)/ ((R+NE) N W

1

Proof. By (3') T maps (A0 nNw) N wWn (wWn A)L) onto the anal-
ogously built space so the quotient space W/A; nwn (Wa) is isomorphic
to W/i; nwn (W n S)l . Denominators are L-closed so dim(WL+A0+(WﬂA))/

W= dim(v'v*+z'\0+(ﬁni))/v'vl )

(iv) For all A , A € V with A, S A :

0 0
dim A/ (A, + W) N A = dim A/(io +W) NAa.

Proof. T preserves indices by the assumption of Thm. 1 so
dim A/A0 = dim i/io . From this and (ii) we get (iv) by a simple sub-

traction.

(v) For all A , A, € V with A, C A :

0 0
dim A/((A0+W)nA)nw* = dim i/((£0+ﬁ)ni)nﬁ* ;
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Proof. Combine (iii) and (iv).
From (i) and (v) we obtain the important equality

(5) for all a , AO € V with AO < A we have

aim(Anw*)/((A0+wmA)nw* = dim(inv'v*)/((ioﬂfv)ni)nﬁ* )

Remark. In Section 7 below we shall somewhat relax the assumption

on completeness of V . For A€ V we let then A0 be the sum in E

of all proper antecedents of A in V , A, = i{z € V|2 % A} . Define
XO = 1{z" ¢ V|z i A} . A, and 50 need not be lattice elements.

Nevertheless, if we assume that 1 preserves the dimensions of quotients

0’ go as defined then
(5) still holds on the basis of (3') alone: W N AO is still mapped onto

W XO under T as can be seen by considering a vector of the inter-

A/A0 , dim A/AO = dim 5/50 , for A€V and A

section, etc.

5. Solution of the construction problem in the irreducible case

Let x , W be the objects mentioned in the above construction
problem. Define M(x,W) := {Z € V[x € W+z} , M 1is a closed sublattice
of V by (4') (it contains inf M whenever M & M ) and, as it clearly
is a filter, it is a principal filter. We let D = D(x,W) be its

generator. D is compact, obviously.

In this section we shall assume that D is join-irreducible hence
D will be join-prime by (1) of Section 2. This property will, however,
only be used at the end when discussing the validity of the induction

assumptions (4'), (') after the construction step.

We have x € W+D . Without loss of generality x € D . We set

wl = W@ (x) which takes care of (I) in the construction problem

formulated in the previous section. We turn to (II). We have to pick
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X €E and set W, = W& (X) . Where should we pick X so that (3")

1
continues to hold for Wl ’ Wl ?
Let D, := I{z € V|z % D} . We have D, # D for otherwise D =
2+ et 42 by the compactness of D , thus n =1, and so D ; D,

contradiction. Thus x € D and x ¢ W + D, . It is therefore certainly

0

necessary to select X such that

R¢W+D

i
m
o1

(6) 0

holds. Suppose we pick X such that (6) holds. If we let M(E,ﬁ) be
the filter associated with the pair x , W (defined in analogy to
M(x,W) at the beginning of this section) then the first half of (6)

tells that D is an element of M(i,ﬁ) and the second half tells that

D, is not. Since D covers 50 (i.e. 50 i X i D is not satisfied

by any X ) we see that (6) implies
(7) D 1is the generator of the filter M(x,W) .

In other words, T maps M(x,W) onto M(x,W) ; this makes it very
plausible that X has the correct order theoretic ubiety relative to
the lattice V . We now have to turn to metric requirements imposed on

the choice of x .

Let F be a supplement of W N p* in W and spanned by a basis

1|

1’ f2, ceny fn . Then Tfl’ sz, ceey Tfn span a supplement of

wnb' in W by (3'). Since ' nF = (0) there exists y € D that

has the requisite products ®(§,Tfi) @(x,fi) (1 £ i< n) . We next

convince ourselves that we can move § into D ~ (50 + ﬁ), in case we

should have § €D, +W , by adding a suitable "correction" t to § .

0

We shall specify such a t now.
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D, +WND , say y = d +w.

Assume then that y € D N (50 + W) 0 o

1

Let G be a supplement of Wn 50 in W spanned by a basis

- - - . R ..1 _ - -

gl, g2, ceer 9 - We can find d0 € D0 with @(dO,T gi) = @(do,gi)
(i=1, 2, ..., r) . The vector x; := -x +d, + ™% is in W by

(3'). Also by (3") x0 ¢ W+ D0 . Therefore, dim(DﬂW’")/((D0+W)ﬂD)ﬂW’L # 0.

Hence we conclude by (5) that there exists a vector ¢t € DN W with
t ¢ 50 + W . This is what we were looking for. Set X = y + t and define

:=W® (X) . Extend T to W, by sending x into x .

=1

1 1

We are left with the task (III) in the construction problem of
Section 4. Let us consider (3') and A an element of V . If A€ M
then DS A and thus D c A by (7). Therefore, X € A and we find
W, NA = (WA) @ (x) Wona-= (WNE) ® (x) . If, however, D ¢ A then

D¢ A by (7) and W, NA=WNA, W, NA=W0nNA. Inboth cases

1 1

Tl(WlﬂA) = Wl na.,

In order to verify (4') let (A1)I be an arbitrary family of
elements in V . If we should have that A1 € M for all v then
CD (W1+A1) = f;](W+AI) and similarly for the 51 by (7) so we may
quote the induction assumption. Assume therefore that Ao ¢ M for at
least one subscript 0 € I . Let then d = W, + Alx + a, (1€I) be a
vector of the intersection (;\ (W +A ) . If A ¢ M for some u € I
then A, = A for otherwise we could solve for x and obtain

) 0

X € W+ (AO+Au) so A0 + Au € M ; this is a contradiction since we

assume in this section that D is join-prime (i.e. M is a prime

filter). Thus A, = %, for all u € I with Au ¢ M and therefore

d-x.x € (D) (WA ) = W + (YA . As the other inclusion () (W,+a) 2
0 I 1 I I 1"

w, + (;]A1 is trivial we have established (4'). To verify (4') is

mutatis mutandis the same.
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We have shown: if D is join-irreducible then the construction

problem can be solved. Let us turn to

6. Solution of the construction problem in the reducible case

(end of. the proof of Theorem 1)

We keep the notations of the previous section and assume that
D(x,W) is join-reducible. By the fundamental assumption (2) therefore
D(x,W) = Dl +oee 4 Dn (n>1) for finitely many join-irreducibles

Di € V . Choose a representation where n is minimal and write x as

a sum of components Xy € Di . If we let Dll = D(xl,w) then Dll <D
and Dll + D2 + s 4+ Dn € M(x,W) . Therefore, Dll + D2 LRI Dn =
Dl + e 4+ Dn and by modularity Dll + Dl n (D2+--'+Dn) = Dl . We
conclude that Dll = D1 by the join-irreducibility of Dl and by

the minimality of n . This tells us that D(xl,w) is irreducible and
that we may therefore by the previous section "adjoin" Xy to W,
Wl = W (xl) and Wl:= W (;l) . Our argument can be repeated to

show that D(xr,Wr_l) = Dr (1fr<n) so that by a n-fold application
of the solution in the previous section the construction problem is

solved in the present case.

7. Remarks on the case of not complete sublattices

At the end of Section 4 we have shown that (5) holds even if V , v

are not complete sublattices but satisfy

(*) for all A € V : dim A/I{2€V|2GA} = dim A'/3{z"|2$A}

i +

If, in addition, we assume that V satisfies the descending chain con-

dition (DCC) then it is possible to maintain the proof of Sections 5 and
6. Conditions (4) and (4') have to be replaced by the corresponding con-
ditions on finite families. M(x,W) of Section 5 will still be a sub-

lattice of V . By DDC we have an induction principle: if a subset N
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of V is such that it must contain X provided it contains all proper
antecedents of X then N is all of V . Hence in solving the con-
struction problem in Section 5 we may assume it to be solvable for all
instances with generators D smaller than D(x,W) . This makes the
transfer of the vector § in Section 5 practically trivial. We summa-

rize:

Theorem 1'. Let E be an alternate space with dim E < RO and
v , V orthostable sublattices of L(E) . Assume that t: V > V is a
lattice isomorphism which commutes with orthogonal complementation and
which preserves indices in the strong sense of (*) above. In order that

T be induced by an isometry T: E » E it is sufficient that V satis-

fy (1) and DCC.

It is not necessary to require (2) since in a lattice with DCC

each element is the join of finitely many join-irreducibles.

8. Nonalternate forms : Theorem 2

The problem formulated in the introduction to the chapter becomes
considerably more difficult if the form is not alternate. Results in
Chapters XII and XIII show the complexity of the question for ortho-

stable lattices as simple as { .

Nevertheless a very useful theorem can be extracted from the proof
of Theorem 1 for certain nonalternate forms. We continue to assume that
the lattices satisfy conditions (1) and (2). (Nondistributive lattices
are investigated in Chapter VIII for sesquilinear and in Chapter XVI for
quadratic forms.) We now turn to the description of the additional dif-

ficulties that arise.

In what follows ¢: E x E > k is a nondegenerate e-hermitean form

with respect to some antiautomorphism « : k — k of the division
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ring k ; dim E = RO . We consider the additive subgroup T := {E+e&*|Zek}

of k and for each subspace X C E we set
X*:= {x € X|é(x,x) € T} .

X* is the trace-valued part of X and, obwviously, X* = X 1 E* . When
® is not trace-valued, possible only when char k = 2 , then each iso-
metry of E respects the operation X » X* . It is therefore natural

to require that the lattices V and V contain the element E* and,

as a matter of course, that the lattice isomorphism <t: V > V satisfy
(8) T(E*) = E* .

V and UV will then be stable under the operation X » X* and the

latter commutes with T . We assert

Theorem 2. Let (E,®) be a nondegenerate ec-hermitean space of
dimension RO and 1: V > V a lattice isomophism between complete sub-

lattices of L(E) (the lattice of all subspaces of E ). Assume that
¥ and V are orthostable and that Tt commutes with orthogonal com-
plementation and satisfies (8) and preserves indices (dimensions of

quotients of neighbouring elements in the lattices). In order that =

be induced by an isometry of E it is sufficient that V¢ , ¥ satisfy

(1) and (2) and the following condition (C) on their join-irreducible

compact elements Y (we set rad Y:= YﬂYL )

(i)  dim Y/rad ¥ < « => |y = {0} = |[¥7] .
(ii) dim Y¥/rad Y = » & Y = Y* => Y contains an infinite

dimensional totally isotropic subspace V with

(C) VN rad Y = (0) , and similarly for Yt .
(iii) dim Y/rad ¥ = » & Y 4+ v* => [ly]| = ||¥"| and for all
finite dimensional F C E we have ”YﬂFLH = “Y” B

letnetl = Y7l .
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Remarks. 1. If char k + 2 then (iii) is vacuous; furthermore
there is an impressive list of fields k with antiautomorphism «
such that there is precisely one isometry class of nondegenerate e-
hermitean Ro—forms over k . Since each such form admits a symplectic

basis we see that (ii) is automatically satisfied. Hence (i) is the

only restriction in these cases.

2. For special lattices one can give better results. E.g. if V
is the lattice {(O)CDLCD = DLLCE} then every T1: V > UV which is
orthostable and preserves indices and has HDH = HDT” is induced by
an isometry T of E (see [3], Sec. 2.5 for a proof). From this follows
anew the result that every totally isotropic +-closed subspace in a non-
degenerate space (E,®) admits a metabolic decomposition no matter

what the form or the field (as long as dim E < RO).

9. Proof of Theorem 2

If Y satisfies (ii) of (C) then for each finite dimensional
F c E the space Y N FL contains hyperbolic planes so that HYﬂF*” =T.
By Section 2 we know that every element X € V is a join of join-
irreducible compact elements Y , X = LY, hence we have by (ii) and

(iii) of (C) that
(9) Izl = Ix'l  (mod T) for all X ¢ V .

In order to use the scheme of the proof of Thm. 1 we only have to

arrange (in Section 5) for X to satisfy the additional requirement
(10) o(x,x) = @(x,x)
besides condition (6) and the condition

(11) o (x,Tw) = &(x,w) for all wegW.
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All this concerns (II) of the construction problem in Section 4.

We keep the notations of Sec. 5. In particular D0 is the join of

all proper antecedents of D € V . We have to show how to satisfy (10)

when D is join~irreducible. In this case D0 is the immediate ante-

cedent of D .

case i. dim D/DND" < = . By (Ci) of the Theorem both x and X

are isotropic and (10) holds.

Case ii. dim D/DND" = ® and D = D* . First pick some x € D'
with (6) and (l1) (such x exist by the arguments of Sec. 5). Now, if

D/D should be finite dimensional, then “DEHFL” = T by (Cii). Hence

0

there is z € Dt

0
then satisfies (6), (10) and (11). If, on the other hand, dim D/D0 is

N (W+(x))" with 6(Z,2Z) = ¢(x,x) -~ 6(X,%) ; % + 2

+ z satisfies (10)

X1

infinite then we pick such a z in D ; then

T
0

since this latter is

and (11) but may violate (6). Suppose we had X+2€ W+ D, . It will

T
0

L
of infinite codimension in D' . Let S be a supplement of DN D in

be easy to manoeuvre the vector out of W+D

D that contains a subspace V as specified in (Cii) of Thm. 2. The

space Sl =S N (W (§+E))L must contain hyperbolic planes as its

radical is finite dimensional. Therefore, the isotropic vectors s of

Sl generate the trace-valued S
= T
setw+130

s, x+z+s satisfies (6), (10) and (11).

[ For infinitely many s we have

since otherwise dim D/D0 would be finite. For each such

Case iii. dim D/DND’ = « and D $ D* ., First pick some §0 € p'
with (6) and (11). By (Ciii) there is z € D' N (ﬁ+(§0))L with
®(z,2) = 0(x,x) - ¢(§0,§0) (by (Ciii) the set ||p|l is closed under

addition and as D + D* we must have char k = 2 , hence ”D“ is an

additive subgroup of k ) so x := ;0 + z satisfies (10) and (11). We
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claim that it has to satisfy (6). For, assume that X = §+§0 € ﬁ+D3 .

By (9) we may pick a vector d0 € D0 with ¢(do,d0) - @(do,do) €T .
Set y := T_lw+d0 i v € W+D0 and o(y,y) = o(x,x) md T so x-y € D* .
Since D* c D0 in the present case we obtain x = (x-y)+y € W+D0 B

contradiction.

The proof of Theorem 2 is therefore complete.

10. Remarks on the method

The method used to prove theorems 1 and 2 can often be applied to
situations where not all join-irreducible compact elements of the
lattice V satisfy condition (C) of Section 8. This possibility stems
from the fact that we need not start the recursive construction of the
sequences (W), . (v_vi)i P T2 W ﬁi with Wy = (0) = ﬁo in order
to make the scheme of Sec. 3 work. In order to get off ground we may

start with any finite dimensional W, , W such that there is an iso-

0 0
metry TO: W0 hd W0 with

(12) T,: WoNA > WNA for all A€V
(13) () (Wy+A ) = W, + QAI , (A€
(14) (NW#a) =W, + (R, (AED)

The idea behind many applications of our method is to arrange the
choice of the initial triple (wo, ﬁo, TO) in such a way that the
compact join-irreducible elements Y which do not satisfy condition
(C) are excluded from the role as generators of the filters M(x,Wn)
associated with the construction problem in Sec. 4. We formulate this

stratagem as
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Principle I. Let (E,®) and 7t: V > V be as in Theorem 2.
Assume that there are finite dimensional spaces W0 ' ﬁo C E and an

isometry TO: W0 > WO which satisfy (12), (13), (14) and the following

condition

if Y 1is a join-irreducible compact element in V
which does not satisfy condition (C) of Sec. 8 then
(15) there exists a subspace H C wo which is a linear

supplement in Y of the immediate antecedent YO

of Y .

Then T0 can be extended to an isometry of E which induces the

lattice isomorphism T .

A typical application of this principle will be contained in the
study of totally isotropic subspaces in Chapter VIII. In that chapter
we shall also formulate a second principle which allows us to deal with
situations where the lattices V , V are not distributive. It is based

on the same idea as Principle I. The range of applications is thereby

greatly increased.

We conclude with a remark. The formulation of principles such as
the ones mentioned is certainly useful for the conveyance of certain
general ideas that concern proofs which,by necessity,are loaded with
details. However, according to needs, the strategy as exhibited may be
varied in countless ways. In specific situations subtler observations

can be made than is possible in a model situation as described in Thm. 2.
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CHAPTER FIVE
SUBSPACES IN TRACE~VALUED SPACES WITH MANY ISOTROPIC VECTORS
1. Introduction

The classical Theorem of Witt says that any isometry T F+F

0:
between finite dimensional subspaces F, F of a non degenerate trace-
valued space (E,®) can be extended to an isometry T: E + E ([4],

Satz 4 and Anmerkung p. 31).

If dim F is not restricted then this assertion becomes sub-
stantially false. Here is an illustration. If dim E is infinite and
non degenerate then it contains subspaces F * E with F' o= (0) . If
we assume that dim E is countable then a simple recursive argument
will show that F splits, F =1U éé\l , in such a fashion that UL =V,
V' = U in E . Define TO: F - F by setting Tou = Au , TOV = ~A%y
(u€U, v€V) for suitably chosen A in the field k . If char k ¥ 2 let
A =1, If char k = 2 we have to assume that the involution * of k
is of the "second kind", i.e. there is an element u in the center with

-1

u* ¢ yu ; we then set A = u “u* . T0 is then an isometry and it can-

not be extended to any proper overspace of F in E .

Thus it may well happen that a specific isometry T0 between F

and F cannot be extended to E whereas some other isometry T F + F

1¢
does have an extension. In other words we have here two different prob-

lems.

Problem 1. For given F , F € E 1list necessary and sufficient
conditions for an isometry T: E + E to exist with TF = F . In other
words, give complete sets of invariants for the orbits of subspaces

under the orthogonal group of E .
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Problem 2. Describe conditions which are sufficient for a given

isometry TO: F + F to admit an extension to all of E .

Remark. In finite dimensions Witt's Theorem is equivalent with
the apparently weaker statement "If F, F are isometric then they be-
long to the same orbit". For the last statement obviously implies the

Cancellation Theorem. Hence in order to extend a given T F » F one

o*
simply decomposes F = Ek)e rad F and has F; z (TOFO)L . Since there

n -
are Witt decompositions of F0 for rad F and of (TOFO)L for rad F
it is evident that T can be extended to E .

0

We consider two extreme situations of Problem 1. In this chapter
we solve it for spaces which contain "sufficiently" many isotropic
vectors. In Chapters XII and XIIT we investigate it for definite spaces

over ordered fields. Of Problem 2 we treat in Chapter X.

2, Classification of a single subspace

The non degenerate sequilinear form ¢: E x E » k is assumed to

be trace-valued and dim E = R . No assumptions on the field are made.

0

A nice application of Theorem 2 in Chap. IV is to the lattice V

orthostably generated by a single subspace V ¢ E

E
1
(radv)
(v+VL)LL
L
Ly v
v
L
rad V
(radV)ll
v
radv

* (0)
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V(V) is distributive and has 14 elements ([3]). All indices that can

be read off from the above lattice occur among the following seven:

dimlrad v] , dim(v/rad v] , diml (rad v)**/rad vl ,
(1) ainl V' /rad(vH)] , dimlrad (v')/radv)**] , aiml (v +v*%) /(v +n)1],

diml (rad vV)*/ (VF vty ] .

Remark. 1In the case of an Ro—dimensional E we have
dinlE/(rad v)*] = dimlrad v] and diml(rad v)*/(v+vH)**] =
dim[rad(Vl)/(radV)LL] « For E of larger dimension dim[E/(rad 'l
and dim[ (rad V)L/(V+VL)LL] have to be added to the above seven in
order to obtain a complete list of indices. It is not difficult to con-

struct examples where all these indices are nonzero.

Theorem 1 ([1]). Let V , V be isometric subspaces of E which

satisfy the following conditions

(i) H Vl and GL are isometric,

(i1) : diml (rad v)**/rad vl = dinl (rad %)**/rad V1 ,
(iii) :  dimlrad(v')/(rad V'] = dimlrad (¥*)/(rad 9)**1 ,
(iv) :  aimlv't/(virad (v'))] = aimlT'/ (V+rad (7)1

(v) : diml (rad(v' )/ (v vt ] = dinl (rad (VH))t/ (T4

There exists an isometry of E which maps V onto V whenever the

following (sufficient) conditions are satisfied:

(vi) if dim V/rad V is infinite then V contains an infinite
dimensional totally isotropic W with W 0N rad v = (0) ,

(vii) if dim VL/rad(VL) is infinite then VL contains an
infinite dimensional totally isotropic W with

w0 rad(v') = (0) .

Proof. We first consider the possibility that dim V/rad V is

finite. Let V, be a supplement of rad V in V . Since V= V by
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assumption there is a supplement 60 of rad V in V which is

1

isometric to V0 . E= Vb ® V0 =Y, ] 6; and by Witt's Theorem of the

finite dimensional case (here we use trace-valuedness of E) we get

<1

4N =b
V0 = V0 . One easily verifies that the assumptions of the theorem on

V and V in E imply the corresponding assumptions on rad V , rad v
in V; and Vg respectively. Hence the argument does in fact reduce
the problem to the case where dim V/rad V = 0 . A similar argument
applies to VL so that we may assume without loss of generality that
dim V/rad v , dim Vl/rad(VL) € {o, RO} . We may, of course, also assume
that dim V , dim V are infinite by Witt's Theorem. Hence each Y
among the join-irreducibles in V (the elements labelled in the diagram)
has dim Y/rad Y € {0, &0} . Thus we see that condition (C) of Theorem

2 in Chap. IV Sect. 8 is satisfied. Since V is finite and distributive

we may quote Thm. 2 to finish our proof.

Corollary 1. Let E be a trace-valued sesquilinear space with
contains an infinite dimensional totally isotropic subspace. Then for
each n € IN the set of i-dense subspaces V with dim E/V =n forms

a single orbit under the orthogonal group of E .

Proof. V and V are non degenerate if L-dense and contain
infinite dimensional totally isotropic subspaces if dim E/V , dim E/V
are finite. Hence any such V , V are isometric because they are hyper-

bolic. We may now quote the above theorem.

A particularly nice application is obtained if we consider alternate
- 1 ot
forms., Isometries V= V and V = V can be expressed in terms of
dimensions, to wit indices,
dim(rad V) = dim(rad V) , dim V/rad V = dim V/rad V ,

dim v /rad v' = dim Gi/rad s , dim(rad V') = dim(rad V') .
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Because (vi) and (vii) of the theorem are empty in the alternate case
we see that the indices of V(V) fix V in E wup to metric automor-

phisms of E :

Corollary 2. If E is alternate then the set of indices of V(V)
is a complete set of orthogonal invariants for the orbit (under the

orthogonal group of E ) of the (arbitrary) subspace V .

Corollary 2 becomes false if dim E > Ro ; a counterexample is
given in [2] (Sec. VI, pp. 131-134). See also [0] for the uncountable
situation. The special case of a 1-dense V in Corollary 2 was trea-

ted by Kaplansky ([3} , Theorem 6. See also question 3 on p.16).

3. An application to Witt decompositions

Let R be the radical of a subspace V € E . Does there exist an

orthogonal decomposition

L . =
(2) E = E1 ® E2 with R € El + V=R@® (VfTEz) ?

If R is 1-closed the answer is positive since then E has a metabo-

lic decomposition for the subspace R, E = (RgR') é E2 ; therefore

vecr* =R E, and thus V = R® (Vf?Ez) .

We shall now prove that there is a decomposition (2) even when
R # R provided that conditions (vi) and (vii) in Theorem 1 are ful-
filled. (B&ni pointed out that this proviso is unnecessary; see the

postscript p. 135 .)

Theorem 2. Let (E,%) be of dimension Ro , trace-valued and non

degenerate. Let V = RO ® V0 be a subspace that satisfies (vi) and

(vii) in Theorem 1 and has R0 C rad V . There is another decomposition

V=F& G with FCrad VvV, dim F = dim R0 and G isometric to V0

such that E splits as follows: E = El é E2 , FCE G CE

1 2 -
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Corollary. Let (E,®?) be as in the Theorem and Ro the radical

of a subspace V © E that satisfies (vi) and (vii) in Theorem 1. There

always exists a Witt decomposition of E for the totally isotropic

space R , E = (R%L

L
0 & R') ® E such that V=R, @ (VﬂEZ) .

2 0

Proof of the Corollary. By Thm. 2 we have a Witt decomposition

1l L
E=(F e R") ® E2 and V=F G, FC R0 ;s GCEE

V0 any supplement of R0 in V . Therefore F = R0 .

GV for

Proof of the Theorem. There is no problem when dim R0 is finite

so let dim R0‘= RO . There is a Witt decomposition E = (Rlle R')é E

R =rad V . Let V1 be a supplement of R in V . The projection V

of the space Vl(CRLLe Eo) onto E

0o’
2

0 is injective and, of course,

L - set V:i=Rao V, . We have rad V = rad V , further-
L Fy 1 Ll 4 Ll XL F 1
more V R vy (R~ @ Eo) Vi, =R + (B, N V) R+ (E0 n v,)

= GL . Hence the lattices V(V) and V(G) (Sec. 2) have all irreducible

isometric to V

elements in common except possibly for VvV , V. We may quote Theorem 1:
Thereis an isometry T of E which maps V onto V . Thus we may

assume from the outset that V., © E

1 0 for a suitable Witt decomposition.

1
It remains to locate R0 in the space E' := RL @ R' . The ortho-

stable lattice generated by R < E' is the chain (0) € RC R =

=R < E'. aim RLL/R fixes R in E' modulo metric automorphisms
(Theorem 1). One can easily give canonical bases: If E' is spanned

by a symplectic basis {ei, ei}iEN and R by all e;-e; then we have
an example with dim RLL/R = 1 . The external orthogonal sum of C
copies of this kind yields an example with dim RL*/R = C . By the
uniqueness just mentioned (Theorem 1) all instances are of this kind,
i.e. there always are symplectic bases in E' which exhibit R in this
way (cf. the following section). In the same manner one can give an

example where R =F @R dim F = dim R, (= RO) , dim R, = dim R/R0

1 0 1



133

4
and where F and Rl can be "separated" in E' , E' = El ® E. ,

(e c = 1= (]
F El ’ Rl E3 . If we set E2 : EO ® E3 and G Rl Vl we

have proved Theorem 2.

To round off the picture we contrast the Corollary with
If for each supplement V0 of rad V in V there is a

L
s - : c -
(3) splitting E E1.$ E2 with rad v El and V0 E2

then dim V/rad vV is finite.

Proof. Assume that dim V0 is infinite. We can pick a sequence

(gi)iejN in VO of linearly independent vectors that converges to zero

with respect to the weak linear topology o¢(®) . We complete it to a

basis (e,). of V, . For r a fixed nonzero element of rad V the
i’ i€N ]

family (ei+r)reIN spans another supplement Vl of rad V in V . The
gi + r converge to r , i.e. r € Vil N Vl . Since rad v N ViL + (0)

the space E cannot split in the required fashion, obviously.

4. Remarks on canonical bases

In explicit calculations it is often advantageous to introduce

canonical bases. We shall give two examples of what we mean.

Example 1. Let E be spanned by an orthogonal basis (ei)m .
The hyperplane V = k(ei_eO)N has VL = (0) . Assume that V contains
an infinite dimensional totally isotropic subspace and char k + 2 .
Then if V is any other hyperplane in E with ﬁl = (0) there is by
Theorem 1 an isometry T: E + E with TV = V . If we set éi = Tei we
see that (éi)jN is an orthogonal basis of E such that (éi-—éo)jN
spans V : All i1-dense hyperplanes in E can be exhibited by intro-

ducing a basis of this type.

The same argumentation shows that if V has VL = (0) and

dim E/V = mr+ 0 then E is an orthogonal sum of Or copies E1 of E



134
and V is an orthogonal sum of ¢ hyperplanes V1 < E1 B V: = (0) .

Whenever the "arithmetical" situation is such that we can apply
the "uniqueness" theorem of the previous section then we can also intro-
duce bases of the space which "exhibit" the subspace in some standard

fashion.

Example 2. The same idea applies to situations where we can apply
Theorem 2 of Chap. IV. Let J € N and wi: Ii + J (i€N) be a family of
epimorphic maps where {Ii]i € N} is a partitioning of N with

0

for the totally isotropic subspace R and (ri)iEIN ' (rJ!_)iElN ' (ei)iGJ

L
card Ii =N, Let E= (R ®R') & E be a Witt decomposition of E

bases of R, R' , EO respectively with Q(ri,ré) =1, @(ei,ei) + 0

and all other products zero.

+ )
Let W be the span of all families of vectors (r1+ri+e¢1(i))iell,

)

L}
(r2+ri+e¢ (1)) 1€1_ *
2 2
It is routine to verify that

(4) W=, wWNRrR" =(0), W+R=E,

in other words, the i-stable lattice V = V(R,W) generated by R and

W is

Assume e.g. that the field is algebraically closed and ¢ is
symmetric, then Theorem 2 of Chap. IV can be applied to V and any

v =V(R,ﬁ) where W satisfies (4). In other words, each L-dense
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supplement W of R' in E is spanned in the above fashion.
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CHAPTER SIX
ORTHOGONAL AND SYMPLECTIC SEPARATION
1. Introduction

When one has to handle two mutually perpendicular subspaces F and
G 1in a sesquilinear space (E,®) it is often a great advantage if E

splits orthogonally such that F and G are contained in summands,

L
(0) E=E,®E, , FC El , GC E2

If this happens then we say that F and G can be orthogonally

separated in E . From (0) we read off that

(1) (F+e) "t

]
o]
+
9]

(2) FF+G =E .

Orthogonal separation presents no problem if dim E is finite. Here we
shall treat the case of trace-valued spaces in dimension Ro . We shall
prove that (1) & (2) is sufficient for a splitting (0) to exist
provided that there are enough isotropic vectors available in E . This
proviso is not due to the fact that our proof will be via Theorem 2 of
Chap. IV; if isotropit vectors do not abound then (1) & (2) actually

ceases to be sufficient for the existence of a splitting. ({2] contains

an example; for further details see the postscript on p. 150)

The problem of orthogonal separation is equivalent to the following
problem if the characteristic is not two: Let TO: H -+ H be a metric
involution (T0 =1) on the subspace H of E ; does T0 admit an
involutory extension T to all of E ? The answer is positive if and
only if F := Ker(T0 -1) and G := Ker(T0 + 1) can be orthogonally

separated in E .

As remarked our proof will be by Theorem 2 of Chap. IV. In the next
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section we compute the lattice V(F,G) generated by an orthogonal pair
F , G that satisfies (1) and (2). In order to separate F and G in

E we shall construct an isometric space E with subspaces F , G that
are separated in E and such that there is a lattice isomorphism

t: V(F,G) » V(F,G) which sends F in F and G in G and which
qualifies for Theorem 2: if Tt is induced by T: E > E then T_l will
transport the splitting of E into a splitting that separates F and
G in E . The proof will make it evident that a fully worked out dia-
gram of the lattice V(F,G) 1is indispensable both for finding and for

grasping the arguments.

In the last section we treat an analogous problem termed symplectic
separation. It has a geometric reformulation quite similar to that of

orthogonal separation and will be needed in Chapter X.

2. On the lattice V(F,G) of an orthogonal pair

Let V(F) and V(G) be Kaplansky's lattices orthostably generated
by F and G respectively in the lattice L(E) of all linear sub-

spaces of E (Chap. V Sec. 2). Decompose V(F) = Jl U Fl where

3, = {(F**, Ferad(F'), rad(F'), F+(rad F)*', (rad »)**, F,
(3) rad F, (0)}
Fpoi= (F*, F+F , P +F, (F+F)*", (raa m)*, E}

Jl is the principal ideal generated by F in V(F) ; Fl is the
principal filter generated by F . Let V(G) = 12 U F2 be the analogous

decomposition of V(G) . Then the following lemma is very easy to prove.

Lemma 1. Let V(F,G) be the orthostable lattice generated in
L(E) by a pair F , G of subspaces of E . If F and G are ortho-

gonally separated in E then V(F,G) is the set J U F where
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(4) Joe= X + x2|xi € J; (1=1,2)}

Fe={y; Ny |v, € F, (i=1,2)} .

In particular card V(F,G) < 82 + 62 = 102 . Furthermore V(F,G) is

distributive. There are examples where all 100 elements are different.
We now prove

Theorem 1. Let (E,?) be a nondegenerate sesquilinear space of
arbitrary dimension. If two subspaces F,G < E , FLG , satisfy (1) and

(2) then the lattice V(F,G) is distributive and V(F,G) = J U F .

Proof. 1l(Distributivity). We first show that the lattice generated
in L(E) by V(F) U V(G) is distributive whepever FLG . By Theorem
6 of [5] and symmetry it is sufficient to verify that (B+B') N C =
= (BNC) + (B'NC) for all B,B' € V(F) and all C € V(G) . Since FiG
we have Y D FFogtto X for all X € J2 , Y € Fl . This and the

symmetric fact we express by
(5) J, < F2 ’ J2 < Fl .

The only elements in V(F) which are not join-irreducible are Z1 =

F + (FnE )™, z, = F+ (F'F") , 25 = F + o, z, = F'' + F' . When

i =3, 4 we obtain the distributivity of Zi N Y wusing (5) and modu-

larity. The same works for i =1, 2 and Y € F2 . Finally (5) implies

that Y=F NY for YE€ J2 therefore

ZlﬂY

ZzﬂY

This proves our contention bearing in mind the distributive inequality.

(F+(FF)*™ ] nF ny = (FFH)*™ ny < (Fy) + [(FnF*)**ﬂY]'

EN 4L

[F+FNFYInF any=F nF ' ny < (FY) + [(FnFb)ny],

We see in particular that the set J U F is a sublattice of L(E)

2 (Oorthostability of J U F ). We prove that

1l 1L 1L
(6) Xl + X2 = (Xl + X2) for all Xi € Ji
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1

1 L
First we remark that by (2), (5) and modularity Xl = X; n (F+G ) =

F'o+ (XiﬂGL) =F + (X1L+GLL)L so that (taking orthogonals) we obtain

(7 XJ].-J. = (X.:II.-.L+GJ..L).LJ. n FJ.J. .

11 i
Now we turn to (6). Since F +G"" is closed by (1) we may write

(XLL+XLL)*L _ (XLL+XLL)LL a (FLL+GLL) < (XLL+GLL)LL a (FLL+GLL) _
1 2 1 2 1
[(X;L+GLL)Ll n F*lj + ¢t (the last equality by modularity). Hence by
(7) we see that (XiL+X§L)LL < X;L + GLL . By a symmetric argumentation
also (4™ o xXt 4+ P L Thus (RN o odtteett) oo tteEth)
1 2 2 1 2 1 2
= Xi* + X;L which establishes (6).

Let us now prove orthostability of J U F . Since T eF s

trivial it remains to show that

1
(8) (Yl n Y2) € J for all Y, € Fi

As a consequence of (6) we see that (8) holds for all cases Yi = X;

with X, € Ji - Direct inspection shows that all Y, € Fl which are

not of this shape are of the kind

- L ¥
(9) Y, = Xi + X (xl . X] € Jl) .
By (5) and modularity we obtain for such a Yl and for Y2 = X; (X2€Jz)
i _ f PR 4 i - o Ll lr .
that (Yl n Y2) = (xl + (xlnxz)) (x1 n X] ) + X, € J . If Y, is

of shape (9) as well then the calculations immediately reduce to the

case just treated.

As J U F is a lattice and orthostable it is the lattice V(F,G) .

The proof of Theorem 1 is thus complete.

Remarks. 1) In [4] we have computed the orthostable lattice V(F,G)
of an orthogonal pair under conditions considerably more general than

(1) and (2). First of all the lattice V generated by V(F) U V(G)
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(no t-stability assumed) is distributive and has at most 258 elements
under the sole assumption that F 1 G . In order that V or a small
extension of it be orthostable it is necessary to introduce some re-
strictions such as we have here by dint of (1) and (2). Proofs can be

formulated in any modular lattice with an antitone mapping <+ .

2) The crucial point in the above proof is (6). With a knack for
topological arguments one might reason as follows. The assertion cer-~

tainly holds for Xl = r* and X2 =gt by (1). (X1+X2)J"L is the

closure of Xl + X2 with respect to the weak linear topology o¢(%) on

. 1L P L
E . Since F + G is closed we have that (Xl+X2) is the closure

+ . o _ .
of Xl X2 with respect to the restriction Ol 0|FLL+GLL But (2)
tells that o, is the product topology of 0|FLL and 0|GLL . Since
Xl CcF, X2 C G we conclude (6).

3) Theorem 1 was first proved in [1] by setting up recursively an
orthogonal splitting (0). The fruitfulness of the method applied here
is based on a reversal of steps. First lattices are computed and then

general theorems on induced lattice isomorphisms are applied.

For the discussion of orthogonal separation we need only consider
the case of L-closed subspaces F and G . The lattice V(F,G) then

looks as follows
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ES

The orthostablelattice of a pair F + G with 17"L =F

I

A
¢t =c, Fre)*  =F+G,F +G =E .

3. Orthogonal separation in trace-valued spaces

In this section (E,?) will be nondegenerate, trace-valued and

of dimension RO .

We now prove the following

Theorem 2 [ (1)]. Assume that the subspaces F , G © E satisfy

(1), (2) and F &+ G . In order that F and G are orthogonally sepa-
rated in E , i.e. that there is a decomposition (0), it is sufficient

that the following condition holds
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(10) If dim X/rad X is infinite for X one of
F, G, (F+G)* then X contains a totally

isotropic subspace V with V N rad X = (0) .

Proof. We examine first the possibility of simplifications. In the
statements (1),(2),(10),"FuG'we may replace F and G by Ft and G**
without falsifying them. Hence if we prove the theorem for i1-closed F
and G we can, in the general case, separate Fll and GJ"L . But there-

by we separate F and G . Thus we may and shall assume that
(11) F°=F , G =G.
Furthermore we want to have

(12) dim F = dim G = 80 .

If it should happen that dim F is finite we write F = rad F & FO .
F0 can be chopped off from E being nondegenerate and of finite dimen-
sion. Assume thus FO = (0) . If rad F = (f) is l-dimensional pick
£' € GL~\ (G & (f))L (the set is not empty as G = GLL ) so that the
decomposition E = k(f,f') & k(f,f')* separates F and G in this
case. An inductive argument takes care of the case where 1 < dim F < » .,

G can be treated similarly; hence (12) is in force.

case I: F and G totally isotropic. The lattice V(F,G) reduces

to E

(F+c)*

(0)
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Case Ia: dim(F+G)L/F+G = 0 . Consider two hyperbolic spaces

El =Fe Ly o/ EZ =G® L, with R, the dimension of all four totally

isotropic spaces F ’ G, L , L, .Let E be the orthogonal sum

1 2
El & Ez . E and E are both hyperbolic and hence isometric. There

is an obvious lattice isomorphism V(F,G) » V(F,G) which, by Theorem 2
of Chap. IV, is induced by an isometry T that sends F on F and G

on G . The decomposition E

T—l(ﬁl) é T_l(ﬁz) separates F and G .

Case Ib: dim(F+G)l/F+G

n < » , This can be reduced to the
previous case by chopping off a linear supplement of F+G (=rad((F+G)L))
in (F+G)L . Observe that conditions (1), (2) can always be "transferred"

to the reduced situation.

Case Ic: dim(F+G)L/F+G = R . Here we pick spaces as follows.

0
E, = For)du ,E, = (E@1,) dn, where F,G,1, , L, areas
in Case Ia and where Hl ' H2 are hyperbolic and of dimension NO .
Again we form the orthogonal sum E = E é E, . Since (10) holds we see

1 2
again that V(F,G) and V(F,G) qualify for Theorem 2 of Chapter IV.

We conclude as in Case Ia.

Case II: F is totally isotropic. The lattice V(F,G) reduces to
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If dim G/S 1is finite we fall back into Case I by chopping off a
finite dimensional orthogonal summand U of E with R , § C UL N

Assume therefore that dim G/S = RO . If dim(R+G)L/R+S should happen

to be finite we can reduce the problem to the situation where (R+G)L =

R + S by chopping off a finite dimensional subspace of E and proceed

as follows. Let El :=F @ Ll B E2

L are totally isotropic, dim F = dim F , dim S = dim(rad G) ’ Fo L

:= (8 ® L2) é H2 where F y s ’ Ll ’

2 1
and S @ L2 nondegenerate, H2 hyperbolic and of dimension RO . We
set G := S @ H2 and obtain an obvious lattice isomorphism <t: V(F,G) -+

V(F,G) that preserves indices and qualifies for an application of Theorem
2 of Chapter 1IV. We are left with the case of an infinite dim(R+G)l/R+S .
Here we may choose El as in Case Ia and for EZ we simply take a copy
of E with G playing the part of G . Setting E = El é Ez gives us

again a suitable isomorphism Tt: V(F,G) - V(F,G) .

Case IXI: F/rad F and G/rad G are infinite dimensional. Hence

we have dim X/rad X = RO when X = G R (R+G)L , F , (F+S)'L . Hence

(C) of Theorem 2 of Chapter IV is satisfied by dint of (10) for these

particular join-irreducible X .

We now specify F , G E . In case dim(F+G)*/R+S is zero we let

-— - 1 - - - -
E, = Rer) dF,, B,= Ger) $G where R, 5,1, , L, are
totally isotropic, R® Ll I} Se L2 nondegenerate, 50 ’ ao hyper-
bolic spaces. We let the dimension of all spaces be RO . Setting E =

El é ﬁz we can again define a lattice isomorphism t1: V(F,G) = V(F,G)
that preserves indices and sends F into F=R® EO etc. We quote
Theorem 2 of Chap. IV to finish the proof in this situation. The case
of finite dim(F+G)l/R+S is reduced to the case just treated by
chopping off a suitable finite dimensional subspace of E . If, on the
other hand, dim(F+G)*/R+S in infinite matters are even simpler. Let

E, , Ez be each a different copy of E with F playing the part of
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F in El and G playing the part of G in Ez . Setting E = El & E

we can draw the same conclusion as before. The proof of the theorem is

2

thus complete.

Remark. Let F , GC E be a "disjoint" pair, F N G = (0) . Then
by the corollary in Chap.X,Sec.3 (1) and (2) are equivalent with F , G
being a dual modular and a modular pair in the lattice L;;(E) of 1-
closed subspaces of E (By a Theorem of H.A. Keller L;; is modular
if and only if dim E is finite [6], [3].). still, as the above proof
makes evident, arguments for proving Theorem 2 cannot be kept "inside

L ".

E S

4. Symplectic separation in trace-valued spaces

In this section (E,?®) will be nondegenerate, trace-valued and
of dimension NO unless specified otherwise. "A & B" denotes a direct

sum A ® B of totally isotropic spaces A , B that is nondegenerate.

If F and G are totally isotropic subspaces of E then we say

that they are symplectically separated in E if there exists a Witt

decomposition E = (W & wh) b E with Fc W and Gc W' . If such

0
is the case then, obviously, (1) and (2) hold. Moreover, we can prove

the following companion to Theorem 1l:

Theorem 3. Let (E,?) be a nondegenerate sesquilinear space of
arbitrary dimension. If two totally isotropic subspaces F , GC E
satisfy (1) and (2) then the lattice V(F,G) orthostably generated

by F and G is distributive and V(F,G) 1is the set J U F where
J := {xl+x2[xieJi (i=1,2)} , F := {YlﬂYZIYiEFi (i=1,2)} ,
{

Y, re(FUhngh), Fringt, FeEnchtt, (enct)*t, F, Fnct, (0)1

1 11 4 i 1L 4oL
, F+G , F +G , (F+G ) , (GhF ) , E} ,
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and 12 , F are obtained from J1 ’ Fl by interchanging F and G .

2
. 2 2 2
In particular card V(¥F,G) < 8" + 6~ = 10" .

Thus we see - just as in the orthogonal case -~ that V(F,G) of a
pair with (1) and (2) looks as it ought to look if the pair is to be
separated (if F and G are symplectically separated then it is quite
easy to see that V(F,G) is the set J U F ). The proof of Theorem 3
is mutatis mutandis the proof of Theorem 1 (cf. Remark 1 in [4]) and
will not be written out here. We shall need only the case where (11)

holds. Here is the diagram:

(0)

The orthostable lattice of a pair F , G with

Ll i1 LL L1
FLF , GG , F =F,G =G, (F+G) =F+G,F +G = E

As is to be expected we can prove that (1) and (2) are sufficient
for a pair F , G of totally isotropic subspaces to be symplectically
separated whenever the "arithmetical" situation is such that Theorem 2
of Chap. IV can be applied.

In the orthogonal case of the previous section we have used the
given spaces F , G C E to construct a separated situation F ’ GCcE

with naturally isomorphic lattices V(F,G) , V(E,é) . We could do the
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same over again or leave it as an exercise. However, we intend to illus-
trate the possibility of a different attitude towards the lattice.
Namely, we shall try to build it up from simpler lattices by taking

orthogonal sums. To this end we start with

Example 1. Let A = @L k(ri,ri) be an orthogonal sum of hyper-
IN
bolic planes and E = A & (a) an overspace with the line (a) isotropic;

let the product between a and all r, be equal to 1 and all prod-

1 ] .= o= 1 .
ucts of a with ri be zero. Set F : k(rZi)iEN , G : k(rZi)ieJN

The orthostable lattice V(F,G) looks as follows

By taking an orthogonal sum of o= < ¥ copies of such spaces we

0
obtain exactly the same diagram but with dim E/(FL+G) = & . Still, by
taking the orthogonal sum of such a space ( o copies of the original

one) and a similar object which is obtained by taking /i' copies of the

original one but with roles of F and G interchanged we obtain a

lattice V(F,G) which looks as follows
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Example 2. Let E= (L& L) & M M) & W& n') and put

F:=LoeM, G :=M &N' . V(F,G) looks as follows:

i

Example 3. By adding an orthogonal summand P to the space in
Example 2 and by leaving F and G unchanged, we obtain instead of

the above lattice the following one

= dim(F+G) " /R+S

It is furthermore easily seen, that by taking an orthogonal sum of

a space El as given by Example 1 and a space E2 as given in Example

2 provides us with a pair F , G ¢ E whose lattice V(F,G) looks

E to be (0) .

just as the general case . We allow also one of El + E,

Let us verify that there are enough "parameters" to adjust all
indices to the indices prescribed by the given V(F,G) . There is only

one critical situation: Superposition of two examples E1 and E2

yields a space which has dim(F+G)l/R+S = &0 due to the "infinite cube"

in Example 1 (unless we let El be (0) ). Now, if in the lattice put
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before wus n = dim(F+G)L/R+S is finite then (since n = dim(F+G+(F+G)Ly
(F+G) the space F+G+(F+G)L is L-closed and therefore equal to (R+S)L .
Hence we are in the situation of Example 3 which does allow for pre-
scribed finite "height" of the cube. Thus, by means of the given examples,
we can produce a separated pair which gives a lattice that is naturally
isomorphic to the lattice of the pair in Theorem 3. It is now not too

difficult a matter to apply Theorem 2 of Chap. IV in order to obtain

the following

Theorem 4 ([1]). Assume that the totally isotropic subspaces
F , Gc E satisfy (1) and (2). In order that F and G are symplectic-
ally separated in E , i.e. that there is a Witt decomposition E =

o 1
(Wo W') & E0 with Fcw , GC W' , it is sufficient that the following

condition holds

If dim(F+G)'/rad((F+G)Y) is infinite then (F+G)*
(12) contains a totally isotropic subspace V with

vV N rad((F+&)Y) = (0) .
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that condition (10) in Theorem 2 (p. 141) is superfluous provided that
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CHAPTER SEVEN

CLASSIFICATION OF HERMITEAN FORMS IN CHARACTERISTIC 2

1. Introduction

All forms considered in this chapter are e-hermitean forms over a
field k of characteristic 2 equipped with antiautomorphism &= £*.
In k we consider the additive subgroups S := {a € k|a = ea*} and
T := {a + ea*|a € k} of "symmetric" elements and of "traces" respecti-
vely. The factor group S/T is a k-left vectorspace under the composi-
tion A(o+T) = AoA* + T (o € S,A € k) . “: S - S/T is the canonical
map.

In this chapter we classify in dimension Ro a kind of sesqui-
linear forms termed weakly stable. Let us say a word about the philoso-
phy behind this classification. As we have pointed out earlier (in Chap.
II)it is not necessary for Ro—forms that they represent all (or nearly
all) elements of the base field k in order to have a trivial classi-
fication. In contrast to the finite dimensional situation it suffices
for this that the elements o € k which are represented are being re-
presented "often". In view of recursive constructions in the realm of
the countable "often" means that there should be vectors with inner pro-
duct o in the orthogonals of all finite dimensional subspaces. Spaces
(or forms) with this kind of homogeneity were called stable in Chap. II.
Now a sesquilinear space (E,$3) qualifies as weakly stable if E con-
tains some Ro—dimensional subspace F with a stable restriction of
$ to F . How can such a stable subspace help to make classify all of
(E,®) more easy? It will help because in most cases we shall have
T C ”F” which means that vectors with prescribed traces as inner pro-
ducts are "freely" available in E . Because for all vectors x,y we
have that ¢ (x+y,x+y) equals ¢ (x,x) + §(y,y) modulo T weak stabili-

ty amounts to a certain mobility when trying to break a space into
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simpler pieces.

This program had been carried out in [2] for symmetric bilinear
forms over fields with finite degree [k:k2] . The assumption on the
field forced all forms over k to be quasistable in the sense of [3].
Quasistable forms are special weakly stable forms (cf. the definition
in section 4 below); they are treated in [3].

For the discussion of the classical situation in finite dimensions

the reader should consult [4].

2. Multiples of rigid spaces

Let (E,®) be a non degenerate sesquilinear space. We shall ab-

breviate @(x,x) as “x” and call ¢ the linear map

x> llxll "= llxll + T
from E into S/T ("value map"). For F a subspace of E we set
IFll= {igll|£ € F~ {0}} and Fy := {f € Flll£ll € T} . P, is a linear sub-

space of F and dim F/Fx < dim S/T .
Definition. F is called rigid if F, = (0) .

The orthogonal group of a rigid space reduces to the identity (hence
the terminology) since any non trivial isometry xw x' would produce
some non zero X + x' with inner product a trace. Rigid spaces are
easily checked for isometry: We have E 2 E if and only if the value
spaces in S/T are equal, 9E = 9E , and the bijection % ¢ : E>E

happens to be an isometry (in fact the unique isometry). We shall con-

sider rigid spaces as building blocks and not analyze them any further.

i
In our first theorem we discuss spaces of the shape 2A := A® 3
where A is a rigid space of dimension < Ro . An equation

A= <ul,a2,...> will mean that A is spanned by an orthogonal basis

(ai)_]

with Hai”= oy for all i .
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Theorem l. Let A <al,...> and B = <Bl,...> be rigid spaces

over k of dimensions < Ro . In order that there exists an isometry
1 A

A®A2B®B it is necessary and sufficient that the families (ai),

(@ ) are "dual" in the vector space S/T , i.e. that there exists a

matrix (Aij) over k such that

ij;j ’ (Aij) invertible and both row- and column~finite

(1) Bi = § A

Clearly, if A and B are of finite dimension then the condition
on the families (&i) ' (éi) is satisfied if and only if they span the
same value spaces in S/T ; if in addition the forms are symmetric the

condition reduces to the equality ”AI| =]|B[|.

Proof of the necessity of (l). Let I be an initial segment of N

and a; s bi (i € I) orthogonal bases in A and B respectively

with ”ai” = ai ’ ”bi” = Bi . Choose congruent bases ai ’ bi in copies

1 L
of A and B respectively. Since we assume A D A X B® B we have

equations
b, = £B,.a, + IC,.a! , b! =ID,.a. + IE,_.a'
i ij 3] i 3] 1 i3] i3]
for some invertible row-finite matrix {g g] . Since orthogonal matrices

with respect to orthogonal bases are both row- and column-finite we get
the asserted relation by applying the linear map ¢ to both sides of

one of the above equations, Si = Z(Bij+ Cij)&j .

We now turn to the converse assertion of the theorem. The l-dimen-
sional case A = <a> , B = <B> 1is very easy. By assumption we have

1
a+ B =u+ eu* €T ., We choose a new orthogonal basis al,a' in A®A

1
_l '
a; =a + ua ~ (at+a')
(2) -1 -1
ai =a + (ua “+Bo ) (ata')
since [la;ll = lla;'ll = llall + v+ eu* we have <a,a> % <g,8> .

The next lemma still deals with a rather special case; it is, how-

ever, the key to the general situation.
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Lemma l. Let YeYgrYqr-eeoYy € 8 and assume that in S/T the

element vy 1is in the span of §o""’§n but not in the span of

N ~ 1 L
m
YyreeeoY, Then <y,y> ® Ypreeer¥p> = <Yg0Yo> ® YprewerYy> -

Proof of the lemma. By assumption vy

n
* *
XoYvo + ixiyixi + 1 for

suitable A, €k with A #0 and = €T .Set Yy=v+ 1 so that
<Y,Y> = <y,Y> by the one dimensional case just treated. Let
eo,e('),el,...,en be a diagonal basis in <Yo,yo> ® <yl,...,Yn> with

inner products as indicated. Introduce a new orthogonal basis by

n
= L]
fo Eoeo + (go+>\o)e0 + i A.ei
] ] n
(3) f0 = Aoeo + I A.ei
1
= ]
fl 3 (eo+ e') + ey (1<i<n)
-1,-1 = .-l -1
k o= .z *
where Ei =Y, Ao AiYi and EO : YAO Yo .
L
= = % = ® &
we have gl =lledl =¥ , el = vy so <yomv>® <yprecenyp>
L

25,7 @ <YyreessY,> . Since <Y,y> = <y,y> the proof of the lemma

is complete.

Proof of the theorem (sufficiency of (1)). Assume first that

dim A is finite and that we have constructed an orthogonal basis

(ei) in A such that for a congruent basis in a copy of A we have

1

(4) (e,) ® (e}) % <p,,p,> forall igcr.

We shall show that we can f£ind another orthogonal basis (fi) in A

v

L
such that (fi) ® (fi) = <Bi,8i> for all i < r+l . We have

ai = ZBij”ej“‘ for an invertible matrix over k . Hence by (1) the

element @ is in the span of the “ei”‘, §r+1 = in”eiH“. By rigi-

r+l

dity and by (4) we may assume that A # 0 . We now apply the lemma

r+l

with Br+l and | | in the roles of y and Yo respectively

er+l

and with the ”ei” (i € IT~{r+l}) in the role of the Yyreeer¥p ¢

More precisely, we introduce an orthogonal basis (fi) in A such
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L L n L
v [} @é [£7] “e e
that (fr+l) ® (fr+l) (fl) (fr) (fr+2) ® appears as
& e <t B 1B <. ,8 B>® & g |l>
<g B > < l>o= < ’ > < ’ reeey : .
r+1l’ " r+l ifr+l i r+l""r+l 1772 X isr+l i

Therefore the basis (fi) of A has the required properties. If we
repeat this step at most dim A times, at each step introducing a new
orthogonal basis in A , then we can arrive at a basis of A which

1
shows that A ® a % ®*<si,si> @B,
I

Assume then that dim A is infinite but that we are in the rather
special situation where there exists a partitioning I =U Ir with all

r
Ir finite and such that

(5) for all i € I, we have é. = I Ag?)&. (r € IV)
i €T ij 73
r
with all (Ai§)) invertible matrices over k . We then have

? * <ajo.> x ®l<Bi'Bi> by the finite dimensional case and thus again
ré . I

A® =? (?r<ei,si>)
that the matrix (Aij) in (1) appears as diagonal if partitioned into

L
2 B® B . To be in the situation of (5) means

suitable blocks of finite sizes. Such a special N x Nematrix is called

a diagonal string. Now every invertible both row~ and column-finite

matrix is a finite product of invertible diagonal strings, in fact, a
product of two invertible diagonal strings ([1], [5]) so that a chain

N

1 1
of isometries leads again to the desired isometry A ® A = B® B . This

remark finishes the proof of Theorem 1,

As a consequence of Thm. 1 it is possible to give simple conditions
on rigid spaces A,B which are necessary and sufficient for multiples
nA and nB to be isometric (ljp:ﬁo) . We shall defer tﬁé formulation
of these conditions to the end of the next section. For the issue of

our chapter we need only the case n = 2 treated in Thm. 1.

3. The relation n on the forms of countable dimension

Every non degenerate space (E,%) of dimension < Ro admits
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almost orthogonal bases, i.e. bases (ei) such that the associated

i€

inner product matrix is both row- and column-finite. We claim that if

(fi) is another such basis in E then (for all i€I) e, = IA,

i€1
with (Aij) an invertible I x I matrix over k that is both row-
and column-finite. Indeed, let M be the inner product matrix of (ei)
and N the inner product matrix of (fi) . We ceftainly have
e, = LA, . f, for a row-finite matrix (A,.) and M = ANAtr . A has

i ij 3 1]
a (unique) row-finite (two-sided) inverse, M and N are row- and
column-finite and have (unique) row- and column-finite{two-sided) in-
verses (as can be seen by choosing one of the two bases a union of an
1 -1 tr

orthogonal and a symplectic system). Therefore the product N TA TANA

exists and is associative and hence Atr = N-lA_lM . Thus Atr is

row-finite and so A 1is column~finite.

Definition. Let E and E be non degenerate spaces over k of
dimension < Ro . We set E ~ E if and only if for some (and hence for
all) almost orthogonal bases (ei)iGI , (fi)ieI of E and E respec-
tively there exists an invertible row- and column-finite I x I matrix

(Aij) over k such that

= i € .
(6) wei § Aij ij (for all i 1) ;

here ¢ is the value map Xh—h“X”-= Hx” + T introduced in section 2.

A~ is an equivalence relation on the class of all non degenerate k-
spaces of at most countable dimension. Theorem 1 may be formulated
as

A=k
= E® E if and only if

- 1
(7) if E and E are rigid then E ®E
E~E.
Thus if e.g. E = <A rOgrees> is rigid then the space

E 1= <ay,0,% @3,03% 0340002 is rigid as well and has the same value

space as E , 9E = 9E ; yet E and E are not isometric since ob-
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viously not E v E.A generalization of Theorem 1 is given by the

following corollary announced at the end of the last section.

Corollary. Let A and B be rigid spaces and 1 < n < Ro . In

order that nA = nB the following condition is necessary and sufficient:

A 2 B if n is finite and odd, A v B if n is finite and even,

9A = 9B if n = Ro .

Proof. If n 1is finite and odd then we use the fact that

i ~ i
(8) <B>® <g,8> = <p> ® P , P hyperbolic .

Indeed, if bl'b2'b3 is an orthogonal basis with ”bi” = B we intro-
, ro_ v = ol A
duce a new basis bl b1+ b2+ b3 ’ b2 B (bl+ bz), b3 b2+ b3 and

see that (8) holds. Thus if A = <a1,a2,...> then since

a . " 1 n
(2r+l)<a,> = rP & <a;> we obtain (2r+l)A = NOP ® A=
f(2r+1)A]* ® [(2r+1)A]i and an analogous isometry for (2r+1)B .
Since any isometry U vy maps Ui onto Vi we obtain the asserted
isometry A 2 B from (2r+l)A 2 (2r+1)B and, of course, the converse

implication as well.

1
If n = 2r then by (8) n<a, > Z (r-1)P ® <ay,0.> . We may assume

r > 1 since Thm, 1 takes care of the case r = 1 . Hence

L L
na = NOP ® A ® A, The assertion that A ~ B is proved by (13) below.
N L N Y]
= RaA=® L.>ZRB=2®
If n Ro then from OA s <ai,ai,. > °B i<Bi'Bi' >

follows ®¢<ai> = @ ¢<Bi> , i.e. 9A = ¢B ., Conversely, from %A = 9B
i i
it follows that H&OAH = HNOBH ; since the two multiples are stable we

conclude from this that NOA 2 NOB .

4, Weakly stable spaces

Assume that (E,®) 1is non degenerate and of dimension Ro . For

FCE we set N
el == 0 {lenx|| l X CE and dim X < dim E} .

The sets ”F” and “F”m are obviously orthogonal invariants attached
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to the orbits of F under the orthogonal group of E . If HFHm# [
then “F”w is an additive subgroup of k ; if ”F”m % {0} then E con-
tains for every non zero a € HF“Oo an Ro-dimensional subspace

n ) I
G = <0,0,...> with E=06® ¢ and thus we have T < ”GHOo < HFHm . We

define

F_:

©

{g € Fllel € llell}

If TC ”F“ao then F_ is a subspace of F .

Lemma 2. If T < ”F”oo then F N F:L =F
———— [+

Proof. Let £ € F_ and a finite dimensional X © E be given.
since |lfll is in ”F”b° there exists fl €rFNx N with

”flu = “f“ . Thus “f+le =0 € T and we see that the translate f + X'|~

(weak linear neighbourhood of f) meets F, . Hence f € F:l . Conversely,
let £ €F N Fil and X be as before. There is a vector y € F, (de-
pending on X) such that f -y € x' . since T C ”FHm there is

z € F_ nx'n (f—y)l with |zl = llyll + $(£,y) + ¢(y,f) € T . The vector
f -y + 2z is in Xl and has inner product ”f” . Since X was arbi-

trary this shows that I £l G“F”°° i.e., £E€F_ .

If T¢& HF“°° = {0} then the set F _ is not, in general, a linear

subspace of F . Here we have

Lemma 3. Let “F“m #9 . We have T & “F”m if and only if & 1is
not symmetric and F has a decomposition of the following kind:
F = (FNF) & H 3 (R®R') & G where H is hyperbolic and finite dimen-
sional, (FnFL) ® R is totally isotropic and infinite dimensional,
(R'+ G)y = G, , R' + G is anisotropic (and hence dim H = 2dim(F*/F*nVL1
with V any maximal totally isotropic subspace of F, is an invariant

of F ). In particular, if T & |[E[l_ = {0} then E is of the shape

1 1
E % 2.(inf. dim. rigid) ® (fin.dim.hyperb.) ® (anisotropic).
Proof. Assume that F admits a decomposition as indicated and let
L 1
y € “FHm . There exists x € FN H with |lx| =y and y€rPNuNx
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with |yl =v ; so |lx+yll =0 . write x +y=f +r + r'+ g (fEFﬂFL,
r€R, r'€R', g€G) ; lx+yll =0 = o(xr,r*) + o(x',r) + ']l + gl so
“r'+g” € T . By assumption therefore r' =0 hence g =0 as G is

1
anisotropic. We have shown that x = y mod(F(\F ) & R . Express analo-

= 1 : ) = 0

gously x = fo+ ro+ L + 9, and pick 2z with ”z“ Y in
F N EDN réi n g; N x' . Since x = z mod(FNF)® R we must have
9o = O , furthermore, for rl the component in R of the vector z,

= [ = t ' 1 s
0 = ©(Z,ro) Q(rl,ro) + ”ro” . So @(rl,ro) is constant for all
z€FNE N rél N x' with lzll = ¥ . By choosing =z suitably we see
that “ré“ = 0 : Ergo ré = 0 and we have “FHw < {0} .

Assume conversely that T ¢ ”F”°° # ¢ (Since 0 € “F“w the form
cannot be symmetric and “FHw = {0} ). Let Fo be a supplement of
F A Fl in F and L a maximal totally isotropic subspace of Fo .
There is (see Chapter III) a decomposition Fo = (I®L') é F, . Let B
be the projection onto L' of (L'+ Fl)* . If B were of infinite
dimension, then one could construct an infinite sum S of pairwise
orthogonal hyperbolic planes in Fo  in fact, one can arrange for S
to be an orthogonal summand of E . But this is a contradiction as
T & HFHoo . Hence the number n := dim B is finite and precisely n
hyperbolic planes can be chopped off, Fo =H é Hl,dim H=2n , H

L
1 can now be decomposed as Hl = (R®R'")Y® G, RCEL,

(R'+ G), = G, . This is the required decomposition of F ., The proof

hyperbolic. H

is thus complete; it also proves

L
Lemma 4. If [lFl_=¢ then F £ 2.(fin.dim.rigid) ® (fin.dim.

L 1
hyperb.) ® (fin.dim.totally isotropic) ® (anisotropic).

However’we shall not pursue the spaces E with empty HEHoo any

further.

Definition. Assume that (E,®) is non-degenerate and dim E = Ro.

A subspace F 1is called weakly stable in E if “F“w #0 . F is
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called stable in E if |IF|_ = [IFl and it is called quasistable ([3])

L
in E if F=F, ® F, with dim F finite and F, stable in E .

If (F1)1€J is a family of subspaces stable in E and if for at

least one 1 € J we have T & HFH1 then the sum I F1 is stable in
J
E . E, invariably is the largest subspace stable in E . An easy re-

cursive argument shoWs that

(9) If TC HEHoo then the isometry class of E_ 1is characterized

by [El_ and dim(ENE]) .

5. Fitting together stable and rigid spaces

Let A be a non-degenerate stable space and B, C rigid spaces
with disjoint value-spaces in S/T , 9B N 9oC = (0) . We wish to extend
the given forms (on A,B,C) to all of the vector space E=2® B & ¢
in such a way that we shall have

L 1
A =B and B =24 .

As all spaces considered here are of dimensions < Ro this is possible

if and only if dim B and dim C satisfy
dim B < » = dim C = 0 .

If dim B is finite then we have no choice but to form the external
orthogonal sum E = A é B . If dim B = Ro then we may partition an
orthogonal basis B of B into dim C many infinite subfamilies BY
and likewise an orthogonal basis A of A into dim C many infinite
subfamilies AY . If C = (CY) is an orthogonal basis of C then we
let the inner products of cY with all members of AY U BY be 1 and
set zero all other products between members of different bases A,B,C.
This will give us A =B anda B'=aA in E=a®B®C . Obviously
E,=A. Although there are,of course, other possibilites of extending
the given forms to A ® B® C when dim B is infinite we shall in=

variably end up with the same isometry class by the following
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Theorem 2, Assume that (E,®) is weakly stable and that span E,
is non degenerate. Then we have T © HE“w(in particular span E, = E_ ).
The isometry class of E is determined by the collection of the follow-
ing invariants: HEHoo , the isometry class of the rigid space E: , the

isometry class of an arbitrary supplement of E_ in E that contains

E: (every supplement of E_  is rigid).

Proof. Lemma 3 (Section 4)shows that we cannot have ”E”m= {0 T
when span E_  is non degenerate. Let then E be another space with
the same invariants. Let ¢ : S + § be an isometry between supplements

of E and Em in E and E respectively, and E' < s , EL < s .
o« o]

8 F 8

=1 L =1
3‘ > s s
As E_* E, we have by rigidity, that ¢ maps E, onto E_ . We now

L -1

show that the restriction wo t E > E of ¢ can be extended to an

-]

isometry E XE.

Assume that we have constructed finite dimensional spaces W , W

and an isometry wl : E: ® W ﬁ: ® W which extends wo and such that

(10 (E®wW NE =wlE, (€W NE=WNE, , y (E) =WNE-

o

We now extend wl on E: ® w® (x) for arbitrarily prescribed x € E,

CASE I: x € E_ N (E® W) . Since W N E = (0) there is X € E
«x [+ w oo
with @(i,wlwi) = ¢(x,wi) for all members w, of a basis of W .
1 -t

Since Ew is stable in E , we find e € W N x N E_ with
el = =l + Uzl € ”EHw. ¥, is extended by sending x into X + e .
The induction assumptions (10) are easily seen to hold again for

W® (x) in lieu of W .

CASE II: x € E“f(Et@ W) . This brings us back to case I.

CASE III: x € E_+ (Et@ W) . Let S, be a supplement of E: in
S and set §o = wso . We decompose x = e + e'+ s according to
E=©g® E: ® s, . Without loss of generality e = e'= o , i.e.

X =5 € S0 . Set s :=1yYs . In Em we choose an element f with
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E(E,¢lw_) = 5(§,¢lwi) + @(s,wi) and in Em we pick furthermore a vec~

=L -1

i
tor g€ E_NW Ns N £ with |3

sl + Is+E|l € "E“°° . We extend

§ into X := s + f + 5 . To

wl on E: ® w® (s) by sending x

finish the step let us compute (E: ® W+ (E)) N E . Assume that

©

e + w + A(§+f+§) is in the intersection (e € EZ,Q € W) . Hence

- - -1 -
A\s € E+E_®W ., If A# 0 we can find, by CASE II, a vector

slE E* E: ® W with Hsl“ = ||sll . Therefore ”sl+ s €rc “E”°° which

means that s = s mod E_ . But this is impossible in the present case.

1
Therefore A = 0 and thus (E: ®We (x)) NE

(EZQ W) NE_ . In the

present case it is trivial that (E: ® we (x)) (E: ® w) N E_ . This
proves that the induction assumptions (10) are again valid after exten-
ding wl .

We can therefore extend wo to all of E and the proof of the

theorem is complete.

6. The classifiaction of weakly stable spaces

We have already investigated two special cases of non degenerate
weakly stable spaces E . Theorem 1 in Section 2 treats the case where
E, is totally isotropic and satisfies E_ = E: . Theorem 2 in the pre-
vious section discusses in detail the case where E is non degenerate.
The next theorem shows that it is possible to break the general case
into these two special cases. Thus we shall then be able to fuse theo-

rems 1 and 2 (Scholion).

Theorem 3. Let E be weakly stable, non degenerate and of dimen-
sion Ro . IfE TC “E“00 then the isometry class of E is characterized
by the collection of the following invariants of E , (i) the ~ class
of E , (ii) the isometry class of R' where R := E_ n E: . If
TE “E”w then the same statement holds provided R is defined to be

the radical of the span of the set E_ . In either case, if dim R is
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finite then the invariant (i) may be replaced by the invariant (i') !
el .

Proof. We shall first discuss the case where T C ”E”m. Clearly
an isometry E -+ E maps R onto R ’ Rl onto Rt and it induces a
relation E ~ E ., Assume conversely that E has the same invariants
(i) and (ii) as E . The spaces R and R are i-closed by lemma 2 so

we may quote lemma 1 and obtain decompositions

1 - - - i
(11) E (R®R')Y®L ,E=(R®R")S®L .

1 ~

-l - - -
Since R® L = R R =R® L the spaces L and L (or, for that

matter, any supplements of R,R in Rl, ﬁl respectively) are isometric,
Furthermore R' and R' are rigid for, if we had a non zero element
in ”R'” N T then we could specify a hyperbolic plane P not in Rl
which is a contradiction as P would also belong to E_ (recall that
we are in the case where T C “E”m) .

| 1 5 1
Let (ri)iEI be an almost orthogonal basis in R' and (ri)iEI
a congruent basis in a copy of R' and ;i’;i (i € I) analogous ob-

jects in E . Let (Zj) be an almost orthogonal basis in L and

i€

(Ej)jEJ a congruent basis in L ., From the assumption that

e 1 1 -
E=R'"®R'"® L E

Bl
®
w1
®
ol

we obtain equations
IB,.9r! +:C..9%. , (i€1I

r 13 J g 13 J

.)  and (Cij) are both row- and column-finite. Set

+ ZCiij . The vectors r; (i € IT) span a supplement R" of

1
R in E . Further, since (cij) is column-finite we see that
Iy
)

Ej € (R®R") + (R® R")", in other words, R ® R" admits an orthogonal

L -
supplement L in E, E= (R® R") ® L. . We now have R" ~ R' as the

1 1
r; form an almost orthogonal basis with ¢r; = ZBijw;f for we claim
that (Bij) is invertible. Clearly .9¢R" € 9R' and 9E = 9R" + @I <

PR' + 9L . To obtain equality, $R" = 9R' , and thence invertibility it

suffices to show that 9E = 9R' ® 9L . Assume by way of contradiction
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that the sum is not direct, say u € R' , v € L with Jlufl = lvl]] #0 .
Then |lut+v] € T < “EHOo so u+v€E < R ; but v € R and u 4 Ri
contradiction. We have, in effect, proved the following when T & ”E[Ioo

(13) If E n E then R' v R' for suitably chosen supplements R', R'

1

L1 =
of R := (ENE) and R respectively.

Since R" &~ R' is seen to hold we may quote Thm. 1 in order to obtain

- - X N ,
(R® R') . Since L, = L we have an isometry

an isometry (R ® R") 1

E as asserted by the theorem.

e

E
1f T#lEl, and R, R are the radicals of the spans of the sets
E_ ., E respectively we reach the same conclusions by using Lemma 3 of

© -]

Section 4 and Theorem 1.

Obviously, if dim R 1is finite then without assuming (i) we ob-
tain (12) with Bij of finite size and (Cij) row= and column-finite
provided we have “E“ = ”ﬁ“ . This completes the proof of Theorem 3.

We shall now summarize our results by combining Theorem 2 (Lemma 3,
Section 4 respectively) with theorem 3 in the following scholion. Since
all supplements of the radical F n Fl of a subspace F are isometric
we may without any risk of confusion speak of the isometry class of the

non degenerate part of F .

scholion. Let (E,®) be weakly stable, non degenerate and of di-
1
mension Ro and set R :=E_ n E . We distinguish between the two

cases T & ”EHw and T % ”E”w .

If TC “E“°° then the isometry class of E is characterized by
the set of the following invariants of E : (i) the ~ class of E
(if dim R is finite ||El suffices), (ii) [lEl_ ,(iii) the isometry
class of the non degenerate part of E: , (iv) the isometry class of

anyone supplement X of E_ in R* such that R + X 2 E: . The classes

in (1ii) and (iv) are classes of rigid spaces.
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If T ¢ ”E”oo then the isometry class of E is characterized by
the collection of the following three invariants: (j) the ~ class of
E , (jj) the isometry class of the non degenerate part of (span Em)l
which is anisotropic, (jjj) the natural number n = dim (E*/(E*ﬂvl))
where V is any maximal totally isotropic subspace of E . E splits

1
off an orthogonal sum H of n hyperbolic planes, E = H® E and

1
Ey is uniquely determined by the invariants (j) and (jj) of E ; fur=-
N
ther more El ) - (inf.dim.rigid) ® (anisotropic) so that the set
. . 1
(El)w is a linear subspace, (E;), = (El)* n (El)* .

If E 1is gquasistable we always have T “EHO° and finite dimen=-
L
sion of R=E N E_ . Thus E_+ E: = R* and the invariant (iv) in the

scholion is trivial. Thus

corollary ([3]). If E is quasistable then the isometry class of

E 1is characterized by “E“ , ”EH the isometry class of the (finite

w !
L
dimensional rigid) non degenerate part of E_ .
Remark. In the case where T & “E”m the following diagram helps
to locate the roles of the invariants (i), (ii), (iii), (iv) in the
scholion; it gives the sublattice (in the lattice of all subspaces of

E) generated by the space E, under the operations +, /1 , orthogonal

complementation.
E
Lo L1 L 1
(E,+E,7)" " =R
11
E +E, E,+E

EJ.

LA *
Eoo = E*

L
E, E,NE, =: R
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7. Representatives

If a weakly stable space E has T © HE“°° then it can be decom=-
1
posed as E= (R®R')® (A® B®C) where E,=R®A and E=R® B.

11

Because E_ = E_ we have C = (0) in case dim B is finite (e.qg.

whenever E 1is quasistable) . In other words
L il
(14) If dim E_/E_ N E_ is finite then the two isometry classes of

(iii) and (iv) in the scholion coincide.

Are there any other relations among the invariants (i), (ii), (iii),
(iv) of the scholion? There is the trivial condition that the set [|El
given by (i) contain the set “EH°° as given by (ii) as well as the
analogous |E[|-sets belonging to the objects in (iii) and (iv). As to
(ii) it is obvious that the inverse image in S wunder “: S - S/T of
any subspace Y © S/T of dimension < Ro may Sserve as “E“m- Assume
then that this set and the other invariants of the scholion are pre-
scribed and are such that the relations we have listed are satisfied.
We set A := o <a,0,...> 1f Y # (0) and A an orthogonal sum of
Ro hyperbolizeyplanes if Y = (0) . We pick B and B ® C of the
types prescribed by (iii) and (iv) of the scholion and extend the forms
onto all of ‘A® B ® C in the manner explained in Section 5. From the
a class given in (i) we get in particular the prescribed value space
@E . Choose a rigid space R' with ¢E =9R'® 9(A® B @ C) and define

1 L
E:=R'"®R'® (A®B® ()

R' can be chosen such that E drops into the prescribed <~ class.

E has now all the prescribed invariants.

The corresponding discussion when T % ”E”°° is yet easier and is

left to the reader.

8. Suitable fields for weak stability

If we demand that all non degenerate No-forms over a certain field
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k be weakly stable then k is such that all such forms are even
quasistable by the following

remma 5. If in the following statements on k the word "space"
means a non-degenerate k -~vector space (E,?%) of dimension Ro then

all five statements are equivalent.

(3) All k-spaces are weakly stable;

(33} All k-spaces E are weakly stable and have T < ”E”m ;

(333) All k-spaces are quasistable;

(3v) All k~spaces contain non zero isotropic vectors;

(v) dim S/T is finite and there is only one trace-valued k-space

up to isometry.

Proof. (3jj) = (3) is trivial. (j) « (jv) because for anisotropic
k-spaces E we have “E“m= P . (jv) = (jj) because of Lemma 3 (Sec-
tion 4). (jj) = (v): Assume (jj). As (jj) = (j) is trivial we also have
(jv) . Afortiori there are no rigid k-spaces, in other words dim S/T< =,
Furthermore, if ”E” S T then (by (33)) E,=E and E 1is an ortho-
gonal sum of hyperbolic planes.

(v) = (33j): If (v) holds then dim E/E, < «» for all k-spaces E .
Hence we can find decompositions E = E1 é E2 with dim El = Ro and
HEl” < T . By (5) El is an orthogonal sum of No hyperbolic planes
which shows that T © ”E”m and E_ is a linear subspace. As the non
degenerate part of E: is rigid it is of finite dimension so that

E, + E: = Rl where R = E: n E_ . We have decompositions (cf. (11))
E = (RER') % Elé E, where E _=R®E
is rigid. Therefore dim E/El< © and E

1 E: =R® E, and where R'

1 is stable in E . Q.E.D.
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CHAPTER EIGHT

SUBSPACES IN NON-TRACE-VALUED SPACES

1. Introduction

All spaces considered in this chapter are of denumerable dimension
and e-hermitean over a field k of characteristic 2 equipped with an
antiautomorphism £ w» &* .| With k is associated the k-vector space
S/T (8 := {a€k | a=ea*} and T := {at+ea* | a€k} the additive sub-
groups in k of symmetric elements and traces respectively); ¢: E » S§/T
is the k-vector space homomorphism which sends x € E into the coset

®(x,x) + T . It is invariably assumed in this chapter that
(0) dimk S/T < =

This will enable us to make the most of stability and quasi-stability
(Chapter VII). For example, the isometry class of a nondegenerate quasi-
stable space (E,®) is determined by the isometry class of E* and

the subspaces ®E and ¢E*LL in S/T (This follows from the corollary

to the scholion in VII.10.). Here we set again X* := {x€X [ d(x,X)ET}

and have, by (0), that dim X/X* < dim S/T < « for all subspaces X C E .
In particular E*L and ®X will always be finite dimensional. We also
recall that E** is left pointwise fixed under any metric automorphism

of (E,®) .

In this chapter we show how to put to use the results of Chapters
IV and VII for the classification of subspaces in the unwieldy situation
of non-trace-valued forms. We do this by discussing in detail the case.
of totally isotropic subspaces. Other cases may then be attacked in a
similar fashion provided that the task of readying the indispensable

lattice has been accomplished (see [1][2]).
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Although the aim of this chapter is to a large extent the conveyance
of a method the main result is of independent interest. Theorem 2 and its
Corollary 1 in Section 7 give a complete characterization of the orbits
of totally isotropic subspaces by means of invariants that can actually

be handled in practical applications.

2. The lattice of a totally isotropic subspace (dim S/T < =)

V(R,E*) orthostably
generated by E* and the
totally isotropic sub-
space R cC E (with

dim E/E* < dim S/T < =)
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1= (0) 15 = R** 29 = E**inrtetat
2 = RNE*** 16 = R **4+E** 30 = RU#txt

3 =R 17 = E* 31 = Ex+E*ttnRT xRt
4 = RMErtr 18 = E*+E** 32 = Ex+RMxtwt

5 = R+R*‘NE*T* 19 = E***nr**t 33 = g*ttnrt

6 = R** 20 = RY** 34 = grtringrt

7 = E*t* 21 = RU“*+E* iRt 35 = E*+E***nRY
8 = g** 22 = RU*4RYx 36 = Ex+Ext**nRt
9 = R+E*** 23 = Rttt 37 = B***
10 = R+E** 24 = R** iyt 38 = mrtwt
11 = R*‘4E*** 25 = E*+E**iaRptst 39 = r*

12 = RUbeErt 26 = E*+E**'nR***4+Ext 40 = pr+Rb

13 = Rbxtx 27 = E*+R**** 41 = p*tiygt

14 = RY#tegpst 28 = Ex4RUxttypst 42 = (RNE***)*

43 = E

The nice diagram is reproduced from [3]. We shall construct examples
where all 43 elements are different spaces (a division ring with

dim S/T = 8 is needed for this to be possible).

The utility of the diagram is greatly increased by a table for the

operation 1 in V(R,E*) :

X 1y 2| 4}13 5 6| 7| 8 9 11{10 12(13|19|14|20|15 23[16 24

17 25 27 31 35 37|18 26 28 32 36 38|21 29|22 30|33(34(39|40 41|42{43

8 7 14 13 [12]11( 6 4 21 1




172

3. Remarks on the verification of diagrams

Although the diagram for V(R,E*) in the previous section is still
modest in size it is complex enough to require a systematic verification.
And verified it must be! For, it has not been devised for purposes of
illustration or for interrupting the monotony of the text; the diagram
is a tool without the help of which we could not have delved into our

problem.

It is for the sake of the novitiate that we adduce some hints for

this verification (to f£ind the diagram is another matter).

First, we convince ourselves that the partial order depicted by
the unlabelled diagram - call it D - is a lattice. The legend then
sponsors a map V: D + L(E) into the lattice of all subspaces of the
vector space E (it sends the element 7 of D into E*** € [(E) , etc.).
This map v must be shown to be a lattice homomorphism and its image

in L(E) stable under i: L(E) + L(E) . This is accomplished as follows.

Second, verify that v respects the ordering by checking all pairs
of neighbouring elements in 0 . For example, we have 22 < 26 by D ;
do we have R'* + R'** c E* + E*t* n r*** + E**  for the images under

v ? As an illustration let us verify this in detail.

Since R'* c E* (trivially) it suffices to show that R***  is

contained in the space E*'Y n et o+ Ext = (E**+R**)* + E*t (which is

L-closed because dim E** g dim S/T is finite). We try to establish the
converse inclusion for the respective orthogonals; as both spaces are

1-closed this will be equivalent to the former inclusion. We thus wish

to show that (E*"'-i-RJ'*)J‘l n Ex*t < pietd Since dim E** is finite we

4

have (E**+R**)** = gt 4+ R and, by using modularity, our assertion

translates as E*' n E*** + r'*** < R**** | We have reduced the problem
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to proving that

(l) E*J. n E*J.L c RJ.*J.J. .

This is easily done. R belongs to E* and afortiori R <€ (rad Ex)Y
Thus rad E* ¢ R* . Since rad E* = rad (E*') we are done. Most of the
remaining seventyfive checks for inclusion will be seen to be quite
trivial. Having in this fashion settled the inclusions one is in a

position to turn to the next step.

Third, verify that the map Vv respects joins. For example, the
element 20 of D is the join of 19 and 8; do we have (E**‘nr***)+E** =
R***  for the images under v ? One inclusion is trivial and, by i1-
closedness, we may turn to the corresponding orthogonals and establish
(E**+R**)** n g*tt c RL**'L . But this was verified in the example under
step 2 above. In this fashion one checks all joins of pairs of elements
in ? . There are, in principle, [ﬁ;] checks to be made. However, the
work is cut down drastically by observing that it suffices to establish

that each join-irreducible element gives the correct join with each

other element.

Fourth, verify that v respects meets. This step is very similar
to the preceeding one (the steps may be interchanged). It suffices to
show that each meet-irreducible element gives the right meets with all
other elements (in the image of v). Having already done the joins, the
checking of meets can sometimes be simplyfied by writing elements as

suitable sums of other elements.

When the last two steps have been accomplished then we know that
v 1is a lattice homomorphism, i.e. the labelled diagram gives the

correct joins and meets. There remains the last step.
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4

Fifth, check orthostability. Since (x+)* =x* n vyt only join-

irreducible elements have to be looked at. For example, where is the

orthogonal of R****' (number 30)? Looking at a metabolic decomposition

41l 11

F Y i
for R** , E = (R'™eRr') & E, , we see that R**** = pM g EX ©* . Hence
F's
R**** is i-closed because dim (R'*'*/R**) = dim EX ©* < dim S/T < =
(as E, is nondegenerate). We answer our question simply by saying that

30t = 13 .

4, Totally isotropic subspaces: the indices

Let (R1’E1) be a family where, for all 1€I , E1 is a non-

1€1

degenerate e-hermitean space over k and R1 a totally isotropic sub-

space of E1 . If E 1is the (external) orthogonal sum of the E1 and

R the subspace ZR1 then we call (R,E) the sum of the pairs
(RI,E1) . A pair (R,E) 1is called reducible if it is a sum of two
pairs (R;,E;) , (R,,E;)) such that E* = Ef + E¥ and E, $ EY ,
E, $ EX .

In the next section we shall list certain irreducible pairs.

In a later section we shall prove that arbitrary pairs are sums of

such. Here we shall introduce the indices of a pair needed further on.

Let RCR' CE and, as usual, E be nondegenerate. Let further-

more M be a supplement of E*** in E*' and N := R N E*" = R N E***

Since M is nondegenerate and of finite dimension we have E =M + Mt ;
'y

M admits a metabolic decomposition with respect to N . As R € E* C Mt

and R C N* we have therefore a decomposition as follows:

md (nen) & g,

td
]

(2) E* = N ® E

R = N ® EgR
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. . 1 . . ,
Because every metric automorphism of E leaves E* pointwise fixed

we shall have to assume that
(3) R N E*t* = R n pxts

i.e. N =N if the totally isotropic R is to belong to the orbit of

R . Therefore, it may be assumed that M =M and N' = N' in a de-
composition for R analogous to that in (2). We see that the discussion
about R in E 1is shifted entirely to the discussion about Ry :=

In other words, it suffices to consider the case of a

Eq N R in Eg

pair (R,E) that satisfies
(4) Ex** = gx* ana R N E* = (0) .

Assuming (4) the lattice V(R,E*) is as follows:

E
42¢

d
35 #\\““-\1.33=34
e
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Let (x/y) be the dimension of the quotient space X/Y where
X,¥ carry the numbers x and y respectively in the legend to the

diagram in Section 2. We then define indices by

n

a = (3/2) , b := (6/5) , ¢ := (4/2) , d := (7/4) , e := (13/11)

(5)
4 :=(15/13), g :=(19/13), h :=(23/15), 4L :=(37/35) .

If (4) is not assumed we have to add the following
(6) m:= (8/7) =dim M , n := (2/1) = dim N .

One then proves the following equalities for arbitrary (R,E) ,

dim E < Ro '

(17/15) = a , (33/29) = e , (39/34) =d , (43/42) =n .

The eleven cardinals introduced in (5) and (6) are obvious in-
variants of the orbit of R under the action of the orthogonal group
of E . By modularity all dimensions of quotients of elements in
V(R,E*) can be expressed by these eleven cardinals a, b , ... , 4 ,
m , n . (If the dependence on the pair (R,E) is to be exhibited we

write a(R) , b(R) , etc.)
We have the following relations among the indices:

Lemma 1. (i) ¢ +d+e+g+h+Li+m+pn <dim S/T < =

(ii) a < o = b = ¢ = ¢ = { = g = zero

(iid) § < =« = h zZero

(iv) § < « & T {0} = § is even

In order to prove the lemma we need the following fact:

Lemma 2. Let R C R' € E , E nondegenerate, dim E £ RO . If

dim R is finite then E admits a Witt-decomposition for R if and
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only if R N E** = (0) .

The easy proof is by induction on dim R and is left to the

reader.

Proof of Lemma 1. (i) dim E/E* < dim S/T .

(ii) If a < » then dim R =a + n <« and R = R . Hence

b + ¢ 1is zero. Furthermore, as space 29 is i-closed and of codimension

a 1in space 31, we must have 31** = 31 . The i-table in Section 2 gives
31** =37 so e+ { is zero. In order to compute g one may, by de-
composition (2), assume that (4) holds. Since then R N E** = (0) we
may quote Lemma 2 and assume a decomposition E = (R®R') é E, with

R @& R' € E*¥* , In this setting it is easy to check that the spaces 14 and

20 coincide, i.e. g =0 .

(iii) Since 20 is +-closed and of codimension § in space 22 we

PN

obtain here 22 = 22 = 30 . Thus h is zero.

Py
(iv) Let us use a metabolic decomposition E = (RlLQR') ® E, for
R** . We find § = dim E}/rad EX¥ so that § 1is the dimension of a non-
degenerate trace-valued e-hermitean space. If T = {0} , i.e. k commu-

tative and the form symmetric, then such spaces are sums of hyperbolic

planes., Hence the assertion.

The proof of Lemma 1 is thus complete. By Theorem 1 in Section 6
below we see that the lemma lists all relations to which the indices

are subjected.

5. Totally isotropic subspaces: the irreducible objects

5.1. Let E be a hyperbolic plane and R an isotropic line in

E . The pair (R,E) has a =1 and all other indices zero.
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5.2. Let E be an orthogonal sum of hyperbolic planes k(ri,ri) ’
i € N. Let R be the span of all r, + ro . The pair (R,E) has
b =1 and all other indices zero except for a which has to be xo
by Lemma 1.

5.3. Let E be an orthogonal sum of hyperbolic planes k(ri,ri) ,
i € N, and a space ({o0,0) where a € S~T . Let R be the span of all
r, + z where 0 + z 1is an isotropic vector in {(a¢,a) . The pair (R,E)

has ¢ =1 and all other indices zero except for a which is RO by

5.4, R := (0) € E := (a,0) with a € S\T gives a pair with

d = 1 and all other indices zero.

5.5. Let E be an orthogonal sum of metabolic planes k(ri,ri) B
[2 i] , i €N and a € S\T , and a plane (a,a) . Let R be the span
of the ri . The pair (R,E) has e =1 and all other indices zero

except for a which has to be Ro by Lemma 1.

5.6. If T = {0} we let E be a hyperbolic plane, if there is
y € {0} we let E =<{y) ; set R = (0) in either case. The pair

(R,E) has § =2 or 1 and all other indices equal to zero.

5.7. Pick o € S\T and let E be an orthogonal sum of metabolic
planes k(ri,ri) as in 5.5 and a line {(a) . Let R be as in 5.5. The
pair (R,E) has g = 1 and all other indices zero except for a which

has to be RO by Lemma 1.

5.8. Here is an example with £ = 1 and all other indices zero
except for 4§ which has to be xo by Lemma 1: E = {(0,3,...) and
R = (0) with o € S\T . Here the nondegenerate part of 15 is hyperbolic.

In view of 5.6 we are therefore left with the possibilities of an an-
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isotropic space 15. Let (e,)

dien be an orthogonal basis of an arbitrary

anisotropic trace-valued space E, . Let E = E, @ (a) where all
products Q(ei,a) =1 and o := $(a,a) € S\T . For R := (0) C E we
find h =1 and 15 = E, . Our list is yet too small! Later on we shall
need enough irreducible pairs to enforce isometries E = E when the
pair (R,E) 1is given and the pair (R,E) is to be an orthogonal sum

of irreducible pairs from the list such that (ﬁ,ﬁ) coincides with
(R,E) indexwise. This presents no problem if dim R 1is infinite for
then we have stability. If dim R 1is finite we are at a loss with our
examples since e.g. a space with h = 2 need not be an orthogonal sum
of two spaces with h = 1 . Because it would be very awkward to formally

exclude the case with finite dim R we have no choice but to include

here, in one lump, all irreducible pairs ((0),E) when E is an-

wid et

isotropic, E =E and h = dim E/E <

5.9. Let E be a sum of metabolic planes as in 5.5 and let R
be as in 5.5. The pair (R,E) has 4 =1 and all other indices zero

except for a which has to be RO by Lemma 1.

5.10. For o € S\T set R := (0) € E :=(a) . Here m =1 and

all other indices zero.

5.11. For o € S\T set E := {(a,0) and let R be the isotropic

line in E . Then n = 1 and all other indices are zero.

We summarize by giving the following table of irreducible pairs

(R,E) constructed above:
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a | b ¢ | d e 1 4 |g h |4 | m n E* dim R |[dim E
(a+n)
1 1 E=E***=E*| 1 2
=gp*ti=
2 |x, |1 E=E**iopx | R %o
PN
3 1R, 1 EE*"T=E* | R, R,
4 1 E+E**t=E*| 0 2
5 | X 1 E=E*"TEX | R ¥,
6 1,2 E=E**'=E*| 0 1,2
gkl
7 | R 1 E=E*"“$E* | R/ ¥,
8 R, 1 E=E*''4Ex| 0 Ry
9 | ¥, 1 E=E**14E* R R
10 1 E$E***=(0) © 1
11 1 | E$E**t=E*| 0 2

Notice that in all cases E* 1is either i1-closed or i-dense (or
both) . Examples 1, 2, 6 are trace-valued. If we are not in the symmetric
case (T = {0}) an element Yy € T~{0} enters the description of
Example 6. In the remaining examples 3, 4, 5, 7, 8, 9, 10, 1l invariably
dim E/E* = 1 ; in their description enters the "parameter" o € S~T .

If « is varied in ST we obtain different irreducible pairs. Their
isometry types correspond uniquely with the different lines in the k-
vector space S/T . If we vary Yy in T~{0} and a in S~T we get
all the building blocks needed to build an arbitrarily given pair (R,E) .

Of this we shall treat in the next two sections.
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6. The invariants of a totally isotropic subspace

The k-vector space homomorphism ¢: E = S/T with

Xxw d(x,x) + T

induces a map L(E) » L(5/T) and a lattice homomorphism which we call
¢ too,

V(R,E*) + L(s/T) .
We are particularly interested in the image of the lattice V(R,E*) in
Section 1 because the image lattice ¢V(R,E*) is an obvious invariant
of the orbit of R under the action of the orthogonal group. In order
to obtain a diagram of the most general homomorphic image of V(R,E¥*)
we simply contract the diagram in Section 2 "along the direction of E*"

(as if we were to push together the bellows of a camera). The result is

pE

42
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Referring to the above diagram we introduce subsets
(7) M, 6 , H , £, 3 , 0, C , N

of S in the following way. Let M be any set of m elements

o(e,e) € S where e runs through an orthogonal basis of a supplement
M of E*'* in E* | (We consider rigid spaces as "building blocks"
here and do not analyze them any further.) Similarly, let G be a set
of elements ¢(e,e) , where e runs through an orthogonal basis of a
supplement G of R**** 4+ grt  in R ; card G = g . In other words,
we are going to elect the rigid spaces M and G as members of a
certain collection of invariants; the spaces M and M+G are the
isometry classes of the "nondegenerate part" of the spaces E**  and

RJ.*J.

. The remaining sets H , E , J , D , C , N are arbitrary subsets
of S such that the images in §S/T span - in turn - a supplement of
15% in 23% , of 29% in 33% , of 339 in oE*** = 379, of 347

in ¢R* =399 , of 41% in 42% , of 42® in ¢E .

Let then (R,E) be an arbitrarily given pair and (7) the subsets
associated with it. We wish to define a sum (R,E) of irreducible pairs
from the list in Section 5 which has the same indices and the same in-
variants (7) as (R,E)} and such that an isometry E = E maps R N E**

onto R N E*' ., We start by taking a sum of m copies of ( )

R107F10
as described in Section 5.10 where the parameter o runs through M .
Let (R(M),E(M)) be the resulting pair. Similarly we build pairs

(R(G) ,E(G)) , ... , (R(N),E(N)) by taking orthogonal sums of pairs of
the kind described - in turn - in Section 5.7, 5.8, 5.5, 5.9, 5.4, 5.3,
5.11. In each sum we let the parameter o wused in the description of
the irreducible pairs run through the corresponding sets (7). In 5.8

we have, in the situation of finite dim R , to select an irreducible

example with the correct space 15 , i.e. with 15 isometric to the
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corresponding subspace of E . There is no problem with dim(rad 15) =
dim 13 =n+e+d+ ¢+ b+ a . If we add up everything, (R,E) 1=
(R(M) ,E(M)) é cen é (R(N) ,E(N)) we have a pair (E,g) whose lattice
@V(E,%*) coincides with the lattice ¢V(R,E*) in S/T of the given
pair. (To this one only has to remark that the union MU GU ... UN
has an image family under ¢ that is linearly independent in S/T so
that E* is the sum ZET of all the E1 used in the construction of
the sum; all indices then behave additively.) By adding to the pair
(ﬁ,%) a sum of a(R) copies of the irreducible pair in Section 5.1
we can furthermore adjust the invariant a to the given a(R) .
Similarly we adjust b by adding b(R) copies of the pair described
in Section 5.2 call (R,E) this final sum and observe that it has E
isometric to E . This follows at once from the scholion in VII.6 when

*14”

dimR=®, : since T C ||E||°° = |E the invariants [|E]] and [JE***]

0
are made up of full equivalence classes of S/T so that they, together
with M , fix the isometry class of E according to the scholion .

We summarize:

Theorem 1. Let E be a nondegenerate e-hermitean space of
dimension < RO and R c R'c E . Then there exists an orthogonal sum
(R,E) of irreducible pairs as listed in Section 5 such that the follow-

ing hold.

(i) E and E are isometric under an isometry which maps
R N E** onto R N E** .,
(11) a(R) = a(R) , b(R) = b(R) .

P 1 =d . .
(iii) R™* and R * are isometric.

(8)
1,1 =1 4 . .
* and R™* are isometric.

(iv) R
(v) There is a lattice isomorphism 7t: V(R,E*) -+ V(R,E*)
which sends R in R and renders commutative the

diagram:



184

V(R,E¥) —I>  V(R,E%)

<P\ /@

L(s/T)

Remark 1. Statements (i) to (v) contain some redundancy. If,
instead of (v), we only know that the lattice ¢V (R,E*) is identical
with the lattice QV(ﬁ,E*) then we have equality of all corresponding
indices, except for a , b and { . But a , b and § are taken care
of by (ii) and (iii). We see that there exists an index preserving

lattice isomorphism 1 with ¢ = @.tT .

Remark 2. Let us look at the irreducible pairs in Section 5 once
more, The trace-valued types in 5.1, 5.2, 5.6 are irreducible in the
strict sense that they cannot be further decomposed into summands
+ ((0),(0)) . On the other hand, arbitrary sums of such pairs are
irreducible by our definition (at the beginning of Section 4) because
E = E* . Since the indices not a , b , § are finite we have

For given (R,E) there is a sum (ﬁ,ﬁ) of finitely
(9)

many irreducible pairs that satisfies (8) in Theorem 1.
Obviously, the summands in (9) are not - and cannot be -~ uniquely

determined.

Remark 3. Let in L(S/T) be given any sublattice W of the
shape depicted by the diagram at the beginning of this section. It is
now clear that by introducing supplements between suitable pairs of
neighbouring elements in W we can arrive at sets M , G, ... , N
(as in (7)) which in turn can be used for the construction of a pair

(R,E) as in the proof of Theorem 1. We list this result as a
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Corollary. For any sublattice W in L(S/T) of the shape

we can define a nondegenerate e-hermitean space (E,®) with the
following property. E contains a totally isotropic subspace R such
that oV(R,E*) = (! . By adding to (R,E) pairs of the kind described
in Section 5.1, 5.2, 5.6 we can furthermore alter the isometry type
of R'* and enlarge the cardinals a(R) , b(R) . In particular, we
see that there are no other relations between the invariants a(R) ,

b(R) , §(R) , 9V(R,E*) than are listed in Lemma 1.

Remark 4. Notice that if (i) in (8) holds then each isometry

E=FE will map R N E** onto R N E*' .

We are now ready to insert the keystone.

7. The decomposition theorem

In order to prove that the pair (R,E) in Theorem 1 - or in (9) -
is equivalent to the pair (R,E) , i.e. in order to construct an
isometry E = E which maps R onto R we have to make the following

incisive assumption:

If dim R**/rad(R**) is infinite, then R*
(10) contains an infinite dimensional totally isotropic

subspace disjoint from the radical.
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Remark., Condition (10) says that in the case of an infinite index
§ +the space 13 possesses a quasistable supplement F in 15 . As
15 ¢ E* the space F is then a sum of hyperbolic planes. There are
fields (k,*,e) such that there is only one isometry class of trace-
valued e-hermitean spaces in dimension RO ; hence in these cases (10)
is automatically satisfied. Condition (10) is not only natural in the
light of methods introduced in Chapter IV. Assuming (10) is a necessity
if we wish to prove a general result to the effect that the indices and
the lattice ¢V (R,E*), in S/T, of value-spaces constitute, essentially,
a complete set of invariants for the pair (R,E). In the absence of
isotropic vectors the arithmetical properties of the field play a
sensitive part in the characterization of spaces (see Chapters XI, XII,
XIII). On the other hand, it may be possible to omit (10) in gpecial

cases such as treated in Theorem 3 below.

Theorem 2. Let E and E be e-hermitean k-spaces, nondegenerate
and of dimension RO . Assume that k has finite dim S/T . Let R C E
and R ¢ E be totally isotropic subspaces such that conditions (8) are

satisfied. In order that there is an isometry E = E which maps R

onto R it is sufficient that (10) is satisfied.

Proof. Since we can write down decompositions of the kind (2) for
both R and R and since E* = Ex , RN E*' = R n E** under

isometries of the whole spaces E and E we can conclude that (4),

and the corresponding equality for (R,E) , may be assumed without loss
of generality. (Chopping off isometric finite dimensional orthogonal
summands is awkward since the "Cancellation Theorem" does not hold when
E + E* .) Condition (8) is inherited in the reduced situation. This
verification and similar ones below are left to the reader. Although
such calculations may be not difficult they are by no means to be

neglected.
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We are thus in the situation of the diagram in Section 4. This
diagram and the i-table of Section 2 will be used freely in what follows.

We start out by considering

Case a = § =R Corresponding to (7) let G , H ,€ , I ,D,C

0 °
be supplements - in turn - of 13 in 19 , of 15 in 23 , of 29 in

33 ,0f 35 in 37 , of 33 in 39 , of 41 in 42 . We show that we
can arrange it such that the six spaces are pairwise perpendicular. Let
us start with C at the top of the diagram. Pick a preliminary D .

We shall change D mod 15 . Suppose the first member X of an orthogonal
basis of D is not orthogonal to a basis (yi) of C . Since C N 15*=

(0) we can find t, € 15 with @(tl,yi) = @(xl,yi) for all Yy - We

1

replace Xy by xl+tl . We then treat the next element X, of the
basis of D : we find a vector t2 € 15 such that x2+t2 is ortho-
gonal to all of C and xl+tl . In this fashion we find a space D1 =D
(mod 15) with DI;C . We may have altered the isometry class of D by
swiching to Dl , but ¢(xi,xi) H @(xi+ti,xi+ti) mod T . In view of
(10) we can find in (C+D1)L N 15 an orthogonal family Sy r Sy 4 ees
such that the system xl + tl + sl , x2 + t2 + s2 ; +.. 1s congruent

to the original system X) 1 Xy 4 see e Call D2 the span of the new
system. Now we adjust I to the space C+D2 by modulating it modulo

15 . In this fashion we can work our way down to H . Dropping subscripts
which may have accumulated we assume that € , D, ... , H are pairwise
orthogonal and of prescribed isometry class. What can be done about G ?
Since 13* n (C+D+I+€) = (0) we can, by the same procedure, achieve
G1C+D+1I+€ bychanging it modulo 13 . As G + 13 c 13* we do

not thereby change the isometry type of G . Since invariably GiH we
have what we wanted. By such changes modulo 15 we can furthermore
achieve that any of the sets H , E , J , D , C as introduced in (7)

are "realized" by an orthogonal basis of H , € , I , D, C respectively.
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This remark allows to arrange for isometries H = H , € = e , etc.

We now set W, :=C®D O I®ED®HDG and define Wo analogous-

ly. Let Tg,: W, =+ ﬁo be the obvious isometry which sends C into C
etc. (Notice that G =G by virtue of (iv) in (8).) Now we may quote
Principle I: the only join-irreducibles in the lattice which will enter
the recursive construction of the required isometry are 17, 15, 13, 8,
6, 4, 3 . The last five are totally isotropic and thus qualify for
condition C mentioned in (15) of Principle I in IV.10. Furthermore
space 17 qualifies for C(ii) because E* contains the infinite di-
mensional R and R N E** = (0) ;7 finally 15 qualifies for C(ii)

by virtue of assumption (10) made in Theorem 2. The proof of Theorem 2

is thus complete in this case. The next case will be the

Case a = X and 4§ =0 . As in the previous case we want to

0.
U

define W, as an orthogonal sum of supplements C , D , I , ... , G

of prescribed isometry type. We start out with a fixed C and change

I modulo 17 ; 17 = E* contains a totally isotropic subspace of in-
finite dimension and is therefore an orthogonal sum of hyperbolic planes
and a finite dimensional radical; therefore, we can arrive at a supple-
ment Il isometric to I and orthogonal to C . We then change D

and € modulo 15 ; as 4§ = 0 we have 15 < 15% and we can again
arrange it such that we do not thereby change isometry classes. H = (0)
by Lemma 1 in Section 4. By a similar procedure we can achieve that

c,D, I, €& are isometric to C , D, I , € . We are left with G

which we change modulo 14, Then we can apply Principle I of IV.10.

Case a =R, and { < » ., We can reduce this case to the previous
one. Let F be a supplement of 13 in 15 and E, := F!' . Since F
is trace-valued and E is quasistable (dim S/T < » and T < [E|_)

we obtain from the Corollary to the Scholion in VII.6 that Eo =E .
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Hence the isometry E = E implies that EO = Eo if Eo := F* for F

any supplement of 13 in 5 . Since F and F may furthermore be
assumed isometric by assumption of the theorem we only have to study

the pairs (R,Eo) , (ﬁ,ﬁo) which brings us to the first case.

Case a < » , By Lemma 1 in Section 4 the diagram looks now as
follows

E*'=8
d
(0)
Since dim E = NO we have { = NO so (10) is in force. We can now
1 - R R
arrive at WO :=DO®H = Wo := D ®H as in the first case and quote

Principle I of IV.10. This terminates the proof of Theorem 2.

Corollary 1. Let E be a Ro—dimensional nondegenerate e-hermitean
space over a division ring with dim S/T finite. Let R be a totally
isotropic subspace. If (10) holds then (R,E) is a sum of finitely
many irreducible pairs from the list in Sec. 5, The following objects
constitute a complete set of orthogonal invariants for the orbit of R

under the action of the orthogonal group of E :



190

(j) The cardinals a(R) := dim R/(RﬂE**)
b(R) := dim R**/R+R**nEx'*

(3jj) the (totally isotropic, finite dimensional)
subspace R N E** ¢ E ’

(11) (jjj) the isometry class of the (finite dimensional)

nondegenerate part of Rb*4 (a rigid space),

(jv) the isometry class of the nondegenerate part of
R*'* in case its dimension § is finite,

(v) the lattice ¢V(R,E*) in the k-vector space S/T .

Remark. One can now discuss various special cases. For example,
if the form is symmetric then k is commutative and S/T naturally
isomorppic to the k2—vector space k . If E is stable (precisely the
case when E is a countable orthogonal sum of spaces (o,a,...) and
hence E*' = 0) then the orbits of totally isotropic subspaces R are
completely characterized by their indices ((5) and (6) in Section 4)
and the isometry class of the finite dimensional (rigid) nondegenerate
part of rR*** | This isometry class can nicely be described by Milnor's
Clifford determinant so that R 1is characterized up to metric auto-
morphisms of E by eleven cardinals and an element of the Clifford
algebra associated with the quadratic map A v Az (of the k2 vector

space k into kz). Hence we have the

Corollary 2. Let E = (1,1,...) be symmetric over a commutative
field of characteristic 2. There are No different orbits of totally
isotropic subspaces under the action of the orthogonal group of E .
Each orbit is completely characterized by the indices defined by the

lattice in Section 2. The set of all maximal totally isotropic subspaces

decomposes into two orbits.
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8. On closed totally isotropic subspaces

If we assume that in the diagram of Section 2 we have that (cf.

(5), (6))

(12) b = ¢ = ¢ = g = 0

then the lattice V(R,E*) reduces to

E

(0)

In this case we can obtain the conclusion of Theorem 2 without

having to assume (10):

Theorem 3. Let E be a xo—dimensional nondegenerate t-hermitean
space over a division ring with dim S/T finite. Let R , R be in-

finite dimensional totally isotropic subspaces which satisfy (12), i.e.

4141

R = R ’ RY** = R + E*t (always the case when E* is i-closed) and

analogously for R . In order that there exists an isometry E = E
which maps R onto R the following are necessary and sufficient.

*»AnrR=E*NR , (§j) R* =&+ .

(J)) E
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Remark. The necessity of (j) & (jj) is obvious. In order to make
easy the comparison between (j) & (3jj) and the invariants (1ll1l) of Cor.l
we first remark that ¢V(R,E*) in L(S/T) is identical with ¢V(§,E*)
if and only if the chain in L(S/T)

1 il

(0) c gR**** ¢ le + wE*L c ¢Rl c ¢E**L + ¢R* c gE

is identical with the corresponding chain defined by R . This follows
from the above diagram. Secondly, from (jj) we obviously get an isometry
R'* = R+ | However, by making use of metabolic decomposition of E for

R and R respectively we see that from (jj) we get an isometry

(13) RE#t: o Riail |
Therefore, the two chains are seen to coincide and thus

(14) 9V (R,E*) = oV(R,E*) .

Our proof will make it clear that it is (13) which replaces assumption
(10) and the invariant (jv) in Theorem 2. (In the setting of Thm. 2

(13) is an immediate consequence via stability.)

Proof (of Theorem 3) 1. If we write down decompositions of the

kind (2) both for R and R we see (by the assumptions of the theorem)
that we may assume without loss of generality that (4) holds and the
corresponding equalities for (R,E) as well. We are thus once more in
the situation of the diagram in Section 4 (with b =c¢ =¢ =g =0 by

assumption of the theorem).

2. Let D := E** and D' be a supplement of space 33 in 39 .
D & D' is nondegenerate by looking at the diagram (reason as follows
if necessary: D' 1is rigid so any vector d of the radical of D & D'

i

belongs to D . As d € 7 ¢ 11 = 33 the element d would be ortho-

gonal to all of 39 = 33 & D' ; hence d € 39* N D=6 ND= (0)).
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Let D := E** and D' be a supplement of 33 in 39 . By (14) we may
choose ¢D' = D' . Furthermore, by changing D' modulo 13 we can en-

force that D' =D' . Thus D® D' =D & D' ; let E1 and El be the

orthogonals of the two sums in E and E respectively.
L 1 =1

4 T S-S § 4 = =
We have D & E1 = D” = E¥* = E* = D" = @ El therefore El = El

because D and D are the radicals of the two isometric spaces.

(whi

3. Let El ' El be as at the end of the previous step. There are

metabolic decompositions

(15) E, = (R&R') é E

1 2! 1

Since ¢ = 0 we find that E; is i1-dense. Furthermore ¢E2 = @(R+E2) =

5 * Yet we cannot conclude that E2 = E2 by a stability

argument since we won't have T C ”E2" , “EZH (both spaces can be an-

30% = 30° = ¢E

isotropic because we do not assume (10)). However, by taking orthogonals

in the spaces at the end of step 1 we find that

R™* = D®&®RO E;
(16) 1,11
R™* =D€BR€BE2

N gl GNP .
and, of course, an analogous expression for R™* . Since D & R =

rad(R****) by (16) we can conclude from (13) that

|13
)

(17) E

Since thus (jj) is inherited by (R,E.) , (ﬁ,ﬁl) we have achieved
a reduction to the case where b =c¢c =d=¢ =g =m=n=0 . From now

on we drop the subscript 1 in "E1" ’ "El“ .

4. (17) and the fact that E2 = EE** can be used to elaborate on

the metabolic decompositions (15). We shall make use of the following

simple fact
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Lemma 3. Let E be a Rp-dimensional nondegenerate e-hermitean

space over k with E = Extt | Let (Xj) be any family of elements

jeN

A, €|E|~T . Then E has an orthogonal basis (e,)

j ilien such that for

each Aj there are infinitely many e, among the e; with

¢(ei. ’ ei.) = Aj (mod T) .

Proof of Lemma 3. Assume that el, ceey em have been determined.

Let A € ||E||NT be prescribed. There is x, € B with X = 8(x5,%5) .

yt:

Since E* 1is i-dense it is met by the translate X, + k(el,...,em,xO

there exists e

i
el € k(el,...,e /X ) such that x_. + e € E* |

m’7o o m+1

Hence &(e ) X (mod T) . It is clear that a systematic scheme

m+1 Cm+1
can be devised such that each Ai will infinitely often show up when
carrying through a Gram-Schmidt orthogonalization process for E .

Q.E.D.

Let then R @ R' in (15) be the orthogonal sum of the metabolic
planes k(rj,ré) (j€J) . We have ¢@R' + ¢R* = pE . We show how to
arrange it such that ¢R' equals a previously fixed supplement S of
ch'L in ¢E . Since @é(ri,ré) €S + ¢E2 = wEl we have ¢®(r3,r5) =
g, + A. , cj €S, Aj € ¢E2 (j€J) . We now quote Lemma 3 and may

J J

assume that E2 has an orthogonal basis 8 where for each plane Pj =

k(rj,rﬁ) with Aj € T there is a different member ej, of 8 with
@(ej, ' ej') = Xj (mod T) . For each plane Pj with Aj § T we carry
through a change of basis in the 3-dimensional space Pj 5] (ej,)

according to the schema
K(r.,c!) & (e..) = k(r.,ri+e.,) & (e, ,+0(e.,r6.,)E) .
3773 j' 37373 J s I I

We obtain thus a new metabolic decomposition E = (R&R") $ Eé with

¢Eé = ¢E, and ¢9R" ¢ S (and hence equality). We may therefore assume

that in (15) the spaces ¢R' and gR' < S/T are prescribed supple-

ments of ¢E and oE in ¢E = ¢ﬁ respectively.

2 2
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——

5. Let I and I be supplements of 35 in 37 = E and 35

in E respectively with I = ¢f . By what we said at the end of the

previous step there exist metabolic decompositions (15) with
(18) gR' = @I = @I = ¢R' .

Because dim R is infinite the spaces R & R' and R @ R' are stable,

hence by (18) they are isomorphic. In view of (17) we have reduced the

problem to the case E=R®R' , E=R®R' , i.e.,
b=c=d=e=6=g=h=m=n=0
E*'L'L—Eb
L
E* §
a
R=R*
a=R0
(0)

We choose supplements I , I of E* in E and E* in E respective-
ly; they can be changed mod E* , if necessary, to achieve T = I . 1f
we let T, Dbe any isometry between I , I we may quote Principle I of
IV.10 and obtain an isometry E = E which maps R onto R . This

finishes the proof of Theorem 3.

9. The case of Witt decompositions reviewed

Let again R be a totally isotropic subspace in a e-hermitean
nondegenerate space (E,®) . Assume dim R to be infinite. We fix some

metabolic decomposition of E ,
11 X
(19) E = (RR"T®R'") @ Ep

for the totally isotropic R** and define a new form ¥ on E X E

as follows: Set V¥ identically zero on R' x R' and let Y coincide
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with ¢ on R' x (R @ R' @ E)) and (R' ® E,) x E_ . (E,¥) is non-

degenerate and Witt decomposed for R**

We continue to assume that the division ring has finite dim S/T .
Hence both (E,®%) and (E,¥Y) are quasistable. Their isometry classes
are characterized by the isometry classes of E*' and by ¢E , wE*lL

in S8/T . We can prove equality of these invariants if (E,9) satisfies

(20) R* + E* = E

(21) R* + Ext = Rpist

Lemma 4. Let dim S/T < » and assume that R in (E,®) satisfies
(20) and (21). Then the space (E,Y¥) defined above by means of the de-

composition (19) is isometric to (E,9) .

Proof. We show that all the pertinent invariants can be expressed

in (EO,Q) of (19)., As Y coincides with ¢ on Eo the assertion

will follow. Since R = R** + E, by (19) we get from (20) that

(22) 9E = ¢E_ .

We turn to the isometry class of E*' | Notation: if X c Eo we set

i1l

1
xto = x* n E, for example R*** = (RL‘+EO)*L =R & E; O by (19).

Therefore, by (21)

i1l il

1
(23) rR** + E*t = 't @ EX©

Since E is nondegenerate it follows from (20) that the sum R*'* + E**

is direct and orthogonal;we obtain from (23) that

(24) E** = mxlo |
o

*1t _ px o4 gxtt 0 R = E* + (R*™4E*Y)' | Hence by

il

From (20) we get E

4 F gy §
(23) we obtain E*** = E* + (R**+E3 Oy+ = gx + rR*™ + EX © © ., Therefore,
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L1
(25) ¢E*L1 = ¢E; oo |

From (22), (24), (25) we obtain (E,?) = (E,¥) as asserted. Since

ES

E** n R** = (0) by (20) and (R*,8) = (R**+EO,¢) = (R*,¥) we obtain

from Theorem 3 that there is an isometry (E,®) = (E,¥) which maps

11 1

R onto R*! . Hence (E,%) admits a Witt decomposition for the

totally isotropic R .

Of course, when (20) holds then the index 4 = dim E**!/E*'*n(R*+E*)
vanishes and the proof of Theorem 3, in its last step, sets up a Witt
decomposition for R . A direct proof of Theorem 3 which does not manu-
facture a Witt decomposition in its course seems possible only when (10)

is assumed (such a proof is the proof of Theorem 2).

10, Remarks on related results (Principle II)

The sample which makes up the present chapter is atypical in one
aspect: The relevant lattice is distributive., A nice example of a non-

distributive lattice is given by Moresi in [3] :

Theorem 4. Let the division ring have finite dim S/T . Assume
that F is a i-dense subspace in the nondegenerate e-hermitean space
E with s-closed E* . The orthostable lattice V(F,E*) generated by
F and E* in L(E) is finite; it has 37 elements in general and is

given by the following diagram
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The join-irreducibles are numbered from 1 to 1l. Their orthogonals

4 1 ES ES ES

determine 1 on V(F,E*) . 1%, 2%, 3%, 7%, 8*, 10*

are listed in the

diagram, By the i-density of F we have (FﬂX‘)L = X for all finite

4

Yt =348 , 6 =3 . We

dimensional spaces X ; this gives 4t = gxt ;s 5
have 9% = 3+10 since 10** = 10 by assumption of the theorem and
because dim 3 is finite. To find 11" observe that 4+8 c 11 < 10

so that E** = 10* c 11* c 4* n 8* = E** n E**** = E*' | The verificat-
ion of the fact that the labelled diagram gives the correct joins and

meets is left as an exercise. (Whenever dim S/T > 4 there are examples

with all 37 elements of the lattice different spaces.)
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One can prove the following

Theorem 5 ([2]). Let F and E be as in Thm. 4 and dim E = NO .
Assume that F 1is quasistable (the case if and only if F contains an
infinite dimensional totally isotropic subspace). Then the orbit of F
under the orthogonal group is completely characterized by the space

F N E** (left pointwise fixed) and the indices dim E/(F+E**) ’

dim (F+E*%) / (F+E***) , dim(F+E***)/F , dim(FNE*Y)/ (FNE*1*)

The proof is given with all the necessary details in [2]. It has
the remarkable feature that the lattice ¢V(F,E*) in the value space
S/T does not enter the scene. It has the new feature of having to deal
with a nondistributive lattice. For the benefit of the reader who wants
to investigate similar cases we shall formulate here a strategy which
has proved helpful to us in many cases ([2]). A model application of
this strategy is given in the course of proving the "Arf theorem" in

Chapter XVI.

Let V , Vc L(E) be not distributive and assume that a lattice

isomorphism 7t: V > U has to be squeezed through to a linear map B3

in the underlying vector space. Since VUV contains C as a sub-

lattice we do have a real obstacle. For, if we define % on A and
B - say by recursion - such that %(A) =a' ’ %(B) = B' then %(C)
is automatically decided upon as C Cc A + B . Will we have %(C) cct e

N
As Tt has to be an isometry on top of it we see that the problem may

be overdetermined in various ways and prohibit a solution.

If the indices in 4» C are finite and if there are only
finitely many such nondistributive spots in V it may happen that one
is able to start the recursive construction of % by a ¥o: Wo - Wo

where the finite dimensional Wo covers all the nondistributive places

in V ; then one is done in view of the result in the distributive case.
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We shall now give a precise version of this natural idea. The

verification of its validity is left to the reader.

Principle II. Let (E,®¢) be a nondegenerate e-hermitean space
of dimension < RO . Let V < L(E) be a complete sublattice which is
stable under the operations X » x! and X b X* := {x€X | o(x,x)€T}
and in which compact elements are joins of join-irreducibles. Let
U c L(E) be a second lattice of this kind and 1: V + V a lattice
isomorphism which preserves indices (= dimensions of quotients of neigh-

bouring elements in the lattices) and which commutes with 1. and *

(defined on the lattices).

Assume that there exist finite dimensional subspaces Wo , W CE

) N = .
and an isometry Tt W_ - Wo with

o]
(26) T (w.ma) = (@_mTh for all A €V
o] (o] o]
(27) /) (WHA ) = W + QA1 (a €v)
(28) m(ﬁ ‘A ) =W +m2\ (A_€V)
1 [e] 1 Q 1 1 1

and such that condition (15) of Principle I in IV.1l0 is satisfied.

Y
In order that ¥o admits an isometric extension 71: E > E that
induces the lattice isomorphism 7T it is sufficient that the following

condition holds.

If X € V is join-irreducible and compact but not
join-prime then there exists a subspace H C Wo

(29)
which is a linear supplement in X of the immediate

antecedent of X .
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CHAPTER NINE

INVOLUTIONS IN HERMITEAN SPACES IN CHARACTERISTIC TWO

1. Introduction

Fields and forms are as specified under the caption of Chapter

VIII. In addition we shall often assume that the field is such that

there is only one isometry class in dimension RO

of nondegenerate trace-valued e-hermitean forms.

(0)

Hence all nondegenerate X.-forms will be quasistable here if (0) is

0

in force.

We shall classify the involutions I in the orthogonal group of
an e-hermitean space (E,¢) in dimension RO . The problem is trivial
in characteristic not two because then (E,¢®) splits orthogonally in-
to the spaces ker(I-]) and ker(I+]) . In characteristic 2 involutions
are puzzling. We shall treat in full generality the case where (E,9)
igs trace-valued and the field satisfies (0) (Theorem 2 in Section 7).

In finite dimensions or, more generally, when im(I-1) is i-closed,
then the problem is tantamount to classifying quasistable spaces over
the given field; in general, the question is more complex but still of
the same degree of difficulty. The solution which we develop here makes

it quite evident that without investing some serious work into lattice

computation there can be no hope of mastering the problem.

As a side result we obtain the missing half to a result by
Kaplansky. In Theorem 3 of [1] he showed that the self-adjoint linear
transformations U with 02 = 0 in a space of countable dimension,

equipped with a symmetric form over a quadratically closed field of

chacateristic not 2, are determined up to orthogonal similarity by
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three cardinal number invariants. An entirely analogous result holds
in characteristic 2 but then seven cardinal number invariants are

needed.

2. The form derived from an involution

Let char k = 2 and (E,?) be nondegenerate. If I: E + E 1is

an isometry with 12 = ‘l (involution) we define U: E - E by
(1) 1 =1 + u.

Since 12 = 1 we £find

(2) U = 0.

Since I preserves ¢ we find by (2) that ¢(Ux,Uy) = 0 for all

X ,y €E and
(3) o(Ux,y) + o(x,Uy) = 0 .

(U 1is self-adjoint with respect to ¢ .) Conversely, if U: E > E

is a linear map with (2) and (3) then (1) defines an involution.
We now define a new sesquilinear form Y on E X E by
(4) Y(x,y) := o&(Ux,y) .

Since U is self-adjoint the form ¥ will be e-hermitean provided ¢
is e-hermitean. The form V¥ is highly degenerate; its radical is the
kernel of U , hence rad ¥ has the same dimension as E if dim E

is infinite and is at least of dimension % dim E when E is finite

dimensional. We call ¥ the form derived from the involution I of

(E,2) .
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3. Orthogonal similarity

If I is an involution of (E,®) and D € Q(E,%) an arbitrary

element of the orthogonal group then
(5) I = D-I-D

is likewise an involution. In this chapter we are interested in the
"types" of involutions which the space (E,®) admits. Therefore, we
shall not consider I and I as different since they have like de-
finitions with respect to congruent bases ® and %D of E . Thus
the question arises: when are two given involutions orthogonally
similar? Now if (5) holds then D is an isometry E = E with respect
to either form & and ¥ , (E,%,¥) = (E,¢,¥) . The converse is
equally obvious; if D: (E,%,Y) - (E,¢,@) is an isometry then

leolyy = v, 07Yy) = Fx,y) = ¢Bx,y) for all

6 (DUD Yx,y) = &(UD_
X , y € E . Hence we can conclude (5) if (E,?) 1is nondegenerate. Let

us state this simple but important fact as

Lemma 1. Two involutions I , I of the nondegenerate space
(E,®) are orthogonally similar if and only if (E,%,¥) and (E,@,@)

are isometric.

4. A special case
Results of Chapter VII will allow us to decide the question of
orthogonal similarity in important special cases. Let I = 4+ U be
an involution of (E,®) and set J := im U , K := ker U . By (2) and

(3) we have
(6) J < J c J = K .

Since from now on we shall officially assume dim E to be countable

we can use metabolic decompositions for the totally isotropic gt ’
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1
E = (J"'eL) ® E, . Since E_C J* = K we see that I is the identity
on the orthogonal summand Eo . For certain investigations it will be

no loss if we neglect EO , i.e. if we assume that

(7) gt = k.

Lemma 2, Let (E,?) be a nondegenerate e-hermitean trace-valued
space of dimension < R, - If the involution T = 1 + U has (7) and
1-closed J = im U then, for I =1+ U a second involution of this

kind, an isometry (E,Y) = (E,W) implies an isometry (E,9%,¥) = (E,@,@).

Proof. As ¢ 1is trace-valued we have Witt decompositions

@ L . Since K = rad ¢ , K =rad ¥ we obtain

=1

E=K®&L, E=

from (E,Y¥) = (E,@) an isometry D (L,¥) ~ (i,?) . We show that

13
Dl has a transpose D2: K ~ K with respect to the pairings <(L,K) ,
(L,K) sponsored by ¢ . Indeed, for given x € K there is a unique

§ € L with x = 6§ (since J=J"" =& ) . Therefore, @(E,Dlz) =
¢ (Uy,D;z) = ¥(y,D z) = W(D11§,z) = @(UD11§,Z) for all z € L . Thus

- e \'2 -
X b UDlly is the transpose D2 of Dl . Set D, :=D . . It is now

v
clear that if we define a linear map D: E > E by D|L =D D}, =D

1’ K 1

then D 1is an isometry for both ¢ and ¥ . The mapping D Jjust con-

structed is not, of course, the only solution.

We can now apply the results in Chapter VII on the classification
of quasistable spaces (E,¥) . Since such spaces are infinite dimen-
sional we should have that dim J = xo in the situation of Lemma 2.
If dim J is finite then I 1is the identity on a subspace of finite
codimension in E . The discussion of such isometries is actually a

problem in finite dimensions (by virtue of Lemma 2). We shall dismiss

it for the moment and assume in this section that

(8) dim E/ker (I-1) = RO .



We shall need the k-vector space S/T associated with the
division ring (k,*,e) . With the involution I of (E,%) we can

associate the k-vector space homomorphism ¢: E —S/T defined by
(9) Y x» ¥(x,x) + T =d(®+I)x,x) + T € S/T

¥ has to be evaluated on the closure (with respect to V¥ ) of the

trace-valued part of (E,¥) which we formally introduce by
(10} A :={x € E| o(Ux,x) € T} .

The closure of A , with respect to ¥ , is (U(UA)l)L which equals
(cf. Lemma 3 in Section 6 below) (JﬂA"’)'L and hence A'* as J is
assumed closed in (E,%) . Thus, if the division ring enjoys property

(0) then (E,¥) and (E,?) are isometric if and only if the following

hold

(11) ((uayh,y) = (O™, ( 4 with respect to ¢ )
(12) YVE = VE (¢ as defined in (9))
(13) yatt = gatt ( . with respect to ¢ )

Finally we remark that it is possible to get rid of the restriction

(7) if we assume
(14) (3,0 = G0 .
We summarize our considerations in the following

Theorem 1. Let k be a division ring with property (0) and E
a nondegenerate e-hermitean trace-valued Ro—dimensional k-space. Let

I and I be involutions of (E,®) with (8) and assume that

J := im(I-1) , J := im(I-1) are i-closed.

In order that I and I are orthogonally similar it is necessary and

sufficient that (11), (12), (13) and (14) hold.
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It is not difficult to supplement Theorem 1 by listing canonical
representatives for the involutions with closed J . We shall give a

complete list after the general case has been discussed.

5. A lattice material to the solution of the general problem

The method of the previous section to establish orthogonal simi-
larity of two involutions I , I in (E,®) could be pushed one step

il

further - instead of assuming J = J it would suffice to assume that

J+at =gt . However, if no assumptions are made on J then the

isometry D: (E,%) = (E,®) which gives I= DID_l has to be con-
structed anew from scratch. The problem arises which obvious invariants
should be observed in order that the recursive construction of D is
not, at the outset, doomed to fail. We observe that the involution

I: (E,9) -~ (E,%) is also an isometry for its derived form VY ,

Y(Ix,Iy) = @(U2x+Ux,y+Uy) = ¢(Ux,y) = ¥(x,y) . Hence we have the follow-

ing commutative diagram of isometries

(E,(D,‘l‘) —D’ (EIQI\P)

(15) I l I

(E,2,¥) —7> (E,9,9)

This leads us to the following consideration:

Definition. Let I be an involution of (E,?) .

V(I) 1is the smallest sublattice in the lattice
(16) L(E) of all subspaces of E which contains (0),

E and A (defined in (10)) and which is stable

under 1 and U := 4+ I .

V(I) is an invariant attached to the (orthogonal) similarity

class of the involution I . Notice that the derived form of the in-
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volution does not intrude itself upon the definition of V(I) .

The lattice V(I) admits two operations, 4.1 and U . If I is
orthogonally similar to I then the map D in (15) induces a lattice
isomorphism Tt: V(I) ~» V(f) which preserves indices (dimensions of
quotients of neighbouring elements in the lattices) and which commutes
with 1 and U . Furthermore Tt commutes with the maps ¢ and a B
or rather, with the maps from L(E) into L(S/T) induced by ¢ and
5 . We shall not make a difference between vy , @ and these induced

maps, thus

V(1) v, V()

(17) b N — ¥

L(S/T)
is commutative.

In the situation of closed J , as assumed by Theorem 1, the

lattice V(I) 1looks as follows

U(ALL)=(UA)LL

UA

(0)

With this lattice in view let us look at Theorem 1 again (we may omit

(14) )when trying to grasp what is at stake). Condition (11) & (12) & (13)
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is equivalent with (11) and the existence of a 1 which makes the
diagram (17) commutative. Clearly, the existence of a commutative (17)
appears to be the vital part in Theorem 1. In this setting the assump-
tion that J and J be closed seems rather ad hoc and superfluous.
And superfluous it is! We handed over the problem to Studer who suc-
ceeded in [2] to prove our conjecture that (11) and a commutative (17)
suffice for the general case as well. To accomplish this it was neces-
sary to compute the lattice V(I) in order to be able to construct

an isometry D: (E,9,¥) - (E,@,@) that induces the given T (cf.

Section 8 below).

We terminate this section by presenting Studers lattice V(I) as
given in [2]. V(I) turned out to be finite and distributive; it con-

sists of the following spaces (cf. the diagram on the next page) .

1=(0) L2=u(a*t)+u(ua)t  23=0%=K

2=UANU (UA) *=a*nua 13=a*+u@att) 24=An(Ua)*
3=atn(ua)tt 14=Jn(ua)*t 25=(ua)*

4=U (ua) *=gna* 15=(J+a%) n(ua)** 26=A

5=a* 16=(UA)™** 27=A+(UA)*

6=UA 17=U(UANU (Ua) *) * 28=a*"

7=(ua+a*) n(ua)*t 18=(g+at)yn@at+wartt)  29=a**+(ua)?t

8=UA+U (UA) * 19=A"+(ua)** 30=(u(ua)tyt=(gnat)*
9=A"+UA 20=J=UE 31=(a*nua)*
10=U(a*") 21=g+a* 32=E

11=(u@a*Y) +at)yna)*t 22=3**

X 32 31 30 29 28 27 26 25 24 23
UXx 20 17 14 12 10 8 6 4 2 1
o := dim 32/31 R B := dim 31/29 , Y := dim 29/27

§ := dim 25/24 ' B := dim 22/21 ' v := dim 23/22
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3
p30 The lattice V(I) of
Definition (16) for
p28
arbitrary division
026 rings with finite
dim S/T
424
23
22
21 z 9
B
18
20 6
¢ 17 Ts
T4
13,
Lo
9
T
o
546
~
2
o
3
1
1 2 3 4 5 6 7 8 9|10} 11 {12 }13 |14 |15 |16
32 131 /129 {3028 2525242425} 25|24 2425|2525
17 (18 |19 {20 |21 | 22|23 |24|25] 26|27 )28 (29 |30 |31]|32
24 [ 24 |24 {23 (23] 232219 16 5 3 5 3 4 2 1
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In the next section we shall give clues for the verification of

the correctness of the above diagram.

6. Remarks on the lattice

The first thing to check in the diagram is, of course, the in-

clusions. As an illustration we shall consider the following two cases:
(18) 10 © 14 R 17 < 18 .

(See VIII.3 as far as general remarks on the procedure are concerned.)
The first inclusion is easy. 14 = 20 1 16 by definition and 10 < 20
is obvious. The map U = 4 + I 1is continuous in the weak linear topo-
logy 0(%) and therefore preserves accumulation; hence 10 € 16 . In
order to prove the second inclusion (and many other relations in the

lattice) we need first that
(19) 28 N 25 < 26 (hence 28N25 = 24 ) .

Let t € a** n (UA)L and compute ¢(Ut,t) . Since, by adjointness,
(a)* = U1 (a*) we see that Ut € UU T(aY) c ' so (Ut,t) = 0 .
Thus t € A by the definition of A . This proves (19). We have used

a simple property of U and continue to use it and similar properties,

such as are expressed in the following
Lemma 3. If U: E > E is self-adjoint and has U” = 0 then for
all subspaces F C E we have (notation K =ker U , J = im U ) :

1.-1

(i) UUF = (0) (iiy U U °F =E
(1i1) U toF = F4x (iv) UUYF = Fng
v) (We* = v tEh wi) U(ENY) = W iR tag

(vii) uw(Enm*) = urnu ((ur)t)
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The proof of the lemma is very easy.

Let us now turn to the second inclusion in (18). We have 18 =
19 N 21 by definition of 18 . Since 17 € 20 € 21 is entirely obvious
we are left with the verification of 17 < 19 . We rewrite 17 by using
=

in turn (vii), (v), (iv) of the lemma and find 17 := U(UA N U(UA)*
v(w@n @Y =wwian waht) = an waHt ngc @neaht =
24% . On the other hand, since dim at < dim S/T < » , we have that 19

).l.

is i-closed, 19 = (a** n (ua)* , and thus by (19) we read off that

19 = 24* . As we have shown that 17 c 24* we are through with veri-

fying 17 < 19 .

The remaining inclusions are easier and are left to the reader.
Stability under U is quite obvious: The interval [1,23] is mapped
onto 1 and the interval [23,32] is mapped onto the interval [1,20].
E. g., U(30) = uu@wa)Y)* = vut(a)tt) = wa)** n g =: 14 by the

above lemma.

The legend to the lattice is drawn up in a fashion as to make
apparent stability under U and 1 . Therefore it is appropriate to
check i1-stability before turning to the sums and intersections. We

find X' without any problem except for X = 19 . In order to find

4

19 let us first verify that 24 1is i-closed,

(20) 4% = 24 .

All we need for this is to show that dim 24/23 < » (as 23 is 1-

closed). Now dim 24/23 < dim 25/23 and dim 25/23 can be estimated

by using a Witt decomposition of E for the totally isotropic gtt ’

E = (J**QL) é Eo . We can read off K = Jg% = gt

®E,, A=
(3'*@E;) @ (ANL) and dim 25/23 = dim((U(ANL))*NL) < dim J/U(ANL) =

dim L/A N L = dim E/A < dim S/T < «» ., This establishes (20). Now we
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had already shown that 19 = 24%  when checking inclusions. Therefore

we have 19% = 24'* = 24 as asserted by the table.

We now turn to the intersections. The following assertion is cruc-

ial for all that follows
(21) 3I N4 = 2,

The shortest way to get (21) is as follows: By the definition of 8

we have 8% = (6+4)* = 25 1 30 , hence

(22) 25 N 30 24 .

On the other hand we have
(23) dim 25/24 = dim 31/30 < «

because the chain 32 > 31 D 30 is mapped in the chain 1 € 2 € 4 by
+ - which preserves the two indices as all three spaces are i-closed -
and because the chain 23 © 24 < 25 is thrown on the same chain

lc2c4 by U (which preserves the two indices since ker U = 23 ).

From (22) and (23) we obtain
(24) 25 + 30 = 31 .

If we pass to the orthogonals in (24) we get 16 N 4 = 2 and therefore
2c3N4clen4 =2 . This proves (21). The remaining intersections
XNY (X meet irreducible, Y arbitrary) are now gquite easy to

handle.

There remain the sums. So many relations have accumulated by now
that this verification presents no problems. E. g. from 30 N 29 = 28

we obtain, by taking orthogonals, that

(25) 3 + 4 = 5.



214

Hence - in order to have yet another example - 4 + 7 = 4 + (9Nl6) =

9 N (4+16) = 9 N (3+4+1l6) = 9 N (5+16) =9 N 19 =9 .,

Remark. We end this section by observing that V(I) happens to

be stable under

x » vl = uvThEen .
BEach X N J 4is of the shape UY with K c Y € V(I) so U_lX =Y
We have
(26) L e U = Ut e o

since this holds in all of L(E) by (v) of Lemma 3.

7. The classification theorem

We shall now state the general result hinted at in Section 5. It
is assumed that the division ring (k,*,e) satisfies condition (0).

We jot down once more the assumptions accumulated thus far:

The division ring k 1is of characteristic 2, it has
dim S/T < » , and there is only one isometry class of
nondegenerate trace-valued e-hermitean spaces over Kk

in dimension RO .

The space (E,?) will always be assumed nondegenerate, trace-valued

and of dimension R For I an involution of (E,®) the derived

0"
form ¥ induces a map L(E) » L(S/T) via the homomorphism ¢ in (9).

It throws the lattice V(I) < L(E) homomorphically into the lattice
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We pause to recall the case - dismissed earlier by (8) - where
dim J is finite (it would be inconvenient to formally exclude this
case). By the Lemmas 1 and 2 the similarity class of I is still
characterized by the isometry classes of (E,¥) and (JL,Q) respective-
ly (cf. (14)). The first was characterized by (11), (12), (13) for
dim J infinite; when dim J < » we have to replace (13) by the assump-
tion (A,Y¥) = (i,@) . The nondegenerate part of (J*,¢) is of dimension
v = R when dim J is finite. Hence by virtue of (0) the isometry

0

class of (Jl,é) is fixed by the dimension of its radical (which is

J ).

We are now ready to state the classification theorem

Theorem 2. Let I and I be involutions of (E,®) . We shall
distinguish between the cases "dim J < RO" (Case I) and "dim J = RO"

(Case II). In order that I and I be orthogonally similar the follow-

ing are necessary and sufficient.

In Case I:

(5wt = (@©A*Y,E  ,  di.e. (25,¥) = (25,¥)
(39) (a,¥) = (&,¥) , i.e. (26,%) = (26,%)
(333) YE = YE ,

(5v) dim J = dim J .
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In Case II: (j) and the following two
v) (@0 = (39 ,
(vj) there exists an index preserving lattice isomorphism
T: V(I) + V(I) which maps A on A and is com-
patible with the operations i1 , U and 1 , U on
the lattices and which renders commutative the dia-

gram (7).

Condition (j) & (v) & (vj) is equivalent with the conjunction of (j),

(v) and
(vi;) VE = YE
(viy) wmaht = §amht , i.e. 30¥ = 30¥
(vi) patt = Patt , i.e. 28Y = 28¥
(vi,) W=7

A proof of Theorem 2 for symmetric forms is given in [2]. We shall
not reproduce it here in detail but we shall sketch the principal

features of such a proof. This brings us to the next section.

8. Remarks on the proof of the classification theorem

Case I of Theorem 2 presents no problems; what is at issue is

Case II. A proof for this case has to produce an isometry
D: (E,5,%) -+ (E9,¥

which induces a prescribed lattice isomorphism t: V(I) + V(f) . If
J # J**  then the method used to prove Theorem 1 still yields an iso-
metry

D, : (JBLSEy,%,¥) - (JOLOE,?,¥)

L1 L =11, - L=
defined on J &L & Eo CE = (JTTOL) & Eq ( E= (J776L) & E, is an
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analogous Witt decomposition for the totally isotropic Jtt ). Could
we not extend D, to all of E ? The answer is that we can always ex-

tend D, to (J$L@Eo) + 2* but not any further in general.

In order to prove the first assertion recall that D, arose from

joining an isometry D (L,¥) -~ (ﬂ,@) with its contragradient

l:
51: J+J (with respect to the pairings by ¢ ). As At ¢ J** we seek

to extend D to J + A* such that products with elements of L will

1

be preserved. Introduce supplements:

i _ 1 -
A = (AﬂJ)QBAl 4&31—\1
P 11 =
4 = A EBA2 28631—\2 ’ A2CL
L = Ln4" 8L
1
Since 4% n Ll = (0) and dim Ll is finite we can arrange for
Al 1 Ll . Al 5] A2 is nondegenerate and hence hyperbolic for ¢
(look at the diagram: dim A2 = dim 4*/28 = dim 30/28 = B = dim 5/4 =
dim Al }. Now it is obvious how to proceed. Let 52 1= Dl(AZ) and
Ll s= Dl(Ll) ; then pick A1 in analogy to Al . The restriction Dll
of Dl to A2 can be extended to Al <] Az > Al 5] A2 be joining it
with the contragradient Bll of Dl . Since Dl maps a** n L onto
att nt (by virtue of (vj3)) it is clear that we can extend Dl &) 51 ,

v
by joining it with Dll , to an isometry for ¢ (isometry with respect

X - . 11
to ¥ is trivial since J

is in the radical of V¥ ).

As to the second assertion: if x € Jll~\ (J+A*) where should x

be mapped? We have no control whatever over the image &f (x* n L
under Dl because Dl is immune from any intrinsic property that

relates to the embedding J C Jg** . That is why the recursive con-

struction for D has to be repeated from scratch.
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Thus, we see that we can get a proof for Theorem 2 almost free
via earlier results if u =0 (i.e. J+ A =7 . If u %0 then
one has to start all over again and - as we shall see - the o0ld and the
new construction run entirely alike; one merely has to adapt the course
of recursion to p being nonzero. This nicely illustrates a sigh by
Bdni: Change a trifle and you can't reduce the problem to the former
situation but have to start allover again! We think that this true

remark pinpoints an intrinsic feature of infinite dimensional linear

algebra and not some inadequacy of the method.

We shall now sketch the construction of a D with (15) ab ovo.

The first thing to do is to reduce the problem to the case where

(28) a = & = v = 0.

"y = 0" is achieved by chopping off the boring summand E, . How to
get rid of & ? Pick a supplement P with 24 & P = 25 . Hence

2 @ UP = 4 . A glance at the diagram and the i-table reveals that

H := P @ UP is nondegenerate. Hence E = H & B is a decomposition
into U-invariant subspaces. By the assumptions (j), (vjl),(vjz) in
Theorem 2 (E,Y) = (E,W) . Pick an isometry and let P be the image

of P . Then 24 @ P = 25 and we let H=P @ UP . We can change P

and P mod UP and UP respectively such that P and P become
totally isotropic for ¢ . Now we join a ¥Y-isometry P - P with its

(ﬁllbl‘-i;) H

13

contragradient UP -+ UP and obtain an isometry (H,®,¥)
further (Hl,é) = (ﬁl,Q) by Witt's Theorem for finite dimensions and
(H*,W) = (ﬁ*,@) by construction., The assumptions of Theorem 2 are in-
herited by the reduced situations u* R H* and here we find & = 0 .
To then arrive at o = 0 one chops off a summand X & Y & UX & UY

where X := 25 N L 24 NL as §=0) and Y & (30NL) = L . In

—
1]

this manner we arrive at a situation with (28) in force; this means
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that (L,¥) has a dense trace-valued part, i.e. that (L,¥) is stable.

The lattice V(I) then is

V/JL///AJJL= 1

UE=J
U(ALL”

UA,

AL

(It =(0)

V{I) when a =68 =v =20

The stable spaces (L,¥) and (L,¥) - totally isotropic for ¢ -
are isometric by assumption (vjl) of Theorem 2; A N L 1is mapped onto

AnL and, because of assumption (vj3), it follows that thereby

1l il

A N L is mapped onto A N L . Therefore one starts the recursive

construction of a D with (15) on the U-invariant finite dimensional

space
W, :=B®C®UB®UC® at

where (ANL) ® C = aA*' N1 and (@'NL) 8B =E ; ﬁo is defined by

adding analogous objects isometric under (L,Y) (i,@) . One then

1

extends the isometry (WO,Q,W) = (WO,Q,@) step by step by adjoining
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vectors x from A ~ JLL or from JLL\ (A1+J) . In the first case
one tears off 2-dimensional U-invariant spaces that contain x and

1L, . .
is U-~invariant).

in the second case one simply tears off (x) (J
There are no problems; the reader may, if equipped with the requisite

patience, supply the details.

9. On the classification

of nilpotent self-adjoint transformations

There are nontrivial instances where (k,*,e) has S =T (e.g.
in the case of so called involutions of the second kind). In such
situations the classification theorem is akin to that of characteristic

not 2. We shall again distinguish the two cases of Theorem 2.

Theorem 3. Assume that k is as in Section 7 and has S = T .
Let (E,®) be nondegenerate and of dimension RO . In order that two
involutions I , I be orthogonally similar the following are necessary

and sufficient.

In Case I (dim J < o ; V(I) reduces to the chain (0) € J c J'c E )
(i) (E,¥) = (E,¥) .

In Case II (dim J = X V(1) reduces to (0) € J C gttt cgt cE )

-

0
dim Jt/3*t = aim J*/3* ("v =),
(ll) 1 =5 §
(J7,%) = (J°,%) in case v is finite ,
(iii) dim J**/3 = dim J**/J ("u = "y .

Another special case of Theorem 2 worth of mention is described

in
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Theorem 4. Let k be a perfect commutative field of character-
istic 2 and ¢ a nondegenerate alternate bilinear form on the k-vector
space E ; dim E = RO . In order that two involutions I and I of
(E,®) be orthogonally similar it is necessary and sufficient that
there is an index-preserving lattice isomorphism between the lattices
of the involutions that commutes with 1 , U and i1 , U . In other
words {cf. the diagram in Section 5) the (orthogonal) similarity class

of an involution I is characterized by the following seven cardinal

number invariants

dim Jt/3*t ,  aim g*t/I+at ,  dim J+atsg
(29) dim u(a*t) va , dim ua/(a*nua) , dim A'nUa ,

dim Jna*/ (a*nua)
Here A := {x € E | ¢(Ux,x) =0} , U:=I1-4 , J :=im U .

In [1] Kaplansky had proved that over commutative fields of
characteristic not 2 in which every element is a square the self-
adjoint linear transformations U with U2 = 0 in a space of count-
able dimension equipped with a nondegenerate inner product are character-

ized by the three invariants
(30) dim J*/3** , dim g**/5 , dim J .

As Theorem 4 also classifies all self-adjoint U with U2 =0 we
have here the companion in characteristic 2 to Kaplansky's result.
We see that the second invariant in (30) has to be refined in two and

the third invariant in (30) into five invariants when char k = 2 .



10. Canonical representatives

In finite dimensions we have the following three well known "“ir-

reducible" types of involutions:

First, the nondegenerate spaces E; of dimensions < 2 which

cannot be broken into proper orthogonal summands equipped with the

involution A .

Second, the hyperbolic planes E2 = k(e,e') equipped with the
involution 12: e r A_le' , e' >+ de where the parameter A can vary
in s« {0} .

Third, orthogonal sums of two hyperbolic planes E3 =

1
k(e,e') & k(£,£') equipped with the involution I3 : ep £,

e'» f! fre, f'wve'

-

With these three types one can build a representative in each

similarity class when dim J < RO (Case I of Theorem 2). By taking

infinite sums one gets - trivially - certain cases with dim J = RO .
We shall see that there are just two more genuinely new possibilities

in dimension RO (Types 1 and 5 below). Let us give a complete list

of the "irreducible" types when dim J = RO (Case II in Theorem 2).

Type 0: o =B =y =08 =v=u=0. Let Eo be an orthogonal

sum of R spaces of the kind E above. Joining all involutions

0

I on E defines I on E .
3 3 o o

Type 1l: u =1 and the other indices are zero. Let E0 , Io
be as in the previous example and set E = Eo ® (a) where the vector
a 1is isotropic and has product 1 with all basis vectors of the de-

fining basis for Io . Set Ia = a and let I coincide with Io on

E_ .
[e]
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Type 2: all indices are zero except for v . Pick a space E1
as above with 4 as the involution. Join it with a space of Type 0

(v=2 1iff (k,*,e) = (k,4,1)).

Type 3: 6 =1 and the remaining indices vanish. Pick a space

E2 as above with the parameter A € S~T and join it with an example

of Type 0.
E=A E=A
E=A Ro RO
1 i1 L
RO J " =J J
u=1 v
J
J =7+l
RO J=J
R0 R0
(0) (0)
(0) (0)
Type O Type 1 Type 2 Type 3

Type 4: all indices but vy are zero. For a fixed A € S~T

form an orthogonal sum of RO copies of E2 as given above.

Type 5: B 1is the only nonzero index. Let E4 ' I4 be as in

the previous case. Set E = E4 ® (a) where the isotropic a has all

products 1 with the elements of the first half of the defining sym-

plectic basis for 14 and has products A with the elements of the

second half. Set Ia = a and let I coincide with I4 on E4 .

Type 6: o =1, B=y=68=v=u=0. Let E0 , I be of

o
Type 0 and add two copies of E with equal X € S~T , E =

2

L € .
Eo (] E2 @ E2 . Join the involutions on the summands to get one on E
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E=att E E
y=1 g=1 a=1
A a=ptt " A
R 0 L
0 (ua)
J Q=1
y=1 Ny
UA a=1
UA
Ry
R
0
(0) '
O=]
(0)
Type 4 Type 5 Type 6
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CHAPTER TEN

EXTENSION OF ISOMETRIES

0. Introduction

The main result in this chapter is a theorem in [1] on the exten-
sion of isometries ¢ : V — V between t-closed subspaces of a sesqui-
linear space E (Theorems 5 and 9 below). The crucial assumptions for
an extension to exist turn out to be equality of the isometry types of

L

\' and V' and homeomorphy of V and V under o with respect to

the weak linear topology o{(®) attached to the form on E

In discussing extension problems we have made moderate use of the
concept of a dual pair. It is possible to eliminate the concept but on-
ly at the cost of perspicuity. We think that the student of forms in
infinite dimensional vector spaces should be well acquainted with the
concept of dual pair (without, of course, espousing any beliefs into
orgies of duality). We have therefore included in the first sections
some of the classical notions introduced in [7]. Mackey's characteriza-
tion of modular and dual modular pairs of closed subspaces is of inter-
est to us in the light of the results on orthogonal and symplectic se-
paration. (This topic of Chapter VI is taken up again, though in a dif-

ferent vein, in Section 7 below.)

In Section 8 we have included a short discussion on the log frame
Theorem. By applying this theorem to the results of Section 5 we show
how these results can be extended to certain uncountable spaces. This
application is representative for a host of applications that can be

made to results obtained in countable dimensions.



1. Recall of dual pairs (algebraic formulation)

Let k be a division ring, E a k-left vector space and E' a
k-right vector space, ( , ) : Ex E' >k a nondegenerate bilinear
form (i.e. if ({x,y) = 0 for all x € E then y =0 and,if (x,y) =0
for all y € E' then x =0 ). We say that E and E' are dually

paired by { , ) or that E and E' form a dual pair and the like.

Example 1. Let E' be the set E* := Homk (E,k}) of all k-linear
maps f : E > k ; E* is a k-right vector space under pointwise addi-
tion and right multiplication by scalars from k . For x € E , £ € E*

we define ({x,f) := f£(x) .

Example 2. Let ¢ : E x E + k be a nondegenerate t-symmetric

sesquilinear form with respect to the antiautomorphism «k : k >+ k . We

can convert the k-left space E into a k-right space E' = E by defi-
ning x\ = K-l(k)x for all x € E and all X€k. Then (x,y) := 3(x,y)
is a bilinear form on E x E' = E x E .

Example 3. Let (E,@ and the pairing ( , )} be as in Example 2.
Consider a i1-dense subspace V € (E, ) , vt = (0) . The restriction of

{,) to V xECE x E sets in duality the pair of spaces V , E .

If E and E' are in duality and X 1is a subspace of E then

we set
(1) X° := {y € B' | {x,y) = 0 for all x € X} .

For Y a subspace in E' we set Y° = {x € E |{(x,y)=0 for all y € Y}.

The operator ° shares properties familiar with 1 such as: X © (x°)°,

X, ©X = X2 CcX® , (X, + X,)° = X% N X3 Thus a number of arguments
1 2

1 2 2 1 1 2 "

o

and calculations on & can be carried over to without any changes;

e.g., subspaces X € E which are "orthogonals", i.e. X = Y°® for some
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Y CE' , are "closed" in the sense that (X°)° = X . In particular we

have:
(2) If UCVCE and (U°)°=U and dim V/U<e« then (vey = v.

Example 3 above illustrates how "subpairs" can be formed from gi-
ven pairs. The general definition runs as follows. If V € E is an ar-
bitrary subspace in E then the pairing ( , ) : E x E' » k induces
a nondegenerate bilinear form on V %X (E'/V°) . We mean this induced
form when we say that ( , ) dually pairs V and E'/V® ; this dual
pair is called a gubpair of the dual pair (E,E') . Symmetrically, if
W 1is a subspace of E then ( , ) induces a bilinear form on
(E/W) X W° ; however, in order to obtain a nondegenerate induced form
we have to require that W be closed, (W°)° = W . With this proviso
added we call (E/W,W°) a quotient pair of E, E' . Finally, if (E,E')
and (D,D') are two dual pairs over k we can put into duality the
product spaces E x D , E' x D' by the definition ((x,z),(x',z2')) :=
{x,x') + (z,2') ; the dual pair thus defined is the direct product or
the direct sum of the dual pairs (E,E') and (D,D') . (In the general
case of an arbitrary family (Et'EI')1 €1 of dual pairs we define a
direct sum by setting into duality the spaces ? E1 and g E1| via

<(x1),(y1)) = 121 (xtfyl) .)

We finish this short rappel with the definition of homomorphisms
between pairs. If E and E' are in duality then the two homomor--
phisms E' + E* , E + (E')* defined by y & {(.,y? and x o (x,.) are
injective. It is therefore possible - and useful - to think of E' and
E as subspaces in the full algebraic duals E* and (E')* respec-
tively (cf. Example 1). Let then (E,E') and (D,D') be given dual

pairs over k and
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(3) E 2 p

a k-linear map. There is the uniquely determined "dual" map ®* : D* » E¥*
defined by (e,?*d*) = {9e,d*) (where { , ) 1is as in Example 1),

e € E, d*¥ € D* . We can restrict ? to the subspace D'C D* and get
a map

(P*

E* 4m—ee— D' .

If D' happens to be mapped inside E'C E* under ®* , i.e., if we

actually have a map

*
(4) E' «o— D' (with (e,P*d') = (%e,d') )
then ¢ in (3) is called a homomorphism of the pair (E,E') into the
air (D,D') . If @ is bijective and @®*D' = E' then % is called
an isomorphism of the pairs (E,E') and (D,D') . We readily check
that if ® in (3) is a homomorphism of pairs then K := ker ? is

closed, (K°)° = K . Notice that by nondegeneracy of the pairings there
can be at most one map ®* satisfying (4); if it exists (i.e. if ¢
is a homomorphism of pairs) then ©®* is called the transpose of ¢

and often denoted by t¢ .

Example 4. Let (E,E') be a dual pair and K € E a closed sub-
space, K = (K°)° . The canonical map u : E » E/K 1is a bomomorphism
of the dual pair (E,E') into the quotient pair (E/K,K°) (because

y* 1is the map K° & E' ).

Example 5. Let ® : E » D be a homomorphism of the dual pairs
(E.E') and (D,D') , K :=ker ¢, u: E » E/K the canonical map,
% . E/K » im ¢ the uniquely determined k-linear map with P oy =9
Then & is a homomorphism of the quotient pair (E/K,K°) into the
pair (im ®, D'/ (im®)°) (because the dual map ®* = p* o fx maps into

E' Dby assumption).
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Definition 1. Let ® : E~> D be as in Example 5. Then the map
? is an open homomorphism of pairs if and only if the associated map

? is an isomorphism of pairs.

2. Topological setting

Just as we have defined the weak linear topology 6(¢) in a ses-
quilinear k-space (E,?) we can define "weak" linear topologies on
the spaces E , E' of a dual pair (E,E') . The set { Y° | Y CE' &
dim ¥ < «» } serves as a O-neighbourhood basis for a linear topology -
called ¢(E,E') - on E ; symmetrically, the linear topology o(E',E)
on E' , induced by E , has { X° | X €CE ¢ dim X < » } as a O-neigh-
bourhood basis. If k is endowed with the discrete topology then
¢(E,E') and o(E',E) are the coarsest linear topologies that render
the pairing ¢ , ) separately continuous. The closures of linear sub-
spaces Z with respect to these topologies are given by (z°)° . The
subspace in E* (the full algebraic dual of E ) consisting of all
continuous linear maps from the topological space (E,c(E,E')) into
the discrete k coincides with E' . This follows directly from (2).

Now we prove

Theorem 1. Let (E,E*') and (D,D') be dual pairs over the divi-
sion ring k and ¢ : E - D k-linear. Then the following are equiva-
lent: (i) % 4is a homomorphism of pairs, (ii) ® 1is weakly continu-
ous, i.e. continuous with respect to the linear topologies o(E,E')

and ¢(D,D') on E and D respectively.

Proof. Assume (i) and let %9 pe the transpose of @ . It suffi-
ces to establish continuity of @ at the origin. Let X° be a typical
neighbourhood of 0 € D . Then (th)° is a neighbourhood of 0 € E
and its image, under ¢ , is contained in X° . Thus 9 is continuous.

Conversely, if ¢ is assumed continuous then we want to show that



t¢x € E* actually is in E' for all x in D' . But th = Xo® is
X t
continuous, so Px € E' by the remark preceding this theorem. Q.E.D.

We have the following

Corollary 1. Let @ be as in the theorem. If ® is weakly con-
tinuous then so is its transpose t¢ , i.e. t¢ : D' » E' is continu-
ous with respect to the linear topologies o(D',D) , o(E',E) induced
by D and E on D' and E' respectively. Further, ® is an iso-

morphism of pairs if and only if ® 1is a homeomorphism between the

topological spaces (E,¢(E,E')) and (D,c(E,E"))

If (E,E'}) is a dual pair and V © E a subspace then there is

the linear topology o¢(V, E'/V®) on V induced via the pairing that

defines the subpair (V, E'/V®) . This topology ¢oincides with the to-
pology induced on V by the topology o{(E,E') on the overspace E .
If (E,E') 1is a dual pair and W € E a closed subspace then

there is the linear topology o(E/W, W°) on E/W induced via the pair-

ing that defines the quotient pair (E/W, W°) . This topology coincides
with the quotient topology on E/W induced by o¢(E,E') on E .

I1f (E,E') and (D,D') are dual pairs then the linear topology
c(E xD,E'" xD') on E x D induced via the pairing that defines the
product pair (E x D, E' x D') is the product topology of o(E,E')
and o(D,D'}) on E and D respectively.

From these remarks we obtain the following

Corollary 2. Let 9% be as in the theorem. Then % 1is an open
homomorphism of pairs if and only if @ is continuous and carries
open sets of the topological space (E, o(E,E')) into open sets of

(im®?, o(D,D'))} (i.e. % is open in the usual topological sense).
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Remark 1. If a nondegenerate sesquilinear space (E,?) is con-
ceived of as a space in duality with itself (as explained in Example 2
of Sec. 1) then the linear topology o(E,E) on E via duality is pre-

cisely the weak linear topology o¢(%) associated with the form.

The reader who is interested to learn more about the linear topo-
logies that can be associated with a pairing is referred to §§ 10 - 13

in [6].

3. Mackey's theorem on modular pairs

Consider a dual pair (E,E') and two arbitrary subspaces M , N
in E . We have the three subpairs (M,M') , (N,N') , (M+N,(M+N)")

where M' := E'/M° etc. Themap ® : M x N > M + N defined by
(5) ¢ : (m,n) —> m+n

is weakly continuous, i.e. a homomorphism of the product pair

(M,M’) x (N,N') into the pair (M+N, (M+N)"') .

Lemma 1. ([7]1, p. 167). The following are equivalent: (i) ¢ is
open, (ii) for each pair yj , yé € E' with yi - yé € (MNN)° there

is z' € E' such that =z' - yi € M° and =z' - yé € N° .

Proof. By the definition in Sec. 1 ® is open if and only if
for each "functional” f € M'x N' < (MxN)* that vanishes on the
kernel K = im ¢ = {(z,-z) | z € M N N } there exists z' € E' such
that 9%*z' = £ ;, i.e. z' o @ = £ . Furthermore, by definition of M' ,
N' the functional f is induced by a pair (yi,yé) € E' x E' with
{(m,n) , £) = (m,yi) + (n,yé) for all (m,n) € M x N . We see that £
vanishes on K precisely when yi - yé € (MNN)®° . Now we can prove

the assertions:

Let yi, yé € E' be given elements with yi - yé € (MAN)° and



232

f € K° ¢ M' x N' the corresponding element (yi ,yé) . If we assume
¢ open there is z' € E' with o9%*z' = f , i.e. (m+n,z') = (m,yi) +
(n,yé) for all m€ M , n € N ; thus =z'- yi € M°, 2'- Yé € N° .

This proves the implication (i) = (ii).

Conversely, if £ = (yi ,yé) is in K° and if (ii) is assumed
then there is z' with (m,z2') = (m,yi) and (n,z') = (n,yé) for all
meM, n €N . From this we obtain ¥z = £ , {((m,n) ,¢*z') =

(m+n,z') = (m,yi) + (n,yé) ={(m,n),£) , i.e. 9 1is open.

The importance of this lemma to us lies in the following particu-

larization (cf. the remark at the end of the previous section).

Theorem 2. Let (E,?) be a nondegenerate sesquilinear space of
arbitrary dimension, M and N linear subspaces with M N N = (0) ,
oc(M) , o(N) , o(M®N) the topologies induced on M, N, M@N respec-
tively by the linear topology o(%) associated to the form. Then the
following are equivalent: (i) g(M@N) 1is the product topology of

s(M) and o(N) , (ii) M  + N = E .

Indeed, as M N N = (0) the pairs (M,M' ) x ( N,N') and
(M+N;(M+N)') are isomorphic pairs so that @ in (5) is a homeo-
morphism for the weak topologies. Furthermore, if M N N = (0) then

(ii) in the lemma is equivalent with M° + N° = E' .

If we restrict ourselves to the contemplation of closed subspaces
M , N € E then there is a purely lattice theoretic version of the

(equivalent) properties (i) and (ii) in the lemma. We first need the

Definition 2. Let A, B be elements of a lattice L . The ordered

pair (A ,B) 1is called a modular pair if

(6) for all ¢<B , (CVA) A B = C V (AAB) ;
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the pair (A ,B) 1is called dual modular if
(7) for all ¢=B , (CAA) VB = CA (AVB) .

Clearly, a lattice is modular if and only if all pairs of elements
are modular (dual modular). We shall not pursue the purely lattice
theoretic aspect here but turn directly to lattices of subspaces in a

vector space. (For the general theory we refer to [8] and [9].)

Let (E,E') be a dual pair of vector spaces and L(E,E') , L(E',E)
the lattices of closed subspaces in E and E' respectively

(XlAX :=XlﬂX2,X vV X :=(X1+X )°° for X, = X.°°, X, = X)°

2 1 2 1 1 2 2

arbitrary closed subspaces). Since X b X° is an antiisomorphism of

2

lattices L(E,E') » L(E',E) it follows that

(8) The pair (A ,B) is a modular pair in L(E,E') if and

only if the pair (A°, B°) is dual modular in L(E',E) .

We assert

(9) (A,B) 1is a dual modular pair if and only if A V B = A+B

Proof. Assume that A VB = A + B . We have to show that
(CAA) VB 2 CA(AVB) for all C = B (the converse inequality holds in
every lattice). CA(AVB) = CN(A+B) =(CNA)+B < (CAA)VB as as-
serted. Assume conversely that A+B # (AVB) = (A+B)°° and pick
x € (A+B)°\(A+B) . Set C =B ® (x) ; C°° =C by (2), thus
C € L(E,E") . Furthermore CA(AVB) = C. On the other hand (CAA) VB = B
for, if y€ CAA then y =b + Ax€ A, so Ax € A+B and therefore

A = 0 by the choice of x , hence y € B . Thus (7) is violated. Q.E.D.

We terminate with the announced theorem by Mackey ([71, Thm. ITII-7,

p. 167).
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Theorem 3. Let E, E' be a dual pair and M, N closed subspaces
in E . Then the homomorphism % in (5) is open if and only if (M,N)

is a modular pair in [(E,E') .

Proof. Assume (M,N) modular. By (8) and (9) therefore M° +N°=

(M° +N°)°° = (MNN)° . We show that property (ii) of the lemma holds.
Indeed, if yi - yé € (MNN)° then yi - yé =m' +n' (m'€ M°,
n' € N°) by what we just said and the vector z' := yi -m'" =n' + yé

has the requisite properties. Conversely, if % is open then (by the
lemma) for x' = x' -0 € (MNN)° there is z'€ E' with z'-x'¢€ M°,
z'-0 € N° whence x'€ M°+N° ., We have proved that (M°+ N°)°° =
(MNN)° < M°+ N°; because the converse inclusion is trivial we have
(M° + N°)°° = M°+N°., By (9) and (8) we obtain modularity of the pair

(M,N) .

Corollary. Let (E,?) be a nondegenerate sesquilinear space of
arbitrary dimension, M and N i-closed subspaces of E with

MAN = (0) . (M,N) is a modular pair in the lattice L  (E) of

1-closed subspaces of E 1if and only if M* + N* = E . (M,N) is a

dual modular pair in LLL(E) if and only if M + N is 1-closed.

4. Isometries between dense subspaces

Let (E,®) be a nondegenerate sesquilinear space and

(10) v 2o, §

an isometry between i-dense subspaces V, V in E . If we make use of
the dual pairs (V,E) , (V,E) with the pairings given by ¢ (cf.
Example 3 in Sec. 1) then the discussion of an extension ® : E » E
of %, becomes quite trivial. For, if there is such a % then et

coincides with the transpose

%,

(11) E +«—— E
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of the homeomorphism %, and is thus uniquely determined. Conversely,
if we make the (necessary) assumption that %, be a homeomorphism with
respect to o(%) then there exists the transpose tmo ; the map

® .= two_l coincides on V ¢ E with %_ . Hence the vector space auto-
morphism % extends %, and satisfies, by definition, the orthogona-

lity relations
(12) o(Pv,%e) = &(v,e) (vev,ec€eE) .

The map % is continuous with respect to the topologies o(E,V) and
o(E,V) and, obviously, need not be continuous with respect to o(%) =
o(E,E) (change ¢ without upsetting (12)}); a fortiori, %® need not
be an isometry. However, if % happens to be o(®)-continuous then

(12) does imply that % is an isometry, o(%f ,%e) = o(f,e) for

f,e € E . Indeed, f 1is an accumulation point of V , £ = 1lim F for
F a filter on V and %f = 1im F if % is assumed continuous. Hence
P(Pf ,Pe) = ¢(1lim®PF,Pe) = 1im &(PF ,Pe) = 1lim O(F,e) = 0(f ,e).

Thus we have proved

Lemma 2. Let (E,?) be a nondegenerate sesquilinear space (of ar-
bitrary dimension). Then the following are equivalent: (i) %, in (10)
admits an isometric extemsion to E , (ii) P, is a o0(9)-homeomorphism

t
and its transpose ¥, in (11) is o(®)-continuous.

Lemma 3. ([l1] Satz 4, p. 16). Let (E,®?) be as in Lemma 2. As-
sume in addition ¢ to be alternate. Then the following are equivalent:
(i) ®, in (10) admits an isometric extension to E , (ii) the ortho-
gonals v’ and (on)l are isometric for all subspaces U © V with

dim V/U < 2 .

Proof. We only have to prove the implication (ii) = (i). If we

let U run through the hyperplanes V N x* , X € E then we learn from
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(ii) that ¢, 1is a o(¢)-homeomorphism. Hence there exists the trans-
pose t¢° in (11) and ¢ := t¢°—l satisfies (12). Let then f, e € E
be arbitrary. Pick v € V such that f+v L+ e . Thus the plane P
spanned by f+v and e 1s totally isotropic and so is the plane

(P, ( Plﬂ V))'L by (ii). This means that ®f+9Pv L Pe , thus o(f+v,e) =
o (Pf + Pv,Pe) . From (12) we get ¢&(f,e) = &(Pf,Pe) . Hence 9 is an

isometry.

5. Isometries between closed subspaces

Let us assume in the first place that (E,®) is a nondegenerate
infinite dimensional alternate space. Let us call here partial isomor-

phism in (E,%) an isometry
(13) P : V — V
where V,V are i-closed subspaces in E such that

(14) dim Vl/ rad V = dim 6*/ rad V .

and such that @ is a homeomorphism for the linear topology o(%) .

Remark 2. Since @ is an isometry we have dim (rad V) =dim (rad G);

hence by (14) the spaces Vl and Gl are isometric as ¢ is alternate.

Lemma 4. The set J of partial isomorphisms in (E,®) has the
Ping - Pong property: for any ® € J and x € E there is some @l €7

which extends ¢ and which has x in its domain (range).

Proof. Assume that a homeomorphism ¢ with (13) and (14) is gi-
ven and x € E\V . We first extend ® to an isometry ¢l on Vl :=
V @ (x) . Then we shall show that $l is a homeomorphism for o(%)

and that (14) holds for V., V. in place of V,V .

1 1

4 i .
Case 1l: x €EV+V . Set x=y +z ,y €V and z €V . Since



237

z £ V we conclude by (14) that there is zZ €V \6 . In this case we

extend 9 by sending x into X := Py + z .

Case 2: x g V + Vl . Since 9 1is an isomorphism of the pairs
(V,E /VL ) and (V,E /Gl ) there is x € E \§l such that t@E = x
(mod V) , i.e. &(Pv, %) = o(v, %) = ¢(v,x) for all v € V . From
this relation we can also conclude that x ¢ V + V' and that we may

extend 9 by sending x into X .

The isometry ¢l : Ve (x) — V@ (x) thus defined has i-closed
domain and range; in particular, V and V are closed in the topolo-
gies on V& (x) and V @ (x) induced by o(¢) , hence also open in
these topologies because the gquotients are finite dimensional (the quo-

tient topology is discrete so V and V are open as inverse images of

(0) under the canonical map). Thus ¢ maps the zero-neighbourhood V

1
homeomorphically onto the zero-neighbourhood V ; hence @l and ¢1_1
are continuous at the origin, hence continuous.
L
There remains to compute 4 = dim (V@ (x)) /rad (Ve (x)) . In

Case 1 we find (by modularity) rad (V@ (x)) = (rad V)@ (z) ; thus

d = dim Vl/ rad V - 2 . An analogous computation holds for V@ (x) so
(14) is inherited. In Case 2 we find rad (V@x) = (rad v) N x* so
d=daimv'/rad V-1 if rad VS x' and 4 = dim V' /rad v if
rad V ¢ xl ; since ¢l is an isometry with x » x we find ourselves

with rad V € x* in the former case and with rad V ¢ X in the latter

case. Hence (14) is inherited.
The proof of Lemma 4 is thus complete.

If the dimension of (E,?) is denumerable then we obtain from

Lemma 4, by using standard arguments, the following
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Theorem 4. ([1l] Satz 1, p. 8). Let (E,%) be a nondegenerate
alternate space of dimension NO . An isometry ® : V —s V where
v, V CE are i-closed admits an extension to all of E if and only if
9 is a homeomorphism for the weak linear topology o(%) and V , V

satisfy (14).

Indeed, each partial isomorphism in J can be extended to a metric

automorphism of E .

The restriction to alternate forms in Theorem 4 is unduly severe.
With some additional stability assumptions we reach a wide class of
spaces to which our result applies. We first state the generalization

intended.

Theorem 5. ([l] Satz 3, p. 14). Let (E,?) be a nondegenerate

trace-valued sesquilinear space of dimension RO , ? : V— ¥V an iso-

metry, V and V 1-closed and 9 homeomorphic with respect to o (9).
In order that P admits an isometric extension to the entire space E

the following is sufficient: If dim V'/rad V is finite then V* and

el R

v are isometric spaces; if dim Vl/ rad V is infinite then Vl and

vt contain totally isotropic subspaces W , W of infinite dimension

such that W 1 rad Vv = (0) , WNradV = (0) .

Proof. We first take care of the case where dim Vl/ rad v is fi-

nite. Let V be a supplement of R := rad V in vt and V a supp-

1 1
lement of R := rad V in V' . Vl = Gl since V' =Vt . Vl‘L can be
Witt decomposed relative to R , Vll = (R®R') é El with R' totally
isotropic. Hence E = (R@R') & v, S E, with V= vt o= (ROV, yto=
R® E, . Let E = (ﬁ@ﬁ')é\_lléaﬁl with V=§é'§fl be an analo-

gous decomposition with respect to V . Let ?, be the restriction of
? to R . Since 9, is a o0(%)~homeomorphism it is an isomorphism of

the pairs (R,R') and (ﬁ,ﬁ') and we can use the inverse of the
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transpose t¢° : R* — R' to extend ?, to R @ R' . Thus we have

produced an extension of ¢ to all of E in this case.

Assume then that dim Vl/ rad V is infinite. Let us go through
the steps in the proof of Lemma 4. If we are in Case 1 then we can pick
z € Vl \ V with @(E,E) = &(z,z) because & 1is trace-valued and Gl
contains (infinitely many) hyperbolic planes P with P N vV = (0). If
we are in Case 2 we first pick X € E \ (§-+§l) , as explained, with
o(x,v) = ®(§,¢V) for all v € V . Then we select t € §L n §L with

o(x,x) - 6(x,%x) and switch from X to x + t .

o(t,t)

With these amendments we get a proof for Theorem 5 out of the

proof of Lemma 4.

6. Isometries between arbitrary subspaces

Again, let (E,®) be a nondegenerate trace-valued space of dimen-

sion &O and

an isometry between subspaces V,V C E . We continue to assume that

¢ 1is a homeomorphism for the linear topology (%) . We consider the
. B L S

pairs (V,E/V ) and (E/V ,V ) induced by ¢ and the corre-

sponding pairs attached to V . Since 9 is homeomorphic there exists

the transpose tw '

(V,E/V") , (E/v, v
|l s
(V,E/TYY ., (/¥ O,

and we may ask if t? is a homeomorphism for the quotient topology in-
duced by o(%) . This is tantamount to asking if t¢ is an isomorphism

of pairs for the second pairings above. If such is the case then the
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1l =11
transpose V -V extends ® and is an isometry (by continuity
and by separate continuity of ¢ ). Hence it can be extended to all of
E by Theorem 5, provided we add the requisite arithmetic conditions

enunciated there, viz,

. 1 4 1L . .. 4 -4
If dimVv /V NV is finite then V and V are iso-

. . . Fa L ALl . . . 4 -1
metric, if dimVv /V NV is infinite then V and V
(15)

contain totally isotropic subspaces W, W of infinite di-

mension such that W N rad(Vll)= (0) , W N rad(GL*) = (0).

-t

Conversely, if an isometric extension E — E of ¢ exists, then its
14
restriction to V is the transpose of t¢ in the above diagram.

This settles the issue:

Theorem 6. Let (E,®%) be a nondegenerate trace-valued space of
dimension RO and Vv,V subspaces which satisfy (15). Let @ :V— v
be an isometry which is a homeomorphism for the linear topology o{%) .
In order that ¢ admits an extension to an isometry E — E it is ne-

-1
cessary and sufficient that the transpose t¢ : E/V — E,/VL is a

homeomorphism for the quotient topologies of o(¢) .

Remark 3. Since 9 : V — V maps R := rad V onto R := rad v
it is tempting to track the two maps %, : R — R and $: V/R— V/R
induced by ® instead of trailing ¢ . This will lead us to Lemma 5
below. We have seen above that the existence of an extension of ®, to
E implies:
The transpose t¢° : E/ j— E/ RY is a homeomorphism

(16)
for the gquotient topologies induced by o(®) .

~

Likewise we can pursue ¢ by using the pairs (V /R ,RL/V'L )
n 1 1L 1L . .
(R /V , V7 /R 7) induced by ¢ and the corresponding pairs attached

to V/R . The existence of an isometric extension of ¢ to E implies
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ta =L , -1 1 4 :
The transpose  : R /V —R /V is a homeomorphism
- -1 - -
(17) with respect to the topologies c(R"/V ’ Vll/ Rll) and

o(RY/v*Y, vt/r™)y .

From the existence of an extension ® to E of @ : Vv — 7V we get
(16) and (17); but & cannot be recaptured from (16) and (17) because
some information on how the objects R and V /R are pieced together
inside E 1is obviously lost. For example, if X and X are linear
supplements of R and R in v'* anda V't respectively then we
can look at the lifting ¢l : X — X of t(tf'ﬁ) : VLL/ R — Vll/ ﬁll
{ t(tcTJ) exists if we assume (17)). ¢l is a homeomorphism with respect
to o(x, R'/VY) = o(x, R +xY/x") ana o(X,R'/VY = o(X,RT+X /R .
On the other hand, from the existence of & we have first that for
each choice of X there is X such that wl turns out homeomorphic
for o(%) , i.e. for o(X, E/Xl) and c(i, E/il) and, second, the map
ml does coincide with ¢ on V I X (everything is such a snug fit
here because the map ¢l is uniquely determined if the existence of &
is assumed). It is possible to recapture © (from {(16) and (17)) if we

require slightly less about the liftings of t(t(ﬁ) , namely

For each 0(®) - topological supplement X of RLL in V*l

with Vc R@ X the transpose t(t@) : viY/RYY = YR
(18) .
of @ in (17) admits a o (®) - continuous lifting
wl : X — X which coincides with ¢ on X NV .
We shall see below that the image X = im wl turns out to be a topo-
-11 ~LlL
logical supplement of R in Vv . Our assertion is formulated in

the following

Lemma 5. Let (E,?) be a nondegenerate Ro—dimensional alternate
space and V,V subspaces with dim VL/VL nvtt = dim vt/vt n ¥t and

dim RL/RLL = dim ﬁl/f{J"L (R and R the radicals of V and ¥ respectively).
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Assume that @ : V — V is an isometry and a o(®) - homeomorphism.
Then ¢ admits an isometric extension to all of E if and only if the

homeomorphisms ¢o : R— R and $ : V/R — V/R satisfy (16),(17),(18).

Proof. We only have to establish sufficiency of the conditions
listed. We first quote the corollary to Theorem 2 in Sec. 3 of Chap.V:

there is a Witt decomposition as follows:
(19) E=(R'“®R')SE_ with V=ReV_ and V_ = VAE
o o o o’

From this decomposition we see that o(®¢) induces on V the product
topology of c(@)[R and c(<I>)|V . Since 9 is a weak homeomorphism

o
the topology o(#) induces on V the product topology of 0(¢)|§ and

g(@)[@v . Hence by the corollary to Lemma 1 in Sec. 3 we obtain
o

(20) R+ (ov )" = E .

From (19) we obtain furthermore vt = rY @ VALL . Thus we may let
= - 1

X = Vo'“' in (18) so vt = jY @ L‘pl(Vol ) . By continuity of P, we

have ¢1(\Q:L) [ (¢1Vo)ll c ﬁil ; by (20) furthermore §**n (mvofJ'= (0).

i1

. _ _ 14 .
Since ¢1Vo = @Vo by (18) therefore CPl(VO ) = (@lVO) . By conti

nuity of 9@ and separate continuity of ¢ we now see that @ is an

1 1
isometry. Furthermore, we now have Gll = ﬁii 3] (¢VO)LL which may be
read as
(21) (Ro ov ) = R'™ e (9v)** .

o o
Because R 1 ¢Vo and R N ¢Vo = (0) we can, by (20) and (21), ortho-
gonally separate R and @Vo; i.e. there is a decomposition E==Elé E2
with R c E, , %V  CE, (Theorem 2 in Chapter VI). E; can be Witt

decomposed for ﬁll . After reshuffling of the spaces we obtain a decom-

position entirely analogous to (19),

-3 ¥ - A . S _ % c =
E = (R @R)@Eo with V Raa(PVO,CPVO Eo.
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Now it transpires that we can extend ¢ to all of E . By (16)

tQO is a 0o(®) - homeomorphism; therefore there exists its transpose
50 = t(t<Po) B RJ“l — ﬁll ; it is homeomorphic for o(%) . Therefore
there exists its contragredient (t‘Eo)_l : R' — R' . We join it with

50 to get an isometry ¢2 : R & R' — R ® R' . Finally, by the as-

sumptions in the lemma, it follows that dim EO = dim RL/RL* = dim Eo H

therefore the alternate spaces Eo' Eo are isometric. We may quote

Theorem 5 to obtain an extension ¢3 : EO - Eo of the o0(%) - homeo-
morphic isometry ¢l : VOLL — GOLL . We join ¢2 and ¢3 to obtain

an isometric extension @ : E— E of 9 .

7. The results of Chapter VI as an inference from Theorem 5 in Section5

We shall illustrate the contention made in the caption by deriving
the results on orthogonal separation (Theorem 2 in Chapter VI) from the

results in Section 5.

Theorem 7. Let (E,®) be a nondegenerate trace-valued sesquili-
near space of dimension RO . Assume that the subspaces F, G © E sa-
tisfy the conditions (j) (F+G )J'l = Fll + GLL , (33) FL + Gl = E
and F 1 G . In order that F and G are orthogonally separated in E,

£

i.e. that there is a decomposition E = El ® E2 , FCE G CE

1’ o r it

is sufficient that the following holds:

If dim (F+G )L/rad ((F+G )l) is infinite then there exists a
1
totally isotropic subspace W C (F +G) of infinite dimension

with W N rad ((F+G )l) = (0} .

Remark. We had in fact derived results of this kind via Theorem 5
in Section 5 before the results in Chapter VI had been found (see [3],
Bemerkung p. 20). Bi#ni pointed out that even a more general version

than Theorem 2 in Chapter VI can be obtained in this fashion; indeed,
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in Theorem 7 above we require condition (10) of Chapter VI only when
(cf. loc. cit.) X = (F+G )L ; we do not, in the proof below, need it
for X = F, G . This is very satisfying because here we have complete
symmetry with the corresponding Theorem 4 in Chapter VI on symplectic

separation.
Proof. (B&ni) We may and we shall assume that F , G are i-closed.

Case 1: dim (F+G )L/rad (F+G )l) = RO . Since (E,%) is trace-
valued and because W € E we have an isometry E = E é E (external
orthogonal sum) because both spaces are hyperbolic. We map the subspace
Fe® GCE into E é E by throwing the summand F onto the subspace F
contained in the first summand of E é E and by throwing the summand G
onto the subspace G contained in the second summand in E é E . In E
the subspace F + G 1is closed and, by Theorem 2, it carries the pro-
duct topology of o0(¢) on F and G respectively. The same holds
true, trivially, for the intended image F @ G © E é E . Thus the in-
tended mapping 9 : F® G — F & G 1is a weak homeomorphism. By the
existence of W we see that (F+G )L contains a RO-dimensional
hyperbolic space H ; since H € Fl n Gl we see that, in E é E ,
(im¢)l contains copies of H so that the condition in Theorem 5 (on

both V and V ) is satisfied. Thus ¢® can be extended to an isometry

E =z E é E which proves the assertion in this case.

Case 2: dim (F+G)*/rad ((F+G)Y) < R_ . By chopping off a fi-

0
nite dimensional orthogonal summand we reduce the problem of separation

to the case where this dimension is zero, i.e.,
(F+G)" = rad F ® rad G

Since F@ G carries the product topology by (jj) the space rad Fgrad G

is L1 -closed, hence there is a Witt decomposition
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E= ({(rad F ® rad G) & C) é Eo ;, C totally isotropic. Sums being to-
pological we can rewrite the hyperbolic part, E = (rad F ¢ C') é
(rad G ® C") & E,, C' :=CN (rad @’ ,c"=cN (rad /) (cf. [6],

(6) p. 94). So far we have separated only rad F and rad G .

We now consider the projection pr from F @ G = (FQ)G)J"L =
rad F é rad G é Eo onto E0 . Since Eo = prF + prG and since
prF 1 prG we obtain E0 = prF é prG as E0 is nondegenerate. Since
F® G and prF @ prG are topological sums and pr is open and, of
course, continuous, it follows that the restrictions F -~ prF, G - prG

are open and continuous.

If we Witt decompose E with respect to rad F , rad G then we
find topological decompositions F = rad F @ Fo , G=rad G& GO . This

means that the isometry w in

radF@Fo=F _— pr F
v /
w
F
o
is a homeomorphism. Set F := rad F @ prF , G := rad G ® pr G . Thus

we obtain a weakly homeomorphic isometry ¢ : F®& G — F @ G . We find
dim (F +G )L/rad ((F+C )L) = 0 so that we may quote Theorem 5. As F

and G are separated we are done. This finishes the proof of Theorem 7.

8. Transgression into the uncountable: an application of the log frame

Let (H,®) be a nondegenerate sesquilinear space. We are inter-
ested in orthogonal decompositions of H into orthogonal summands of
dimensions < &0 ;7 if H admits such decompositions then we call (H,?%)

euclidean. A nondegenerate sesquilinear space which is isometric to a

subspace of a euclidean space is called preeuclidean (see the examples

in the introduction of Chapter II).



On (H,?) we introduce the denumerable linear topology ol(é)
attached to the form; it has { X' [X € H & dim X< Nl} as a 0-neigh-
bourhood basis (the division ring k is, as usual, endowed with the

discrete topology). We have the following decomposition theorem, the

*
so~called 1log frame ) ([10] , Ssatz 3, p. 240; [5], Corollary 8, p. 18;

[2] , Theorem 2, p. 1570) :

Theorem 8. Let (H,®) be euclidean and H = $l H some fixed
vE€J

decomposition with dim Hv $X, . If E is a cl(é)-closed subspace

0

of H then there exists a partitioning J = U J1 with card J1 < Ro

1 et -
and such that H = ®, G, - G1 ® {H\)I\)E Jl} and E QI(E ﬂGl) .

Consider an isometry ® : V — V between i-closed subspaces V,V
in a euclidean space H of dimension > RO . The topology ol(é) is

finer than o(%®) thus V, V are cl(Q)-closed and, by Theorem 8,

there are orthogonal decompositions of H into subspaces G1 ' G11

such that 0 < dim G1 , dim Eu < Ro (since the number of summands
equals dim H we may let 1, u run through the same index set) and
such that V is the sum of all VvV N G1 , V the sum of all vn 51 .

In order to fix ideas we formulate the following

Lemma 6. Let H = @' G = @ G with V=@ (VNH) , V = e(VnH).
- 1 ! 1t I 1 I 1
Then there exists a partitioning of I , I = U{ Mu! HEJT} with

card M £ RO and such that ® maps, for each u €J , the intersection

v i @l { G1 | 1+ € Mp } onto the corresponding intersection

- L =
Vﬂ®{G1|1€Mu}.

*
)Raami saha (Finnish), scie & cadre (French), Gattersdge (German). These

classical sawmills have, of course, a gang of strictly less than No saws;

their forerunner, the famous troncdn da Trentin has only one blade.
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The proof is obvious: We start with VvV 0 Go and decompose the im-

ages @ev of some basis (ev)v of v N Go according to the second

L -
decomposition H = ? G1 . Nonzero components arise only in a countable

number of summands 51 , say for 11 € IlC3 I . Map now bases of all in-
tersections V I él with subscripts 1 out of Il by ¢-l and decom-

pose the images according to the first decomposition H = ? G1 . Nonze-

ro components can arise only in a countable number of summands, say for

1 € 12 € I , (because there are at most Ro card Il b Roz = Ro images

and each producing finitely many components only). We keep switching
back and forth ad infinitum (i.e. a countable number of times). We col-
lect all subscripts of G1 which we meet in this procedure into the

union M oi= {0} u I,U1, U ... and all subscripts of év we run

into are contained in ﬁo = I1 U I3 U... . Let then X € I \M0 . We

repeat the step with VvV N GX to get subsets Ml (S SN MO ' ﬁl

of cardinality < RO . Transfinite iteration yields partitionings

I = Mo u Ml Uu... , I-= ﬁo u ﬁl U ... with the property that ¢ throws

vie { G, | 1 ¢ M } onto VNeg {51 | 1€ HK } . A second partition-

[
I\ MQ

ing shows that we can achieve MI< = ﬁK . This finishes the proof of

the lemma.

We have shown that (H,9) , if it is euclidean, admits orthogonal
decompositions H = e;'LG1 = %ﬁél with dim G, dim 51 $ R, and compa-
I
tible with 9 ,

P(vNgGg ) = VNG (1€1)
(22) ! - -

vV =3IVhn GI , V. = LvVvnhege
A further partitioning shows that it is harmless to assume besides (22)
that the dimensions n, of the orthogonals of VvV N G1 , taken in G1 B

modulo their radicals are, for each 1 € I , either zero or RO - un-

less, of course, n = dim VJY rad V should be finite and nonzero.
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In that case we arrange for n,=n and n1 =0 for all 1 €I \{0}.
A final reshuffling allows us to assume that the n1 equal the corre-

sponding dimensions 51 (L €1) .

After these preparations we can apply Theorem 5 to each summand

G1 . We obtain the following result ( [l] , Satz 2, p. 12) :

Theorem 9. Let (H,%) be a euclidean trace-valued k-space with
respect to the antiautomorphism * of k . Assume that (k,*,e) ad-
mits only one isometry type in dimension RO of nondegenerate trace-
valued forms. An isometry @ : V — V Dbetween ji-closed subspaces of E
admits an extension to all of E 1if and only if the following two con-
ditions are satisfied : (i) ® 1is a homeomorphism with respect to the
weak linear topology o(%) , (ii) if dim vl/rad v is finite then

vl and V' are isometric spaces; if dim Vl/ rad V is infinite then

it equals dim vi/rada v .
Notice that the topology cl(é) does not enter Theorem 9.

9. On the extension of algebraic isometries

Here we consider the situation where ® : V — V is a metric au-
tomorphism on the subspace V in the (nondegenerate) sesguilinear
k- space E and we study extensions of 9 to E . We assume that ¢
is algebraic on V . This means that there is a polynomial £ over the

center C of k , such that £(9) = 2 ai¢l =0, i.e.

z ai¢1'x = 0 for all x € V .

We ask if 9 admits an (isometric) extension @ to all of E such
that ® is algebraic on E , i.e. E(®) = 0 for a multiple £ of f£

over C .
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Example. Consider the isometry v = Av on the totally isotropic
subspace V CE , A a fixed element of the center such that AX* # 1.
Since E 1is assumed nondegenerate and A\A* # 1 no isometry $:E — E
can satisfy the polynomial equation £ = X - A = 0 . However, there is
an extension ® of ¢ which satisfies the equation £(§) = 0 on E
where = (X-A)(X- ) )(x-1) = £- (x-0" 1)y(x-1) ;
this follows from the existence of a Witt decomposition of E with re-
spect to VLL , E = (Vl* AN é Eo (vrc V'l ) . % is the iden-

tity on Eo (thus we may delete the factor X - 1 in £ 1in case

v =V ) 5 dilates by ()\*)_l on V' and dilates by A on Vll.

Actually, we shall consider here only the rather modest situation
where f € C[X] splits into different linear factors. We then sort out
the factors in the following fashion:

£f = I (X - ) I (X=X, )(X- yu,) i ith i i
V. . L)t wi airwise
j=1 J i=1 1 1 ! P

(23) different factors, v.v

* = * * =
V3 1, AiAi # 1 but Xiui 1,

and m, € {o,11} .

With such a polynomial f we associate the multiple

- n’ m
f = I X= v, 1 X=X, X- R if n >0
A PRI J1(X= uy)
(24) n
and f = (X -1) T (X=X )(X~- u,) if n=0.
i=1 1 i
Let us introduce the eigenspvaces of £ in (23), K., = ker (¥ —Vj),

L, = ker (- A} , M, = ker ($- U,} . The L, and M, are totally

i i i i i i

isotropic. Furthermore, any two different X, Y among the eigenspaces
are mutually perpendicular, X i Y , with the only exceptions {X, Y}=
{Li ,Mi }, i=1,...,m . It transpires that we can extend ¢ by try-
ing to apply orthogonal and symplectic separation to the eigenspaces;
for there will be a splitting of E into the eigenspaces of ® if such

there is. We have the following result (for arbitrary characteristic) :
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Theorem 10. ( [3] , Satz 4, p. 32). Let (E,%) be a RO-dimen—

sional nondegenerate trace - valued € - hermitean space over (k,*,g) .
Assume that (k,*,€) admits only one isometry type of such spaces in
dimension RO . Let ® : V—V be an isometry that satisfies the po-
lynomial equation f($) = 0 on V and where the polynomial splits in-
to different linear factors over the center of k . Write f as in (23)
and associate with it the polynomial f in (24). Then the following
statements are equivalent : (i) There exists an isometric extension

$ : E—E of ® with £($) =0 on E , (ii) The n +2m eigenspaces

Xi = Kl foeey Kn B Ll B Ml ’ L2 ’ M2 ieeey Lm B Mm of ¢ - some of
the Mi may be (0) - satisfy the conditions (Xl$ I ) Xn+2m)ll =
Xlll + e 4+ Xni;m and, for all p between 1 and n+2m ,
(Xla;...exp)l + (Xp+le.”$xn+2m)l= E .

Proof. Assume (i) and let Ri = Rl Y ﬁm be the eigenspaces
= . : = L 1 = L .= = 1
of ® . Their sum I splits, Z=Kl@...@Kn@ (Ll@Ml)@...
é (im =) ﬁm) . From the representation of 1 as g.c.d. of the factors
Jeeey ifﬁﬁ— of f we conclude that I = E . Because the ii and
m

X-vl
ﬁi are totally isotropic we obviously have (ii). It remains to prove

the converse implication (ii) = (i) .

If (ii) holds we can orthogonally separate Kl and Zl := K2 D oo

2] Mm (by Theorem 2 in Chapter VI) for, by (ii) we have gt

14

K LR M;l c Kil + Z;l C-Ell . From this, and by choosing p =1

1
in (ii), we see that le = KJ'l 3] ZIL . Furthermore, we conclude that

1
Zil = K;L LR M;l so the step may be repeated n+m times in
. s 1 1 1 i Iy
order to obtain a decomposition E El d B En ) Fl @ - Fm

with K, C Ej ’ Li 5] Mi c Fi . In Fi we can use symplectic separation
(Theorem 4 in Chapter VI) in order to obtain Witt decompositions
il 1 . 4 . = .
F, = (L, @L!) & F, with M, c L! ¢ L!" . We define ® as a dila-
i i i ig i i i
11

. . : Iy )
tation with multipliers vj on Ej ’ Ai on Li r Wy on Li '
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v on all F, (i = 1,...,m) if n # 0 in (23) and v, =1 if
1 1o 1
n =0 . (Incidentally, if E should be alternate, then we can write
Fi as a sum of two totally isotropic subspaces and merge these with
o

L;J' and Li respectively. We then need not distinguish between n=20

and n # 0 in (24).) We have thus found an isometry ® on E which

extends ® and which has E(&) =0 on E . Q.E.D.

Corollary. Let (E,®) and (k,*,e) be as in Theorem 10 but as-
sume char k # 2. Let ® : V — V be an involutory isometry, ¢2 = HV.

Then @® can be extended to a (metric) involution on all of E if and

only if Kl := ker (P - 1) and K2 := ker (? + 1) satisfy the conditions
L 11 11 L L
(K1+K2) = K7 + K, and K +K, = E .

If the characteristic of k 1is allowed to be 2 then the problem

in the corollary becomes considerably involved (see Chapter IX) .
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CHAPTER ELEVEN

CLASSIFICATION OF FORMS OVER ORDERED FIELDS

1. Introduction

In this chapter we shall show that a certain kind of commutative
ordered fields, the so called SAP fields, lend themselves very natural-
ly for the construction of Ro—forms which admit a simple classification
with respect to isometry. We shall first say a few words about the

fields and then describe the type of Ro-forms to be studied.

In what follows k 1is an orderable commutative field. We identify
orderings with the corresponding sets P © k of positive elements
(Thus P 1is a subgroup of index 2 in the multiplicative group k and
P is additively closed). X(k) is the set of all orderings on k .
Each o € k defines a signature ot X(k) + {1,-1} by sending P € X(k)
into sigp(a) which is +1 if o € P and -1 if o € -P . X(k) is
endowed with the coarsest topology that renders all signatures a con-
tinuous. A subbasis for the system of open subsets of X(k) is the
system of sets H(a) = {P € X(k)|a € P} where o runs through k
([11], page 208). The field k is called a SAP-field if it has the

following "strong approximation property": Any two disjoint closed sub-

sets of X(k) are separated by some signature &, i.e. one of the two

sets belongs to H(a) and the other to H(-q) ([11], page 108).

The reader who is not inclined to become involved in topological
considerations may assume X(k) to be finite and discard all of the
topology that will occasionally come up in what follows. Examples with
finite X(k) are provided by the algebraic number fields which is to

show that the discussion will not become shallow if X(k) is finite.

We terminate our introductory remarks on fields by formulating a

property on fields which is crucial for the discussion in this chapter.
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It reads

(1) Every binary form <1,-s)», s € is , represents some element in
each coset of ﬂ/is (ks is the multiplicative subgroup of sums

of squares).

Examples of such fields will be given in Section 3. We shall now turn

to the forms to be classified.

Let ¢ : EXx E + k be a symmetric, non degenerate bilinear form
on the Ro-dimensional k-vectorspace E . We recall that for G a sub-
space ||Gll is the set {¢(g,9)|g € G~ {0}} and (E,®) is called
stable (in itself) if || ={) (IF*ll|JF < E and dim F < =} .

Notice that this equality cannot hold for finite dimensional non dege-
nerate E # (0) . Each field k admits stable forms: if for B8 € i
we let <B8,...> Dbe the orthogonal sum of Ro copies of <Bg> then

1

@
every orthogonal sum BET

space, If a stable space is isotropic then it is an orthogonal sum of

<By+.s> , where card I < No , is a stable

hyperbolic planes.

Definition. (E,®) is called weakly stable if E splits off some

orthogonal summand which is stable.

It is not difficult to show that (E,?) is weakly stable if and
only if the set [lEl_ :=(N{IF'||F < E and dim F < dim E} is not
empty. If (E,®) is weakly stable and isotropic it is an orthogonal
sum of hyperbolic planes. Thus we shall have to study anisotropic forms

only.

The aim of this chapter is to classify the weakly stable Ro-forms
over SAP fields which satisfy (1). Our results generalize in several
directions work on quasistable forms done in [13]. Quasistable forms
are weakly stable forms that split off a stable orthogonal summand of

finite codimension (The concept is due to MAXWELL). Let us turn to the
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details now.

2. Weakly isotropic forms

All forms are symmetric bilinear forms.
The SAP fields mentioned in the introduction can be characterized by
many other properties ([4]J[11][15]) . One such equivalent property is

of particular interest here. Call totally indefinite a form

P o= <Ay, 0> if for each P € X(k) we have {51gp(al),...

...,sigp(am)} = {1,-1} (cf. Cor. 3 in Section 4). We also put down the

Definition. ¢ is called weakly isotropic if No¢ =9 ®9®o0d _,,

is isotropic.

Thus ¢ = <al,...,am> is weakly isotropic if and only if there

. m
are sums of squares, sl,sz,...sm € ks such that i aisi =0, i.e.
if and only if there is some natural N such that Ny = ¢®,, ®p is

isotropic.

SAP fields may be characterized by the following property (a kind of

"HASSE principle") on finite dimensional forms ([4]):

(2) Every totally indefinite form is weakly isotropic.
We wish to compare (2) with the following "axiom" on ordered fields.

(3) For A,B any disjoint closed subsets of X(k) and o € k any
element which is positive at all orderings of A (i.e. o € P for all
P € A) there exists 8 €k such that u-82 is positive at all orderings

of A and negative at all orderings of B .

Remark. For fields k with finite X(k) property (3) coincides
with "axiom 2.1" in [13], i.e.,by the next lemma,Maxwell's axiom des-
cribes precisely the SAP fields with finite X(k) and with property (1).
If X(k)} is finite and if all P € X(k) are archimedian then, as re-

marked in [13], the weak approximation theorem for real valuations can
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be used to show that k satisfies (3).

Lemma, (1) & (2) <=> (3) .
Proof. We show first that (1) is equivalent with the following

property (called "the shovel")

(4) for all a,B € k we have {as + Bx2|x € k, s € ks} =

{ax2+ Bs|x € k, s € k.

In@eed, if a,8 € i and s € kS where k satisfies (1) then
<l,-s> represents an element in the coset (mod is) of -a_lB . From
this we can conclude that is < {x2+ a-lBs|x €k, s € is} and we see
that (4) must hold. Conversely, if in (4) we let o =1 we obtain

kg = {x2+Bs|x € ks} for arbitrary B € k hence we have (1). Thus
(5) (l)<=>(4) .

We now turn to reformulating (1) & (2). Let A,B disjoint closed sub-
sets in X(k) where k is any SAP field. Let o € k be a given ele-
ment with o positive at all orderings in A . Let

D := {P € X(k)|- € P} . We may pick an € € k which is positive at all

P € 2 and negative at all P € BU D . Then the form <1,-a,e> is to-

tally indefinite. By (2) we obtain an equation §) ~ s, + esy = 0

with sy € ks . If now we make the further assumption that k satisfies

(4) then we may write the element -aszsl in the form —ax2+€s4 . With-

out loss of generality x # 0 . If we substitute in our equation we ob-

tain o - s]2_x_2 = x—z(es3sl+£s4) . This shows that the element oc-six-2

is positive at all orderings of A and negative at all orderings of B,
i.e. (3) holds with B = slx'l . Thus (1) & (2) => (3). The converse

is easy: Disjoint closed subsets of X(k) can by (3) be separated even

by elements of the very special shape s-B2 where s € ks may be pick-

ed beforehand; so k must of course be a SAP field. Further, if « € kS

is given then X(k) is the disjoint union of A := {p € X(k)[u € p}
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and B := {P € X(k)|-a € P} so that any separating element has the
signature & , i.e. must lie in the same coset modulo ks as the ele-
ment o . Thus by (3) every coset in k/kS contains some s-62 . Since

s 1s arbitrary in kS this proves (1) .

Problem. Describe the orderable fields with property (1) (for non

orderable fields the problem is trivial).

3. Examples of fields in connection with properties (1) and (2)

We list here a few examples of fields which satisfy some of the
conditions (1) and (2) introduced in the two previous sections. Indi-

cations as to where proofs may be found are given.

All pythagorean fields k (i.e. k with £2= ﬁs) satisfy (1);
R((t;)) ((t,)) is one which violates (2) ([15] satz (2.2)). On the
other hand Q((t)) satisfies (2) ([15], §3) and violates (1) (because
(3) is violated when a = 2+t2). R or any field with just one ordering
is an obvious candidate for (3), i.e. for (1) and (2). Any real alge-
braic numberfield (i.e.formally real finite algebraic extension of Q)
satisfies (3) by the Remark in Section 2., Another example which has
both (1) and (2) but infinitely many orderings is k = R(t) by Thm. 8
in [19]. More generally, we may take k to be any finite algebraic
orderable extension of a function field ko(t) where ko is heredi~
tarily euclidean (this means that not merely in ko but in each finite
algebraic orderable extension field of ko every element or its nega-
tive is a square [16]); by Thm. 1 in [4] these fields are examples with
(1) and (2) and, of course, with infinitely many orderings. Finally

k = R(t),t,)) violates (1) (since L(t2+t2) ¢ {1x*+t s |k € k,s € k) (4)

1
is violated) and it also violates (2) by [15], satz (2.2).
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4, A remark on Hilbert ordered skew-fields

In this short section we collect a few simple facts in connection
with ordered fields. We think that the statements which we wish to make
are more perspicuous if we include the non commutative case at this spot.
We shall need only HILBERT's conception of an ordered skew field k
which amounts to the specification of an additively closed subgroup of
index 2 in the multiplicative group i of k ([8] §13, sdtze der An-
ordnung, furthermore §33, Satz 60 where the famous example of an ordered
skew field is given). In particular P is an invariant subgroup of i .
(For other concepts of orderings see [2], Appendix I p. 127-128 and
LoDy,

Let MC i be a subset which contains 1 ; we let ﬁ be the set
2
2

of all finite sums of finite products m x2m

1¥17M*

2
LEE S where miE M
and xie k .

By an application of Zorn's lemma in the manner of [3] or [18]

it is not difficult to prove the following

Lemma: Let 1 € M © k . There exists an ordering P on k with

M S P if and only if finite sums of finite products mlximzxg e

(miE M, xie k ) do not vanish or, equivalently, if =~1 ¢ M .

One then deduces the following corollaries

Corollary 1. Let 1 € MSk and o € k . If ~-l,0 ¢ M then there

is an ordering P on k with MS P and a € -p .
Corollary 2. Let 1 € MS k . Then M =(\{p ¢ X(k)|p 2 M} .

Corpollary 3. Assume that k is ordered and (al) a totally

1€1

indefinite family in k (i.e. for each P € X(k) there are v,k € I

with o € P and @, €~P). Then there is a finite subfamily which is

totally indefinite.

Proof. Set &1 = o, a for some fixed index o € I so that
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1 €M := {&111 € I} . Since M is totally indefinitewe must have

-1 €M by the lemma, -1 = ZH&ixi . Let M, be the set of the &i
occuring in this sum. Since -1 is invariably negative there must for
each P € X(k) be an element in Mo which is negative at P . So

{11 v M is totally indefinite and so is the finite subfamily

({1} v Mo)ao of (u1)1EI .

5. Two HASSE Principles

Let (ei) be an orthogonal basis in a k-space E equipped

i€z
with a nondegenerate symmetric form & and k an orderable commutative
field, For fixed ordering P € X(k) we can sort out the e; according
to whether Q(ei,ei) is positive or negative at P . Call n+(P) the
cardinality of the set of the e; with positive inner product and
n (P) the cardinality of the remaining ey - The two cardinals do not
depend on the choice of the basis. The pair indQ(P) = (n (P) , n+(P))
is called the (inertial) index of (E,®) at P . In the theory of
finite dimensional spaces one can, of course, do with one of the two
cardinals (or, as is customary, with the difference of the two).
Another way of putting it is to introduce the kP—ification ] of

P

the form ¢ where kP is the real closure of the ordered field (k,P).
If ¥ 4is another form over k then an equality of indices, ind@(P) =
indw(P) , is equivalent with an isometry ¢P X ¥p o We also see that
@P is isotropic if and only if ¢ is indefinite at P , i.e. if ‘the
product n+(P)-n—(P) is not zero.

It will turn out that the forms which are investigated in this
chapter are characterized by their indices at all P (Section 6, Theo-

rem) . In other words they will satisfy the following "weak HASSE prin-

ciple"

(WH) oé\y<=><pp ¥ for all P € X(k) .
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We now compare (WH) with the following "strong HASSE principle"

(SH) ¢ is isotropic <=> ¢, is isotropic for all P € X(k) .

Let C( be a class of No—forms over k with the property
(6) if ¢ =¢ ® ' with dim ¢ finite then & € C<=> %' € ¢ ,

Examples of C with (6) are the class of quasi-stable forms, the class
of weakly stable forms. We now justify part of the terminology by the

following

Lemma. If C satisfies (6) then we have the implication:

(sH) for all & € ¢ => (WH) for all ¢,¥ € C

Proof. Assume that for all P € X(k) we have @P z WP . We shall
construct an isometry between (E,%) and (F,¥) recursively. Assume
that E =G é E' and F =H é F' with finite dimensional G and T
an isometry G - H . One may start with G = (0) . We show how to ex-
tend T to G é (e) where e € E' 1is prescribed. Assume first that
¢p(e,e) # 0 . Let ¢' and Y¥' Dbe the restrictions of ¢ and Y to
E' and F' respectively. By an application of Witt's theorem we con-
clude that @é X Wé (P € X(k)) . Now the form <-0(e,e)> ® @' is ob-
viously isotropic. Therefore by (SH) we conclude that <-%({e,e)>® ¥'
is isotropic. This means that V¥' must contain a vector £ with inner
product ¢(e,e) . It is obvious that we can therefore extend T by
sending e into f . If we should have that ¢(e,e} = 0 then e is
contained in a plane spanned by an orthogonal pair of non isotropic
1,e2 . By applying the former argument twice we extend T to
G é k(el,ez) . Alternate application of this procedure to E and F

vectors e

N
yields the desired isometry (E,%) = (F,¥) .

Remark. Condition (6) does not hold for the class (¢ of all stable
forms. Nevertheless the implication in the lemma is valid in this case

too. To see this one has to modify the above proof in the following
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way: By (SH) for stable forms we get that N& <-b(e,e)> ® ¥' ig iso~
tropic. But this implies that <-0¢(e,e)> ® NOW' is isotropic, and the
N

stability of VY' means that NOW' =Y' , So <-¢(e,e)> ® ¥' is iso-

tropic.

6. The classification

k 1is assumed to be an orderable (commutative) field; forms are

symmetric and non degenerate and of dimension NO .

In the following theorem we characterize the property SAP and the
property (1) and SAP (i.e. (3) by the lemma in Sec. 2) via the be-

haviour of certain classes of Ro-forms.
Theorem. For any k we have

SAP <=>(WH) for stable forms <=> (SH) for stable forms.
(3) <=>(WH) for gquasistable forms <=>(SH) for quasistable forms.

(3) <=>(wWH) for weakly stable forms <=>(SH) for weakly stable forms.

Proof. We set out by showing that (3) implies (SH) for weakly

R , ¢
stable forms. If QP is isotropic for all P X(k) then (ai)iEN

is totally indefinite for any diagonalization ¢ = ﬁ: <oy> . Thus by
Corollary 3 in Sec. 5 ® splits off an orthogonal summand ¢ which
is totally indefinite and of finite dimension. Hence if k has SAP
then we may quote (2) and conclude that No¢ is isotropic; so ROQ
is isotropic. If ¢ is weakly stable, ¢ = Ql ® @2 with @2 stable
then ROQ = Roél ® @2 by the stability of @2 . If kX has (3), then
it has (1) and we may quote (4) to conclude from the existence of an
isotropic vector of Noél ® ¢, that N ® ¢, must contain a non zero
isotropic vector.

Thus we see that the assumptions on k in the first "column" of

the theorem individually imply the (SH)-statements at the far end of

the corresponding row. The latter imply the corresponding (WH)-state-
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ments by the lemma in Section 5.

Assume then (WH) for stable forms. We want to show that k has
SAP by showing that (2) holds. If ¢ = SCypevesa > is totally indefi-
nite then ¢ := Ro¢ = ®2=l<ui,ai,...> must be isometric to an ortho-
gonal sum of hyperbolic planes and hence isotropic. This shows that
the (WH)-statements in the middle column of the theorem imply (2), i.e.
SAP.

It remains to prove that (WH) for quasistable forms implies (1):
indeed, if s € is and o € i are prescribed then <1,-s> ® <-g,-0,...>

is isotropic because it is isometric with <1,-1> ® <-q,-a,...> by (WH).

Q.e.d.

Remark 1. In the whole chapter we discuss symmetric forms only.
It is, however, not difficult to extend the results to hermitean forms
over quadratic extensions of k or quaternion division algebras with
the usual involutions when the fixed field k has the requisite pro-

perties (investigated in the present chapter).

Remark 2. If, for the moment, we let k be not formally real
then X(k) = @ and conversely. Therefore, if (E,?) is weakly stable
over such a k then it must contain a totally isotropic subspace of
infinite dimension. Hence if <char k # 2 then E 1is an orthogonal
sum of hyperbolic planes. Thus we see that in the case of non orderable
fields only the characteristic two situation leaves room for a dis~
cussion of weakly stable spaces. This discussion is carried out in

Chapter VII.

7. Canonical representatives for quasistable forms

k 1is an ordered commutative field with property (3).

With every non empty finite family (Xi) of non empty disjoint

closed subsets Xi of X(k) we associate once and for all a family
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of elements ¢(i) € k with e(i) negative at all orderings P € X,

and positive at all P of the other Xj in the family.

Let (E,$) be quasistable, i.e. E =F é G with dim F finite
and G stable. It is advantageous to choose F minimal in the sense
that |lg]} N {lFl < {0} . Furthermore we may assume that the restriction
Y of & to G is anisotropic for otherwise G and E are both
orthogonal sums of hyperbolic planes (which is the canonical form of

an isotropic quasistable space whenever the characteristic is not two).

To bring ¥ into canonical shape pick some o € || N {0} and
let I be the set of all P € X(k) with the property that all ele-
ments of a-lHGH are positive at P . If now B € E is any element
which happens to be positive at all orderings of I then the quasi-
stable form <-g> & a_lW is totally indefinite and hence isotropic by
the theorem of the last section. Therefore B8 € a_l”G” . We see:
a-l”G“ is the set of all B € k which are positive at all P € I ,

Clearly I is a closed subset of X(k) .

Let then fl,...,fm be some orthogonal basis for F . There is -
by what we have just seen - for every fi some P € I at which
a-lQ(fi,fi) is negative for otherwise Q(fi,fi) e lrll n Jlell = (o}

by our normalization. For all 0< j < m we then consider the sets

Xj:={P€I |precisely j among u_lé(fl,fl),...,a_lQ(fm,fm) are neg. at P} .

The sets xj are closed subsets of X(k) and I =U xj . Let

J = {il”"'ir} be the subscripts j with Xj # ¢ and let e(il),..
...,e(ir) be the elements € k associated with the family (Xj)jeJ .
By the classification theorem of Section 6 we obtain the canonical
representation

(M o™l T 4 <e(ig)> ©...8 i <e(i)> ® a7y

Here one can easily read off indices of the form a-l¢ : for PG I
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the- index is invariably (RO,NO) ; for P € I the index is (i,Ro)
if P e X, .
i
We see that the collection of all families (e(i)) corresponding

to the collection of all non empty finite families (Xi) of non empty

disjoint closed subsets of X(k) form a complete and irredundant

system of invariants for the description of quasistable forms over a
field satisfying (3). May the closed sets Xi be chosen completely
arbitrary in X(k) ? There is a condition! Recall that (E,$) must
admit countably infinite bases (ei) . Passing to the inner products
@(ei,ei) we see that ﬁ must admit subsets M of cardinality < RO
such that U Xi is the set of all P € X(k) for which M is positive
at P . For certain fields this requires U xi to be a "large" subset
of X(k) . On the other hand, if this condition is satisfied then we
may set VY := @;EM <M,U,...> and define a quasistable & by the

right hand side of (7).

In [13] MAXWELL has given canonical representatives when X(k) is
finite; they can easily be obtained by our classification theorem. Let
X(k) = {Pl,...,Pm} and choose (by SAP) once and for all elements

nyreessny € k with

n. € Pj (i#j) and ny € =P, (i,j=l,...,m) .

i i
We abbreviate n, := n_(Pi) where (n-(Pi),No) is the index of

a_l¢ at Pi . By the classification theorem of the last section we ob-

tain

1

-1 <> @@ (n) @ a Y,

(8) a ¢ = n,

For finite X(k) the two normal forms (7) and (8) are of a dif-

ferent nature. We shall illustrate it by an

Example. Let k = Q(vV2) . So X(k) = {Pl’PZ} and the only possi-
bilities for non empty finite families of non empty disjoint subsets of

X(k) are ({Py}), ({(B,1), ({B,Py}), ({By}); 5 -
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A natural choice for the corresponding families (e(i)) is, in turn,

(-1), (-1), (-1), (/2,-/2) . Then (7) will always turn out either as

Y j<-1> ® <stable> or as a ' 211</E> & 12<—/§> ® (stable) with

Q
o
i

i, # i, .
In order to arrive at (8) we need choose the ni . It is natural

to set n, = /2 and = =/2 . Then for all forms over k (8) will

N2
read as a_1® X nl</5> + n2<-/5> ® (stable). Thus the normal form of
E := <-3> ® <1,1,...> in the style of (7) is <=1> ® <1,1,...> where-

as in the manner of (8) it reads as <vV2> ® <-V/2> ® <1,1,...> .

Remark 1. X(k) may be infinite but |G| =(ﬂ\{”H1”|H C E and
dim H < =} be so large as to make I turn out finite. Then one can
choose elements in k which are negative at any one ordering of I
and positive at all the other orderings of I and again arrive at a

standard representation in the style of (8).

Remark 2. From (7) we see that the indices of u_l¢ (and hence the
indices of ¢ ) at P € I are invariably (RO,RO) . Therefore, instead
of saying that a quasistable ¢ is determined by all indices we may
say that a quasistable (E,%) is determined by the collection of the
following invariants: the set ”E”°° , which is of the kind that there
is I € X(k) with a_l“E”m= {g|B € P for all P € I} for some
o E”E“m , and by the indices of ¢ at the orderings in I . (cf.[13]

Thm. 2.5).

8. Fields over which all Ro-forms are quasistable

k is an orderable commutative field; forms are symmetric and non

degenerate.
Lemma. For any k the following two statements are equivalent

(9) Each No—form over k is quasistable
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10) X(k) is finite and every Ro-form (E,®) with ”E” < ks repre-

sents 1.

Proof. (10)=>(9): Let ¢ = ag> be an arbitrary Ro-form over

1

<
N
m

k and assume (10). Let Bl,...,B be a (finite) set of representatives

in k/ks . By expressing all oy in terms of Bj and factors from

k, we see that ¢ splits into an orthogonal sum ¢ = Bl®l 9...®Bm¢m

with H@i“ <k, . At least one @, is of infinite dimension and each
- _ o .

such @i has ks H@i” by (10), i.e. ”@i“ ks . Hence ¢ 1is an

orthogonal sum of a finite dimensional form and finitely many stable

ones. Therefore ¢ 1is quasistable.

(9)==2» (10): Since every stable ¢ with lell is has ”@” = is
and thus represents 1 we see that every quasistable form Y with
”W“ < is represents 1. This shows one half of (9)=>(10). It remains
to show that a k with infinite X(k) admits forms that are not gqua-
sistable. If X(k) is infinite then - since each P € X(k) is made
up of full equivalence classes in i/ﬁs - the group i/is is infinite
as well., We also recall ihat the intersection of a finite number of
subgroups in i , each of finite index in i , has itself finite index
in i so that the intersection fE\Pi of finitely many orderings must
contain infinitely many equivalencé classes of X . As /M\{P|P € X(k)}

reduces to ks we can therefore determine a countable sequence

n
(P,) ;¢ Of orderings with (”\Pi # P for all n > 1 . We pick

1 +ll
o € (fn\P_)\ P, @and define E := & <a;> . No stable subspace of
n 14 n+ N

E can contain a line <a;> since a; is negative at Pi+l and
1
$(x,x) positive at Pi+1 for all x € (<al> +...+<ai>) . In parti-
cular E cannot be quasistable,
From Hasse Theory we know that the orderable finite algebraic

extensions k of @ satisfy (10); hence the

Corollary. Let k be a real algebraic number field. Each non-
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degenerate No—form is determined up to isometry by its positive and
negative indices at all real completions of k . (If k is not real
then there are no indices and all non degenerate Ro- forms are isomet-
ric, to wit, they are orthogonal sums of hyperbolic plane<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>