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On modular lattices generated by 1 + 2 + 2 

Christian Herrmann, Margarete Kindermann, and Rudolf  Wille 

1. Main results 

One approach to classification problems of modular lattices is to determine all 
subdirectly irreducible modular lattices which are generated by a homomorphic  image 
of a given poset (or, more generally, of a given partial lattice). In WiUe [I0],  it is 
proved for a finite poset P not containing any subset isomorphic to 

1 + 1 + 1 + 1 :  . . . .  or 1 + 2 + 2 :  o ~ 

that a subdirectly irreducible modular lattice generated by a homomorphic  image of 
P is either a two-element lattice D2 or a five-element non-distributive lattice M 3. Each 
of the 'critical' posets 1 + 1+  1+ 1 and 1 +2  +2  generates infinitely many subdirectly 
irreducible modular lattices which are not isomorphic (s. Herrmann [5] and Herrmann 
and Huhn [6]). 

In this note we analyse subdirectly irreducible modular lattices generated by 
1 + 2 + 2 to such an extend that a complete list of subdirectly irreducibles can be de- 
scribed for the variety ~/" generated by all lattices of normal subgroups of  groups and 
for the variety c~ generated by all complemented modular lattices. As a byproduct we 
get that every subdirectly irreducible modular lattice generated by 1 + 2 + 2  has al- 
ready four generators. 

THEOREM.  Let  M be a subdirectly irreducible modular lattice generated by ele- 

ments a, b, c, d, e with b<~ c and d <~e; furthermore, let M be non-isomorphic to D 2 and 

M3. Then the elements O, b, c h e, d, c, b v d, e, and 1 fo rm an eight-element boolean 

sublattice o f  M and either 
( . )  a is a common complement o f  b, c A e, and d in M or 

(**) a is a common complement o f  c, b v  d, and e in M. 

In the terminology of Herrmann and Huhn [6] the theorem says that M is gener- 
ated by a 3-frame or its dual. Thus, applying the main results of Herrmann and 
Huhn [6], we get the following two corollaries. 

COROLLARY 1. The following is, up to isomorphism, a complete list o f  all sub- 

directly irreducible lattices in .A r which are generated by elements a, b, c, d, e with b <~ c 

and d <<. e : 
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(1) D2, M3; 
(2) the rational projective plane L ((Q 3)6); 
(3) the subgroup lattices L(C~k) of the third power of the cyclic groups C~k of prime 

power order; 
(4) for any prime p the lattice of all those subgroups of the third power C ~  of the 

p-Priifer-group which are the solution sets of.finite systems of linear equations with 
integer coefficients; 

(5) the duals of the lattices under (4). 
Moreover, we may assume that b= {(x, 0, 0) [ xEA}, c= {(x, y, O) [ x, yeA},  

d =  {(0, 0, z) l zeA }, e =  {(0, y, z) l y, zEA} in the cases (2)--(5) with A = Q ,  Cpk, Cp=, 
and Zp, resp., and either a= {(x, x, x) ] xEA} or a= {(x, x + z, z) I x, z~A}. 

COROLLARY 2. A subdirectly irreducible lattice M in c~ generated by elements 
a, b, c, d, e with b<<. c and d <~e is either Dz, M3 or a projective plane; if  M is an argue- 
sian projective plane, M has to be a plane over a prime fieM. 

The proof of the Theorem will be divided into two parts: First, we derive a list of 
relations on a, b, c, d, e valid in both cases (*) and (**); secondly, we use these rela- 
tions to get a subdirect decomposition in a factor with relations (*) and-another with 
relations (**). Then, as M is subdirectly irreducible, one projection must be an iso- 
morphism, i.e. M satisfies either (.) or (**). 

2. Relations for M 

As in Wille I9, 10], the essential tools will be the following two lemmas: 

D2-LEMMA. Let S be a subdirectly irreducible modular lattice generated by the 
union of two finite subsets Eo and El. Then S ~D2 implies 

sup Eo t> infE1. 

M3-LEMMA. Let S be a subdirectly irreducible modular lattice generated by the 
union of five finite subsets E o, E2, E3, Eo and E,, where E2, E3, and E5 are not empty; 
furthermore let ~, :=  sup U (Ej ] i divides j)  and e , : =  i n f U  (Ej ]j divides i) for iE 
{2, 3, 5). Then S ~ M3 implies 

^ v ^ v ^ v ^ v ^ v 

By the D2-Lemma, we get the following relations for the generators a, b, c, d, e of 
the subdirectly irreducible modular lattice M (b ~< c, d ~< e): 

a ^ b = a ^ d = b A d = O  a v c = a v e = c v e = l  
aAc<<.bve avb>>.cAd 
aAe<~cvd avd>~bAe (1) 
cAe<<.avbvd bvd>~aAcAe.  
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Proof. b<~c and d<~e implies aAbAd=O. Since a>.bAd (Eo={a},E~= 
{b, c, d, e}), we get b a d = 0 .  Because of  d>~aAbAe ( E o = { d } ,  E~={a, b, c, e}) 
and e>~a ̂  b (Eo = {d, e}, E1 = {a, b, c}), we have d>~a A b; hence a A b = 0  and, by 
symmetry ,  a ^ d = 0 .  Dually,  we get a v c=a v e =  c v e =  1. The o ther  relat ions are 

direct consequences o f  the D2-Lemma.  
In the following we apply several t imes the M3-Lemma  to get a h o m o m o r p h i s m  a 

f rom the third power  of  the three-element  chain D 3 : =  {0, 1, 2} into M such that  
b = a 2 0 0 ,  c=a220 ,  d = ~ 0 0 2  and e = a 0 2 2  (then it immediately  follows that  the ele- 
ments  0, b, c ^ e, d, c, b v d, e, and 1 fo rm a boolean sublattice of  3/) .  

aAcAe=O. (2) 

Proof. It  results f rom the M 3 - L e m m a  with E 0 = 0 ,  E2 = {a}, E 3 =  {b}, E5 = {d}, 
and E 1 = {c, e} that  

( a ^  b) v (aA d) v (b ^ d)~> ((a ^ CA e) v (b ^ e)) ^ 
^ ((a ^ c ^ e) v (c A a))  A ((b A e) v (c ^ d)); 

f rom this we get by (1) and the modu la r  law 

O>~aAcAeA((bAe)v(cAd))=aAcAeA(bvd)=aAcme. 

bAe=O=cAd. (3) 

Proof. By the M3-Lemma  (Eo = 0 ,  E2 = {a}, E 3 = {b, c}, E s = {d}, E l = {e}), we 

have 
(aAc) v(aAd)v(cAd)>~((aAe)v(bAe))A((a^e)v d)A((bAe)v d); 

it follows by (1), (2) and the modu la r  law 

0 = b A d = b A ( d v ( a ^  CAe))=bAeA(aV(aAC))>~ 
>~bAe^((aAc) v(aAd)v(cAd))>~b AeA((aAe)v d)=bAeA(av  d)=bAe, 

hence b ^ e = 0. c A d = 0 follows by symmetry .  

C L A I M  1. There exists a unique h o m o m o r p h i s m  a f rom the distr ibutive lattice 
(D3) 3 into M with ct000 = 0, a l00  = b A (a v d), a200 = b, a010 = c A (a v b) A e A (a v d), 

ct020 = c ^ e, ~001 = d A (a v b) and 0t002 = d. 
Proof. The elements 0, b ^ (a v d), b, c ^ (a v b) A e ^ (a v d), c A e, d A (a v b), and 

d are contained in the sublattice D of  M which is generated by the two chains {b A 
(a v d), b, c A (a v b), c} and {d A (a v b), d, e ^ (a v d), e}. By Birkhoff  [-2], Theorem 
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III.9, D is distributive. I f  we take the conditions on ~ in Claim 1 as a definition of  a 
map,  we get a meet -homomorphism from the join-irreducible elements o f  (D3) 3 into 
the distributive sublattice D by (3). Since the meet  of  join-irreducible elements is 
again join-irreducible in the distributive lattice (D3) 3, the mee t -homomorph i sm can 
be uniquely extended to a homomorphism from (D3) 3 into D (s.c. Balbes and Horn  

[1], Theorem 4). 
Claim 1 has the following dualization: 

C L A I M  1". There exists a unique homomorph i sm e* f rom the distributive lat- 
tice (D3) 3 into M with ct'222 = 1, ~'221 = c v (a A e), ~ ' 2 2 0 =  c, cc'212 = b v (a A C) V 
d v (a A e), cc'202 = b v d, c~* 122 = e v (a A c), and e022 = e. 

C A e A ( a v b ) = c A e A ( a v d ) .  (4) 

Proof. By the M3-Lemma (Eo=  {b}, E2 = {a}, E 3 =  {c}, E 5 = {d}, El  = {e}), we 
have 

((a v b) A c) v ((a v b) A (b v d)) v (c A (b v d)) >/ 
/> ((a A e) v (c A e)) A ((a A e) v d) A ((C A e) v d) .  

Using (3) and the modular  law, we get 

((a v b) A C) V ((a v b) A (b v d)) v (c A (b v d)) = 
=(aAc) v bv((av b)A(bv d))v b=(av b)A(bv d v(aAe)) 

and, by duality and symmetry,  

((a A e) v (c A e)) A ((a A e) V d) A ((C A e) v d) = (a A e) v (e A c A (a v d));  

hence 

cAeA(avb)=cAeA(avb)A(dv(cA(avb))=CAeA(avb)A(bvdv(aAc))>>- 
>_.CAeA((aAe) V(eAcA(avd))>_.CAeA(avd). 

By symmetry  we also get c A e A (a v b) ~< c A e A (a v d). 

b A (e v (a A C)) = b A (a v d) (5) 

Proof. By the M3-Lemma ( E o = 0 ,  E2={a} ,  E3={b, c}, Es={d, e}, E l = 0 )  we 
have 

( aAc)  v ( a A e ) v ( c A e ) ~ > ( a v b ) A ( a v d ) A ( b v d ) ;  

it follows 
(aAc)v e>>.b A(av d), 
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hence 
b A(ev(a^c))>~b A(av d). 

Conversely,  using (4), we get 

b^(avd)>~bAc^((a^c)v(aAe)vd)=b^((aAc)v(c^eA(avd)))= 
=b ̂  ((a^ c) v(c ^ e ̂ (av b)))=b A c ̂ ( (a^c)v(e ^ (av b)))= 

= b  ^ ( a v  b) A ( e v  ( a ^  e ) ) = b  A (e v ( a ^  c)). 

C L A I M  2. e = e * .  
Proof. The assertion follows f rom the fact that  c~ and  c~* coincide on the generat-  

ing subset {100, 200, 010, 020, 001,002} of  (D3)3: 

~ ' 2 0 0  = ~ ' 2 2 0  ^ ~x'202 = c A (b v d )  = b v (c A d )  = b = ~x200 

0c*002 = d = ~002 
~*020 = ~ '220  ^ ~*022 = c ^ e = ~020, 
~x* 100 = ~* 122 ^ c~'200 = (e v (a ^ c)) ^ b = b ^ (a v d) = ~ 100 

~*001 = d  ^ (a v b) =~001 
*010 = c~'212 ^ ~'020--- (b v (a ^ c) v d v (a ^ e)) ^ c ^ e 

=(bv(a^c) v d ) ^c^e  
=(((avb)^c)v(d^c))^e 
=(avb)^c^e  
=c^(av b)^e^(av  d) 
=~010  

by (3) 
by symmet ry  

by (5) 
by symmet ry  

by the dual  o f  (4) 

by (3) 
by (4) 

(av b) ̂  (av d)=av ~lOO=av aOlO=av ~OOl =av ~ll l. (6) 

Proof. By the modula r  law, we have av~lOO=av(bA(avd))=(avb)^(avd) 
and symmetr ical ly  a v ~001 = (a v b) ^ (a v d);  fur thermore ,  a v ce010 = a v (c ^ (a v b) 
^eA(avd))=(av(c^e))^(avb)^(avd)=(avb)^(avd) ,  since av(c^e)=av 

(a ^ c) v (c ^ e) = a v (c ^ (e v (a ^ c)))/> a v (b ^ (a v d)) = (a v b) ^ (a v d)  by  (5) and the 

modula r  law. 

C L A I M  3. v : = (a ^ c) v (a ^ e) is a c o m m o n  complement  of  ~100, ~010, and ~001 

in the interval I-0, ~111]. 
Proof. By (6), the dual o f  (6), and Claim 2, we get for  x~{100 ,010 ,001}  

(a^c)v(a^e)v~x=(a^~ll l )v~x=(avo~x)nodll=(avb)^(av a)^odll  =~111 ;  

fur thermore ,  ((a ^ c) v (a ^ e)) ^ ~100= ((a ^ c) v (a ^ e)) ^ b ^ (a v d) ~< a ^ b = 0 by (1), 
symmetr ical ly  (a ^ c) v (a ^ e) ^ ~001 = 0, and finally (a ^ c) v ( a n  e) ^ ~010 = ((a ^ c) v 
(aAe))Ac^(avb)^e^(avd)<~a^cne=O by (2). 
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Claim 3 has the following dualization (~=~* by Claim 2!): 

CLAIM 3". w : =  (av b)A(av d) is a common complement of ~221, ~212, and 
~122 in the interval rod 11, 1-1. 

The relations proved in this section may be visualized by the following diagram: 

/ 
/ 

~221=cv(a^e) Z" avb~ ~:212 

\ \ 
\ 
\ 
\ 
~avd 

~220=c 211 
~202 

21 12 ,e=c~022 

c^(avb) 
bv(a^c),~10 

e^(avd) 
=dv(a^e) ==o12 

c(200=b~ CAe = 

~020 
1:~002 

cd00~ 

\ / 
\ / 

aAc 
\ 
\ 

�9 \ 

aAe  

/ 
IA(avb) =C~001 
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3. The subdirect decomposition 

In this section we describe M as the union of certain sublattices of  M. This leads 
to an isomorphism from M onto a subdirect product of  the intervals [0, al  1 I]  and 
[ a l l l ,  1]. For  the first step we use the following lemma which is essentially out of  

Herrmann [4]. 

LEMMA.  Let r be a lattice of  finite length and let ~r and ? be a join-homomorphism 
and a meet-homomorphism, resp., f rom S into a lattice L with certain bounded sublat- 

tices L x (xe  S)  such that ax  and ~x are the lower bound and the upper bound o f  Lx, resp.; 
furthermore, let L~ n Ly be a (non-empty)filter in Lx and an ideal in Ly i f  y covers x in 

S. Then U ( L x  [ x e S )  is a sublattice o f  L. 
Proof. For  zleL~, ( i=0 ,  I) we have to show that Zo v z l  is again in the union of 

the Lx. This is trivial for Xo=Xl. I f  x o # x l ,  then w.l.o.g, x 1 <Xo v x t .  Let x2 be the 
cover of  xx in a maximal chain from x 1 to x o v xt of  minimal length. By assumption, 
z 2 : = z l v a x 2 e L x 2 .  Therefore, we can conclude by induction that  ZoVZ~= 

Zo v aXo v z x v axa =Zo v z~ v a(Xo v xt )=Zo v z~ v ax2 =Zo v zzeLxovx2=Lxovx, .  
Dually, We get zt A z2eL~o^~ ,. 

Let S be the lattice described by the following diagram: 

222 

c 2 022 e 

b 2 0 0 ~  002 d 

000 

We define a : S ~ M ,  t r : S ~ M ,  and y : S ~ M  by 

~ a : = a  and ~ x : - - a x  for 
a x : = ~ x ^ a l l l  for x e S ,  

y x : = c 2 x v a l l l  for x e S .  
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a and ~ are a join-homomorphism and a meet-homomorphism, resp., from S into M 
by Claim 1, 1", 2, 3, and 3*. Let M~ (x~S) be the sublattice of  M generated by 
{~x} u [ax, ~1 11] u [~zl 1 1, yx]. 

Z=(ZAodll)v(ZA~X) for x~S and z~M~. (7) 

Proof. By modularity, M~ (xeS) is generated by lax, ctl 11] u [ax, 02x]. Thus, 
Theorem III. 15 in Birkhoff [2] can be applied which proves the assertion 

CLAIM 4. M = U ( M ~  I x~S ). 
Proof. Using (7), it can be easily seen that S, M, a, ~, and the M x (xeS) fullfil the 

assumptions of the Lemma. Therefore, U (M~ [ xeS) is a sublattice of M, which con- 
tains the generators a, b, c, d, and e of M by definition; hence M = U ( M  x [ xeS). 

cd11^(ZoVZt )=(~111AZo)V(~ l l l ^z l )  for Zo, ZleM. (8) 

Proof. By Claim 4, there are x~eS with zi~M~, (i-O, 1). It follows: 

~111 A(Z o v z l ) = ~ l l  

= (Z0 
~<(Zo 
~(Z 0 

= (Zo 
-----(0d 

1 ^ ( (z  o ^ czl 11) v (Zo A aXo) v (z: A t r i l l )  V (Z 1 ^ ~2Xl)) 
by (7) 

^ ~111) v (zl A ~111) V (~111 ^ ((Zo A ~X0) V (Z 1 ̂  02Xl))) 
A ~ I l l ) v  (Z 1 ̂ ~111)V(~111 ^ (02X0 V ~Xl) ) 
^ =Xll)v (zl ^ =111) v(~,l l l  ^ aXo) v (~,l 11 ^ax l )  

by section 2 
A~I I1 )v (z :  Acdl l )  VaXo V aX 1 
11 ^Zo)V(~l l l  ^Zl).  

The other inequality is always fullfiUed. 

CLAIM 5. The mapping ~O:M-~[0, a l l l ] x [ a l l l ,  l]  with ~Oz=(zAal l l ,  
z v ~ l l l )  is an isomorphism from M onto a subdirect product of [0, a l l l ]  and 
[a l l  l, 1]. 

Proof. The assertion is a direct consequence of (8), Satz 1.1.3 and Satz 1.3.1 in 
Maeda [7]. 

Since M is subdirectly irreducible, the composition of ~O with one projection of 
[0, a l l l ] x [ a l l l ,  I] has to be an isomorphism. Since Oa=(v,w), ~Ob=(al00, 
ct211), 0 c = ( a l l 0 ,  ~221), Od=(a001, e l l2) ,  and ~be=(a011, 122) by section 2, it fol- 
lows from Claim 3 and 3* that M satisfies (*) or (**). Claim 1, 1", and 2 result that the 
elements 0, b, c ^ e, d, c, b v d, e, and I form a boolean sublattice of M. This boolean 
sublattice must consist of eight elements, since the intervals [0, b], [0, c ^ el, and 
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[0, d ]  are projective by the claims of  section 2. Thus,  the p roof  o f  the Theorem is 

finished 

Appendix 

In  section 2 it has been proved, actually, that  any elements a, b, c, d, e in a modular  

lattice which satisfy the relations b ~< c and d ~ e and the relations given by  the D 2- and 
M a - L e m m a  also satisfy the relations expressed in the first diagram, i.e. the relations 
stated in claims 1-3". This result has been applied by W. Poguntke  [8]  to get the 

classification of  the indecomposable S-spaces for S = 1 + 2 + 2  in a more  lattice- 

theoretical way as it is done by other authors (cf. Gabriel  I-3]). 
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