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We show that Berberian’s ∗-regular extension of a finite AW ∗-algebra admits a
faithful representation, matching the involution with adjunction, in the C-algebra of
endomorphisms of a closed subspace of some ultrapower of a Hilbert space. It also turns
out that this extension is a homomorphic image of a regular subalgebra of an ultraproduct
of matrix ∗-algebras C

n×n.

INTRODUCTION

Goodearl and Menal [1, Thm. 1.6] have shown that any C∗-algebra C is a homomorphic image
of a residually finite-dimensional C∗-algebra B. Moreover, if C is separable, then B is a subdirect
product of matrix algebras C

n×n. The prime objective of the present paper is to show that we can
always choose B as a subalgebra of an ultraproduct of algebras C

n×n and also to generalize the
result to algebras represented in any inner product space. Ultraproducts here are those defined in
model theory.

Another main objective is to extend this kind of algebraic approximation, with ∗-regular B, to
∗-regular algebras of quotients. Such algebras have been constructed by Berberian [2] (analyzed by
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Hafner [3], Pyle [4], and Berberian [5]), generalizing the Murray and von Neumann [6] ∗-regular
algebra of unbounded operators associated with a finite von Neumann algebra factor. In a more
general setting, these have been taken up by Handelman [7] and Ara and Menal [8]. The results
mentioned are summarized in the following theorem (details are given in Sec. 6 below; see also [9,
Thm. 2.3; 10, Prop. 21.2]).

THEOREM 1. Let A be a finite Rickart C∗-algebra. Then A admits a classical ring Q(A) of
right quotients. The involution and the structure of a C-algebra on A extend uniquely to Q(A),
turning Q(A) into an ∗-regular C-algebra. Moreover, A and Q(A) have the same projections. If, in
addition, A is an AW ∗-algebra, then Q(A) is the maximal ring of right quotients of A.

The main result of the present paper is the following:

THEOREM 2. Let A and Q(A) be as in Theorem 1.
(i) There are an inner product space V̂

Ĉ
, which is an ultrapower of a Hilbert space VC, a closed

Ĉ-linear subspace U of V̂ , and a C-algebra embedding ι of Q(A) into the endomorphism algebra
of U

Ĉ
such that ι(r∗) is the adjoint of ι(r) for any r ∈ Q(A).

(ii) For C-algebras with involution and pseudoinversion, Q(A) is a homomorphic image of a
subalgebra of an ultraproduct of algebras C

n×n.
(iii) The ortholattice L(A) of projections of A is a homomorphic image of a subortholattice of

an ultraproduct of projection ortholattices of algebras C
n×n.

Relevant concepts are explained below; the proof of the theorem is given in Sec. 6. In (i), in
particular, Ĉ is an ultrapower of C and the scalar product on V̂

Ĉ
is obtained from that of VC via

an ultrapower construction. Moreover, if A is separable then VC can also be chosen separable.
The method of proof, of some interest in itself, is a representation of Q(A) within a suitable

inner product space, which is in fact a closed subspace of an ultrapower of the Hilbert space
V in which A is represented due to the Gelfand–Naimark–Segal construction (GNS-construction
for short). Such a representation for Q(A) is obtained if we consider Q(A) as a homomorphic
image of some abstract algebraic structure, mimicking an algebra of unbounded operators. This,
in turn, is used to reveal Q(A) as a homomorphic image of a subalgebra of a sufficiently saturated
elementary extension T̂ of the algebra (with unit) T of endomorphisms of V generated by those
having finite-dimensional image. The algebra T̂ can be obtained as an ultrapower of T and admits
a representation in an ultrapower of V .

1. INNER PRODUCT SPACES, ∗-REGULAR RINGS,
AND PROJECTIONS

An ∗-ring is a ring R (associative with unit) endowed with an involution, i.e., an antiauto-
morphism x �→ x∗ of order 2. We will consider representations of Λ-algebras R with involution,
where Λ is a commutative ∗-ring, within inner product spaces VF . To define such, we have to
assume that F is also a Λ-algebra and that involutions are related in a proper way. An adequate
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concept is that of an ∗-Λ-algebra, i.e., a Λ-algebra R which is an ∗-ring such that 1Λr = r and
(λr)∗ = λ∗r∗ for all λ ∈ Λ and r ∈ R. For ∗-Λ-algebras, the concepts of a homomorphism and of
a subalgebra will refer to both the Λ-algebra structure and the involution. Note that C∗-algebras
are (rather special) ∗-C-algebras.

Our main interest here is the case where Λ is an ∗-ring C of complex numbers with conjugation
and F is an elementary extension of C. However, no extra effort is needed if we allow F to be any
∗-Λ-algebra which is a division ring. We say that a (right) F -vector space VF is an inner product
space if it is endowed with a scalar product (x, y) �→ 〈x | y〉 which is an anisotropic (or totally
regular) sesquilinear form, Hermitian with respect to the involution (cf. [11]). Basic concepts and
results for unitary spaces extend naturally to inner product spaces. In particular, any F -linear
subspace U is an inner product space UF with the induced scalar product. Let πU denote the
orthogonal projection onto U if it exists, for example, if dim U < ∞.

The endomorphisms ϕ of VF form a Λ-algebra, where (λϕ)(v) = ϕ(v)λ for λ ∈ Λ and v ∈ V .
Notice that the action of Λ on V is defined by the equality vλ = v(λ1F ). Endomorphisms of VF

admitting an adjoint ϕ∗ with respect to the scalar product form a subalgebra End∗Λ(VF ) in the Λ-
algebra of all endomorphisms, which is also an ∗-Λ-algebra; indeed, λ∗ϕ∗ is the adjoint of λϕ. If ϕ is
an endomorphism with dim imϕ < ∞ then ϕ ∈ End∗Λ(VF ) and dim imϕ∗ = dim(ker ϕ)⊥ = dim imϕ.

A representation of an ∗-Λ-algebra R within an inner product space VF is a homomorphism
ε : R → End∗Λ(VF ) or, more conveniently, a unitary R-F -bimodule RVF such that (λr)v = r(vλ)
and 〈rv | w〉 = 〈v | r∗w〉 for all r ∈ R, λ ∈ Λ, and v,w ∈ V ; here rv = ε(r)(v). In accordance with
this, we denote the action of an endomorphism ϕ by ϕv, and the composition of endomorphisms
by ψϕ.

Our main concern will be faithful representations, i.e., representations RVF such that rv = 0
for all v ∈ V iff r = 0. If a faithful representation exists, then we say that R is representable within
VF . The Gelfand–Naimark–Segal construction (cf. [12, Sec. 62]) yields the following:

PROPOSITION 3. Any (separable) C∗-algebra is representable within a (separable) Hilbert
space (as an algebra of bounded operators).

There are two approaches to ∗-regular rings. In the first approach, an ideal I of a ring is said
to be (von Neumann) regular if, for any a ∈ I, there is x ∈ I for which axa = a; such an element
x is called a quasi-inverse of a (cf. [13]). We recall the following:

PROPOSITION 4 [14, Lemma 1.3]. A ring R is regular if and only if it admits a regular
ideal I such that R/I is regular. Any ideal of a regular ring is regular.

An ∗-ring R is proper if r∗r = 0 implies r = 0 for all r ∈ R. Within any ∗-ring R, a+ is a
Moore–Penrose pseudoinverse (or a Rickart relative inverse) of a if

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a.

PROPOSITION 5. An ∗-ring R is proper and regular if and only if any a ∈ R admits a
pseudoinverse a+ ∈ R. In this case a+ is uniquely determined by a.
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Proposition 5 is well known (see, e.g., [15, XII, Satz 2.4; 16, Prop. 88; 17, Lemma 4]). This allows
an ∗-regular ring R to be defined as an ∗-ring with an additional operation a �→ a+ under which
a+ is a pseudoinverse of a. If R is also an ∗-Λ-algebra, then we speak of an ∗-regular Λ-algebra.
The concepts of subalgebras and homomorphisms of ∗-regular algebras concern pseudoinversion
too. However, when speaking about representations, only the ∗-Λ-algebra structure matters. With
Λ = Z we may subsume all ∗-regular rings. The equivalence between the two concepts of ∗-regularity
extends beyond consideration of single algebras.

LEMMA 6. Let R and T be ∗-regular Λ-algebras, S an ∗-Λ-subalgebra of T , and f : S → R

a surjective homomorphism (of ∗-Λ-algebras) such that the ideal kerf of S is regular. Then S is
closed under pseudoinversion in T and f : S → R preserves pseudoinversion; i.e., in the language
of ∗-regular Λ-algebras, S is a subalgebra of T and f is a homomorphism.

Proof. The algebra S, being an ∗-subring of T , is proper, and it is regular by Prop. 4.
Therefore, S is ∗-regular by Prop. 5. The uniqueness of a pseudoinverse in T implies that S is
closed under pseudoinversion. The uniqueness of a pseudoinverse in R implies that f preserves
pseudoinversion. �

PROPOSITION 7. Let VF be an inner product space. The set

End∗Λf (VF ) = {ϕ + λid | λ ∈ F, ϕ ∈ End∗Λ(VF ), dim imϕ < ∞}

forms a subalgebra of End∗Λ(VF ) which is an ∗-regular Λ-algebra. In particular, if VF is finite-
dimensional, then End∗Λ(VF ) is an ∗-regular Λ-algebra.

Proof. If dim imϕ < ∞, then the subspace U = (ker ϕ)⊥ is finite-dimensional, which implies
that V = U ⊕ U⊥ and ϕ|U is an isomorphism of U onto W = imϕ. Since U and W are finite-
dimensional, the inverse ψ : W → U of ϕ|U has an adjoint ψ∗. Thus πW ψ∗πU has πUψπW as adjoint
and belongs to End∗Λf (VF ). Moreover, ϕ = ϕπUψπW ϕ. Therefore, I = {ϕ ∈ End∗Λ(VF ) | dim imϕ <

∞} is a regular ideal of End∗Λf (VF ). If dim VF < ∞ then I = VF . Otherwise, since End∗Λf (VF )/I is
isomorphic to F , Proposition 6 applies to prove that End∗Λf (VF ) is ∗-regular. �

The following is granted by the Gram–Schmidt orthonormalization process.

PROPOSITION 8. Let VF be an inner product space such that dim VF = n < ∞, and for
any λ, μ ∈ F , there is ν = ν∗ ∈ F for which λ∗λ + μ∗μ = ν2. Then End∗Λ(VF ) is isomorphic to the
matrix algebra Fn×n with involution A = (aij) �→ A∗, where A∗ is the transpose of (a∗ij).

An element e of an ∗-ring is a projection if e = e2 = e∗. We observe that any projection is its
own pseudoinverse and that e = aa+ and f = a+a are projections if a+ is a pseudoinverse of a.

PROPOSITION 9. The equality ap = 0 implies (a+)∗p = 0 and a∗p = 0 implies a+p = 0 for
any ∗-regular ring R, any a ∈ R, and any projection p ∈ R.

Proof. For e = aa+ and f = a+a, ap = 0 entails fp = a+ap = 0, whence pf = (fp)∗ = 0.
Thus pa+ = pa+aa+ = pfa+ = 0, and so (a+)∗p = 0. From a∗p = 0, we obtain pa = (a∗p)∗ = 0,
i.e., pe = paa+ = 0. Consequently, ep = 0 and a+p = a+aa+p = a+ep = 0. �
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PROPOSITION 10 [16, Chap. 2; 10, Sec. 1]. If R is a regular ring (not necessarily with
unit), then principal left ideals Ra form a (complemented) sublattice L̄(R) of the lattice of all left
ideals. In addition, for any a ∈ R, there is an idempotent e ∈ R such that Ra = Re.

Projections of a ∗-regular Λ-algebra R form an ortholattice L(R) where the partial order is
given by the rule

e ≤ f ⇐⇒ fe = e ⇐⇒ ef = e.

The least and greatest elements are equal to respectively 0 and 1 in R. The orthocomplement is
e′ = 1 − e; more exactly, e′ is a complement of e, e′′ = e, and e ≤ f if and only if f ′ ≤ e′. Join
(supremum) and meet (infimum) are defined by the equalities

e ∪ f = f + (e(1 − f))+e(1 − f), e ∩ f = (e′ ∪ f ′)′.

The map e �→ Re is an isomorphism from L(R) onto L̄(R).
As shown by von Neumann, any modular ortholattice with a certain type of coordinate system

is isomorphic to L(R) for some ∗-regular algebra R with a system of matrix units. In this sense, we
have equivalent structures. Nonetheless, ∗-regular rings appear much better suited for the present
discussion.

PROPOSITION 11. If S is a subalgebra of an ∗-regular Λ-algebra R, then L(S) is a
subortholattice of L(R). If ϕ : R → S is a homomorphism, then its restriction ψ to L(R) is a
homomorphism into L(S); if ϕ is surjective, then ψ is also surjective.

Proof. In view of Proposition 10, it suffices to state that ϕ is surjective. In fact, let e be a
projection in S. Choose its arbitrary preimage a ∈ R under ϕ. Then aa+ is a projection and
ϕ(aa+) = ee+ = e2 = e. �

2. CONCEPTS FROM MODEL THEORY

For a fixed commutative ∗-ring Λ with unit, we are going to consider the classes of all ∗-Λ-
algebras and of all ∗-regular Λ-algebras. Their members are viewed as 1-sorted algebraic structures
where each λ ∈ Λ determines a unary operation x �→ λx. Moreover, besides this and the ring
structure (note that additive inversion is not required since it can be captured via −x = (−1Λ)x),
for both types of algebras, we also have a unary operation of involution, while for ∗-regular Λ-
algebras, we consider in addition a unary operation of pseudoinversion. Ortholattices are treated
in a signature containing the binary operations of join and meet, and also a unary operation of
orthocomplementation. Since the three classes mentioned can be defined by identities, they are
closed under taking direct products, subalgebras, and homomorphic images.

Let U be an ultrafilter over a set I. In view of the explicit definition of L(R) in terms of R

(Prop. 10), the following holds:

PROPOSITION 12. L

(∏
i∈I

Ri/U

)
=

∏
i∈I

L(Ri)/U for any ∗-regular Λ-algebras Ri, i ∈ I.
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We will also have to use ultraproducts of inner product spaces VF and representations RVF ,
but the presence of scalar products excludes viewing them as 1-sorted algebraic structures. The
most convenient way is to treat an inner product space VF as a 2-sorted algebraic structure with
sorts V and F , endowed with group operations and ∗-Λ-algebra operations, respectively. Moreover,
there are two binary operations (v, α) �→ vα ∈ V and (u, v) �→ 〈u | v〉 ∈ F , where u, v ∈ V and
α ∈ F . In dealing with a representation RVF , we treat the ∗-Λ-algebra R as a third sort and, in
addition, a binary operation (r, v) �→ rv ∈ V for r ∈ R and v ∈ V .

Concepts such as a homomorphism, a subalgebra, a direct product, and an ultraproduct can
be generalized to many-sorted algebraic structures in an obvious manner. All constructions are
built sortwise; i.e., the sorts of a direct product (an ultraproduct, etc.) of Ai, i ∈ I, are direct
products (ultraproducts, etc.) of the sorts of Ai, i ∈ I. Of course, at the price of undue technical
complications, we could also consider many-sorted structures as 1-sorted relational structures.

Given a formula ϕ in a fixed signature, a structure A, and elements a1, . . . , an of A matching
the sorts of the free variables x1, . . . , xn occurring in ϕ, the validity of ϕ in A under the substitution
xi �→ ai is defined by the same inductive approach as in the 1-sorted case and is denoted by

A |= ϕ(a1, . . . , an).

PROPOSITION 13. Let U be an ultrafilter over a set I. The following statements hold:
(1) Suppose Λ is a commutative ∗-ring, Ri and Fi are ∗-Λ-algebras, (Vi)Fi is an inner product

space, and Ri(Vi)Fi is a faithful representation for all i ∈ I. Then VF =
∏
U

(Vi)Fi is an inner product

space and RVF =
∏
U

Ri(Vi)Fi is a faithful representation, where F =
∏
U

Fi and R =
∏
U

Ri.

(2) For an ∗-Λ-algebra F and a natural number n, the ultrapower (Fn×n)I/U of matrix ∗-Λ-
algebras is isomorphic to the matrix ∗-Λ-algebra (F I/U)n×n.

Proof. (i) Is an obvious consequence of the �Loś theorem. The isomorphism in (ii) is given by
the rule [

(ajk
i )j,k=1,...,n | i ∈ I

]
�→

(
[ajk

i | i ∈ I]
)
k,j=1,...,n

. �

PROPOSITION 14. Any elementary extension of a representation RVF is again a represen-
tation, R̂V̂F̂ , where F̂ , V̂F̂ , and R̂ are elementary extensions of F , VF , and R, respectively.

In the proof of our central result, we have to apply a concept of saturated structures. We will
present here a very weak form just sufficient for our purposes. Considering a fixed structure A, we
add a new constant symbol a, called a parameter, for each a ∈ A. In what follows, Σ(x) is a set of
formulas with one free variable x in this extended language. Given an embedding h : A → B, we
say that B is modestly saturated over A via h if any set Σ(x) of formulas with parameters from
A which is finitely realized in A (where a is interpreted as aA = a) is realized in B (where a is
interpreted as aB = h(a)).

PROPOSITION 15 [18, Cor. 4.3.14]. Every structure A admits an elementary embedding h

into some structure B which is modestly saturated over A via h. We can take B to be an ultrapower
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of A and take h to be the canonical embedding. Identifying a with h(a), we may assume that B is
an elementary extension of A.

3. REPRESENTATIONS OF ALGEBRAS WITH INVOLUTION

THEOREM 16. Let an ∗-Λ-algebra R have a faithful representation in an inner product space
VF . Then R is a homomorphic image of a subalgebra S of an ultraproduct of End∗Λ(UF ) with U

ranging over finite-dimensional subspaces of VF . Moreover, if R is (∗-)regular, then so is S.
Recall that in the ∗-regular case, all algebraic constructions also refer to pseudoinversion; in

particular, only ∗-regular ∗-Λ-subalgebras are admitted.
The proof is a variation of the approach in [19, 20].
Choose any set I of finite-dimensional subspaces of VF such that every finite-dimensional

subspace W of VF is contained in some member of I. Given a basis B for the vector space VF ,
as I we may take, for example, the set of all subspaces U of VF spanned by finite subsets of B.
If the basis B is countable and enumerated, then we may choose I consisting of all subspaces
spanned by initial segments of B. For U ∈ I, we set U+ = {W ∈ I | U ⊆ W}. Notice that
U+

1 ∩U+
2 = (U1 +U2)+. Therefore, there is an ultrafilter U on I such that U+ ∈ U for all U ∈ I. For

simplicity, let RU denote the ∗-regular Λ-algebra End∗Λ(UF ). Consider a direct product T =
∏

U∈I
RU

and an ultraproduct T̂ =
∏

U∈I
RU/U. The elements of T and T̂ will be denoted σ = (σU | U ∈ I)

and [σ], respectively. We first relate T to RVF .
Let σ ∈ T , r ∈ R, and U0 ∈ I. We say that J ∈ U witnesses σ ∼ r for U0 if J ⊆ U+

0 and

σUv = rv, σ∗
Uv = r∗v for all U ∈ J and all v ∈ U0.

Note that if J witnesses σ ∼ r for U0 ∈ I, then J witnesses σ ∼ r for any U1 ⊆ U0. We put σ ∼ r

if for any U0 ∈ I there is J ∈ U witnessing σ ∼ r for U0. Let

S = {σ ∈ T | σ ∼ r for some r ∈ R}.

We prove several auxiliary assertions. Let σ, τ ∈ T and r, r0, r1, s ∈ R.

ASSERTION 17. There is a well-defined map g : S → R, g(σ) = r, where σ ∼ r.
Proof. We have to show that σ ∼ r0 and σ ∼ r1 imply r0 = r1. Consider an arbitrary vector

v ∈ V and a set U0 ∈ I containing v. Let Ji witness σ ∼ ri for U0, i < 2. Then J = J1 ∩ J2 also
witnesses σ ∼ ri for U0, i < 2, whence r0v = σU0v = r1v. This shows that r0v = r1v for all v ∈ V .
Since RVF is a faithful representation, we conclude that r0 = r1. �

ASSERTION 18. In the language of ∗-Λ-algebras, S is a subalgebra of T and g : S → R is a
homomorphism.

Proof. Let σ ∼ r, τ ∼ s, and λ ∈ Λ. We need to show that

(1) σ∗ ∼ r∗, (2) λσ ∼ λr, (3) τ + σ ∼ s + r, (4) τσ ∼ sr.
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Note that (1) is obvious by definition. To prove (2)-(4), we consider U0 ∈ I and choose J ∈ U

witnessing σ ∼ r and also K ∈ U witnessing τ ∼ s for U0. Then J ∩ K ∈ U witnesses both σ ∼ r

and τ ∼ s for U0. Applying linearity, we see that for any U ∈ J ∩K and any v ∈ U0, the following
equalities hold:

(λσU )v = (σUv)λ = (rv)λ = (λr)v,

(λσ)∗Uv = (σ∗
Uv)λ∗ = (r∗v)λ∗ = (λ∗r∗)v = (λr)∗v,

(σ + τ)Uv = σUv + τUv = rv + sv = (r + s)v,

(σ + τ)∗Uv = σ∗
Uv + τ∗

Uv = r∗v + s∗v = (r∗ + s∗)v = (r + s)∗v.

Therefore, J ∩K witnesses λσ ∼ λr and σ + τ ∼ r + s for U0; i.e., items (2) and (3) hold. To prove
(4), we choose U1 ∈ I so that U1 ⊇ rU0 and choose U2 ∈ I so that U2 ⊇ s∗U0. Let J0 ∈ U witness
τ ∼ s for U1 and J1 ∈ U witness σ ∼ r for U2. Then J ′ = J ∩K ∩ J0 ∩ J1 ∈ U, and for any U ∈ J ′

and any v ∈ U0, we have

(τσ)Uv = τU (σUv) = τU (rv) = s(rv) = (sr)v,

(τσ)∗Uv = σ∗
U (τ∗

Uv) = σ∗
U (s∗v) = r∗(s∗v) = (r∗s∗)v = (sr)∗v;

i.e., J ′ witnesses τσ ∼ sr for U0. �

ASSERTION 19. The map g : S → R is surjective.
Proof. For r ∈ R, denote by ϕ = ε(r) the corresponding endomorphism of VF . For U ∈ I, put

σU = πUϕ|U = πUϕπU |U ∈ RU

and σ = (σU | U ∈ I), where πU is the orthogonal projection of V onto U . Notice that σ∗
U =

πUϕ∗πU |U = πUϕ∗|U . For U0 ∈ I fixed, U1 ∈ I is chosen so that U1 ⊇ U0 + rU0 + r∗U0. Let
J = U+

1 ∈ U. For any U ∈ J and any v ∈ U0, we have rv, r∗v ∈ U and

σUv = πU

(
ϕ(πUv)

)
= πU (ϕv) = πU(rv) = rv,

σ∗
Uv = πU

(
ϕ∗(πUv)

)
= πU (ϕ∗v) = πU (r∗v) = r∗v.

Therefore, J witnesses σ ∼ r for U0; consequently, g(σ) = r. �

We put
Ŝ = {[σ] | σ ∈ S}.

ASSERTION 20. In the language of ∗-Λ-algebras, Ŝ is a subalgebra of T̂ , while f : Ŝ → R,
f([σ]) = r, where σ ∼ r, is a well-defined surjective homomorphism.

Proof. In view of Assertion 18, it suffices to show that [τ ] = [σ] and σ ∼ r imply τ ∼ r. Let
K = {U ∈ I | σU = τU}; in particular, K ∈ U. Given U0 ∈ I, let J witness σ ∼ r for U0. Then
J ∩ K witnesses τ ∼ r for U0. �
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For any U0 ∈ I, we put χU0 = (χU0
U | U ∈ I) ∈ T , where χU0

U is the orthogonal projection of U

onto U0 if U0 ⊆ U and χU0
U = 0 otherwise.

ASSERTION 21. We have [σ] ∈ kerf if and only if

(∗) [σ] · [χU0 ] = [σ∗] · [χU0 ] = 0 for all U0 ∈ I.

Proof. By definition, [σ] ∈ kerf iff σ ∼ 0. Thus let σ ∼ 0 and U0 ∈ I. Choose J ∈ U

witnessing σ ∼ 0 for U0. Then for all U ∈ J and all v ∈ U0 we have σUv = 0 = σ∗
Uv, which implies

σUχU0
U = 0 = σ∗

UχU0
U . Since J ∈ U, (∗) holds.

Conversely, assume that (∗) holds and U0 ∈ I. This means that K = {U ∈ I | σUχU0
U = 0 =

σ∗
UχU0

U } ∈ U. Then J = K ∩ U+
0 ∈ U witnesses σ ∼ 0 for U0. �

ASSERTION 22. The ideal kerf is regular.
Proof. By Proposition 7, RU is ∗-regular for any U ∈ I; so the ultraproduct T̂ is also ∗-regular.

Note that [χU0 ] ∈ T̂ is a projection for any U0 ∈ I since χU0
U is a projection in RU for any U ∈ I.

Now let [σ] ∈ kerf and [τ ] be its pseudoinverse in T̂ . Then Assertion 21 and Proposition 9 imply
that

[τ ] · [χU0 ] = [τ∗] · [χU0] = 0 for all U0 ∈ I,

which, in view of Assertion 21, yields [τ ] ∈ kerf . �

Now we complete the proof of the theorem. The first statement for ∗-Λ-algebras follows
immediately from Assertion 20. In the ∗-regular setting, it suffices to apply Assertion 22 and
Lemma 6. �

Remark 23. Assume that VF has a countable orthonormal basis v0, v1, v2, . . . (which is the
case if, e.g., dim VF = ω and F satisfies the hypothesis of Prop. 8). Let I consist of subspaces Un

spanned by {v0, . . . , vn}, n < ω, and let U extend the cofinite filter. Then End∗Λ
(
(Un)F

)
, n < ω,

can be uniformly viewed as matrix algebras Fn×n. In this event kerf is composed of elements of
the form [An | n < ω] where for any m < ω, there is J ∈ U such that the first m rows and m

columns of An consist of 0’s provided that Un ∈ J (see [19]).

COROLLARY 24. Any C∗-algebra is a homomorphic image of a subalgebra of an
ultraproduct of algebras C

n×n, n < ω.
Proof. We apply Theorem 16 to a representation created by the GNS-construction and observe

that End∗Λ(UC) ∼= C
n×n if U is a finite-dimensional subspace of a unitary space (cf. Prop. 8). �

A method for obtaining representations of homomorphic images (elaborating on [20, Thm. 3.8])
is given in

PROPOSITION 25. For any regular ∗-Λ-algebra R having a faithful representation within
an inner product space VF , there is an ultrapower V̂F̂ of VF such that, for any regular ideal I = I∗,
R/I admits a faithful representation within some closed subspace of V̂F̂ .

Proof. According to Proposition 15, there is an ultrapower R̂V̂F̂ of the faithful representation

RVF which is modestly saturated over RVF via the canonical embedding. Then V̂ is an R-module
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since R is canonically embedded into R̂ and

U = {v ∈ V̂ | av = 0 for all a ∈ I} =
⋂

a∈I

(aV̂ )⊥

is a closed subspace of V̂F̂ and a left (R/I)-module. Moreover, the equality I = I∗ implies that

〈(r + I)v | w〉 = 〈v | (r∗ + I)w〉 for all v,w ∈ U,

which proves that R/IUF̂ is a representation of R/I.
We argue that this representation is faithful; i.e., for any a /∈ I, there is v ∈ U such that av �= 0.

Since v ∈ U means that bv = 0 for all b ∈ I, we need to show that the set

Σ(x) = {ax �= 0} ∪ {bx = 0 | b ∈ I}

of formulas with parameters from {a} ∪ I and a free variable x of type V is satisfiable in R̂V̂F̂ .
Due to modest saturation, it suffices to state that for any b1, . . . , bn ∈ I, there is v ∈ V such that
av �= 0 and biv = 0 for all i ∈ {1, . . . , n}. By virtue of Proposition 10 and the fact that I is regular,

there is an idempotent e ∈ I for which Ie =
n∑

i=1
Ibi; in particular, bie = bi and biv = 0 for any

i ∈ {1, . . . , n} and any v ∈ V with ev = 0. Thus we need only show that there is v ∈ V such that
ev = 0 but av �= 0.

Assume the contrary, namely, that ev = 0 implies av = 0 for any v ∈ V . For w ∈ V , put
v = (1 − e)w. We have ev = 0, so av = 0 by our assumption. Thus 0 = av = a(1 − e)w for all
w ∈ V , and since RVF is a faithful representation, we obtain a(1− e) = 0. In this case a = ae ∈ I,
which clashes with the choice of a. �

4. ALGEBRAS OF GENERALIZED OPERATORS

Given a commutative ∗-ring Λ, a pre-∗-Λ-algebra is a set R endowed with binary operations +
and ·, constants 0R and 1R, a unary operation written r �→ λr for each λ ∈ Λ, and a symmetric
binary relation �� such that for any r ∈ R there is r∗ ∈ R with r �� r∗, and for all r, r∗, s, s∗ ∈ R

and all λ ∈ Λ, the following hold:
(a) r �� r∗ and s �� s∗ imply r + s �� r∗ + s∗;
(b) r �� r∗ and s �� s∗ imply r · s �� s∗ · r∗;
(c) r �� r∗ implies λr �� λ∗r∗;
(d) 0R �� 0R and 1R �� 1R.
An action of R on an inner product space VF , where F is an ∗-Λ-algebra, assigns each r ∈ R a

linear subspace domr of VF and an F -linear map domr → V written v �→ rv. Thus, in particular,
for all v,w ∈ V , r ∈ R, and α ∈ F , the following hold:

(e) if u, v ∈ domr, then v + w ∈ domr and r(v + w) = rv + rw;
(f) if u ∈ domr, then uα ∈ domr and r(vα) = (rv)α.
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We write RVF for an inner product space V with right action of F and left action of R. Consider

RVF as a 3-sorted structure with sorts V , F , and R; the action of R on V is defined by the ternary
relation

{(r, v, w) ∈ R × V × V | r ∈ R, v ∈ domr, w = rv}.

Put rX = {rv | v ∈ X} and r−1(X) = {v ∈ domr | rv ∈ X} for any X ⊆ V .
Furthermore, we assume that there is a downward directed set D of linear subspaces of VF . We

say that the action of R on VF is D-supported if, for all r, s ∈ R and all λ ∈ Λ, the following hold:
(i) D ⊆ domr for some D ∈ D;
(ii) for any D ∈ D, there is D′ ∈ D such that D′ ⊆ r−1(D);
(iii) there is D ∈ D such that D ⊆ domr ∩ doms ∩ dom(r + s) and (r + s)v = rv + sv for all

v ∈ D;
(iv) 0Rv = 0 and 1Rv = v for all v ∈ V ;
(v) there is D ∈ D such that D ⊆ dom(r · s) ∩ s−1(domr) ∩ doms and (r · s)v = r(sv) for all

v ∈ D;
(vi) there is D ∈ D such that D ⊆ domr ∩ dom(λr) and (λr)v = (rv)λ for all v ∈ D;
(vii) if r �� r∗, then there is D ∈ D such that D ⊆ domr ∩ domr∗ and 〈rv | w〉 = 〈v | r∗w〉 for

all v,w ∈ D.
For a D-supported action of R on VF , we define a binary relation ≈D on R by setting
r ≈D s iff for any r∗ �� r and any s∗ �� s there is D ∈ D such that r ≈D s is witnessed by D

under the given condition: namely, D ⊆ domr ∩ domr∗ ∩ doms∩ doms∗ and rv = sv and r∗v = s∗v

for all v ∈ D.
We speak of a Λ-algebra of generalized operators on VF and denote it by (RVF ;D) if, in addition,

the following holds:
(viii) if r �� t and s �� t, then r ≈D s for all r, s, t ∈ R.

LEMMA 26. If (RVF ;D) is a Λ-algebra of generalized operators, then ≈D is a congruence
with respect to the operations defined on R. Moreover, for any r, r∗, s, s∗ ∈ R such that r �� r∗

and s �� s∗, r ≈D s implies r∗ ≈D s∗.
Proof. It is straightforward to verify that ≈D is reflexive and symmetric. We show that ≈D

is transitive. Let r ≈D s, s ≈D t and r �� r∗, t �� t∗. Then there is s∗ ∈ R for which s �� s∗. Let
D0 ∈ D witness r ≈D s under the conditions r �� r∗ and s �� s∗, and let D1 ∈ D witness s ≈D t

under the conditions s �� s∗ and t �� t∗. Since D is directed downward, there is D ∈ D such that
D ⊆ D0 ∩ D1. Then D witnesses r ≈D t under the conditions r �� r∗ and t �� t∗.

For any λ ∈ Λ, we verify that ≈D respects the unary operation λ·. Suppose that r ≈D s for some
r, s ∈ R. To prove that λr ≈D λs, let t �� λr and u �� λs. Let also D′ ⊆ domr∩domr∗∩doms∩doms∗

witness r ≈D s under the conditions r �� r∗ and s �� s∗. Then, in view of (c) and (viii), t ≈D λ∗r∗

and u ≈D λ∗s∗; in particular, there are D0r,D0s ∈ D such that tv = (λ∗r∗)v, for all v ∈ D0r, and
uv = (λ∗s∗)v for all v ∈ D0s. Moreover, according to (vi), there are D1r,D2r,D1s,D2s ∈ D for
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which the following hold:

D1r ⊆ domr ∩ dom(λr) and (λr)v = (rv)λ for all v ∈ D1r;

D2r ⊆ domr∗ ∩ dom(λ∗r∗) and (λ∗r∗)v = (r∗v)λ∗ for all v ∈ D2r;

D1s ⊆ doms ∩ dom(λs) and (λs)v = (sv)λ for all v ∈ D1s;

D2s ⊆ doms∗ ∩ dom(λ∗s∗) and (λ∗s∗)v = (s∗v)λ∗ for all v ∈ D2s.

The set D is directed downward, so there is D ∈ D such that D ⊆ D′ ∩
⋂
i<3

Dir ∩
⋂
i<3

Dis. For any

v ∈ D, we then have

(λr)v = (rv)λ = (sv)λ = (λs)v,

tv = (λ∗r∗)v = (r∗v)λ∗ = (s∗v)λ∗ = (λ∗s∗)v = uv.

Therefore, D witnesses λr ≈D λs under the conditions λr �� t and λs �� u.
The fact that ≈D respects + can be established in a similar (and even simpler) way using (a) and

(iii). Now we prove that ≈D respects ·. Let r0 ≈D s0 and r1 ≈D s1. To prove that r0 · r1 ≈D s0 · s1,
assume t �� r0 · r1 and u �� s0 · s1. Also let D0 ⊆ domr0 ∩ domr∗0 ∩ doms0 ∩ doms∗0 witness r0 ≈D s0

under the conditions r0 �� r∗0 and s0 �� s∗0, and let D1 ⊆ domr1 ∩ domr∗1 ∩ doms1 ∩ doms∗1 witness
r1 ≈D s1 under the conditions r1 �� r∗1 and s1 �� s∗1. Then, in view of (b) and (viii), t ≈D r∗1 · r∗0
and u ≈D s∗1 · s∗0; in particular, there are D0r,D0s ∈ D such that tv = (r∗1 · r∗0)v, for all v ∈ D0r,
and uv = (s∗1 · s∗0)v for all v ∈ D0s. Moreover, according to (v), there are D1r,D2r,D1s,D2s ∈ D

for which the following hold:

D1r ⊆ dom(r0 · r1) ∩ r−1
1 (domr0) ∩ domr1

and (r0 · r1)v = r0(r1v) for all v ∈ D1r;

D2r ⊆ dom(r∗1 · r∗0) ∩ (r∗0)
−1(domr∗1) ∩ domr∗0

and (r∗1 · r∗0)v = r∗1(r
∗
0v) for all v ∈ D2r;

D1s ⊆ dom(s0 · s1) ∩ s−1
1 (doms0) ∩ doms1

and (s0 · s1)v = s0(s1v) for all v ∈ D1s;

D2s ⊆ dom(s∗1 · s∗0) ∩ (s∗0)
−1(doms∗1) ∩ doms∗0

and (s∗1 · s∗0)v = s∗1(s
∗
0v) for all v ∈ D2s.

In view of (ii), there are D′
0,D

′
1 ∈ D for which D′

0 ⊆ r−1
1 (D0) and D′

1 ⊆ (r∗0)
−1(D1). In particular,

r1D
′
0 ⊆ D0 and r∗0D

′
1 ⊆ D1. Since D is directed downward, there is D ∈ D such that

D ⊆ D0 ∩ D1 ∩ D′
0 ∩ D′

1 ∩
⋂

i<3

Dir ∩
⋂

i<3

Dis.

For any v ∈ D, we then have

(r0 · r1)v = r0(r1v) = s0(r1v) = s0(s1v) = (s0 · s1)v,
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tv = (r∗1 · r∗0)v = r∗1(r
∗
0v) = s∗1(r

∗
0v) = s∗1(s

∗
0v) = (s∗1 · s∗0)v = uv.

Therefore, D witnesses r0 · r1 ≈D s0 · s1 under the conditions r0 · r1 �� t and s0 · s1 �� u.
Finally, suppose r �� r∗, s �� s∗, and r ≈D s. To prove compatibility with ��, let t �� r∗ and

u �� s∗. Then r ≈D t and s ≈D u by (viii). Since ≈D is transitive, t ≈D u. Then there is D ∈ D

which witnesses t ≈D u under the conditions t �� r∗ and u �� s∗. Thus D witnesses r∗ ≈D s∗ under
the same conditions. �

In Theorem 28, we will show that the factor structure R/≈D is always an ∗-Λ-algebra.

PROPOSITION 27. If RVF is a representation of the ∗-Λ-algebra R, then (RVF ; {V }) is a
Λ-algebra of generalized operators where r �� s if and only if s = r∗. In this case ≈D is the equality
relation.

THEOREM 28. Let (RVF ;D) be a Λ-algebra of generalized operators on an inner product
space VF . Then R/≈D is an ∗-Λ-algebra. Moreover, if R/≈D is ∗-regular, then it admits a faithful
representation within a closed subspace of some ultrapower of VF .

Remark 29. The proof of Theorem 28 is quite similar to that of Theorem 16, and we might
conjecture that R/≈D is a homomorphic image of a subalgebra of an ultraproduct of endomorphism
algebras of finite-dimensional subspaces of VF . A difficulty in proving this statement comes from
the fact that no ultrafilter ‘compatible’ with D is at hand. The conjecture turns out valid for
F = C (cf. proof of Thm. 2) but is doubtful in general. Nonetheless, the proof of Theorem 16 (and
Tyukavkin’s ideas behind it) gives some intuition for the following:

Proof of Theorem 28. Let T = End∗Λf (VF ). In this case, besides the left action of R on V ,
we also have the left action of T on V . The resulting 4-sorted structure is denoted by T,RVF . In
particular, T is an ∗-regular algebra by Proposition 15, while T VF is a faithful representation of
T . According to Proposition 15, T,RVF admits a modestly saturated elementary extension T̂ ,R̂V̂F̂ .
By Proposition 14, T̂ is an ∗-regular algebra and T̂ V̂F̂ is its faithful representation. For σ ∈ T̂ and
r ∈ R, put

σ ∼ r if, for any r∗ �� r in R, there is D ∈ D, D ⊆ domr ∩ domr∗, such that σv = rv and
σ∗v = r∗v for all v ∈ D.

In this case we say that D witnesses σ ∼ r under the condition r �� r∗. Put

S = {σ ∈ T̂ | σ ∼ r for some r ∈ R}.

Recall that the relation ≈D on R defined for an algebra of generalized operators is a congruence
relation by Lemma 26. Let [r] = {s ∈ R | s ≈D r}.

ASSERTION 30. The map g : S → R/≈D, g(σ) = [r], where σ ∼ r, is well defined.
Proof. Let Dr and Ds witness σ ∼ r and σ ∼ s under the conditions r �� r∗ and s �� s∗,

respectively. Since D is directed downward, there is D ∈ D such that D ⊆ Dr ∩Ds. For any v ∈ D,
we have rv = σv = sv and r∗v = σ∗v = s∗v, whence r ≈D s. �
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ASSERTION 31. In the language of ∗-Λ-algebras, S is a subalgebra of T̂ and g : S → R/≈D

is a homomorphism.
Proof. Assume σ ∼ r and τ ∼ s. In view of Lemma 26, it suffices to show that

(1)σ∗ ∼ r∗, (2)λσ ∼ λr, (3) τ + σ ∼ s + r, (4) τσ ∼ s · r.

Let Dr ∈ D witness σ ∼ r under the condition r �� r∗.
(1) We consider any t ∈ R with r∗ �� t. By (viii), we have t ≈D r, which is witnessed by

some D′ ∈ D under the conditions t �� r∗ and r �� r∗. As D is directed downward, there is
D ∈ D such that D ⊆ D′ ∩ Dr. Then D witnesses σ∗ ∼ r∗ under r∗ �� t since σ∗v = r∗v and
(σ∗)∗v = σv= rv = tv for all v ∈ D.

(2) We consider any t with λr �� t. By (c), we have λr �� λ∗r∗. This, in view of (viii), yields
t ≈D λ∗r∗, which is witnessed by some D0 ∈ D. According to (vi), there is D1 ∈ D such that
D1 ⊆ domr ∩ dom(λr) and (λr)v = (rv)λ for all v ∈ D1. Since D is directed downward, there is
D ∈ D with D ⊆ D0 ∩ D1 ∩ Dr. For all v ∈ D,

(λσ)v = (σv)λ = (rv)λ = (λr)v,

(λσ)∗v = (λ∗σ∗)v = (σ∗v)λ∗ = (r∗v)λ∗ = (λ∗r∗)v = tv;

i.e., D witnesses relation (2) under the condition λr �� t.
(3), (4) We assume that Ds ∈ D witnesses τ ∼ s under the condition s �� s∗. Let s + r �� t

for some t ∈ R. According to (a), we also have s + r �� s∗ + r∗, whence s∗ + r∗ ≈D t by (viii).
Let D′ witness the last relation under t �� s + r and s∗ + r∗ �� s + r. By virtue of (iii), there are
D0,D1 ∈ D such that D0 ⊆ doms ∩ domr ∩ dom(s + r), D1 ⊆ doms∗ ∩ domr∗ ∩ dom(s∗ + r∗), and
sv + rv = (s + r)v for all v ∈ D0, while s∗v + r∗v = (s∗ + r∗)v for all v ∈ D1. As D is directed
downward, there is D ∈ D with D ⊆ D′ ∩ D0 ∩ D1 ∩ Dr ∩ Ds. For all v ∈ D,

(τ + σ)v = τv + σv = sv + rv = (s + r)v,

(τ + σ)∗v = (τ∗ + σ∗)v = τ∗v + σ∗v = s∗v + r∗v = (s∗ + r∗)v = tv;

i.e., D witnesses relation (3) under the condition s + r �� t.
Let s · r �� t for some t ∈ R. According to (b), we also have s · r �� r∗ · s∗, whence r∗ · s∗ ≈D t

by (viii). Let D′ witness the last relation subject to the conditions t �� s · r and r∗ · s∗ �� s · r. By
virtue of (v), there are D0,D1 ∈ D such that:

D0 ⊆ dom(s · r) ∩ r−1(doms) ∩ domr;

D1 ⊆ dom(r∗ · s∗) ∩ (s∗)−1(domr∗) ∩ doms∗

and
(s · r)v = s(rv) for all v ∈ D0;
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(r∗ · s∗)v = r∗(s∗v) for all v ∈ D1.

Since D is directed downward, there is D′ ∈ D with D′ ⊆ Dr ∩Ds ∩D0 ∩D1. Moreover, according
to (ii), there is D ∈ D such that D ⊆ D′∩ r−1(D′)∩ (s∗)−1(D′). Therefore, D ⊆ Dr and rD ⊆ Ds.
Similarly, D ⊆ Ds and s∗D ⊆ Dr.

Thus, for all v ∈ D,

(τσ)v = τ(σv) = τ(rv) = s(rv) = (s · r)v,

(τσ)∗v = (σ∗τ∗)v = σ∗(τ∗v) = σ∗(s∗v) = r∗(s∗v) = (r∗ · s∗)v = tv;

i.e., D witnesses relation (4) under the condition s · r �� t.
Obviously, 0 ∼ 0R and 1 ∼ 1R by (iv). �

ASSERTION 32. The map g is surjective.
Proof. Let r �� r∗ in R. By (vii), there is D ∈ D such that D ⊆ domr ∩ domr∗ and 〈x | r∗y〉 =

〈rx | y〉 for all x, y ∈ D. We show that there is σ ∈ T̂ for which σv = rv and σ∗v = r∗v with
all v ∈ D. Let v1, . . . , vn ∈ D and U be the subspace of VF spanned by v1, . . . , vn. Consider the
finite-dimensional subspace W = U + rU + r∗U of V and the F -linear maps

ϕ0 : U → W, ϕ0v = rv, and ψ0 : U → W, ψ0v = r∗v.

In particular, 〈x | ψ0y〉 = 〈ϕ0x | y〉 for all x, y ∈ U . Choose a basis u1, . . . , uk for U and extend it
to a basis u1, . . . , um for W . There are unique maps ϕ,ψ ∈ End∗Λ(WF ) such that:

〈ϕui | uj〉 = 〈ui | ψuj〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈ui | ψ0uj〉 for j � k;

〈ϕ0ui | uj〉 for i � k;

0 otherwise.

It follows that ψ = ϕ∗, ϕ|U = ϕ0, and ψ∗|U = ψ0. If we consider the orthogonal projection ρ = πW

we obtain ρ ∈ T . Moreover,

σ = ρϕρ ∈ T, σ∗ = ρψρ ∈ T ; σv = ϕ0v = rv, σ∗v = ψ0v = r∗v

for all v ∈ U . Now, consider a set of formulas of the form

Σ(ξ) = {(ξv = r v) & (ξ∗v = r∗ v) | v ∈ D},

where ξ is a variable of sort T . If Ψ(ξ) ⊆ Σ(ξ) is finite, then only finitely many parameters
vi, vi ∈ D, occur in Ψ(ξ) and, as shown above, there is σ ∈ T for which Ψ(σ) holds in RVF . Since

T̂ ,R̂V̂F̂ is modestly saturated over T,RVF , there is σ ∈ T̂ such that Σ(σ) holds in T̂ ,R̂V̂F̂ ; i.e. σv = rv

and σ∗v = r∗v for all v ∈ D. Hence σ ∼ r. �

ASSERTION 33. For any v ∈ V , there is a unique projection π̂v ∈ T̂ such that π̂vv = v, and
for any w ∈ V̂ , there is λ ∈ F̂ with π̂vw = λv.
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Proof. There is a unique projection πv ∈ T for which πvv = v and imπv is the subspace
spanned by v—namely, the orthogonal projection onto the subspace spanned by v. The required
result now follows from the fact that T̂ ,R̂V̂F̂ is an elementary extension of T,RVF . �

ASSERTION 34. We have σ ∈ ker g if and only if for any t �� 0R there is a set D ∈ D such
that σπ̂v = 0 = σ∗π̂v for all v ∈ D, where π̂v is as in Assertion 33.

Proof. Assume that σ ∈ ker g and t �� 0R. Then σ ∼ 0R is witnessed by some D0 ∈ D under
the condition 0R �� t. On the other hand, according to (d) and (viii), we have t ≈D 0R. Let the last
relation be witnessed by D1 ∈ D under the conditions 0R �� 0R and t �� 0R. Then there is D ∈ D

such that D ⊆ D0 ∩ D1 and

(∗) σv = 0Rv = tv = σ∗v for all v ∈ D.

Since 0Rv = 0, (∗) is equivalent to

(∗∗) σπ̂v = 0 = σ∗π̂v for all v ∈ D.

Conversely, consider any t �� 0R and assume that (∗∗) holds for some D ∈ D. By (d) and (viii),
t ≈D 0R is witnessed by some D0 ∈ D. Then σ ∼ 0R is witnessed by any D′ ∈ D for which
D′ ⊆ D ∩ D0 provided that t �� 0R. �

ASSERTION 35. The ideal kerg is regular.
Proof. Since T is ∗-regular, T̂ is also ∗-regular. Therefore, any σ ∈ kerg has a pseudoinverse

σ+ in T̂ . In view of Assertion 34 and Proposition 9, σ ∈ kerg implies σ+ ∈ kerg. �

We come back to the proof of Theorem 28. The first statement of the theorem follows from
Assertions 31 and 32. If img = R/≈D is ∗-regular, then so is S by Lemma 6. Moreover, since
T is faithfully represented in VF , T̂ is faithfully represented in V̂F̂ by Prop. 14. Therefore,
the substructure S is also faithfully represented in V̂F̂ , while the faithful representability of its
homomorphic image R/≈D within a closed subspace U of an ultrapower ṼF̃ of V̂F̂ follows from
Prop. 25. Finally, we observe that the modestly saturated extension T̂ ,R̂V̂F̂ can be chosen isomorphic
to an ultrapower of T,RVF in view of Prop. 15. In particular, ṼF̃ is isomorphic to an ultrapower of
VF by Prop. 13(i). Composing the representation of R/≈D in UF̃ with this isomorphism, we obtain
a faithful representation of R/≈D in a closed subspace of an ultrapower of VF . �

5. RINGS OF QUOTIENTS

We refer the reader to [21, Chap. 3] for rings of quotients. Note, however, that we will deal
with right quotients. Let A be a Λ-algebra. Denote by Ir(A) the set of all right ideals I in A, and
by Hom(I,A) the set of all linear maps f : IA → AA. A right ideal I ∈ Ir(A) is dense (in A) if, for
any ideal J ⊇ I in Ir(A) and any map f ∈ Hom(J,A), f |I = 0 implies f = 0.

A subset E of Ir(A) is a set of supports (for A) if the following hold:
(i) every member of E is dense (in A);
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(ii) A ∈ E and I ∩ J ∈ E for any I, J ∈ E;
(iii) f−1(J) ∈ E for any I, J ∈ E and any f ∈ Hom(I,A).
Note that (iii) applies in particular to the left multiplication la : A → A, la(x) = ax, for any

a ∈ A, including the special case a = λ1A, where lλ1A
: x �→ λx. Furthermore, every ideal I ∈ Ir

is invariant under λ, and we put λf = lλ1A
◦ f = f ◦ (lλ1A

|I) for f ∈ Hom(I,A). The following is
well known:

LEMMA 36. The set E0 of all dense right ideals in A is a set of supports for A.
Given a set E of supports, we define an algebra R(A,E) of abstract quotients over E as follows:

R(A,E) =
{
(f, I) | I ∈ E, f ∈ Hom(I,A)

}
.

Endow then R(A,E) with operations of a pre-Λ-algebra, setting

(f, I) + (g, J) = (f |K + g|K, K), where K = I ∩ J ;

λ(f, I) =
(
(λf)|K, K

)
, where K = λ−1(I);

(f, I) · (g, J) =
(
(f ◦ g)|K, K

)
, where K = g−1(I);

0R = (0, A), 1R = (idA, A).

A binary relation ≡E on R(A,E) is defined thus:

(f, I) ≡E (g, J) if f |K = g|K for some K ∈ E with K ⊆ I ∩ J.

The following facts either are well known or can be proved readily.

PROPOSITION 37. Let A be a Λ-algebra and E a set of supports for A. Then:
(i) (f, I) ≡E (g, J) if and only if f |(I ∩ J) = g|(I ∩ J);
(ii) ≡E is an equivalence relation on R(A,E), the factor structure with respect to which is

denoted by Q(A,E), and the canonical homomorphism by πE;
(iii) the map ω : A → R(A,E), ω(a) = (la, A), is a Λ-algebra embedding and ≡E restricts to an

identity relation on ω(A); in particular, πE ◦ ω is a Λ-algebra embedding;
(iv) (f, I) · (la, A) ∈ ω(A) if and only if a ∈ I, in which case (f, I) · (la, A) = (lf(a), A);
(v) R(A,E) is a subalgebra of R(A,E0) and ≡E is the restriction of ≡E0

;
(vi) Q(A,E0) = Qmax(A), where Qmax(A) is the maximal ring of right quotients of A;
(vii) πE ◦ ω embeds A into Qmax(A).
Recall that the set of projections of an ∗-ring is ordered by

e ≤ e′ if e′e = e, which is equivalent to ee′ = e.

THEOREM 38. Let A be an ∗-Λ-algebra, E be a set of supports for A, and R = R(A,E) be
such that:

(a) for any I ∈ E, there is an upward directed set PI of projections in I with PIA =
⋃

e∈PI

eA ∈ E;
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(b) an involution on A extends to Q(A,E);
(c) there is a faithful representation ε for A in the inner product space VF .
Then there is an algebra (RVF ;D) of generalized operators for which R/≈D and Q(A,E) are

isomorphic as ∗-Λ-algebras.
Proof. To any I ∈ E we assign a certain upward directed set PI of projections which satisfies

(a). The action of R on VF is defined by setting

dom(f, I) = D(I) =
⋃

e∈PI

imε(e),

(f, I)v = ε(f(e))(v) if v ∈ imε(e), e ∈ PI .

Notice that ε(e)(v) = v for any v ∈ imε(e) since e is a projection.

ASSERTION 39. For any (f, I) ∈ R, the action of (f, I) is well defined.
Proof. Assume that v ∈ imε(e) ∩ imε(e′) for some e, e′ ∈ PI . Since PI is directed, there is a

projection e′′ ∈ PI such that e′′e = e and e′′e′ = e′. Then imε(e), imε(e′) ⊆ imε(e′′) and

ε
(
f(e)

)
(v) = ε

(
f(e′′e)

)
(v) = ε

(
f(e′′)e

)
(v) =

(
ε
(
f(e′)

)
◦ ε(e)

)
(v)

= ε
(
f(e′′)

)(
ε(e)(v)

)
= ε

(
f(e′′)

)
(v).

Similarly, ε
(
f(e′)

)
(v) = ε

(
f(e′′)

)
(v), i.e., ε

(
f(e)

)
(v) = ε

(
f(e′)

)
(v). �

ASSERTION 40. For any I ∈ E, the set D(I) is an F -linear subspace of VF , and

(f, I) : dom(f, I) → V

is an F -linear map for any (f, I) ∈ R.
Proof. Let u, v ∈ D(I) and λ ∈ F . As PI is directed, there is e ∈ PI such that u, v ∈ imε(e).

As imε(e) is a subspace of V , we have u + v, uλ ∈ imε(e). Using the fact that ε is a representation,
we obtain

(f, I)(u + v) = ε
(
f(e)

)
(u + v) = ε

(
f(e)

)
(u) + ε

(
f(e)

)
(v) = (f, I)u + (f, I)v,

(f, I)(uλ) =
(
ε
(
f(e)

)
(u)

)
λ =

(
(f, I)u

)
λ. �

For (f, I), (g, J) ∈ R, put

(f, I) �� (g, J) if πE(g, J) =
(
πE(f, I)

)∗
.

Since πE is a pre-Λ-algebra homomorphism, and ∗ is an involution on Q(A,E), we conclude that
conditions (a)-(c) in the definition of a pre-∗-Λ-algebra hold. Condition (d) is satisfied in the obvious
way. Put

D = {D(I) | I ∈ E}.
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ASSERTION 41. For any (f, I), (g, J) ∈ R, the conditions (f, I) ≈D (g, J) and (f, I) ≡E

(g, J) are equivalent.
Proof. Assume that (f, I) ≈D (g, J) is witnessed by D(K) for an ideal K ∈ E under some

conditions. Since K ∩ I ∩ J ∈ E, we may assume that K ⊆ I ∩ J . Then for any e ∈ PK and any
v ∈ imε(e) we have

ε
(
f(e)

)
(v) = (f, I)v = (g, J)v = ε

(
g(e)

)
(v).

Hence, for any u ∈ V , the following hold:

ε
(
f(e)

)
(u) = ε

(
f(e2)

)
(u) = ε

(
f(e)e

)
(u) = ε

(
f(e)

)(
ε(e)(u)

)

= ε
(
g(e)

)(
ε(e)(u)

)
= ε

(
g(e)e

)
(u) = ε

(
g(e2)

)
(u) = ε

(
g(e)

)
(u).

This, combined with the fact that ε is a faithful representation, yields f(e) = g(e). Then for any
a ∈ eA we obtain

f(a) = f(ea) = f(e)a = g(e)a = g(ea) = g(a).

According to (a), PKA =
⋃

e∈p(K)

eA is a dense right ideal. Since f |PKA = g|PKA, we conclude that

f |K = g|K. Hence (f, I) ≡E (g, J).
Conversely, assume that πE(f, I) = πE(g, J) and consider arbitrary (h0,K0), (h1,K1) ∈ R for

which (h0,K0) �� (f, I) and (h1,K1) �� (g, J) in R. By definition, this means that

πE(h0,K0) =
(
πE(f, I)

)∗ =
(
πE(g, J)

)∗ = πE(h1,K1).

Thus, for any ideal K ∈ E with K ⊆ I ∩J ∩K0∩K1, we have f |K = g|K and h0|K = h1|K. Then
D(K) witnesses (f, I) ≈D (g, J) under the given conditions. �

ASSERTION 42. (RVF ;≈D) Is an algebra of generalized operators.
Proof. For any (f, I) ∈ R, we have D(I) = dom(f, I), and so condition (i) in the definition

of an algebra of generalized operators holds. If (f, I) ∈ R and D(J) ∈ D for some J ∈ E, then
K = f−1(PJA) ∈ E by (a) and by condition (iii) in the definition of a set of supports for A. Let
v ∈ imε(e) for some e ∈ PK . Since K ⊆ I, we obtain f(e) ∈ PJA. According to (a), f(e) = e′f(e)
for some e′ ∈ PJ . Therefore,

(f, I)v = ε
(
f(e)

)
(v) = ε

(
e′f(e)

)
(v) = ε(e′)

(
ε
(
f(e)

)
(v)

)
∈ imε(e′) ⊆ D(J).

Hence (f, I)D(K) ⊆ D(J) and condition (ii) holds.
Suppose that (f, I), (g, J) ∈ R and K = I∩J . Then K ∈ E and D(K) ⊆ dom(f, I)∩dom(g, J)∩

dom
(
(f, I) + (g, J)

)
. Moreover, for any e ∈ PK and any v ∈ imε(e), we have

(
(f, I) + (g, J)

)
v = ε

(
(f + g)(e)

)
(v) = ε

(
f(e) + g(e)

)
(v)

=
(
ε
(
f(e)

)
+ ε

(
g(e)

))
(v) = ε

(
f(e)

)
(v) + ε

(
g(e)

)
(v)

= (f, I)v + (g, J)v.
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Thus (iii) holds.
Consider (f, I), (g, J) ∈ R. As shown above, K = g−1(PIA) ∈ E and (g, J)D(K) ⊆ D(I).

Therefore, D(K) ⊆ dom(g, J) ∩ (g, J)−1
(
dom(f, I)

)
= dom

(
(f, I) · (g, J)

)
. Moreover, by (a), for

any e ∈ PK and any v ∈ imε(e), there is e′ ∈ PI with g(e) = e′g(e). Thus, for any v ∈ imε(e),
(
(f, I) · (g, J)

)
v = ε

(
(f ◦ g)(e)

)
(v) = ε

(
f
(
g(e)

))
(v) = ε

(
f
(
e′g(e)

))
(v)

= ε
(
f(e′)g(e)

)
(v) = ε

(
f(e′)

)
ε
(
g(e)

)
(v) = (f, I)

(
(g, J)v

)
,

and so (v) holds. It is clear that (iv) holds as well.
We verify (vi). Suppose λ ∈ Λ and K = λ−1(I) ∩ I. Then K ∈ E by conditions (ii) and (iii) in

the definition of a set of supports for A. For any e ∈ PK , we have λe = λe2 = e(λe). Thus, for any
v ∈ imε(e), the following hold:

(
λ(f, I)

)
v = ε

(
(λf)(e)

)
(v) = ε

(
f(λe)

)
(v) = ε

(
f(e · λe)

)
(v)

= ε
(
f(e) · λe

)
(v) = ε

(
f(e)

)
ε(λe)(v) = ε

(
f(e)

)(
ε(e)(v)λ

)

= ε
(
f(e)

)
(vλ) = ε

(
f(e)

)
(v)λ =

(
(f, I)v

)
λ.

We verify (vii). Assume (f, I) �� (g, J). According to Proposition 37(iv), ω(f(e)) = (f, I) ·ω(e)
for any e ∈ PI . By (b), the map πEω is an ∗-homomorphism, whence

πEω
(
f(e)∗

)
= πE

(
ω(f(e))

)∗ =
(
πE(f, I) · πEω(e)

)∗ = πEω(e)∗ ·
(
πE(f, I)

)∗

= πEω(e) · πE(g, J) = πE

(
ω(e) · (g, J)

)
= πE(le ◦ g, J).

Therefore, there is K0 ∈ E such that K0 ⊆ J , and for all a ∈ K0,

e · g(a) = (le ◦ g)(a) = lf(e)∗(a) = f(e)∗ · a.

Let K = K0 ∩ I ∩ J . Then K ∈ E and D(K) ⊆ D(I) ∩ D(J) = dom(f, I) ∩ dom(g, J). Suppose
u, v ∈ D(K). According to (a), there is a projection e ∈ PK such that u, v ∈ imε(e). Since ε is a
representation, the following hold:

〈(f, I)u | v〉 = 〈ε
(
f(e)

)
(u) | v〉 = 〈u | ε

(
f(e)

)∗(v)〉 = 〈u | ε
(
f(e)∗

)
(v)〉

= 〈u | ε
(
f(e)∗

)
ε(e)(v)〉 = 〈u | ε

(
f(e)∗ · e

)
(v)〉

= 〈u | ε
(
e · g(e)

)
(v)〉 = 〈u | ε(e)ε

(
g(e)

)
(v)〉

= 〈u | ε(e∗)ε
(
g(e)

)
(v)〉 = 〈ε(e)(u) | ε

(
g(e)

)
(v)〉

= 〈u | ε
(
g(e)

)
(v)〉 = 〈u | (g, J)v〉.

If (g0, J0) �� (f, I) �� (g1, J1), then πE(g0, J0) =
(
πE(f, I)

)∗ = πE(g1, J1), hence (g0, J0) ≡E

(g1, J1), and so (viii) follows from Assertion 41. �

The above results show that (RVF ;D) is an algebra of generalized operators. In view of
Assertion 41, R/≈D

∼= Q(A,E). �
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6. PROOFS FOR THE MAIN RESULTS

The following concepts are borrowed from [22, 10]. Let A be a ring. For any X ⊆ A, put

Annr(X) = {a ∈ A | Xa = 0}; Annl(X) = {a ∈ A | aX = 0}.

We call these sets respectively the right annihilator and the left annihilator of X. An ∗-ring A

is a Baer (Rickart) ring if, for any (singleton) subset X of A, there is a projection e ∈ A such
that Annr(X) = eA. In this event the left annihilator of X is also generated by a projection. If,
in addition, A is a C∗-algebra, then A is called an AW ∗-algebra (a Rickart C∗-algebra, resp.).
According to [10, 14.22, 14.24], this definition of an AW ∗-algebra is equivalent to one given in [23].
Every von Neumann algebra is an AW ∗-algebra. An ∗-ring A is said to be finite (in [10], such is
referred to as ∗-finite) if xx∗ = 1 implies x∗x = 1 for all x ∈ A. A ring A has sufficiently many
projections if any proper right ideal contains a nonzero projection. We say that A satisfies the
condition LP ∼ RP (written LP ∼∗ PR in [10]) if, for any element x ∈ A and any projections
e, f ∈ A with Annr(x) = (1 − e)A and Annl(x) = A(1 − f), there is y ∈ A for which e = yy∗ and
f = y∗y.

A right ideal I of a ring A is essential or large in J ⊇ I if I ∩ K �= 0 for any ideal K ∈ Ir(A)
such that 0 �= K ⊆ J . Obviously, if I is essential in A then any ideal J ⊇ I is also essential in A.
The following lemma is well known and its proof is straightforward.

LEMMA 43. Let I, J ∈ Ir(A) be such that I ⊆ J and J is essential in A. Then I is essential
in J if and only if I is essential in A.

Recall that A is nonsingular if Annr(x) is essential iff x = 0. Moreover, for any nonsingular
ring, the concept of being dense in A for a right ideal coincides with its being essential in A. Every
Rickart ∗-ring is obviously nonsingular.

PROPOSITION 44. Let A and Q(A) satisfy one of the following:
(i) A is a finite Rickart C∗-algebra and Q(A) is its classical ring of right quotients;
(ii) A is an ∗-Λ-algebra, which is a finite Baer ∗-ring satisfying LP ∼ RP and having sufficiently

many projections, and Q(A) is its maximal ring of right quotients.
Then there is a set E of supports such that Q(A,E) is isomorphic to Q(A) and satisfies conditions

(a) and (b) of Theorem 38, which turns Q(A,E) into an ∗-regular Λ-algebra. Moreover, in both
cases an involution on A extends uniquely to an involution on Q(A); endowed with this involution,
Q(A) is ∗-regular.

Proof. (i) Following [7, p. 177], we assume that E consists of all right ideals I ∈ E0 for which
there is a countable set X ⊆ I with

∑
x∈X

xA ∈ E0. According to [7, Prop. 2.1] and Lemma 43, there

is a countable orthogonal set P ⊆ I of projections such that the right ideal J =
∑
e∈P

eA is essential

in A. Let
PI = {e0 + . . . + en | n < ω, e0, . . . , en ∈ P}.
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Then PI is a directed set of projections and J =
⋃

e∈PI

eA ∈ E0. Therefore, Theorem 38(a) holds.

Moreover, conditions (i)-(iii) in the definition of a set of supports are satisfied in view of [7,
Lemmas 2.3, 2.4], and Q(A,E) is regular by virtue of [7, Lemma 2.7]. Furthermore, in [7, Thm. 2.1],
an ∗-regular subring R of QH(A) = Q(A,E) was constructed in such a way that an involution on
R extends an involution on A. Later, in [8, p. 129], it was shown that R = QH(A) is the classical
ring of right quotients of A. The uniqueness of the extension is obvious in this case.

(ii) Let E = E0. According to Lemma 36, E0 is a set of supports. The proof in [4, Cor. 4.10] (see
also [3, Lemma 5]), together with [4, Prop. 4.11], ensures that Theorem 38(a) holds. In view of [23;
3, Thm. 2], Q(A,E0) is ∗-regular with involution extending an involution on A. The uniqueness of
this extension follows from [10, Cors. 21.22, 21.27] (see also [9]). �

COROLLARY 45. Let A and Q(A) be as in Proposition 44 and Λ = F = C be as in case
(i). For any faithful representation ε of A within a Hilbert space VC, Q(A) is isomorphic to an
∗-C-algebra R/≈D for some C-algebra (RVC;D) of generalized operators on VC.

Proof of Theorem 2. (i) In view of the GNS-construction (Prop. 3), A has a faithful
representation in some Hilbert space VC. By Corollary 45, Q(A) ∼= R/≈D for some algebra (RVC;D)
of generalized operators. Theorem 28 provides a faithful representation for (RVC;D) in some closed
subspace U of an ultrapower V̂

Ĉ
= V I

C
/U.

(ii) By Theorem 16, Q(A) is a homomorphic image of a subalgebra of an ultraproduct
∏

k∈K

End∗Λ
(
(Uk)Ĉ

)
/W, where dimUk = nk < ω for all k ∈ K. In view of Propositions 8 and 13(ii),

End∗Λ
(
(Uk)Ĉ

)
is isomorphic to (Cnk×nk)I/U for any k ∈ K. Since all these algebraic constructions

respect pseudoinversion, we are done.
(iii) Follows from (ii) and Props. 11 and 12. �

Finally, we recall some facts concerning finite AW ∗-algebras. (As usual, such an algebra is
denoted by A.) An ∗-regular extension QB(A) for A was constructed in [2]. In [3, 4], it was shown
that QB(A), being a ring, is the maximal ring of right quotients of A. In this event, therefore, the
conditions of case (ii) in Proposition 44 are satisfied. Indeed, according to [10, 14.31], A satisfies
LP ∼ RP (see also [23, Thm. 5.2]). In view of [23, Lemma 2.2], A has sufficiently many projections.

On the other hand, in [5, proof of Thm. 10], it was observed that, for a finite AW ∗-algebra,
the construction of QB(A) yields the classical ring of right quotients of A. We outline a proof in
the present framework.

As noted in [8, p. 129], QH(A) consists of all those elements x of the maximal ring QM (A)
of right quotients for which there is an orthogonal sequence of projections ek such that xek ∈ A

for all k and J =
∑
k

ekA is essential in A. The elements x of QB(A) (which is QM (A) as a ring)

are represented by so-called operators with closure (OWCs), which, by definition, are sequences of
the form (xn, fn), where xn ∈ A and xnfm = xmfm and x∗

nfm = x∗
mfm for all m < n. Here the

sequence fn forms a so-called strongly dense domain (SDD), i.e., an ascending chain of projections
in A with join 1. Note that there is an orthogonal sequence en of projections with joins fn =

∑
k�n

ek,
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whence xnek = xnfkek = xkek and x∗ek = x∗ek for n � k. From [2, proof of Thm. 2.1], it follows
immediately that xek ∈ QB(A) is represented by an OWC (xnek, gn) which is equivalent to an OWC
(xkek, hn), where hn = 0, for n < k, and hn = 1 for n � k. Thus xek ∈ A for any k. Therefore,
to derive QB(A) ⊆ QH(A), it suffices to show that J =

∑
k

ekA is essential in A. Consider a right

ideal K �= 0 in A. Then there is a nonzero projection e ∈ K and the continuity of L(A) yields
e = e ∩

∨
k ek = e ∩

∨
k fk =

∨
k(fk ∩ e), whence e = fk ∩ e = efk ∈ J ∩ K for some k.

7. CONCLUSIONS

Obviously, our approach bears some similarities to the method developed in [25] for proving
direct finiteness of the group ring D(G) of a (sofic) group, where D is any division ring. The idea is
to use ultralimits to construct a pseudorank function N on the direct product E of endomorphisms
rings of D-vector spaces generated by finite subsets of G and to embed D(G) into the continuous
regular ring E/kerN .

More specifically, we may ask to what extent we could replace, in the special case of von
Neumann algebras, the model-theoretic ultraproducts by von Neumann algebra ultraproducts
(see, e.g., [26]), and thus gain some insight into more serious problems concerning these. Note,
however, that the saturation property of model-theoretic ultraproducts appears to be crucial for
our approach.

There is a great variety of results on Baer ∗-rings satisfying certain conditions which imply
∗-regularity of maximal rings of quotients (see, e.g., [3-5, 9, 10]); (i) in Proposition 44 is one of
them. In contrast, results on representations of ∗-rings within inner product spaces appear to be
located at two extremes: the GNS-construction on the ‘continuous side’ and the results on rings
with maximal right ideals (cf. [27]) on the ‘discrete side.’ It would be desirable to have results
based on a weaker (lattice-theoretic) form of continuity.

In a subsequent work, we will use the results of the present paper for a detailed discussion
of classes of ∗-algebras and modular ortholattices representable within inner product spaces over
∗-fields elementarily equivalent to R and C, respectively, including solvability and complexity of
certain decision problems for these classes. In particular, it will be shown that any algebra Q(A)
such as in Theorem 1 (as well as its projection ortholattice) has a decidable equational theory.
This is one more indication that algebras of the form Q(A) are very special members of the class
of all ∗-regular rings. (Recall that Q(A) is directly finite since it has a regular extension [7, 9].)
The question remains open as to the extent to which direct finiteness is inherited by homomorphic
images of subalgebras of (model-theoretic) ultraproducts of matrix ∗-algebras C

n×n.
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