
Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

doi: 10.14232/actasm-015-283-5 Acta Sci. Math. (Szeged)
82 (2016), 395–442

Linear representations of regular rings and

complemented modular lattices with involution

Christian Herrmann and Marina Semenova∗

Dedicated to the memory of Tamás Schmidt

Communicated by G. Czédli

Abstract. Faithful representations of regular ∗-rings and modular comple-

mented lattices with involution within orthosymmetric sesquilinear spaces are

studied within the framework of Universal Algebra. In particular, the corre-

spondence between classes of spaces and classes of representable structures is

analyzed; for a class S of spaces which is closed under ultraproducts and non-

degenerate finite-dimensional subspaces, the class of representable structures is

shown to be closed under complemented [regular] subalgebras, homomorphic im-

ages, and ultraproducts. Moreover, this class is generated by its members which

are isomorphic to subspace lattices with involution [endomorphism ∗-rings, re-

spectively] of finite-dimensional spaces from S. Under natural restrictions, this

result is refined to a 1-1-correspondence between the two types of classes.

1. Introduction

For ∗-rings, there is a natural and well-established concept of representation in a

vector space VF endowed with an orthosymmetric sesquilinear form: a homomor-

phism ε into the endomorphism ring of VF such that ε(r∗) is the adjoint of ε(r).

Famous examples of [faithful] representations are due to Gel’fand–Naimark–Segal
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(C∗-algebras in Hilbert space) and Kaplansky (primitive ∗-rings with a minimal

right ideal), cf. [2, Theorem 4.6.6].

[Faithful] representability of ∗-regular rings within anisotropic inner product

spaces has been studied by Micol [44] and used to derive results in the universal

algebraic theory of these structures. For the ∗-regular rings of classical quotients

of finite Rickart C∗-algebras (cf. Ara and Menal [1]), existence of representations

has been established in [30]. For complemented modular lattices with involution

a �→ a′ (CMILs for short), an analogue of the concept of representation is a lattice

homomorphism ε, preserving the bounds 0 and 1, into the lattice of all subspaces

such that ε(a′) is the subspace orthogonal to ε(a) (cf. Niemann [46]). The latter

has been considered in the context of synthetic orthogeometries in [22], continuing

earlier work on anisotropic geometries and modular ortholattices [25–27]. Primary

examples are atomic CMILs associated with irreducible desarguean orthogeometries

and those CMILs which arise from lattices of principal right ideals of representable

regular ∗-rings.

The [proofs of the] main results of these studies relate closure properties of

a class S of spaces with closure properties of the class R of algebraic structures

[faithfully] representable within spaces from S. In particular, for a class S closed

under ultraproducts and non-degenerate finite-dimensional subspaces, one has R
closed under ultraproducts, homomorphic images, and regular [complemented, re-

spectively] subalgebras. Moreover, with an approach due to Tyukavkin [50], it has

been shown that R is generated, with respect to these operators, by the endomor-

phism ∗-rings [by the subspace lattices with involution U �→ U⊥, respectively] of

finite-dimensional spaces from S (cf. Theorem 11.3). Conversely, any class R of

structures generated in this way has its members representable within S.

The first purpose of the present paper is to extend these results to regular

∗-rings on one hand, to representations within orthosymmetric sesquilinear spaces

on the other — thus allowing regular rings with an involution which may have

r∗r = 0 for some r �= 0, that is regular ∗-rings which are not ∗-regular; for example,

∗-rings associated with finite-dimensional spaces having some isotropic points. The

second one is to give a more transparent presentation by dealing with types of

classes naturally associated with representations in linear spaces. We call a class

of structures R as above an ∃-semivariety of regular ∗-rings [CMILs] and we call

S a semivariety of spaces. The quantifier ‘∃’ refers to the required existence of

quasi-inverses [complements, respectively]. In this setting, the above-mentioned

relationship between classes of spaces S and classes of representable structures

R can be refined to a 1-1-correspondence (cf. Theorem 11.6). Also, we observe

that R remains unchanged if S is enlarged by forming two-sorted substructures,
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corresponding to the subgeometries in the sense of [22], (cf. Theorem 11.3). We

also provide a useful condition on S which implies that R is an ∃-variety, i.e. that

R is also closed under direct products (see Proposition 12.1). For reference in later

applications, e.g. to decidability results refining those of [23], we consider ∗-rings

which are also algebras over a fixed commutative ∗-ring.

In the context of synthetic orthogeometries, the class R of representable struc-

tures is an ∃-variety if S is also closed under orthogonal disjoint unions. No such

natural construction is available for sesquilinear spaces. The alternative, chosen

by Micol [44], was to generalize the concept of faithful representation to residually

faithful representation; thus, associating with any semivariety of spaces an ∃-variety

of generalized representables. We derive these results in our more general setting

(cf. Proposition 12.3).

We first present background material on sesquilinear spaces (Section 2), rings

(Sections 3–4), and lattices (Sections 5,7). Synthetic orthogeometries are included

(Section 6) to make use of the results in [22]. A key to results on representations is

to view them as multi-sorted structures (Section 8). The Universal Algebra point

of view and the class operators are introduced in Section 9. The basic reduction to

finite dimensions is in Section 10, applications to correspondences between classes in

Section 11. Section 12 relates these to Micol’s more general concept of representation,

cf. [44]. In Sections 8–12 results on rings and on lattices are presented in parallel.

Proofs of the former do not depend on the latter. Though, the other way round, we

have to use basic results on lattices of principal right ideals of regular rings.

We thank the referee for a lot of corrections and improvements which, as we

hope, make the paper more widely accessible.

2. ε-Hermitian spaces

We first define the linear structures providing representations both for lattices and

rings with involution. For any division ring F endowed with an anti-automorphism ν

(we write λν instead of ν(λ)), we consider sesquilinear spaces which are [right] vector

spaces VF endowed with a scalar product or a sesquilinear form 〈 | 〉 : V ×V → F ;

that is, for all u, v, w ∈ V and all λ, μ ∈ F , one has

〈u | v + w〉=〈u | v〉+ 〈u | w〉, 〈u+ v | w〉=〈u | w〉+ 〈v | w〉, 〈uλ | vμ〉=λν〈u | v〉μ.

Our basic reference is [20, Chapter I] (though, we use “sesquilinear space” in a

more general meaning). Observe that from a right vector space VF , one obtains a

left vector space FV putting λv = vλν−1

. By this, a sesquilinear form on VF with

respect to ν, as defined above, turns out a sesquilinear form on FV , in the sense
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of [20], with respect to ν−1. This gives access to results of [20] in the left vector

space setting (in particular, the ε-hermitean forms of [20] will correspond to the

ε-hermitian forms defined, below). Introductions to orthogonal geometry in infinite

dimension are also given in [39], [12, Chapter 14], cf. [33, Chapter IV], [31, §1.21],

[2, §4.6].

Given a second sesquilinear space V ′
F ′ with an anti-automorphism ν′ and a

sesquilinear form 〈 | 〉′, we have the following concepts relating it to the first: An

isomorphism between the sesquilinear spaces VF and V ′
F ′ is a bijection ω : V → V ′

which is an α-semilinear map VF → V ′
F ′ for some isomorphism α : F → F ′, such

that α ◦ ν = ν′ ◦ α and 〈ω(v) | ω(w)〉′ = α(〈v | w〉) for all v, w ∈ V . The second

space arises from the first by scaling with μ ∈ F if F ′ = F as division rings and

VF = V ′
F ′ as vector spaces and if, in addition, μ �= 0, λν′

= μλνμ−1 for all λ ∈ F

and 〈u | v〉′ = μ〈u | v〉 for all u, v ∈ V . Finally, VF and V ′
F ′ are similar if one arises

from the other by composition of isomorphisms and scalings. It is easy to see that

any similitude can be expressed as an isomorphism followed by a scaling.

Since we consider only one anti-automorphism ν on F and only one scalar

product on VF at a time, we use F to denote the division ring together with the

anti-automorphism ν (and write λ∗ instead of λν) and VF to denote the space

endowed with the scalar product.

A sesquilinear space VF �= 0 is non-degenerate if u = 0 whenever 〈u | v〉 = 0

for all v ∈ V or 〈v | u〉 = 0 for all v ∈ V . Any vector space V over a division ring F

with anti-automorphism ν can be turned into a non-degenerate sesquilinear space:

given a basis (vi | i ∈ I) and 0 �= δi ∈ F , i ∈ I, define 〈∑i∈J viλi |
∑

i∈J viμi〉 =∑
i∈J λν

i δiμi for finite J ⊆ I and λi, μi ∈ F . Though, these examples are far from

being exhaustive.

For ε ∈ F , VF is ε-hermitian if 〈v | u〉 = ε · 〈u | v〉∗ for all u, v ∈ V ; VF

is hermitian if it is 1-hermitian; VF is skew symmetric if it is (−1)-hermitian and

λ∗ = λ for all λ ∈ F ; VF is alternate, if 〈v | v〉 = 0 for all v ∈ V (observe that

[2, §4.6] requires characteristic �= 2). VF is anisotropic if 〈v | v〉 �= 0 for all v ∈ V ,

v �= 0.

Let End(VF ) denote the ring of all endomorphisms of the vector space VF . For

ϕ, ψ ∈ End(VF ) we say that ψ is an adjoint of ϕ if 〈ϕ(u) | v〉 = 〈u | ψ(v)〉 for all u,

v ∈ V . If VF is non-degenerate, then any endomorphism ϕ has at most one adjoint

ψ; if such ψ exists, we write ψ = ϕ∗. If ϕ∗ and χ∗ exist, then (χ◦ϕ)∗ = ϕ∗ ◦χ∗. For

vectors u, v ∈ V , we say that v is orthogonal to u and write u ⊥ v, if 〈u | v〉 = 0.

The space VF is orthosymmetric, or reflexive, if ⊥ is a symmetric relation. The

anti-automorphism λ �→ λ∗ is an involution on F if it is of order 2, that is (λ∗)∗ = λ

for all λ ∈ F .
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Proposition 2.1. The relations of orthogonality and adjointness are left unchanged

under scaling; in particular, orthosymmetry is preserved under scaling. Consider a

non-degenerate sesquilinear space VF . The following are equivalent if dimVF > 1:

(1) the sesquilinear space VF is orthosymmetric;

(2) the sesquilinear space VF is ε-hermitian for some (unique) ε ∈ F \ {0};
(3) up to scaling, VF is either hermitian or skew-symmetric;

(4) the adjointness relation is symmetric on End(VF );

(5) if ϕ∗ exists then ϕ∗∗ = ϕ.

Furthermore, if VF is ε-hermitian and non-degenerate, then λ �→ λ∗ is an involution

on F . If VF is alternate and non-degenerate then it is skew symmetric and F is

commutative; moreover, any V ′
F ′ similar to VF is alternate, too.

Proof. The first statement is obviously true. Now, assume that VF is non-degenerate

and that dimVF > 1. The following references are to [20, Chapter I]. (i) implies (ii)

by Theorem 1 of §1.3. (ii) implies (iii) by (15) of §1.5. (iii) implies (i), obviously,

thus proving pairwise equivalence of (i), (ii), and (iii).

Assuming (iii), symmetry of adjointness follows, easily. That, in turn, implies

that ϕ = ϕ∗∗ for every ϕ ∈ End(VF ) having an adjoint. Thus, (iii) implies (iv) and

(iv) implies (v).

Assuming (v), let λ �→ λ+ denote the inverse of λ �→ λ∗. Given u ∈ V such

that μ := 〈u | u〉 �= 0, consider two linear maps:

ϕu(v) = u
(〈v | u〉μ−1

)+
and ψu(w) = uμ−1〈u | w〉, v, w ∈ V.

Observe that ψu = ϕ∗
u, whence by our hypothesis, ϕu = ψ∗

u. Moreover, ϕu and ψu

are the projections onto uF associated with the decompositions V = uF ⊕{v ∈ V |
〈v | u〉 = 0} and V = uF ⊕ {w ∈ V | 〈u | w〉 = 0}, respectively. Now, ϕu = ψu ◦ ϕu

and we get ψu = ϕ∗
u = (ψu ◦ ϕu)

∗ = ϕ∗
u ◦ ψ∗

u = ψu ◦ ϕu = ϕu. Thus, under the

proviso 〈u | u〉 �= 0, one has for any x ∈ V that 〈x | u〉 = 0 if and only if 〈u | x〉 = 0.

It follows that 〈v |w〉 = 0 is equivalent to 〈w | v〉 = 0 unless 〈v | v〉 = 〈w |w〉 = 0.

In the latter case, let u = v + w. If 〈u | u〉 = 0 then 〈v | w〉 = −〈w | v〉; otherwise,

〈v | w〉 = 0 iff 〈v | u〉 = 0 iff 〈u | v〉 = 0 iff 〈w | v〉 = 0. This proves that (v)

implies (i).

For non-degenerate ε-hermitian VF , in order to prove that λ �→ λ∗ is an

involution, by (15) of §1.5 we may assume ε = ±1. As (7) in §1.3 follows from (9),

we have (λ∗)∗ = ε−1λε = λ. The alternate case is dealt with in (12) of §1.4.

A sesquilinear space VF , over a division ring F with involution, which is ε-

hermitian for some ε and non-degenerate will be called pre-hermitian. In the sequel,
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we consider only pre-hermitian spaces. If VF is, in addition, anisotropic, we also

speak of an inner product space.

The following well-known facts are discussed in Section 7 in more detail. For

vectors u, v ∈ V , we say that v is orthogonal to u and write u ⊥ v, if 〈u | v〉 = 0.

The orthogonal of X ⊆ V is the subspace X⊥ = {v ∈ V | ∀u ∈ X. u ⊥ v}; observe

that Y ⊥ ⊆ X⊥ if X ⊆ Y . A subspace U is closed if U = U⊥⊥; in particular, any

X⊥ is closed. If U is a subspace with dimU = 1 then U⊥ = ker f for the linear

map f : V → F given as f(w) = 〈v | w〉 where U = vF ; f is surjective since VF is

non-degenerate, whence dimV /U⊥ = 1. Since U⊥ =
⋂

v∈B vF⊥ for any basis B of

U , it follows that dimV/U⊥ � dimU for any U with dimU < ω (actually, equality

holds and U is closed, see Propositions 7.1 and 5.2).

On any linear subspace U of VF , one has the sesquilinear subspace UF with the

induced scalar product. When UF is non-degenerate, UF is pre-hermitian, too. A

finite-dimensional subspace UF of VF is non-degenerate if and only if U ∩U⊥ = 0, if

and only if V = U ⊕U⊥ (as dimV /U⊥ ≤ dimU). We write in this case U ∈ O(VF )

and say that U is a finite-dimensional orthogonal summand ; in particular, U is

closed.

Proposition 2.2. Every pre-hermitian space VF is the directed union of the subspaces

UF , U ∈ O(VF ). Actually, for any finite-dimensional subspace W ∈ L(VF ) there is

U ∈ O(VF ) such that W ⊆ U and dimU � 2 dimW .

Proof. This is [20, Chapter I, §5 Lemma 4], cf. [2, Remark 4.6.14]. Alternatively,

one can apply [22, Theorem 1.2] to the “orthogeometry” G(VF ) associated with VF

and Proposition 7.1, below.

For a subspace UF of VF , the linear subspace radU = U ∩U⊥ is the radical of

UF . Defining 〈v+ radU | w+ radU〉 = 〈v | w〉, the F -vector space U/ radU becomes

a sesquilinear space UF / radU with respect to the given anti-automorphism of F .

We call UF / radU a subquotient space.

Proposition 2.3. Let VF be a pre-hermitian space and let UF be a subspace of VF .

Then UF / radU is non-degenerate; it is ε-hermitian if VF is. The space UF / radU

is isomorphic to any subspace WF of VF such that U = W ⊕ radU .

Proof. The map w �→ w + radU establishes an isomorphism of sesquilinear spaces

from WF onto UF / radU .
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3. Rings and algebras with involution

When mentioning rings, we always mean associative rings R possibly without unit.

The principal right ideal aR generated by a equals {za | z ∈ Z} ∪ {ar | r ∈ R}.
A ∗-ring is a ring R endowed with an involution; that is, an anti-automorphism

x �→ x∗ of order 2; that is,

(r + s)∗ = r∗ + s∗, (rs)∗ = s∗r∗, (r∗)∗ = r for all r, s ∈ R,

cf. [31, §1], [47, §2.13], [2, §4].

An element e of a ∗-ring R is a projection, if e = e2 = e∗. A ∗-ring R is proper if

r∗r = 0 implies r = 0 for all r ∈ R. Throughout this paper, let Λ be a commutative

∗-ring with unit. A ∗-Λ-algebra R is an associative (left) unital Λ-algebra, with unit

1 considered a constant, which is a ∗-ring such that

(λr)∗ = λ∗r∗ for all r ∈ R, λ ∈ Λ.

For example, involutive Banach algebras are ∗-C-algebras. Unless stated otherwise,

we consider the scalars λ ∈ Λ as unary operations r �→ λr on R; in other words,

we consider ∗-Λ-algebras as 1-sorted algebraic structures. The map λ �→ λ1 is a

∗-ring homomorphism from Λ into the center of R; in view of this, denoting both

involutions on R and on Λ by the same symbol ∗ should not cause confusion; also,

most arguments concerning the action of Λ are obvious and left to the reader.

An ideal I of a ∗-ring or a ∗-Λ-algebra R is a ∗-ideal, if I = I∗, where I∗ = {r∗ |
r ∈ I}. We call R strictly subdirectly irreducible if the underlying ring is subdirectly

irreducible, i.e. has a smallest non-zero ideal I; in this case, I = I∗. Similarly, R is

strictly simple if 0 and R are the only ideals. In the ∗-ring literature, such ∗-rings

are called ‘simple’, while simple ∗-rings are called ‘∗-simple’, cf. [3].

The [right ] socle Soc(R) consists of all a ∈ R such that aR is the sum of finitely

many minimal right ideals; Soc(R) is an ideal of R. We say that a ∗-Λ-algebra is

atomic if any non-zero right ideal contains a minimal one.

A ring R is [von Neumann] regular if for any a ∈ R, there is an element x ∈ R

such that axa = a; such an element is called a quasi-inverse of a. A ∗-ring R is

∗-regular if it is regular and proper. The reader interested in more details is referred

to any of [4, 5, 16,40,45,49]. Recall that for a vector space VF over a division ring

F , End(VF ) denotes the set of all endomorphisms of VF .

Proposition 3.1.

(i) For a vector space VF , End(VF ) is a regular simple ring.
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(ii) A ring R is regular if it admits a regular ideal I such that R/I is regular. Any

ideal of a regular ring is regular.

(iii) A ring R is regular [a ∗-ring R is ∗-regular] if and only if for any a ∈ R

there is an idempotent [a (unique) projection, respectively] e ∈ R such that

aR = eR.

(iv) For any a, b in a regular ring R, there is an idempotent e ∈ aR + bR such

that ea = a and eb = b.

(v) Homomorphic images and direct products of regular [∗-regular] ∗-Λ-algebras

are regular [∗-regular] ∗-Λ-algebras.

Proof. Statements (i)–(v) are well known, cf. [5, 1.26], [16, Lemma 1.3], [16, Theo-

rem 1.7]. For the existence of projections, see [45, Part II Chapter IV Theorem 4.5]

or [5, Proposition 1.13]. In (v), the claim for products is obvious; for homomorphic

images, it follows from (iii).

In particular, any ideal of a ∗-regular ring is a ∗-ideal by Proposition 3.1(iii);

thus subdirectly irreducibles [simples] are strictly subdirectly irreducible [strictly

simple, respectively]. Call a ∗-Λ-algebra R primitive if the underlying ring is primi-

tive, that is, admits a faithful irreducible module.

Proposition 3.2. Every regular strictly subdirectly irreducible ∗-Λ-algebra R is prim-

itive.

Proof. Any regular ring is semi-simple, i.e. has zero radical, cf. [16, Corollary 1.2].

Hence the ring R is a subdirect product of primitive rings, cf. [33, Chapter I, §3,

Theorem 1]. Being subdirectly irreducible, the ring R is therefore primitive, cf. the

proof of [44, Corollary 3.4].

4. Endomorphism rings

In the sequel, let F be a ∗-Λ-algebra, where the underlying ring of F is a division

ring and VF is a pre-hermitian space over F . By End(VF ), we also denote the unital

Λ-algebra of VF of all endomorphisms of the vector space VF . By End
∗(VF ), we

denote the set of endomorphisms from End(VF ) having an adjoint. The following

proposition is obvious in view of the definition of adjoints and by Proposition 2.1.

Proposition 4.1. The set End
∗(VF ) forms a Λ-subalgebra End

∗(VF ) of End(VF )

which is a ∗-Λ-algebra with the involution ϕ �→ ϕ∗. If V ′
F ′ is similar to VF then

End
∗(VF ) and End

∗(V ′
F ′) are isomorphic ∗-Λ-algebras.



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Representations of regular ∗-rings and CMILs 403

Observe that for v ∈ V , λ ∈ Λ, and ϕ ∈ End
∗(VF ), one has

(λϕ)(v) := ϕ(v)λ, (λϕ)∗ = λ∗ϕ∗.

Also recall the well-known facts that for any ϕ, ψ ∈ End
∗(VF )

(imϕ)⊥ = kerϕ∗ is closed;

imϕ ⊆ (imψ)⊥ if and only if ϕ∗ ◦ ψ = 0.

Proposition 4.2. For any subspace U of VF , one has V = U ⊕ U⊥ if and only if

there is a projection πU ∈ End
∗(VF ) such that U = imπU . Such a projection πU is

unique.

The projection πU in Proposition 4.2 is called the orthogonal projection onto

U . Par abus de langage, πU also denotes the induced epimorphism V → U , while

εU denotes the inclusion map U → V . Observe that πU and εU are adjoints of each

other in the sense that

〈εU (u) | v〉 = 〈u | πU (v)〉 for all u ∈ U, v ∈ V.

Moreover, the computational rules of End∗(VF ) yield, in particular, (εUϕπU )
∗ =

εUϕ
∗πU for any ϕ ∈ End

∗(UF ). Finally, πUεU = idU , while πUεUπU = πU and

U⊥ = ker(εUπU ).

Let dimVF = n < ω. We say that the bases (v1, . . . , vn) and (w1, . . . , wn)

of VF are a dual pair of bases, whenever 〈vi | wi〉 = 1 for all i ∈ {1, . . . , n} and

〈vi | wj〉 = 0 for all i �= j.

Proposition 4.3. Let VF be a pre-hermitian space and let dimVF = n < ω.

(i) There is a dual pair of bases (v1, . . . , vn) and (w1, . . . , wn) of VF . Moreover, for

any ϕ ∈ End(VF ) with ϕ(vj) =
∑

i wiaij, ϕ
∗ ∈ End(VF ) exists and ϕ∗(vi) =∑

j wja
∗
ij. In particular, End

∗(VF ) contains all endomorphisms of VF and

End
∗(VF ) is regular.

(ii) End
∗(VF ) is ∗-regular if and only if VF is anisotropic.

(iii) If UF ∈ O(VF ) then End
∗(UF ) × End

∗(U⊥
F ) embeds into End

∗(VF ); in par-

ticular, End
∗(UF ) is a homomorphic image of a regular ∗-Λ-subalgebra of

End
∗(VF ).

Proof. For the existence of dual bases, see [33, §IV.15] or [36, §II.6]. Straightfor-

ward and well-known calculations prove (i). Regularity of End∗(VF ) follows from

Proposition 3.1(i). For (ii) see Proposition 4.4(vi), below. (iii) Let R consist of all

ϕ ∈ End
∗(VF ) which leave both U and U⊥ invariant. As R ∼= End

∗(UF )×End
∗(U⊥

F ),

all claims follow.
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We put J(VF ) = {ϕ ∈ End
∗(VF ) | dim imϕ < ω}. Cf. [2, Theorem 4.6.15] for

the following.

Proposition 4.4. Let VF be a pre-hermitian space.

(i) The set J(VF ) is an ideal and a strictly simple regular ∗-Λ-subalgebra of

End
∗(VF ) without unit.

(ii) The principal right ideals of J(VF ) are in one-to-one correspondence with the

finite-dimensional subspaces of VF via the map ϕJ(VF ) �→ imϕ; moreover,

ϕ0J(VF ) ⊆ ϕ1J(VF ) is equivalent to imϕ0 ⊆ imϕ1 for any ϕ0, ϕ1 ∈ J(VF ).

(iii) Let R be a subring of End(V ) with R ⊇ J(VF ). Then the minimal right ideals

of R are of the form ϕR, where ϕ ∈ J(VF ) is an idempotent such that ϕJ(VF )

is a minimal right ideal of J(VF ), that is, dim imϕ = 1. In particular, R is

atomic and J(VF ) = Soc(R) is its smallest non-zero ideal.

(iv) For any ϕ1, . . . , ϕn ∈ J(VF ), there is U ∈ O(VF ) such that πUϕi = ϕi = ϕiπU

for all i ∈ {1, . . . , n}.
(v) The space VF is alternate if and only if J(VF ) does not contain a projection

generating a minimal right ideal. If VF is alternate then π ◦ π∗ = 0 = π∗ ◦ π
for any idempotent π with dim imπ = 1.

(vi) The space VF is anisotropic if and only if End∗(VF ) is proper if and only if

J(VF ) is proper.

Proof. (i) Clearly, J(VF ) is an ideal and a Λ-subalgebra of End∗(VF ) (without unit).

Observe that πU ∈ J(VF ) for any U ∈ O(VF ) by Proposition 4.2. Moreover by

Proposition 2.2, for any subspace W of VF with dimW < ω, there exists U ∈ O(VF )

such that W ⊆ U .

Consider ϕ ∈ J(VF ) and recall that the subspaces kerϕ = (imϕ∗)⊥ and

kerϕ∗ = (imϕ)⊥ are both closed. To prove that ϕ∗ ∈ J(VF ), choose W ∈ O(VF )

such that W ⊇ imϕ = (kerϕ∗)⊥. Then W⊥ ⊆ (kerϕ∗)⊥⊥ = kerϕ∗, whence imϕ∗ =

ϕ∗(W ) is finite-dimensional. It follows that

(∗) For any ϕ1, . . . , ϕn ∈ J(VF ), there is U ∈ O(VF ) such that U ⊇ imϕi+ imϕ∗
i

for all i ∈ {1, . . . , n} and ϕi(U) = imϕi and ϕ∗
i (U) = imϕ∗

i . In particular,

(a) U is a finite-dimensional pre-hermitian space;

(b) V = U ⊕ U⊥;

(c) U⊥ ⊆ ⋂
i kerϕi ∩ kerϕ∗

i and ϕi = πUϕiεUπU ;

(d) πU ∈ J(VF );

(e) εUψπU ∈ J(VF ) and (εUψπU )
∗ = εUψ

∗πU for any ψ ∈ End(UF ).

To prove that ϕ has a quasi-inverse in J(VF ), choose for ϕ a subspace U ∈ O(VF )

according to (∗). By Proposition 4.3(i), πUϕεU ∈ End
∗(UF ) has a quasi-inverse

ψ ∈ End
∗(UF ). We claim that χ = εUψπU is a quasi-inverse of ϕ in J(VF ). Indeed,
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χ ∈ J(VF ) by (e) and ϕ(v) = 0 = χ(v) for any v ∈ U⊥ by (c) and ϕχϕ(v) =

πUϕεUψπUϕεU (v) = πUϕεU (v) = ϕ(v) for any v ∈ U .

To prove that J(VF ) is strictly simple, it suffices to show that for any 0 �= ϕ,ψ ∈
J(VF ), ψ belongs to the ideal generated by ϕ. Again, choose for ϕ and ψ a subspace

U ∈ O(VF ) according to (∗). Applying Proposition 3.1(i) to πUϕεU , πUψεU ∈
End(UF ), we get that there are m < ω and σ1, . . . , σm, τ1, . . . , τm ∈ End(UF ) such

that πUψεU =
∑m

i=1 τiπUϕεUσi. Then according to (c), ψ =
∑m

i=1 εUτiπUϕεUσiπU

and εUσiπU , εUτiπU ∈ J(VF ) for all i ∈ {1, . . . ,m} by (e).

(ii) We prove first that ϕ0J(VF ) ⊆ ϕ1J(VF ) is equivalent to imϕ0 ⊆ imϕ1

for any ϕ0, ϕ1 ∈ End
∗(VF ). Suppose first that imϕ0 ⊆ imϕ1 and take an arbitrary

ψ ∈ J(VF ); then ϕ0ψ,ϕ1ψ ∈ J(VF ). Choose for ϕ0ψ and ϕ1ψ a subspace U ∈ O(VF )

according to (∗). Then ξi = πUϕiψεU ∈ End(UF ) for any i < 2 and im ξ0 ⊆ im ξ1.

As dimUF < ω, ξ0 = ξ1χ for some χ ∈ End(UF ). According to (c),

ϕ0ψ = πUϕ0ψεUπU = ξ0πU = ξ1χπU = πUϕ1ψεUχπU = ϕ1ψεUχπU ∈ ϕ1J(VF ),

as ψεUχπU ∈ J(VF ) by (e). The reverse implication is trivial by Proposition 2.2.

Besides that, for any finite-dimensional subspace W of VF , there is ϕ ∈ J(VF )

such that W = imϕ. Indeed by Proposition 2.2, there is U ∈ O(VF ) such that

W ⊆ U , whence W = imψ for some ψ ∈ End(UF ). Then W = imϕ with ϕ =

εUψπU ∈ J(VF ) by Proposition 4.2 and (e). This establishes the claimed 1-1-

correspondence.

(iii) It follows from (ii) that for an arbitrary element v �= 0 in V , there is

an idempotent πv ∈ J(VF ) such that imπv = vF . Moreover, πvR = πvJ(VF ) is

obviously a minimal right ideal of both J(VF ) and R. Consider any element ϕ ∈ R,

such that ϕ �= 0. There is v ∈ V such that ϕ(v) �= 0; in particular, im(ϕ◦πv) = imπv,

whence πvR is a minimal right ideal contained in ϕR according to (ii) and the above.

If dimϕ = n, then ϕR =
∑n

i=1 πviR, where v1, . . . , vn is a basis of imϕ; in particular,

ϕR = πv1R if ϕR is minimal. Thus R is atomic with Soc(R) = J(VF ) contained in

any non-zero ideal.

(iv) Given ϕ1, . . . , ϕn ∈ J(VF ), choose a subspace U ∈ O(VF ) according to

(∗). Then imϕi + imϕ∗
i ⊆ U , whence πUϕi = ϕi and πUϕ

∗
i = ϕ∗

i .

(v) If π is a projection in the ∗-ring J(VF ) then by Proposition 4.2, it is an

orthogonal projection of VF and 〈v | v〉 �= 0 for any 0 �= v ∈ imπ. Thus, VF is not

alternate. Conversely, assume that VF is not alternate. If dimVF = 1, then idV is

obviously a projection generating a minimal right ideal. If dimVF � 2 then, in view

of Proposition 2.1, we may assume that VF is hermitian. By Proposition 2.2, there

is a non-alternate space 0 �= U ∈ O(VF ). By [20, Chapter II §2, Corollary 1], U

has an orthogonal basis. Thus U = W ⊕W ′, where W ′ ⊆ W⊥ and dimW = 1. It
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follows that W ∈ O(VF ) and that πW is a projection generating a minimal right

ideal of J(VF ).

Now, let VF be alternate and let π be an idempotent with imπ = wF �= 0.

Then for all v ∈ V there is λ ∈ F such that 〈v | π∗(w)〉 = 〈π(v) | w〉 = 〈wλ | w〉 = 0,

whence π∗(π(w)) = π∗(w) = 0 and thus π∗ ◦ π = 0. The claim for π∗ follows since

dim imπ∗ = 1; indeed, with U for π according to (∗), one has imπ = imπUπεU ,

imπ∗ = imπUπ
∗εU = (ker πUπεU )

⊥, and dimU/(ker πUπεU ) = 1.

(vi) If ϕ∗ϕ = 0 for given ϕ ∈ End
∗(VF ) then imϕ ⊆ (imϕ)⊥, whence imϕ = 0

provided that VF is anisotropic. Conversely, assume 〈v | v〉 = 0 for some v �= 0 and

choose ϕ such that vF = imϕ, in particular 0 �= ϕ ∈ J(VF ). Then imϕ ⊆ (imϕ)⊥

and ϕ∗ϕ = 0.

Proposition 4.5. Any ∗-Λ-subalgebra R of End∗(VF ) extends to a ∗-Λ-subalgebra R̂

of End∗(VF ) such that J(VF ) is the unique minimal ideal of R̂. In particular, R̂ is

strictly subdirectly irreducible and atomic with the minimal right ideals being those

of J(VF ). Moreover, if R is regular then R̂ is also regular.

Proof. The ∗-regular case is due to [44, Proposition 3.12]. Let R̂ = R + J(VF ).

Clearly, R̂ is a subalgebra of End
∗(VF ); thus, Proposition 4.4(iii), applies to R̂.

Finally, Propositions 3.1(ii) and 4.4(i) imply the regularity of R̂ when R is regular.

In particular, Proposition 4.5 applies to the subalgebra R of End∗(VF ) consist-

ing of the endomorphisms v �→ vλ (also denoted as λ idV ), where λ is in the center

C(F ) of F ; in this case, we denote the corresponding subalgebra R̂ by Ĵ(VF ).

Corollary 4.6. Let dimVF ≥ ω. Ĵ(VF ) is the directed union of its ∗-Λ- subalgebras

BU = {εUϕπU + λ idV | ϕ ∈ End
∗(VF ), λ ∈ C(F )} where U ∈ O(VF ). Moreover,

each BU is regular and embeds into End
∗(WF ), where U ⊂ W ∈ O(VF ).

Proof. The first claim is obvious. Now, BU
∼= End

∗(UF ) × C(F ), and the latter

embeds into End
∗(UF )× End

∗
(
(U⊥ ∩W )F

)
, which embeds in turn into End

∗(WF ),

where U ⊂ W ∈ O(VF ) cf. Propositions 2.2 and 4.3.

A representation of a ∗-Λ-algebra R within a pre-hermitian space VF is a

homomorphism ε : R → End
∗(VF ) of ∗-Λ-algebras; it is faithful if ε is an injective

map.

In the following Theorem 4.7, existence is due to Jacobson [33, Chapter IV,

§12, Theorem 2] and Kaplansky [31, Theorem 1.2.2]. Uniqueness is based on an

approach via the Jacobson Density Theorem, cf. [2, Theorem 4.6.8].
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Theorem 4.7. Let R be a primitive ∗-Λ-algebra having a minimal right ideal. Then

(i) R is atomic with Soc(R) as smallest non-zero ideal;

(ii) R admits a faithful representation ε within some pre-hermitian space VF such

that ε(Soc(R)) = J(VF ). Up to similitude, the space VF is uniquely determined

by Soc(R).

Proof. The proof of (i) will be a by-product of the proof of (ii). If the underlying

ring of R is a division ring then a representation is given via the scalar product

〈λ | μ〉 = λ∗μ. Conversely, given a representation in VF , we have J(VF ) ∼= R and

may assume that R = End
∗(FF ). Up to scaling, we have F with involution ν and

scalar product 〈λ | μ〉 = λν〈1 | 1〉μ = λνμ. For the endomorphism ϕλ given by

ϕλ(μ) = λμ, one obtains λν = 〈ϕλ(1) | 1〉 = 〈1 | ϕ∗
λ(1)〉 = ϕ∗

λ(1); that is, ν is

determined by the involution on R.

Assume that R is not a division ring. First, we ignore the action of Λ. By

[33, Chapter IV §12, Theorem 1], there are a non-degenerate sesquilinear space VF

and an embedding ε : R → End
∗(VF ) such that ε(R) ⊇ J(VF ). Since dimVF � 2,

Proposition 2.1 applies, whence VF is pre-hermitian, cf. [33, Chapter IV §12, Theo-

rem 2]. The remaining claims about R follow from Proposition 4.4.

In order to discuss the uniqueness of VF as well as the action of Λ, we have a

closer look on how R relates to the pre-hermitian space VF , given a ∗-ring embedding

ε : R → End
∗(VF ) such that ε maps J = Soc(R) onto J(VF ).

Let e be an idempotent such that eR is a minimal right ideal, π = ε(e),

U = imπ, and W = im(idV −π); then V = U ⊕ W and dimU = 1. Choose

0 �= u0 ∈ U . For λ ∈ F , there is unique ϕλ ∈ End(VF ) such that ϕλ(u0) = u0λ

and ϕλ|W = 0. Then α(λ) = ε−1(ϕλ) defines a ring isomorphism from F onto the

subring eRe of R. Moreover, one has an α-semilinear bijection ω from VF onto the

right eRe-vector space Re; it is given by ω(v) = ε−1(ϕv), where ϕv(u0) = v and

ϕv|W = 0. Now, the given ring embedding ε : R → End
∗(VF ) can be described by

the formula ε(r)(v) = ω−1
(
rω(v)

)
. Compare the proof of [2, Proposition 4.6.4].

If the action of Λ on F is still to be defined, put ζλ = α−1
(
ζα(λ)

)
for any

λ ∈ F and ζ ∈ Λ. Then ε is a Λ-algebra homomorphism from R into the Λ-algebra

End(VF ); indeed for any ζ ∈ Λ, r ∈ R, and v ∈ V , one has ω(v) = se for some s ∈ R.

Hence

ε(ζr)(v) = ω−1
(
(ζr)ω(v)

)
= ω−1(ζrse) = ω−1(rseeζe) = ω−1

(
(rω(v))(eζe)

)
= ω−1

(
rω(v)

)
α−1(eζe) =

(
ε(r)(v)

)
α−1(eζe).

Assume that e is a projection; then π is also a projection, whence u0 �⊥ u0 and

W = U⊥. In view of scaling, we may assume that 〈u0 | u0〉 = 1. Thus ϕ∗
λ = ϕλ∗
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and α is an isomorphism of ∗-rings. Also, one obtains for all v, w ∈ V :

〈v | w〉 = 〈ϕv(u0) | ϕw(u0)〉 = 〈u0 | ϕ∗
v(ϕw(u0))〉 = 〈u0 | u0λ〉 = λ,

where ϕ∗
v

(
ϕw(u0)

)
= u0λ for some λ ∈ F , as imϕ∗

v = W⊥ = imπ. From ϕλ|W =

0 = ϕw|W , it follows that ϕλ = ϕ∗
v ◦ ϕw. Summarizing, the space VF is determined,

up to scaling, by the ∗-ring J(VF ). Given another pre-hermitian space V ′
F ′ and a

faithful representation ε′ : R → End
∗(V ′

F ′) as in the statement of the theorem, and

a vector u′
0 ∈ im ε′(e) chosen accordingly, we have α′ : F ′ → eRe and ω′ : V ′ → Re

providing an isomorphism β = (α′)−1 ◦ α : F → F ′ of division rings and a β-

semilinear bijection ω′ ◦ ω : VF → V ′
F ′ which combine into an isomorphism of the

sesquilinear spaces obtained from VF and V ′
F ′ by scaling, thus establishing the

claimed similitude.

Now, assume that R (and thus J(VF )) does not have a projection generating

a minimal right ideal. By Proposition 4.4(v), VF is an alternate space; in particular

λ = λ∗ for all λ ∈ F , F is commutative, and π ◦π∗ = 0 = π∗ ◦π for any idempotent

π generating a minimal right ideal in J(VF ). Choose π = ε(e). It follows that

imπ ∩ imπ∗ = imπ ∩ (imπ∗)⊥ = imπ∗ ∩ (imπ)⊥ = 0.

Also U ′ = imπ⊕ imπ∗ ∈ O(VF ) and W = imπ∗ +U ′. Thus for any v ∈ V , imϕ∗
v =

W⊥ = imπ∗. For ψ ∈ End(VF ), we have ψ(imπ∗) = imπ and kerψ = U ′+imπ if and

only if π ◦ψ = ψ = ψ ◦π∗. For any such endomorphism ψ there is unique 0 �= μ ∈ F

such that ψ(u1) = u0μ, and vice versa. Besides that, imψ∗ = (U ′ + ker π)⊥ = imπ.

Choose u1 such that u1F = imπ∗ and 〈u1 | u0〉 = 1. Choosing μ (and ψ), one has

for any v, w ∈ V

〈v | w〉 = 〈ϕv(u0) | ϕw(u0)〉 = 〈ϕv(ψ(u1μ)) | ϕw(u0)〉
= 〈u1μ | ψ∗(ϕ∗

v(ϕw(u0)))〉 = 〈u1 | u0〉μσ = μσ,

where ψ∗(ϕ∗
v(ϕw(u0))) = u0σ. Therefore, 〈v | w〉 = μσ if and only if ψ∗ ◦ϕ∗

v ◦ϕw =

ϕσ. Uniqueness of VF up to similitude follows as above, with the additional choice

of u′
1 and μ′ = μ, cf. [2, Proposition 4.6.6].

Remark 4.8. For a primitive ring R with a minimal right ideal, according to Ka-

plansky (cf. Corollary 4.3.4 and Theorem 4.6.2 in [2]), there is an idempotent e ∈ R

such that eR and e∗R are minimal right ideals and either e = e∗ or ee∗ = 0 = e∗e.

Given such an idempotent e ∈ R, the representation of Theorem 7.6 can be directly

obtained from the Jacobson Density Theorem in the context of non-empty socle, cf.

[2, Theorem 4.6.2]. In the first case, eRe is a ∗-subring of R. In the second case,

S = {λ+ λ∗ | λ ∈ eRe}
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is a ∗-subring of R and r∗ = r for any r ∈ S. Moreover, the map λ �→ λ+ λ∗ is a

ring isomorphism from eRe onto S with inverse μ �→ eμ. One has vλ = v(λ+ λ∗)

for all v ∈ Re and all λ ∈ eRe. Thus in both cases, 〈v | w〉 = ev∗w provides the

required scalar product on Re.

Proposition 4.9. A ∗-Λ-algebra R is strictly simple artinian and regular if and only

if R ∼= End
∗(VF ), where VF is a pre-hermitian space and dimVF < ω. Moreover,

VF is uniquely determined by R up to similitude.

Proof. Having a unit, R is noetherian and J(VF ) = End
∗(VF ), cf. [38, §3.3.5,

Proposition 3]. Thus, this follows from Theorem 4.7.

5. Lattices with a Galois operator

We focus on lattices with Galois operator arising in Orthogonal Geometry, cf. [20,

Chapter I §9], [21], and [24, §2]. For basics on modular lattices, we refer to [11, §3-4,

§10, §13], alternatively [19, Chapter V §1, §5]. We consider lattices as algebraic

structures with two binary operations, · (meet) and + (join); that is, for a suitable

(unique) partial order ≤, ab = a · b = inf{a, b}, a + b = sup{a, b}. A lattice L is

modular if for all a, b, c ∈ L,

a ≥ c implies a(b+ c) = ab+ c.

It is well known that the class of [modular] lattices can be defined by equations. If

L has a smallest element 0 and if ab = 0, then we write a⊕ b instead of a+ b.

A sublattice of L is a subset of L closed under meets and joins and a lattice

(modular if so is L) endowed with the restrictions of these operations; for example

the intervals [u, v] = {x ∈ L | u ≤ x ≤ v}. A homomorphism ϕ : L → M between

lattices is a map such that ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a+ b) = ϕ(a) + ϕ(b) for all a,

b ∈ L. A congruence (relation) on a lattice L is an equivalence relation θ which

is compatible with meet and join, that is a θ b and c θ d jointly imply ac θ bd and

(a+ c) θ (b+ d). If ϕ : L → M is a homomorphism then a θ b ⇔ ϕ(a) = ϕ(b) defines

a congruence on L; any congruence arises this way with surjective ϕ and if L is

modular so is M . A lattice L is subdirectly irreducible if it has a smallest non-trivial

congruence μ, which is called the monolith of L.

A modular lattice L has dimension n < ω, (which is denoted by dimL), if L

has (n+ 1)-element maximal chains. If a ∈ L and L has a smallest element 0, we

put dim a = dim[0, a] if that exists; we call a an atom if dim a = 1. If dim a and

dim b exist, then the well-known dimension formula applies:

dim a+ dim b = dim(ab) + dim(a+ b).
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A bounded lattice has a smallest element 0 = inf L and a greatest element 1 = supL

which are considered as constants. A dual atom or coatom of L is an element c such

that dim[c, 1] = 1. A bounded lattice L is complemented if for any a ∈ L, there is

b ∈ L such that a ⊕ b = 1. In a complemented modular lattice (a CML for short)

L, any interval [u, v] is complemented, too; L is atomic if for any a > 0 there is an

atom p ≤ a. It follows that for elements a and b of an atomic CML L, a � b in L if

and only if there is an atom p ∈ L such that p ≤ a and p � b. Primary examples of

atomic CMLs are the lattices of all subspaces of vector spaces, see Proposition 6.1

below.

Lattices relevant in orthogonal geometry also support an operation X �→ X⊥,

the Galois correspondence induced by the orthogonality relation, see [20]. This is

captured by the following concept (cf. [21,24]). A Galois lattice is a bounded lattice

L endowed with an additional operation x �→ x′ such that x ≤ y′ implies y ≤ x′ for

any x, y ∈ L and such that 1′ = 0. It is well known and easy to prove that

x ≤ x′′;

x ≤ y implies y′ ≤ x′;

x′′′ = x′;

0′ = 1;

(x+ y)′ = x′y′

for any x, y ∈ L. For an equational definition, see [24, IV.2.5]. A Galois sublattice S

of a Galois lattice L is a sublattice of L such that 0, 1 ∈ S and x′ ∈ S for any x ∈ S;

thus, it is a Galois lattice with the inherited operations. Similarly, a homomorphism

ϕ : L → M between Galois lattices L and M is a lattice homomorphism from L

to M preserving 0, 1 and such that ϕ(x′) =
(
ϕ(x)

)′
for all x ∈ L. Also, a lattice

congruence θ on L is a Galois lattice congruence if a θ b implies a′ θ b′ for all a,

b ∈ L.

A polarity lattice is a Galois lattice L such that p′ is a dual atom of L for

any atom p ∈ L.1 Note that the class of modular polarity lattices is not closed

under substructures. Indeed, consider a subspace X of a Hilbert space H such that

X �= Xc, where Xc denotes the closure of X. Then 0, X, Xc, X⊥, X + X⊥, H

form a subalgebra of the polarity lattice associated with H, cf. Proposition 7.1

below. It remains open whether the class of CML polarity lattices is closed under

complemented subalgebras.

A Galois lattice L is a lattice with involution if, in addition, x′′ = x for all

x ∈ L; equivalently, if x �→ x′ is a dual automorphism of order 2 of the lattice

L; in particular, a lattice with involution is a polarity lattice. Furthermore, L

1The referee pointed out the need for such a concept and provided the smallest example of a

Galois CML which is not a polarity lattice: the 4-element CML with x
′
= 0 for x �= 0 and 0

′
= 1.
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is an ortholattice if, in addition, the involution satisfies the identity xx′ = 0 (or

equivalently, x+x′ = 1). We write MIL [CMIL] for a [complemented] modular lattice

with involution and MOL for a modular ortholattice. We use each abbreviation also

to denote the class of all Galois lattices with the corresponding property. Observe

that dimu = dim[u′, 1] in any MIL. Also, observe that in a CMIL, in general, x′

fails to be a complement of x, cf. the 4-element CML with p = p′ for each atom.

The following statement is straightforward to prove.

Lemma 5.1. Let L0, L1 be lattices with involution.

(i) A map ϕ : L0 → L1 is a homomorphism, if ϕ(x+ y) = ϕ(x) + ϕ(y), ϕ(x′) =

ϕ(x)′ for all x, y ∈ L0, and ϕ(0) = 0.

(ii) A subset X ⊆ L0 is a Galois sublattice of L0, if 0 ∈ X and X is closed under

the operations + and ′.

For a modular polarity lattice L, let Lf = F ∪ {u′ | u ∈ F}, where F = {u ∈
L | dimu < ω}.

Proposition 5.2. If L is a polarity CML then Lf is an atomic Galois sublattice of L;

moreover, Lf is a CMIL which is the directed union of its subalgebras [0, u] ∪ [u′, 1],

where dimu < ω and u ⊕ u′ = 1 (which are all CMILs). If L is a CMIL, then

Lf = {a ∈ L | dim a < ω or dim[a, 1] < ω}.

Proof. We claim that dim[v′, u′] � dim[u, v] if the latter is finite. Indeed, if

dim[u, v] = 1 then v = u + p, where p is a complement of u in [0, v], whence

an atom and so v′ = u′p′ is a lower cover of u′ unless v′ = u′. The claim now follows

by induction, Now, assume dimu < ω. Then dimu′′ ≤ dim[u′, 1] ≤ dimu, whence

u′′ = u. Consequently, x �→ x′ provides a pair of mutually inverse lattice anti-

isomorphisms between the intervals [0, u] and [u′, 1] of L; in particular, [u′, 1] ⊆ Lf .

Since {u ∈ L | dimu < ω} is closed under joins and 0 ∈ Lf , Lf is a Galois sublattice

of L by Lemma 5.1(ii) and, in particular, Lf is a MIL and atomic since it contains

all atoms of L.

If X ⊆ Lf is finite, then there is u ∈ L such that dimu < ω and X = Y ∪ Z,

where y, z′ ∈ [0, u] for all y ∈ Y , z ∈ Z. Choose v as a complement of u + u′ in

[u, 1]. Then dim[u, v] = dim[u+ u′, 1] � dim[u′, 1] = dimu < ω whence dim v < ω

We have u, u′, v ∈ Lf . Therefore, u = v(u + u′) implies u′ = v′ + uu′. It follows

that v+ v′ = v+ u+ uu′ + v′ = v+ u+ u′ = 1 and vv′ = (v+ v′)′ = 1′ = 0 whence

X ⊆ [0, v] ∪ [v′, 1]. This proves the second statement.

If L is a CMIL and dim[a, 1] < ω then dim a′ = dim[a, 1] < ω, thus a′ ∈ Lf

and a = a′′ ∈ Lf .
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For a lattice congruence θ on a MIL L, we put a θ′ b if and only if a′ θ b′. Then

θ′ is also a lattice congruence on L and the Galois lattice congruences on L are

exactly the lattice congruences θ on L such that θ = θ′. We call an MIL strictly

subdirectly irreducible if the underlying lattice is subdirectly irreducible; in that

case, one has μ = μ′ for the lattice monolith μ. Similarly, the MIL is strictly simple

if the underlying lattice is simple. In the case of MOLs, one has θ = θ′ for all

lattice congruences θ; thus subdirectly irreducible MOLs [simple MOLs] are strictly

subdirectly irreducible [strictly simple, respectively]. The following is well known.

Proposition 5.3. A subdirectly irreducible CML L is atomic provided it contains

an atom. If L is, in addition, a CMIL with lattice monolith μ, then one has a ∈ Lf

iff aμ 0 or aμ 1. In particular, Lf is strictly subdirectly irreducible and atomic, too.

Proof. Let p be an atom in L. By modularity, the smallest lattice congruence μ

such that 0μ p is a minimal lattice congruence. Thus given a > 0, one has 0 θ p in

the smallest lattice congruence such that 0 θ a, whence by modularity, the quotient

p/0 is projective to some subquotient c/d of a/0. Then any complement q of d in

[0, c] is an atom. Thus L is atomic and it follows that xμ y iff dim[xy, x+ y] < ω.

In view of Proposition 5.2, we are done.

The next proposition associates a CMIL L(R) with a regular ∗-Λ-algebra R.

Proposition 5.4.

(i) The principal right ideals of a regular ring R, possibly without unit, form a

sublattice L(R), containing 0, of the lattice of all right ideals of R; L(R) is

sectionally complemented and modular. In the case with unit, L(R) is a CML

with top element R.

(ii) For any regular [∗-regular] ∗-Λ-algebra R, the CML L(R) becomes a CMIL

[MOL, respectively] endowed with the involution eR �→ (eR)′ := (1 − e∗)R,

where e is an idempotent [a projection, respectively]; we denote it by L(R).

(iii) For any regular [∗-regular] ∗-Λ-algebras Ri, i ∈ I, and R =
∏

i∈I Ri one has

L(R) ∼= ∏
i∈I L(Ri).

(iv) If ε : R → S is a homomorphism and R, S are regular rings, then ε : L(R) →
L(S), ε : aR �→ ε(a)S is a lattice homomorphism preserving 0 and 1. If ε is

injective, then so is ε; if ε is surjective, then so is ε. If R and S are regular

∗-Λ-algebras and ε a homomorphism of ∗-Λ-algebras, then ε : L(R) → L(S)
is a homomorphism of MILs.

In Proposition 5.4(ii), one can consider the preorder e ≤ f iff fe = e on the

set of idempotents of R and obtain the lattice L(R) factoring by the equivalence
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relation e ∼ f iff e ≤ f ≤ e; the involution is given by e �→ 1− e∗. In the ∗-regular

case, any of the equivalence classes contains a unique projection so that L(R) is

also called the projection [ortho]lattice of R.

Recalling Proposition 4.4 for a pre-hermitian space VF , the principal right

ideals of J(VF ) form an atomic sectionally complemented sublattice of the lattice

of all right ideals of J(VF ), which is isomorphic to the lattice of finite-dimensional

subspaces of VF via the map ϕ : J(VF ) �→ imϕ.

Proof. These results originate from [13]. For the proof of (i)–(ii), see [51, §8-3.3.13].

For R a regular ∗-Λ-algebra, the map eR �→ R(1− e) �→ (1− e∗)R combines a dual

isomorphism of L(R) onto the lattice of principal left ideals with an isomorphism

of the latter onto L(R). For the proof of (iii)–(iv), see [51, §8-3.3.14–15].

6. Projective spaces and orthogeometries

Synthetic geometries are a convenient link between lattice and vector space struc-

tures. We follow [12, Chapter 2]. A projective space P is a set, whose elements are

called points, endowed with a ternary relation Δ ⊆ P 3 of collinearity satisfying the

following conditions:

(i) if Δ(p0, p1, p2), then Δ(pσ(0), pσ(1), pσ(2)) and pσ(0) �= pσ(1) for any permuta-

tion σ on the set {0, 1, 2};
(ii) if Δ(p0, p1, a), Δ(p0, p1, b), and a �= b, then Δ(p0, a, b);

(iii) if Δ(p, a, b) and Δ(p, c, d), then Δ(q, a, c) and Δ(q, b, d) for some q ∈ P .

The space P is irreducible if for any p �= q in P there is r ∈ P such that Δ(p, q, r). A

set X ⊆ P is a subspace of P if p, q ∈ X and Δ(p, q, r) together imply that r ∈ X.

Any projective space P is the disjoint union of its irreducible subspaces Pi, i ∈
I, which are called its components. The set L(P ) of all subspaces of an [irreducible]

projective space P is a complete [subdirectly irreducible] atomic CML, in which

the atoms are the subspaces {p}, p ∈ P , all of which are compact. Moreover,

L(P ) ∼= ∏
i∈I L(Pi) via the map X �→ (X ∩ Pi | i ∈ I). Conversely, any complete

atomic CML L with compact atoms is isomorphic to the lattice L(PL) via the map

a �→ {p ∈ PL | p ≤ a}, where PL is the set of atoms of L and distinct points p, q,

r ∈ PL are collinear if and only if r < p+ q. Recall that Jónsson’s Arguesian lattice

identity [34] holds in L(P ) if and only if P is desarguean. For a vector space VF ,

let L(VF ) denote the lattice of all linear subspaces of VF .



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

414 C. Herrmann and M. Semenova

Proposition 6.1.

(i) For any vector space VF , L(VF ) is a CML. Moreover, there exists an irreducible

desarguean projective space P such that L(VF ) ∼= L(P ).

(ii) For any irreducible desarguean projective space P with dimL(P ) > 2, there is

a vector space VF such that L(P ) ∼= L(VF ); F is unique up to isomorphism,

VF up to semilinear bijection.

(iii) If P is irreducible and dimL(P ) > 3, then P is desarguean.

(iv) Any subdirectly irreducible CML of dimension at least 4 is Arguesian.

Proof. Claim (i) is the content of [12, Proposition 2.4.15]. For (ii), see [12, Propo-

sition 2.5.6] and [12, Chapter 9]. For (iii), see [11, Chapter 13]. As to claim (iv),

according to Frink [14], any CML L embeds into L(P ) for some projective space

P . Since L is subdirectly irreducible as a lattice, it embeds into L(Pi) for some

irreducible component Pi of P , which is desarguean since dimL(Pi) > 3, whence

statement (iv) follows.

Proposition 6.2. Let P be a projective space. There is a one-to-one correspondence

between maps X �→ X⊥ turning L(P ) into a Galois CML L(P,⊥) on one side and,

on the other side, symmetric binary relations ⊥ on P such that

(a) for any p, q, r, s ∈ P , if p ⊥ q, p ⊥ r, and Δ(q, r, s) then p ⊥ s;

(b) for any p ∈ P there is q ∈ P with p �⊥ q.

The correspondence is given by

X⊥ = {q ∈ P | q ⊥ p for all p ∈ X} nd p ⊥ q if and only if p ∈ {q}⊥.

Given such a relation ⊥, the following statements are equivalent.

(i) The Galois CML L(P,⊥) is a polarity CML.

(ii) For all p, q, r ∈ P , if p �= q, then r ⊥ t for some t ∈ P such that Δ(p, q, t).

(iii) Same as (ii) with additional hypotheses r �⊥ p and r �⊥ q.

A pair (P,⊥), where P is a projective space and ⊥ is a symmetric relation, sat-

isfying (a)–(b) and (i)–(iii) of Proposition 6.2, is called an orthogeometry. Compare

[12, Definition 14.1.1] and [22, §4]. L(P,⊥) is defined, accordingly.

Proof. Let ⊥ be a symmetric relation on P satisfying (a)–(b). It follows that

X⊥ ∈ L(P ) by (a), while (b) and symmetry of ⊥ yield that L(P,⊥) is a Galois

lattice. The converse is obvious.

Let (i) hold. If dimX = 2 and r ∈ P , then X∩{r}⊥ �= ∅ by modularity, which

proves (ii), cf. [12, Remark 14.1.2]. Statement (iii) is a special case of (ii); it implies

that {r}⊥ is a coatom. Indeed, according to (b), there is p ∈ P with p �⊥ r. Now,
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if q ∈ P , q �= p, and q �∈ {r}⊥, then one has Δ(p, q, t) for some t ∈ {r}⊥, whence

q ∈ {p}+ {r}⊥. This proves that {p}+ {r}⊥ = P �= {r}⊥ and, by modularity, that

{r}⊥ is a coatom of L(P ).

Let PL denote the set of atoms of a MIL L. We define a collinearity on PL

by putting Δ(p, q, r) for distinct atoms p, q, r ∈ PL such that p ≤ q + r in L.

Furthermore, we put p ⊥ q if p ≤ q′.

Proposition 6.3. ([22, Lemma 4.2]) For any MIL L, G(L) = (PL,⊥) is an ortho-

geometry.

Proposition 6.4. For any orthogeometry (P,⊥), the Galois lattice L = L(P,⊥)f ,

consisting of all X,X⊥ with X ∈ L(P ) and dimX < ω, is a CMIL with L = Lf .

Conversely, for any CMIL L with L = Lf , one has L ∼= L(G(L))f .

Proof. See [22, Theorem 1.1] and Proposition 5.2.

7. Subspace lattices

For a pre-hermitian space VF , let G(VF ) = (P,⊥), where P = {vF | 0 �= v ∈ V } and

vF ⊥ wF if and only if v ⊥ w. The following proposition relates any pre-hermitian

space VF with G(VF ) and L(VF ).

Proposition 7.1. Let VF be a pre-hermitian space.

(i) The CML of all linear subspaces endowed with the unary operation U �→ U⊥

becomes a polarity lattice L(VF ).

(ii) G(VF ) is an orthogeometry.

(iii) The map U �→ {vF | 0 �= v ∈ U} defines an isomorphism from L(VF ) onto

L
(
G(VF )

)
.

Proof. Since X⊥ is a subspace for any X ⊆ V , (a) of Proposition 6.2 is satisfied,

while (b) follows from the fact that VF is non-degenerate. Thus L(VF ) is a Galois

CML. Observe that for any u ∈ V , fu(v = 〈u | v〉 is a linear map from VF to

FF . Therefore, uF⊥ = ker fu is a coatom and L(VF ) is a polarity lattice. The map

L(VF ) → L
(
G(VF )

)
given in (iii) is obviously an isomorphism. Thus G(VF ) is an

orthogeometry. See also [12, Proposition 14.1.6].

Proposition 7.2. Let VF be a pre-hermitian space.

(i) The polarity lattice L(VF )f is the directed union of its Galois sublattices [0, U ]∪
[U⊥, V ], U ∈ O(VF ). Moreover, for any U ∈ O(VF ), there is a Galois lattice

embedding from [0, U ] ∪ [U⊥, V ] into L(WF ) for some W ∈ O(VF ).
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(ii) The Galois lattices L
(
G(VF )

)
f

and L(VF )f are isomorphic and strictly sub-

directly irreducible Arguesian CMILs; if VF is anisotropic, then L(VF )f is a

MOL.

(iii) For any strictly subdirectly irreducible Arguesian CMIL L of dimension at

least 3 such that L = Lf , there is a (unique up to similitude) pre-hermitian

space VF such that L ∼= L(VF )f ; if L is a MOL, then VF is anisotropic.

(iv) If dimVF < ω then L(VF ) is a MIL.

For cardinality reasons, the requirement dimVF < ω is also necessary in (iv);

see also [37].

Proof. The first claim in (i) and the fact that [0, U ] ∪ [U⊥, V ] ∼= L(UF )× 2 when-

ever U �= V follow from Propositions 5.2 and 7.1. Moreover, this Galois lattice

is isomorphic to the Galois sublattice [0, U ] ∪ [U⊥ ∩ W,W ] of L(WF ), where the

subspace W is such that U ⊂ W ∈ O(VF ), according to Proposition 2.2.

To prove (ii), we notice first that L
(
G(VF )

)
f

is a CMIL by Propositions 7.1

and 6.4. Moreover, as a sublattice of L(VF ), L(VF )f is an Arguesian lattice. Strict

subdirect irreducibility of L
(
G(VF )

)
f
follows from Fact 7.1, [12, Example 2.7.2], and

[22, Corollary 1.5]. Furthermore, if VF is anisotropic, then X⊥ is an orthocomple-

ment of X for any X ∈ L(VF ) with dimX < ω.

We prove now (iii). By [22, Corollary 1.5], there is an irreducible orthogeome-

try (P,⊥) such that L ∼= L(P,⊥)f . Combining Proposition 6.1(ii) and [12, Theorem

14.1.8], one gets a pre-hermitian space VF such that L(P,⊥)f ∼= L(VF )f . For unique-

ness, see [12, Theorem 14.3.4] or [20, p. 33]. If L is a MOL, then VF is obviously

anisotropic.

If dimVF < ω, then L(VF ) = L(VF )f is a MIL by Propositions 7.1 and 5.2.

Proposition 7.3. Any Galois sublattice L of L(VF ) which is a MIL extends to

a Galois sublattice L̂ of L(VF ) which is a MIL and such that L̂f = L(VF )f . In

particular, L̂ is a strictly subdirectly irreducible atomic MIL. Moreover, if L is a

CMIL then L̂ is a CMIL.

Proof. Existence of L̂ with the required properties follows from the proof of [22,

Theorem 2.1]. In particular, L̂ is atomic. Strict subdirect irreducibility of L̂ follows

from [22, Corollary 1.5], see also Proposition 7.2(ii). For a first such construction

see [8].

A representation of a MIL (or CMIL) L in VF is a homomorphism ε : L →
L(VF ) of Galois lattices. It is faithful if it is injective, i.e. an embedding; in this



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Representations of regular ∗-rings and CMILs 417

case, we usually identify L with its image in L(VF ). A map ε : L → L(VF ) is a

representation if and only if it preserves joins, involution, and the least element.

Lemma 7.4. Let ε be a representation of a MIL L in a pre-hermitian space VF .

(i) Any element in the image of ε is closed.

(ii) If ε is faithful and VF is anisotropic, then L is a MOL.

Proof. Let x ∈ L be arbitrary.

(i) We have ε(x) = ε(x′′) = ε(x′)⊥ = ε(x)⊥⊥.

(ii) If VF is anisotropic, then we have ε(xx′) = ε(x) ∩ ε(x)⊥ = 0. As ε is

faithful, we conclude that xx′ = 0. Hence ′ is an orthocomplementation.

A representation of a MIL L within an orthogeometry (P,⊥) is a homomor-

phism η : L → L(P,⊥). The following obvious fact relates the two concepts of a

representation.

Proposition 7.5. For a MIL L, ε is a [faithful] representation in VF if and only if

the mapping η : a �→ {p ∈ PV | p ⊆ ε(a)} is a [faithful] representation of L in the

orthogeometry G(VF ).

Theorem 7.6. Let L be an Arguesian strictly subdirectly irreducible CMIL [MOL]

such that dimL > 2 and L has an atom. Then L admits a faithful representation

ε within some [anisotropic] pre-hermitian space VF such that ε induces a bijec-

tion between the sets of atoms of L and of L(VF ). In particular, ε restricts to an

isomorphism from Lf onto L(VF )f . The space VF is unique up to similitude.

Proof. By Proposition 5.3, L is atomic and Lf is strictly subdirectly irreducible and

atomic. Moreover by Proposition 7.2(iii), Lf
∼= L(VF )f for some [anisotropic] pre-

hermitian space VF which is unique up to isomorphism and scaling. By definition

and Proposition 6.4, G(L) = G(Lf) ∼= G(VF ). By [22, Lemma 10.4], L has a faithful

representation within the orthogeometry G(L), whence in the orthogeometry G(VF ).

The proof is done in view of Proposition 7.5.

The next fact is a corollary of Theorem 7.6 which is in principle already in [7].

Proposition 7.7. A lattice L is a strictly simple Arguesian CMIL of finite dimension

n > 2 if and only if L ∼= L(VF ), where VF is a pre-hermitian space with dimVF = n.

The space VF is determined by L up to similitude; VF is anisotropic, iff L is a MOL.
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Proposition 7.8.

(i) If ε is a faithful representation of the regular ∗-Λ-algebra R in a pre-hermitian

space VF , then the map η : aR �→ im ε(a) defines a faithful representation of

L(R) in VF .

(ii) If dimVF < ω then L(VF ) ∼= L(End∗(VF )).

Proof. (i) We refer to [15]. We may assume that R ⊆ End
∗(VF ); that is, ε is the

inclusion map. By Propositions 3.1(i) and 5.4(iv), η is a 0 and 1 preserving lattice

embedding of L(R) into L(VF ). Moreover, for any v ∈ V and an idempotent ϕ ∈ R,

one has v ∈ (
η(ϕR)

)⊥
= (imϕ)⊥ iff 〈ϕ∗(v) | w〉 = 〈v | ϕ(w)〉 = 0 for all w ∈ V ,

iff ϕ∗(v) = 0, iff v = (idV −ϕ∗)(v), iff v ∈ im(idV − ϕ∗) = η
(
(ϕR)′

)
, whence η

preserves the involution.

(ii) By (i) and Proposition 4.3(ii), the identical map ε on End
∗(VF ) defines a

faithful representation of L(VF ). It is surjective since any subspace is the image of

some endomorphism ϕ ∈ End
∗(VF ), cf. also Proposition 5.4(iv).

8. Representations as multi-sorted structures

Given a commutative ∗-ring Λ, let FΛ denote the class of all division rings with

involution which are ∗-Λ-algebras. Unless stated otherwise, any pre-hermitian space

VF , where F ∈ FΛ, is dealt with as a 2-sorted structure with sorts V and F .

That is, V carries the structure of an abelian group and F the structure of a ring

with involution ν and with a unary operation λ �→ ζλ associated to each ζ ∈ Λ.

Moreover, one has the maps V × F → V with (v, λ) �→ vλ and V × V → F with

(v, w) �→ 〈v | w〉.
In general, a similarity type for an n-sorted algebraic structure has a list S1, . . . ,

Sn of names for sorts, a list of typed operation symbols f : Sj1 ×· · ·×Sjkf
→ Sjkf+1

,

and a list of typed relation symbols R ⊆ Sj1 ×· · ·×SjkR
. A structure A of this type

is a family SA
1 , . . . , SA

n of sets together with a map fA : SA
j1
× · · · × SA

jkf
→ SA

jkf+1

for each operation symbol f and with a set RA ⊆ SA
j1
× · · · × SA

jkR
for each relation

symbol R.

Recall the notion of an ultrafilter over a set I. A set U of subsets of I which

is maximal with the following properties:

(i) ∅ �∈ U ;

(ii) U ∩ V ∈ U for any U , V ∈ U ;

(iii) if U ⊆ V ⊆ I and U ∈ U , then V ∈ U ;



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Representations of regular ∗-rings and CMILs 419

in particular for any U ⊆ I, either U ∈ U or I\U ∈ U . Given n-sorted structures

Ai, i ∈ I, of a fixed sorted similarity type and any ultrafilter U over I, for each sort

Sj , one has an equivalence relation ≡Sj
on the direct product

∏
i∈I S

Ai

j of sets such

that

(ai | i ∈ I) ≡Sj
(bi | i ∈ I) if and only if

there is U ∈ U such that ai = bi for all i ∈ U.

The equivalence classes [ai | i ∈ I]Sj
are the elements of the ultraproduct SA

j =∏
i∈I S

Ai

j /U of the sort Sj . One defines the relations and operations on the ultra-

product A =
∏

i∈I Ai/U as follows:

(
[aj1i | i ∈ I]Sj1

, . . . , [a
jkf

i | i ∈ I]SjkR

) ∈ RA if and only if

there is U ∈ U such that (aj1i , . . . , a
jkR

i ) ∈ RAi for all i ∈ U

for each relation symbol R (of the type as above) and

fA
(
[aj1i | i ∈ I]Sj1

, . . . , [a
jkf

i | i ∈ I]Sjkf

)
=

[
fAi(aj1i , . . . , a

jkf

i ) | i ∈ I
]
Sjkf+1

for each operation symbol f (of the type as above). As one easily sees, the operations

and relations are well defined.

Proposition 8.1. Let Φ(x1, . . . , xm) be a formula in the first order language associ-

ated to the given similarity type with free variables x1, . . . , xm of sorts Sj1 ,. . . , Sjm

respectively. For an ultraproduct A =
∏

i∈I Ai/U , one has the substituted formula

Φ
(
[aj1i | i ∈ I]Sj1

, . . . , [ajmi | i ∈ I]Sjkm

)

valid in A if and only if there is U ∈ U such that Φ(aj1i , . . . , a
jkm

i ) is valid in Ai for

all i ∈ U .

Proposition 8.1 is a variant of the well-known Theorem of Łoś [32, Theorem

9.5.1]. To derive it from the 1-sorted case, multi-sorted structures may be conceived

as 1-sorted relational structures, assuming sorts to be pairwise disjoint and captured

by unary predicates. The following is an immediate consequence of Proposition 8.1.

Lemma 8.2. Let U be an ultrafilter over a set I. Let also (Vi)Fi
be a pre-hermitian

space over Fi ∈ FΛ for all i ∈ I. Then F =
∏

i∈I Fi/U ∈ FΛ and V =
∏

i∈I Vi/U
is a pre-hermitian space over F . Here, for v = [vi | i ∈ I] and w = [wi | i ∈ I] in

the abelian group V and λ = [λi | i ∈ I] in F , one has

vλ = [viλi | i ∈ I], 〈v | w〉 = [〈vi | wi〉i | i ∈ I],

where 〈vi | wi〉i ∈ Fi is the value under the scalar product on (Vi)Fi
.
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Recall that a representation of a ∗-Λ-algebra R within a pre-hermitian space

VF is a ∗-Λ-algebra homomorphism ε : R → End
∗(VF ). It is convenient to consider

representations as unitary R-F -bimodules. More precisely, one has an action (r, v) �→
rv = ε(r)(v) of R on the left and an action (v, λ) �→ vλ of F on the right satisfying

the laws of unitary left and right modules and such that

(λr)v = (rv)λ = r(vλ) for all v ∈ V, r ∈ R, λ ∈ Λ,

where vλ = v(λ1F ). Moreover,

〈rx | y〉 = 〈x | r∗y〉 for all r ∈ R, x, y ∈ V ;

(λr)∗v = (λ∗r∗)v = (r∗v)λ∗ for all v ∈ V, r ∈ R, λ ∈ Λ.

We denote a representation of R in VF by RVF . The R-F -bimodule RVF with scalar

product will be considered as a 3-sorted structure with sorts V , R, and F ; the ∗-Λ-

algebras R and F are considered as 1-sorted structures, where λ ∈ Λ serves to denote

the unary operation x �→ λx. Our main concern will be faithful representations;

that is, representations RVF such that rv = 0 for all v ∈ V if only if r = 0. Observe

that a regular algebra R is ∗-regular, if it admits a faithful representation in an

anisotropic space.

The following is as obvious as crucial: A representation of a MIL ε : L → L(VF )

can be viewed as a 3-sorted structure with sorts L, V , and F and with the map ε

being captured by the binary relation (cf. [41, 42,48] for this method)

{(a, v) | v ∈ ε(a)} ⊆ L× V,

which we denote by ε again.

Lemma 8.3. Under the hypotheses of Lemma 8.2, one has the following.

(i) If Li is a MIL and (Li, Vi, Fi; εi) is a faithful representation for all i ∈ I,

then the associated ultraproduct (L, VF , F ; ε) is a faithful representation of

L =
∏

i∈I Li/U .

(ii) If Ri is a ∗-Λ-algebra and Ri
(Vi)Fi

a faithful representation, i ∈ I, then the

associated ultraproduct RVF is a faithful representation of R =
∏

i∈I Ri/U .

(iii) Let U be an n-dimensional subspace of VF , n < ω. Then there are J ∈ U
and n-dimensional subspaces Ui of (Vi)Fi

, i ∈ J , such that U ∼= ∏
i∈J Ui/UJ ,

where UJ = {X ∈ U | X ⊆ J}, and

L(UF ) ∼=
∏
i∈J

L
(
(Ui)Fi

)
/UJ ,

∗

End(UF ) ∼=
∏
i∈J

∗

End
(
(Ui)Fi

)
/UJ .



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Representations of regular ∗-rings and CMILs 421

Proof. Statements (i) and (ii) follow from Proposition 8.1 and the observation that

both types of 3-sorted structures can be characterized by first order axioms. In (iii),

observe that for a fixed positive integer n, there is a first order formula in the two

sorted language for vector spaces expressing that a family (v1, . . . , vn) of vectors is

independent [is a basis], as well as a first order formula expressing that a vector v

is in the span of the v1, . . . , vn. Thus by the Łoś Theorem (cf. Proposition 8.1), a

basis of U determines J and bases of spaces Ui, i ∈ J . Now, apply (i) to the lattices

Li = L
(
(Ui)Fi

)
, i ∈ J , to get an embedding of

∏
i∈J Li/UJ into L(UF ). Surjectivity

of this embedding is granted by the sentence stating that for any v1, . . . , vn, there

is a such that v ∈ ε(a) if and only if v is in the span of v1, . . . , vn. Similarly, we

apply (ii) in the ring case and use the sentence stating that for any basis v1, . . . ,

vn and any w1, . . . , wn, there is r such that rvi = wi for all i ∈ {1, . . . , n}.

Inheritance of existence of representations under homomorphic images has

been dealt with, in different contexts, in [22,25] for CMILs and by Micol in [44] for

∗-rings. Apparently, this needs saturation properties of ultrapowers. Considering a

fixed 1-sorted algebraic structure A, add a new constant symbol a, called a parameter,

for each a ∈ A. In what follows, Σ(x1, . . . , xn) is a set of formulas with free variables

x1, . . . , xn in this extended language. Given an embedding h : A → B, we call B

modestly saturated [ω-saturated ] over A via h, if for any n < ω and for any set

of formulas Σ(x1, . . . , xn), with parameters from A [and finitely many parameters

from B, respectively], which is finitely realized in A [in B, respectively] is realized

in B (where a is interpreted as aB = h(a)). The following is a particular case of

[10, Corollary 4.3.14].

Proposition 8.4. Every 1-sorted algebraic structure A admits an elementary embed-

ding h into some structure B which is modestly saturated [ω-saturated] over A via

h. One can choose B to be an ultrapower of A and h to be the canonical embedding.

Identifying a with h(a), one may assume B to be an elementary extension of A. An

analogous result holds for multi-sorted algebraic structures.

Theorem 8.5. Let a CMIL L [a ∗-Λ-algebra R] have a faithful representation within

a pre-hermitian space VF . There is an ultrapower V̂F̂ of VF such that any homo-

morphic image of L [such that for any regular ideal I = I∗, the algebra R/I] admits

a faithful representation within (U/ radU)F̂ for some closed subspace U of V̂F̂ .

Proof. For a ∗-Λ-algebra R we use the same idea as in the proof of [30, Proposi-

tion 25]. Though here, the scalar product induced on U , as defined below, might

be degenerate. According to Proposition 8.4, there is an ultrapower R̂V̂F̂ of the

faithful representation RVF which is modestly saturated over RVF via the canonical
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embedding. Then V̂ is an R-module via the canonical embedding of R into R̂ and

the set

U = {v ∈ V̂ | av = 0 for all a ∈ I} =
⋂
a∈I

(a∗V̂ )⊥

is a closed subspace of V̂F̂ and a left (R/I)-module. Moreover as I = I∗, one has

〈(r + I)v | w〉 = 〈v | (r∗ + I)w〉 for all v, w ∈ U and all r ∈ R.

We observe that U⊥ is also an (R/I)-module. Indeed, if v ∈ U⊥ then

〈(r + I)v | u〉 = 〈v | (r∗ + I)u〉 = 0 for all u ∈ U.

Thus with W = radU , one obtains an (R/I)-F̂ -bimodule U/W , where

(r + I)(v +W ) = rv +W for all r ∈ R and all v ∈ U,

which is also a subquotient of VF .

We show that R/I(U/W )F̂ is a faithful representation of R/I; that is, for any

a ∈ R\I, there has to be u ∈ U such that au /∈ W . It suffices to show that for any

a ∈ R\I, there are u, v ∈ U such that 〈au | v〉 �= 0. Since u ∈ U means bu = 0 for

all b ∈ I, we have to show that the set

Σ(x, y) = {〈ax | y〉 �= 0} ∪ {bx = 0 = by | b ∈ I}

of formulas with parameters from {a} ∪ I and variables x, y of type V is satisfiable

in R̂V̂F̂ . Due to modest saturation, it suffices to show that for any b1, . . . , bn ∈ I,

there are u, v ∈ V such that 〈au | v〉 �= 0 and biu = biv = 0 for all i ∈ {1, . . . , n}.
In view of Proposition 3.1(iv) and regularity of I, there is an idempotent e ∈ I

such that bie = bi for all i ∈ {1, . . . , n}; in particular biu = biv = 0 whenever

eu = ev = 0. Thus it suffices to show that there are u, v ∈ V such that eu = ev = 0

but 〈au | v〉 �= 0.

Assume the contrary; namely, let eu = ev = 0 imply 〈au | v〉 = 0 for all u,

v ∈ V . For arbitrary u′, v′ ∈ V , let u = (1− e)u′ and v = (1− e)v′. As eu = ev = 0,

we get by our assumption that 〈(1 − e∗)au | v′〉 = 〈au | v〉 = 0. This holds for all

v′ ∈ V , whence (1−e∗)au = 0 since VF is non-degenerate. Thus (1−e∗)a(1−e)u′ = 0

for all u′ ∈ V , whence (1− e∗)a(1− e) = 0, as RVF is a faithful representation. But

then a = e∗a+ ae− e∗ae ∈ I, a contradiction.

In the case of CMILs, given a representation ε : L → L(VF ), let G = G(VF ) and

let π(v) = vF for v ∈ V . We consider the 4-sorted structure (L, V, F,G; ε, π). Accord-

ing to Proposition 8.4, there is an ultrapower (L̂, V̂ , F̂ , Ĝ; ε̂, π̂) of (L, V, F,G; ε, π)
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which is modestly saturated over (L, V, F,G; ε) via the canonical embedding. By

Lemma 8.3(i), (L̂, V̂ , F̂ ; ε̂) is a faithful representation. In view of Proposition 7.2(ii),

Ĝ ∼= G(V̂F̂ ) via π̂; and ρ̂ : W �→ {v ∈ V̂ | π̂(v) ∈ W} defines an isomorphism from

L(Ĝ) onto L(V̂F̂ ) by Proposition 7.2(iii).

Now, let θ be a congruence of the Galois lattice L. According to the proof

of [22, Theorem 13.1], there is a faithful representation η : L/θ → L(W/W ′) in

a subquotient W/W ′ of Ĝ, where the subspace W is closed and W ′ = W ∩ W⊥.

Then ρ̂(W )/ρ̂(W ′) is a subquotient of V̂F̂ , ρ̂(W ) is a closed subspace of V̂ , and ρ̂η

is a faithful representation of L/θ in ρ̂(W )/ρ̂(W ′) by Proposition 7.5. The proof is

complete.

Corollary 8.6. Let a MOL L have a faithful representation within a pre-hermitian

space VF . There is an ultrapower V̂F̂ of VF such that any homomorphic image of L

admits a faithful representation within a pre-hermitian closed subspace UF̂ of V̂F̂ .

Proof. According to the proof of [22, Theorem 13.1] and the proof of Theorem 8.5,

there is an ultrapower V̂F̂ of VF such that any homomorphic image of L admits

a faithful representation within a subquotient W/W ′ of the orthogonal geometry

G(V̂F̂ ). As L is a MOL, according to the definition of W ′ (given in [22, page 355]

and denoted by U there), one has W ′ = ∅. Hence in the proof of Theorem 8.5,

radU = ρ̂(W ′) = 0.

9. Classes of structures

We consider classes C of ∗-Λ-algebras on one side, of Galois lattices on the other.

With the familiar concepts, by H(C), S(C), P(C), Ps(C), Pω(C), and Pu(C), we de-

note the class of all homomorphic images, subalgebras, direct products, subdirect

products, direct products of finitely many factors, and ultraproducts of members of

C, respectively, allowing isomorphic copies in all cases. Of course, all fundamental

operations have to be taken care of. In particular, in the case of ∗-Λ-algebras, this

applies also to the unit 1, the additive inverse, and the “scalars” λ ∈ Λ; that is,

“subalgebra” means ∗-subring and Λ-subalgebra with unit. In the case of Galois

lattices, also the bounds 0, 1 and the operation x �→ x′ are to be preserved; that

is, “subalgebra” means Galois sublattice. In terms of Universal Algebra, we have

classes of algebraic structures of a given “similarity type” or “signature” and the

associated class operators, cf. [9, Chapter II] and [18, Chapter I], also [43].

A class C of algebraic structures of the same type is a universal class if it is

closed under S and Pu; a positive universal class (shortly a semivariety), if it is
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closed also under H; a variety if, in addition, it is closed under P. Let W(C) and

V(C) denote the smallest semivariety and the smallest variety containing the class

C. The following statement is well known and easily verified, cf. Theorem A.5 in

Appendix A.

Proposition 9.1. A class K is universal [a semivariety, a variety] if and only if

it can be defined by universal sentences [positive universal sentences, identities,

respectively].

Dealing with a class C of ∗-Λ-algebras or MILs, let S∃(C) [Ps∃(C)] consist of all

regular or complemented members of the class S(C) [of the class Ps(C), respectively].

Call C an ∃-semivariety if it is closed under the operators H, S∃, Pu and an ∃-variety

if it is also closed under P, cf. [28], also [35] for an analogue within semigroup theory.

Let W∃(C) [V∃(C)] denote the least ∃-semivariety [∃-variety, respectively] which

contains the class C.

Recall that MIL also denotes the class of all MILs, similarly for CMIL and

MOL. Let AΛ denote the class of all ∗-Λ-algebras, with the subclasses RΛ, R∗
Λ,

and FΛ consisting of its members which are regular, ∗-regular, and divisions rings,

respectively.

Proposition 9.2. Let C ⊆ RΛ or C ⊆ CMIL.

(i) OS∃(C) ⊆ S∃O(C) for any class operator O ∈ {Pu,P,Pω}.
(ii) S∃H(C) ⊆ HS∃(C).
(iii) W∃(C) = HS∃Pu(C).
(iv) V∃(C) = HS∃P(C) = HS∃PPu(C) = HS∃PuPω(C) = Ps∃W∃(C).
(v) W∃(C) and V∃(C) are axiomatic classes.

These statements are well known for arbitrary algebraic structures if the suffix

∃ is omitted.

Proof. In view of Proposition A.4 in Appendix A, Proposition A.6(i)–(iv) and

Theorem A.5(iii)–(iv) apply to yield (i)–(v). The last equation in (iv) follows from

Proposition A.6(v) and the distributivity of congruence lattices of lattices (cf. [19,

Theorem 149]) and regular rings (cf. [51, Lemma 8-3.5]).

Dealing with pre-hermitian spaces, we primarily adhere to the 2-sorted point

of view, as explained in Section 8. A [2-sorted] embedding V ′
F ′ into VF is given by a

∗-Λ-algebra embedding α : F ′ → F and an injective α-semilinear map ω such that

〈ω(v) | ω(w)〉 = α(〈v | w〉′) for all v, w ∈ V ′. An embedding is an isomorphism if

both α and ω are bijections. V ′
F ′ is a [2-sorted] substructure of VF if it embeds into

VF with α and ω being inclusion maps. In contrast to that, a subspace of VF will
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always mean an F -linear subspace with the induced scalar product; that is, here

we follow the 1-sorted view on the vector space VF .

Let S be a class of pre-hermitian spaces VF , where F ∈ FΛ and Λ is a fixed

commutative ∗-ring. In such a case, we also speak of a class of spaces over Λ. Intro-

ducing operators for classes of spaces, let S(S) and Pu(S) denote the classes of all

spaces isomorphic to non-degenerate 2-sorted substructures and to all ultraprod-

ucts of members of S respectively. In contrast to that, following the one-sorted

view, let S1f(S) [S1q(S)] denote the class of (isomorphic copies of) non-degenerate

finite-dimensional subspaces [of all subquotients U/ radU such that VF ∈ S, UF is

a subspace of VF , and U = U⊥⊥, respectively] of members of S. The next statement

follows from Propositions 2.2 and 2.3.

Lemma 9.3. For any class S of spaces over Λ, S1f(S) ⊆ S1q(S) and S1fS1q(S) =
S1f(S).

Let also Is(S) denote the class of spaces which arise from S by scaling and

observe that IsO(S) ⊆ OIs(S) for any of the class operators introduced above. Call

S a universal class, if it is closed under Pu, S, and Is. Observe that SPuIs(S) is the

smallest universal class containing a class S. Call S a semivariety if it is closed

under Pu and S1f . Of course, any universal class is a semivariety, and the smallest

semivariety containing a class S is contained in SPu(S).

10. Reduction to finite dimension

The importance of representations for the universal algebraic theory of CMILs and

regular ∗-rings derives from the following

Theorem 10.1. Let VF be a pre-hermitian space and let L ∈ MIL [R ∈ AΛ] have

a faithful representation within VF . Then L ∈ W
(
L(UF ) | U ∈ O(VF )

)
[R ∈

W
(
End

∗(UF ) | U ∈ O(VF )
)
, respectively]. If L ∈ CMIL [R ∈ RΛ], then L ∈

W∃

(
L(UF ) | U ∈ O(VF )

)
[R ∈ W∃

(
End

∗(UF ) | U ∈ O(VF )
)
, respectively].

Proof. We may assume that dimVF � ω. In view of Proposition 7.3, L embeds

into an atomic MIL M which is a subalgebra of L(VF ) such that Mf = L(VF )f and

M may be chosen a CMIL if L is a CMIL. Proposition 7.2(i)–(ii) yields that Mf

is a CMIL and the directed union of its subalgebras [0, U ] ∪ [U⊥, V ], U ∈ O(VF ),

each of which is in S∃(WF ) for some W ∈ O(VF ). Since any directed union of

algebraic structures Ai, i ∈ I, embeds into an ultraproduct of structures Ai, i ∈ I,

(cf. [18, Theorem 1.2.12(1)]), one gets

Mf ∈ S∃Pu

(
L(UF ) | U ∈ O(VF )

)
.
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Finally, the proof of [22, Theorem 16.3] yields M ∈ W(Mf) and M ∈ W∃(Mf) in

case M is complemented. The claim about L follows immediately.

Dealing with an algebra R ∈ AΛ, first observe that, in view of Corollary 4.6,

Ĵ(VF ) ∈ W∃

( ∗

End(UF ) | U ∈ O(VF )
)
.

In view of Proposition 4.5, we may assume that R is a subalgebra of End
∗(VF )

containing A = Ĵ(VF ). Let J = J(VF ) and let J0 denote the set of projections

in J . By Proposition 8.4, there is an ultrapower (R̂V̂F̂ ; Â) of (RVF ;A) which is

ω-saturated over (RVF ;A). We may assume that R is a subalgebra of R̂ and Â is

an ultrapower of A; in particular, Â ∈ W∃

(
End

∗(UF ) | U ∈ O(VF )
)
. For a ∈ Â and

r ∈ R, we put

a ∼ r, if ae = re and a∗e = r∗e for all e ∈ J0.

Claim 1. For any a ∈ Â and any r, s ∈ R, a ∼ r and a ∼ s imply r = s.

Proof of Claim. For any U ∈ O(VF ), we have πU ∈ J0, whence rπU = aπU = sπU .

Considering r and s as endomorphisms of VF , we get that they coincide on any

U ∈ O(VF ), whence they coincide on VF by Proposition 2.2.

Claim 2. S = {a ∈ Â | a ∼ r for some r ∈ R} is a subalgebra of Â and the map

g : Â → R, g : a �→ r, where a ∼ r is a homomorphism.

Proof of Claim. It follows from Claim 1 that g is well defined. Let a, b ∈ Â and

r, s ∈ R be such that a ∼ r and b ∼ s. Then, obviously, a + b ∼ r + s, λa ∼ λr

for any λ ∈ Λ, and a∗ ∼ r∗. Let e ∈ J0, then be ∈ J . By Proposition 4.4(iv), there

is f ∈ J0 such that fbe = be. Therefore, we get abe = afbe = rfbe = rbe = rse,

whence ab ∼ rs.

Obviously, 0V̂ , idV̂ ∈ Â. For any U ∈ O(VF ) we have πU ∈ J0. Therefore,

0V̂ πU = 0U and idV̂ πU = πU imply in view of Proposition 2.2 that 0V̂ ∼ 0R and

idV̂ ∼ 1R.

Claim 3. The homomorphism g is surjective.

Proof of Claim. Surjectivity of g is shown via the saturation property. Given r ∈ R,

consider a finite set E ⊆ J0. According to Proposition 4.4(iv), there is e ∈ J0 such

that ef = f for all f ∈ E and er∗f = r∗f for all f ∈ E. Take a = re and observe

that af = ref = rf and a∗f = er∗f = r∗f for all f ∈ E. Thus the set of formulas

Σ(x) =
{
[xe = re] & [x∗e = r∗e] | e ∈ J0

}
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with a free variable x of type A is finitely realized in (RVF ;A). As (R̂V̂F̂ ; Â) is

ω-saturated over (RVF ;A), we get that there is a ∈ Â with a ∼ r.

Claim 4. If R is regular, then S is also regular.

Proof of Claim. In view of Proposition 3.1(ii), it suffices to prove that ker g =

{a ∈ S | a ∼ 0} is regular. Observe that a ∼ 0 means that ae = 0 = a∗e for

any e ∈ J0, equivalently (1 − e)a = a = a(1 − e). Again, let E ⊆ J0 be finite. By

Proposition 4.4(iv), there is e ∈ J0 such that ef = f for any f ∈ E. The ring A

is regular by Propositions 4.4(i) and 4.5, whence Â is also regular. Therefore, the

ring (1 − e)Â(1 − e) is regular by [5, 2.4]. Thus there is b ∈ Â such that aba = a

and (1− e)b = b = b(1− e); in particular, be = 0 = eb whence b∗e = 0. This implies

that bf = bef = 0 and b∗f = b∗ef = 0 for all f ∈ E. Therefore, the set of formulas

Σ(x) = {axa = a} ∪ {
[xe = 0] & [x∗e = 0] | e ∈ J0

}
with a variable x of type A is finitely realized in (R̂V̂F̂ ; Â). Thus Σ(x) is realized in

(R̂V̂F̂ ; Â), and we obtain b ∈ Â such that aba = a and b ∼ 0; that is, b ∈ ker g.

The proof for ∗-Λ-algebras is done in view of Claims 2–4.

Remark 10.2. The statements of Theorem 10.1 concerning ∗-Λ-algebras were es-

tablished in case of representability in inner product spaces in [30, Theorem 16].

Considering the operator W only, a more direct approach is possible. For R ∈ AΛ,

one chooses in the proof of [30, Theorem 16] I = O(VF ). By Proposition 2.2, any

finite-dimensional subspace of VF is contained in some U ∈ I. Moreover, with the

induced scalar product, UF is a pre-hermitian space. A similar approach works for

MILs.

11. (∃-)semivarieties of representable structures

We denote by L(S) [by R(S)] the class of all CMILs [of all R ∈ RΛ respectively]

having a faithful representation within some member of S (we also say that these

structures are representable within S). Here, we consider conditions on S which

ensure that the classes L(S) and R(S) are ∃-(semi)varieties. Observe that

L(Is(S)) = L(S) and R(
Is(S)

)
= R(S).

Proposition 11.1. Let S be a [recursively] axiomatized class of pre-hermitian spaces

over a [recursive] commutative ∗-ring Λ. Then L(S) and R(S) are [recursively]

axiomatizable.
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Proof. Let Γr denote the set of first order axioms defining representations RVF

with R ∈ RΛ and VF ∈ S and let Σr denote the set of all universal sentences in

the first order language of ∗-Λ-algebras which are consequences of Γr. Then Σr

defines the class of all ∗-Λ-algebras representable in S (we refer to the Fundamental

Theorem in [48] for this kind of reasoning, see also [42]). Adding to Σr the ∀∃-axiom

of regularity one defines the subclass R(S). If Λ is recursive and S is recursively

axiomatizable, then Γr is recursive; moreover, by Gödel’s Completeness Theorem,

Σr is recursively enumerable and, by Craig’s trick [32, Exercise 6.1.3], Σr is also

recursive.

Similarly, taking Γl to be the set of first order axioms defining representations

of CMILs within spaces from S, and denoting by Σl the set of all universal sentences

in the signature of CMILs which are consequences of Γl, we get that Σl defines the

class L(S) of all CMILs representable in S. Moreover, if Γl is recursive, then Σl is

also recursive.

A tensorial embedding of a pre-hermitian space VF into another one, WK ,

is given by a ∗-Λ-algebra embedding α : F → K and an injective α-semilinear

map ε : VF → WK such that WK is spanned by im ε as a K-vector space and

〈ε(v) | ε(w)〉 = α
(〈v | w〉) for all v, w ∈ V ; in particular, ε is an isomorphism of

VF onto a two-sorted substructure of WK . A joint tensorial extension of spaces

ViFi
, i ∈ {0, 1}, is given by a pre-hermitian space WF = U0 ⊕⊥ U1 and a tensorial

embedding of ViFi
into UiF for i ∈ {0, 1}.

Lemma 11.2. Let F , F0, F1 ∈ AΛ, let VF be a pre-hermitian space, and let V0F0

and V1F1
be finite-dimensional pre-hermitian spaces.

(i) If α0 and ε0 defines a tensorial embedding of V0F0
into VF then End

∗(V0F0
)

embeds into End
∗(VF ) and L(V0F0

) embeds into L(VF ).

(ii) If VF is a joint tensorial extension of V0F0
and V1F1

, then End
∗(V0F0

) ×
End

∗(V1F1
) embeds into End

∗(VF ) and L(V0F0
)×L(V1F1

) embeds into L(VF ).

Proof. (i) In view of Proposition 4.3(i), V0F0
has a dual pair (v1, . . . , vn),

(w1, . . . , wn) of bases; applying ε0, one obtains such a pair for VF . Indeed, VF

is obviously spanned by both, (ε0(v1), . . . , ε0(vn)) and (ε0(w1), . . . , ε0(wn)). Sup-

pose that Σn
j=1ε0(vj)λj = 0 for some λ1, . . . , λn ∈ F . Then for any k ∈ {1, . . . , n},

one gets

0 = 〈0 | wk〉 =
〈
Σn

j=1ε0(vj)λj | ε0(wk)
〉
= Σn

j=1α0

(〈vj | wk〉
)
λj = λk,

whence (ε0(v1), . . . , ε0(vn)) is a basis of VF . Similarly, (ε0(w1), . . . , ε0(wn)) is a

basis of VF .
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For ϕ ∈ End
∗(V0F0

), let ξ0(ϕ) be the F -linear map on V defined by

ξ0(ϕ) : ε0(vj) �→ ε0
(
ϕ(vj)

)
for all j ∈ {1, . . . , n}. Clearly, ξ0 is a Λ-algebra em-

bedding of End
∗(V0F0

) into End
∗(VF ). Moreover, for any j, k ∈ {1, . . . , n}, one

has

〈
ε0(vj) | ξ0(ϕ∗)ε0(vk)

〉
=

〈
ε0(vj) | ε0ϕ∗(vk)

〉
= α0

(〈vj | ϕ∗(vk)〉
)
= α0

(〈ϕ(vj) | vk〉)
=

〈
ε0ϕ(vj) | ε0(vk)

〉
=

〈
ξ0(ϕ)ε0(vj) | ε0(vk)

〉
,

whence ξ0(ϕ
∗) = ξ0(ϕ)

∗ by Proposition 4.3(iii). For the claim about polarity lattices,

now apply Proposition 7.8.

(ii) As VF = U0 ⊕⊥ U1, by (i), there are ∗-Λ-algebra embeddings

ξi :
∗

End(ViFi
) →

∗

End(UiF ), i ∈ {0, 1}.

Thus there is a unique embedding

ξ :
∗

End(V0F0
)×

∗

End(V1F1
) →

∗

End(VF )

such that ξ(ϕ0, ϕ1)|Ui
= ξi(ϕi) for i ∈ {0, 1}. By Propositions 5.4(iii), 4.3(i), and

7.8(ii), one has

L(V0F0
)× L(V1F1

) ∼= L
( ∗

End(V0F0)
)× L

( ∗

End(V1F1
)
) ∼= L

( ∗

End(V0F0
)×

∗

End(V1F1
)
)
.

By (ii) for ∗-Λ-algebras and Proposition 7.8(i), the latter admits a faithful repre-

sentation in VF .

Theorem 11.3. Let S be a class of pre-hermitian spaces over Λ. Then

(i) L(S1qPu(S)
)
= L(SPuIs(S)

)
= W∃

(L(S)) = W∃

(
L(VF ) | VF ∈ S1f(S)

)
;

(ii) R(
S1qPu(S)

)
= R(

SPuIs(S)
)
= W∃

(R(S)) = W∃

(
End

∗(VF ) | VF ∈ S1f(S)
)
.

In particular, if the class S is a semivariety then the classes L(S) = L(SPuIs(S)
)

and R(S) = R(
SPuIs(S)

)
are ∃-semivarieties generated by their strictly simple

finite-dimensional or artinian members, respectively.

Proof. The proofs of (i) and (ii) follow the same lines. We prove (ii).

The fact that S∃Pu

(R(S)) ⊆ R(
Pu(S)

)
follows immediately from Lemma

8.3(iii). Then W∃

(R(S)) ⊆ R(
S1qPu(S)

)
by Theorem 8.5. By Theorem 10.1,

R(
S1qPu(S)

) ⊆ W∃

(
End

∗(VF ) | VF ∈ S1fS1qPu(S)
)
. By Lemmas 8.3(iii) and 9.3,

for any VF ∈ S1fS1qPu(S) = S1fPu(S), we have VF ∈ PuS1f(S) and End
∗(VF ) ∈

Pu

(
End

∗(WK) | WK ∈ S1f(S)
)
. It follows that

W∃

(R(S)) ⊆ R(
S1qPu(S)

) ⊆ W∃

( ∗

End(WK) | WK ∈ S1f(S)
) ⊆ W∃

(R(S)).
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Now, consider R ∈ R(
SPu(S)

)
; that is, R is represented in a 2-sorted substructure

WK of some VF ∈ Pu(S). By Theorem 10.1, we have R ∈ W∃

(
End

∗(UK) | UK ∈
S1f(WK)

)
. Let U ′

F denote the F -subspace of VF spanned by U . By Lemma 11.2(i),

End
∗(UK) ∈ S∃

(
End

∗(U ′
F )

)
. Thus, R ∈ W∃

(R(S)). Hence

R(
SPuIs(S)

) ⊆ R(
IsSPu(S)

)
= R(

SPu(S)
) ⊆ W∃

(R(S)) = R(
S1qPu(S)

)
.

The containment R(
S1qPu(S)

) ⊆ R(
SPuIs(S)

)
is trivial by Lemma 9.3.

More closure properties on S are needed if one intends to get a one-to-one cor-

respondence between classes of spaces and classes of structures as in Theorem 11.3.

Definition 11.4. Let VF , WK be pre-hermitian spaces over Λ, dimVF < ω, and let

S be a class of pre-hermitian spaces over Λ.

(i) The sesquilinear space VF is an L-spread of WK if dimVF > 2 and L(VF ) ∈
L(WK). The class S is L-spread closed, if it contains all L-spreads of its

members.

(ii) The sesquilinear space VF is an R-spread of WK if End∗(VF ) ∈ R(WK). The

class S is R-spread closed, if it contains all R-spreads of its members.

(iii) An R-[L-]spread closed universal class or a semivariety S is small, if S coincides

with the smallest R-[L-]spread closed universal class or a semivariety which

contains all members of S of dimension n < ω [of dimension 2 < n < ω,

respectively].

Example 11.5. Consider the class S of all anisotropic hermitian spaces, where

F ∈ SPu(Q); in particular, F |= ∀x [x2 �= 2] and S is a universal class which does

not contain K3
K with the canonical scalar product, where K = Q(

√
2). Nonetheless,

K3×3 (whence also L(K3×3)) is representable within Q6
Q ∈ S:

a+ b
√
2 �→ a

(
1 0

0 1

)
+ b

(
1 1

1 −1

)
, where a, b ∈ Q,

yields a ∗-ring embedding of K into Q2×2 thus giving rise to an embedding of K3×3

into (Q2×2)3×3. In the sense of Definition 11.4, K3
K is an L-spread and an R-spread

of Q6
Q.

Theorem 11.6.

(i) For any ∃-semivariety V of Arguesian CMILs generated by its strictly simple

members of finite dimension at least 3, there is a small L-spread closed semi-

variety [universal class] S of pre-hermitian spaces over Z such that V = L(S).
Moreover, the class of members of S of dimension at least 3 is unique.
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(ii) For any ∃-semivariety V ⊆ RΛ generated by its strictly simple artinian mem-

bers, there is a small R-spread closed semivariety [universal class] S of pre-

hermitian spaces over Λ such that V = R(S). Moreover, such a class S is

unique.

The class S above is anisotropic, if V consists of MOLs or V ⊆ R∗
Λ.

Remark 11.7. If V consists of MOLs (in the context of (i)) or V ⊆ R∗
Λ (in the

context of (ii)), it suffices to require that V is generated by its simple members

which are of finite dimension respectively artinian and that, in the context of (i), V
is not 2-distributive. Then, in the context of (i), V contains all MOLs of dimension

2.

Proof of Theorem 11.6. (ii) Given an ∃-semivariety V ⊆ RΛ with all required

properties, let KV denote the class of strictly artinian members of V . By Proposition

4.9, for any R ∈ KV , there is a pre-hermitian space VF over Λ such that R ∼=
End

∗(VF ). By SV , we denote the class of spaces VF over Λ such that End∗(VF ) ∈ KV .

We put G0 = S1f(SV). For any ordinal α, let Gα+1 be the union of two classes:

Pu(Gα) and the class of all VF ∈ S1f(V
′
F ), where V ′

F is an R-spread of some WK ∈ Gα.

Let also Gα =
⋃

β<α Gβ , if α is a limit ordinal.

Claim 1. S1f(Gα) ⊆ Gα and End
∗(VF ) ∈ V for any α and VF ∈ Gα with dimVF < ω.

Proof of Claim. We argue by induction on α. For α = 0, the first claim follows

from the definition of G0. Moreover, if UF ∈ S1f(VF ) and End
∗(VF ) ∈ V then

End
∗(UF ) ∈ HS∃(End

∗(VF )) ⊆ V by Proposition 4.3(iii). The limit step is trivial. In

the step from α to α+1, we assume first that VF is isomorphic to an ultraproduct of

spaces ViFi
∈ Gα, i ∈ I. If UF ∈ S1f(VF ) and n = dimUF then, by Lemma 8.3(iii),

for some J ⊆ I, UF is isomorphic to an ultraproduct of UiFi
∈ S1f(ViFi

) with

dimUiFi
= n, i ∈ J . By the inductive hypothesis, UiFi

∈ Gα and End
∗(UiFi

) ∈ V.

Thus UF ∈ Gα+1 and End
∗(UF ) ∈ V by Lemma 8.3(iii).

Now, let V ′
F be an R-spread of WK ∈ Gα and let VF ∈ S1f(WK). IfUF ∈ S1f(VF )

then UF ∈ S1f(V
′
F ), whence UF ∈ Gα+1 by definition. By Theorem 10.1 and the

inductive hypothesis,

∗

End(V ′
F ) ∈ W∃

( ∗

End(W ′
K) | W ′

K ∈ O(WK)
) ⊆ V.

By Proposition 7.2(i), End∗(UF ) ∈ HS∃(End
∗(V ′

F )) ⊆ V.

It follows that the R-spread closed semivariety K(V) of pre-hermitian spaces

over Λ generated by SV is the union of the classes Gα, where α ranges over all
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ordinals. Thus in view of the assumption V = W∃(KV) and Claim 1, one gets by

Theorem 11.3(ii)

V ⊆ R(
K(V)) = W∃

( ∗

End(VF ) | VF ∈ K(V), dimVF < ω
) ⊆ V .

To prove uniqueness, let S and S ′ be small R-spread closed semivarieties of pre-

hermitian spaces over Λ such that R(S) = V = R(S ′). For any VF ∈ S with

dimVF < ω, we have End
∗(VF ) ∈ R(S) = R(S ′), whence VF is an R-spread of S ′

and VF ∈ S ′. Similarly, interchanging the roles of S and S ′, we get that S and S ′

have the same artinian members.

To deal with the case of universal classes, one includes into the union Gα a

third class, namely S(Gα). Claim 1 and its proof remain valid, only the case of

the third class remains to be considered. Indeed, assume that VF ∈ Gα+1 is a 2-

sorted substructure of WK ∈ Gα and let UF ∈ S1f(VF ). Then UF ∈ S(WK) and

UF ∈ Gα+1 by definition. Moreover, UF is a 2-sorted substructure of the K-subspace

U ′
K of WK spanned by U ; that is, UF is tensorially embedded into U ′

K . In particular,

U ′
K ∈ S1f(WK) and the inductive hypothesis yields U ′

K ∈ Gα and End
∗(U ′

K) ∈ V . As

End
∗(UF ) embeds into End

∗(U ′
K) by Lemma 11.2(i), it follows that End

∗(UF ) ∈ V.

(i) The proof follows the same lines as the one of (ii) replacing Λ by Z,

Proposition 4.9 by Proposition 7.7, Proposition 4.3(iii) by Proposition 7.2(i), and

Theorem 11.3(ii) by Theorem 11.3(i). For L ∈ KV , one has to require that 3 �

dimL < ω.

For results of the same type as Theorem 11.6, see also [29, Theorems 4.4–5.4].

12. ∃-varieties and representations

We first consider a condition on S under which the class of representables is an

∃-variety. Then we review the approach of Micol [44] to capture ∃-varieties via the

concept of generalized representation.

A semivariety S of pre-hermitian spaces over Λ is a variety if for any finite-

dimensional V0F0
, V1F1

∈ S, there is a joint tensorial extension VF ∈ S.

Proposition 12.1. If S is a variety of pre-hermitian spaces over Λ, then L(S) and

R(S) are ∃-varieties.
Proof. In view of Proposition 9.2(iv) and Theorem 11.3, it suffices to notice that for

any finite-dimensional spaces V0F0
, V1F1

∈ S, the structures End∗(V0F0
)×End

∗(V1F1
)

and L(V0F0
)× L(V1F1

) have a faithful representation within some member of S by

Lemma 11.2(ii).
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Classes L(S) of CMILs having a faithful representation within some member

of a class S of orthogeometries have been considered in [22]. The closure properties

of Theorem 11.3(i) hold also in this case. with S(S) denoting formation of non-

degenerate subgeometries of members of S, S1f(S) and S1q(S) — formation of non-

degenerate finite-dimensional subspaces and of subquotients U/ radU , where UF ∈ S
and U = U⊥⊥. In addition, one has the class U(S) of all disjoint orthogonal unions

of members of S and thus P
(L(S)) ⊆ L(U(S)), cf. [22, Theorem 2.2]. Moreover,

mimicking the concept of an L-spread and the proof of Theorem 11.6, one obtains

Theorem 12.2. For any ∃-variety V of CMILs generated by its finite-dimensional

members, there is a small L-spread and U-closed semivariety [universal class] S of

orthogeometries such that V = L(S). Moreover, such a class S is unique.

The objective of Micol [44] was to derive results for ∗-regular rings, analogous

to those above. Of course, representation requires some structure of the type of

sesquilinear spaces. Apparently, in general there is no axiomatic class of such spaces

which would serve for representing direct products of representable structures. Micol

solved this problem by introducing the concept of a generalized representation. This

concept was transferred to MOLs by Niemann [46].

A g-representation of A ∈ CMIL [A ∈ RΛ] within a class S of pre-hermitian

spaces is a family {εi | i ∈ I} of representations εi of A in ViFi
∈ S, i ∈ I. It is

faithful if
⋂

i∈I ker εi is trivial. Let Lg(S) [Rg(S)] denote the class of all A ∈ CMIL

[A ∈ RΛ] having a faithful g-representation within S; equivalently, the class of

structures A having a subdirect decomposition into factors εi(A), i ∈ I, which have

a faithful representation within S.

Call an artinian algebra R ∈ RΛ strictly artinian if I = I∗ for any ideal I

of R. By the Wedderburn–Artin Theorem, this is equivalent to the fact that R is

isomorphic to a direct product of strictly simple factors (cf. [38, §3.4]). Similarly,

call a finite-dimensional CMIL L strictly finite-dimensional if θ = θ′ for any lattice

congruence θ of L. By [6, Theorem IV.7.10]), this is equivalent to the fact that L

is a direct product of strictly simple factors.

Proposition 12.3. The following statements are true.

(i) For any semivariety S of pre-hermitian spaces, the class Lg(S) = Ps∃

(L(S))
[Rg(S) = Ps∃

(R(S))] is an ∃-variety generated by its strictly simple finite-

dimensional [artinian] members, which are of the form L(VF ) [End
∗(VF )] with

VF ∈ S, dimVF < ω.

(ii) For any ∃-variety V ⊆ CMIL [V ⊆ RΛ] which is generated by its strictly

finite-dimensional, of dimension at least 3, [artinian] members, there is a

semivariety S of pre-hermitian spaces such that V = Lg(S) [V = Rg(S)].
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(iii) A ∈ Lg(S) [A ∈ Rg(S)] if and only if A has an atomic extension Â which is

a subdirect product of atomic strictly subdirectly irreducible structures Ai such

that (Ai)f ∼= L(ViFi
)f [the minimal ideal of Ai is isomorphic to J(ViFi

)] with

ViFi
∈ S.

Proof. Statement (i) follows from Propositions 9.2(iii)–(iv), 7.7, 4.9, and Theorem

11.3. Statement (ii) follows from Propositions 9.2(iv), 7.7, 4.9, and Theorem 11.6.

Finally, statement (iii) follows from Propositions 7.3, 4.5 and Theorems 7.6, 4.7.

For ∗-regular rings, the result of Proposition 12.3 is in essence due to Micol

[44]. To prove that g-representability is preserved under homomorphic images, she

axiomatized families of inner product spaces as 3-sorted structures, where the third

sort mimics the index set I. Again, a saturation property is needed for the proof

and regularity is crucial. The fact that the ∃-variety of g-representable structures

is generated by its artinian members was shown by her reducing to countable

subdirectly irreducible structures R, deriving countably based representation spaces

(and forming 2-sorted subspaces), and using the approach of Tyukavkin [50] with

respect to a countable orthogonal basis. Conversely, a substantial part of Theorem

11.3 follows from Proposition 12.3.

A. Appendix: Existence semivarieties

We characterize ∃-(semi)varieties contained in CMIL or in RΛ as model classes, prov-

ing at the same time the operator identities of Proposition 9.2. With no additional

effort, this can be done to include other classes of algebraic structures.

Given a set Σ of first order axioms, by ModΣ we denote the model class

{A | A |= Σ} of Σ. By Th C [ThL C], we denote the set of sentences [from the

fragment L] of first order language which are valid in C. As usual, let x denote a

sequence of variables of length being given by context.

Definition A.1. A class C0 of algebraic structures of the same similarity type is

regular if there is a (possibly empty) set Ψ0 of conjunctions α(x, y) of atomic

formulas
(
i.e. formulas of the form

∧k
i=1 si(x, y) = ti(x, y)

)
and a class S such that

(i) C0 = S ∩Mod{∀x∃y α(x, y) | α(x, y) ∈ Ψ0};
(ii) S is closed under S and C0 is closed under H and P;

(iii) for any structures A, B ∈ C0, for any surjective homomorphism ϕ : A → B,

for any formula α(x, y) ∈ Ψ0, and for any a, b ∈ B such that B |= α(a, b),

there are c, d ∈ A such that ϕ(c) = a, ϕ(d) = b, and A |= α(c, d).
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More generally, one may admit α(x, y) of the form
∧k

i=1 pi
(
t1(x, y), . . . , tm(x, y)

)
,

where pi is a relation symbol of arity m.

From Definition A.1(ii) it follows immediately that any regular class is closed

under Pu. In the sequel, we shall fix a regular class C0 and write for any C ⊆ C0:

S∃(C) = C0 ∩ S(C) and Ps∃(C) = C0 ∩ Ps(C).

Let C0 be a regular class. A Skolem expansion A∗ of A ∈ C0 adds for each α(x, y) ∈
Ψ0 an operation fα on A such that A |= α(a, fα(a)) for all a ∈ A.

Definition A.2. A class C0 is strongly regular if it is regular and

(iii′) for any structures A, B ∈ C0, for any surjective homomorphism ϕ : A → B,

for any formula α(x, y) ∈ Ψ0, for any a, b ∈ B such that B |= α(a, b), and

for any c ∈ A such that ϕ(c) = a there is d ∈ A such that ϕ(d) = b and

A |= α(c, d).

Remark A.3. It is obvious that if a class C0 satisfies (iii′) of Definition A.2, then C0
satisfies (iii) of Definition A.1. For any strongly regular class C0, for any A, B ∈ C0,
and for any surjective homomorphism ϕ : A → B, if B∗ is a Skolem expansion of B,

then there is a Skolem expansion A∗ of A such that ϕ : A∗ → B∗ is a homomorphism.

Clearly, C0 is strongly regular if it satisfies (i)–(ii) of Definition A.1 and for any

α ∈ Ψ0 and for any a ∈ A ∈ C0, there is unique b such that α(a, b). This applies, in

particular, to completely regular [inverse] semigroups.

In what follows, when we speak of a [strongly] regular class C, we always

assume that the set of formulas Ψ0 and the classes C0 and S are given according to

Definition A.1 [Definition A.2, respectively].

Proposition A.4. For any variety V having ring [bounded modular lattice] reducts

the class of all regular [complemented, respectively] members is a strongly regular

class. For any variety V having ∗-ring reducts, the class of all ∗-regular members is

a strongly regular class; in particular, R∗
Λ is strongly regular.

Proof. See [28, Lemma 9]. For convenience, we give a proof here. In the ring case, let

Ψ0 consist of the formula xyx = y and let S = V . Then C0 defined as in Definition

A.1(i) consists of the regular members of V . Closure of C0 under H and P is obvious.

The proof of (iii′) essentially goes as in [17, Lemma 1.4]. Indeed, the two-sided ideal

I = kerϕ is regular (Proposition 3.1(i)). Let c ∈ A be such that a = ϕ(c), and let

aba = a in B. There is y ∈ A such that ϕ(y) = b. Then c−cyc ∈ I. Since I is regular,

there is u ∈ I such that (c− cyc)u(c− cyc) = c− cyc. It follows from the latter that

cuc−cycuc−cucyc+cycucyc+cyc = c. Taking d = u−ucy−ycu+ycucy+y, we get
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cdc = cuc−cucyc−cycuc+cycucyc+cyc = c and d−y = u−ucy−ycu+ycucy ∈ I,

whence ϕ(d) = b. In the ∗-regular variant let S = V ∩Mod(∀x xx∗ = 0 → x = 0)

and use Proposition 3.1(v).

In the lattice case, let a⊕ b = 1 in B and c ∈ A such that a = ϕ(c). Choose

y with ϕ(y) = b and then d1, d2, d which are complements of cy in [0, y], c + y in

[y, 1], and y in [d1, d2], respectively, to obtain c⊕ d = 1 and ϕ(d) = b.

We consider fragments of the first order language associated with a given

regular class C0. Let Lu consist of all quantifier free formulas; up to equivalence, we

may assume that Lu consists of conjunctions of formulas
∧n

i=1 βi → ∨m
j=1 γj , where

βi, γj are atomic formulas and n, m � 0. The set Lq ⊆ Lu of all quasi-identities is

defined by m = 1. The set Lp consists of all formulas of the form

n∧
i=1

αi(xi, yi) →
m∨
j=1

γj ,

where n � 0, m � 1, and αi(xi, yi) ∈ Ψ0. Then Le ⊆ Lp is defined by m = 1; its

members are called conditional identities, while those of Lp are conditional disjunc-

tions of equations. As usual, validity of a formula means validity of its universal

closure. We write Thx instead of ThLx
. Define the concepts of ∃-semivariety and

∃-variety and the operators W∃ and V∃ in analogy to Section 9.

Theorem A.5. Let C0 be a regular class and let C ⊆ C0. Then the following state-

ments hold.

(i) C0∩ModThu C = S∃Pu(C). In particular, C is definable by universal sentences

relatively to C0 if and only if it is closed under S∃ and Pu.

(ii) C0 ∩ ModThq C = S∃PuPω(C) = S∃PPu(C). In particular, C is definable by

quasi-identities relatively to C0 if and only if it is closed under S∃, Pu, and Pω

[under S∃, Pu, and P, respectively].

(iii) C0 ∩ ModThp C = HS∃Pu(C). In particular, C is definable by conditional

disjunctions of equations relatively to C0 if and only if it is an ∃-semivariety.

(iv) C0 ∩ModThe C = HS∃PuPω(C) = HS∃PPu(C). In particular, C is definable by

conditional identities relatively to C0 if and only if it is an ∃-variety [closed

under H, S∃, Pu, and Pω, respectively].

Of course, the statements of Theorem A.5 are well-known results in the case of

empty Ψ0. Proofs of (i) and (ii) are included since they can be seen as a preparation

for proofs of (iii)–(iv); the latter are our primary interest.

Proof. For the model classes, relatively to C0, closure under the operators is granted

by the properties of C0 and well-known preservation properties for the relevant
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kinds of first order sentences. In particular in cases (iii)–(iv), the inclusion H(C) ⊆
ModThx C follows directly from Definition A.1(iii).

Conversely, we have to show that any member of the relative model class

can be obtained from C via the operators. This relies on adapting the method of

diagrams. Given a structure A, let a �→ xa be a bijection onto a set of variables and

let x̄ = (xa | a ∈ A). We consider quantifier free formulas χ(x̄) in these variables;

evaluations x̄ in a structure B are given as b̄ = (ba | a ∈ A) ∈ BA, and we write

B |= χ(b̄) if χ(x̄) is valid under evaluation b̄. For a set Φ = Φ(x̄) of formulas,

B |= Φ(b̄) if B |= χ(b̄) for all χ(x̄) ∈ Φ. Let At denote the set of atomic formulas

and let

Δ+(A) = {χ(x̄) ∈ At | A |= χ(ā)};
Δ−(A) = {¬χ(x̄) | χ(x̄) ∈ At, A �|= χ(ā)};
Δ0(A) =

{
α
(
t1(x̄), . . . , tn(x̄), xa

) ∣∣∣ t1, . . . , tn are terms, α(x1, . . . , xn, y) ∈ Ψ0,

A |= α
(
t1(ā), . . . , tn(ā), a

)}
;

Δu(A) = Δq(A) = Δ+(A) ∪Δ−(A);

Δp(A) = Δe(A) = Δ0(A) ∪Δ−(A).

For x ∈ {u, q, p, e} and a finite subset Φ of Δx(A), let Φ− = Φ∩Δ−(A), Φ+ = Φ\Φ−,

and let Φ† denote the formula

∧
ϕ∈Φ+

ϕ →
∨

¬χ∈Φ−

χ;

while for ¬χ ∈ Φ−, let Φ†
χ denote the quasi-identity

∧
ϕ∈Φ+

ϕ → χ.

Thus for any finite Φ ⊆ Δu(A) and for χ ∈ Φ−, we have Φ† ∈ Lu and Φ†
χ ∈ Lq,

while for any finite Φ ⊆ Δp(A) and for χ ∈ Φ−, we have Φ† ∈ Lp and Φ†
χ ∈ Le.

Observe that A �|= Φ† and A �|= Φ†
χ in any case (verified by substituting xa with a).

Let A ∈ C0 ∩ModThx C. We have to obtain A from C by means of operators.

First, we consider the case x ∈ {u, p}. Let Φ ⊆ Δx(A) be finite. As A �|= Φ†,

we have that Φ† /∈ Thx C. Thus there are a structure BΦ ∈ C and b̄Φ = (bΦa | a ∈
A) ∈ BA

Φ such that BΦ �|= Φ†(b̄Φ), i.e. BΦ |= Φ(b̄Φ).

As in the proof of the Compactness Theorem, let I be the set of all finite subsets

of Δx(A) and let U be one of the ultrafilters containing all sets {Ψ ∈ I | Ψ ⊇ Φ},
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where Φ ∈ I. Let B =
∏

Φ∈I BΦ/U , ba = (bΦa | Φ ∈ I)/U and b̄ = (ba | a ∈ A). By

(the quantifier free part of) the Łoś Theorem, we have B |= Δx(A)(b̄). Moreover,

B ∈ Pu(C) ⊆ C0.
Let C be the subalgebra of B generated by the set {ba | a ∈ A}. We claim that

C ∈ C0, i.e. C ∈ S∃(B). Indeed, let α(x1, . . . , xn, y) ∈ Ψ0 and let c1, . . . , cn ∈ C. As

C is generated by the set {ba | a ∈ A}, there are terms t1(x̄), . . . , tn(x̄) such that

ci = ti(b̄) for all i ∈ {1, . . . , n}. Since A ∈ C0, by Definition A.1(i) there is a ∈ A

such that

A |= α
(
t1(ā), . . . , tn(ā), a

)
.

Therefore,

α
(
t1(x̄), . . . , tn(x̄), xa

) ∈ Δ+(A) ∩Δ0(A).

Since B |= Δx(A)(b̄), we conclude that B |= α
(
t1(b̄), . . . , tn(b̄), ba

)
. This implies

that C |= α(c1, . . . , cn, ba). On the other hand, B ∈ Pu(C) ⊆ C0 ⊆ S, as C0 is

closed under Pu by Definition A.1(ii). Therefore, C ∈ S(B) ⊆ S(S) ⊆ S again by

Definition A.1(ii). This implies by Definition A.1(i) that C ∈ C0 which is our desired

conclusion. Furthermore, the map

ϕ : C → A; t(b̄) �→ t(ā)

is well defined (since B |= Δ−(A)(b̄)), a homomorphism (in view of term composi-

tion), and surjective (since ϕ(ba) = a). Moreover, in case x = u, ϕ is an isomorphism,

as B |= Δ+(A)(b̄). This proves (i) and (iii).

Let x ∈ {q, e}. Given a finite subset Φ ⊆ Δx(A) and ¬χ ∈ Φ−, one has

A �|= Φ†
χ, whence Φ†

χ /∈ Thx C. Thus there are a structure BΦ,χ ∈ C and b̄Φχ =

(bΦχa | a ∈ A) ∈ BA
Φ,χ such that

BΦ,χ |= Φ+(b̄Φχ) and BΦ,χ |= ¬χ(b̄Φχ).

Taking BΦ =
∏

¬χ∈Φ− BΦ,χ ∈ Pω(C) and bΦa = (bΦχa | ¬χ ∈ Φ−), we get that

BΦ |= Φ(b̄Φ). As above, let B =
∏

Φ∈I BΦ/U , ba = (bΦa | Φ ∈ I)/U , so that

B |= Δx(A)(b̄). Let C be again the subalgebra of B generated by the set {ba | a ∈ A}.
We get as above that C ∈ S∃PuPω(C). Thus A ∈ H(C) for x = e and A ∼= C for

x = q follow exactly as above.

It remains to show that A ∈ HS∃PPu(C) if x = e and A ∈ S∃PPu(C) if x = q.

Here, we fix ¬χ ∈ Δ(A)− and consider the set Iχ = {Φ ∈ I | ¬χ ∈ Φ−}. Then there

is a non-principal ultrafilter Uχ on I which contains all sets {Ψ ∈ Iχ | Ψ ⊇ Φ} with

Φ ∈ Iχ. Take

Bχ =
∏
Φ∈Iχ

BΦ,χ/Uχ; bχa = (bΦχa | Φ ∈ Iχ)/Uχ; b̄χ = (bχa | a ∈ A),
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so that Bχ |= ¬χ(b̄χ) and Bχ |= Δ+(A)(b̄χ) if x = q, Bχ |= Δ0(A)(b̄χ) if x = e.

Then

B′ =
∏

¬χ∈Δ−(A)

Bχ ∈ PPu(C); B′ |= Δx(A)(b̄′), where b′a = (bχa | χ ∈ Δ−(A)).

Let C ′ be the subalgebra of B′ generated by the set {b′a | a ∈ A}. As above, C ′ ∈
S∃(B

′) and A ∈ H(C ′) (if x = e) or A ∼= C ′ (if x = q) via the map ϕ′
(
t(b̄′)

)
= t(ā).

The proof is now complete.

The following recaptures part of [28, Proposition 10]. For convenience, we

include proofs.

Proposition A.6. Let C0 be a strongly regular class and let C ⊆ C0. Then statements

(i)–(iv) of Proposition 9.2 hold, analogously. Moreover

(v) If all members of C0 have a distributive congruence lattice, then A ∈ W∃(C)
for any subdirectly irreducible structure A ∈ V∃(C).

Proof. (i) This follows immediately from the well-known rules for S and the fact

that C0 is closed under P and Pu.

(ii) Consider structures A, B and C such that A ∈ C, C ∈ S∃(B), and let

ϕ : A → B be a surjective homomorphism. Then B, C ∈ C0 by Definition A.1(ii).

Choose a Skolem expansion C∗ of C and extend it to a Skolem expansion B∗

of B. According to Remark A.3, there is a Skolem expansion A∗ of A such that

ϕ : A∗ → B∗ is a homomorphism. Then C∗ ∈ S(B∗) ⊆ SH(A∗) ⊆ HS(A∗), whence

C∗ ∈ H(D∗) for some D∗ ∈ S(A∗) and C ∈ H(D) with D ∈ S∃(A).

(iii) According to Theorem A.5(iii), HS∃Pu(C) is definable, relatively to C0, by

conditional conjunctions of equations. By the same token, it is a ∃-semivariety, that

is the smallest one containing C.

(iv) By the same kind of reasoning, based on Theorem A.5(iv), V∃(C) =

HS∃PPu(C) = HS∃PuPω(C). Straightforward inclusions Pu(C) ⊆ HP(C) and PH(C) ⊆
HP(C) together with (i) imply

V∃(C) ⊆ HS∃PHP(C) ⊆ HS∃HP(C) ⊆ HS∃P(C).

The reverse inclusion is obvious.

(v) Let A ∈ V∃(C) be subdirectly irreducible. Then by (ii), there is B ∈ S∃P(C)
such that A ∈ H(B). By Jónsson’s Lemma, there is C ∈ SPu(C) such that A ∈ H(C)

and C ∈ H(B). The latter inclusion implies by Definition A.1(ii) that C ∈ C0,
whence C ∈ S∃Pu(C).
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