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The conditions of van Keumann regukity, x-reguiarity, and being an 

I-ring are placed on symmetric subrings of a ring with involution, and n-e 

determine when the whole ring must satisfy the same property. It is shown that 
any symmetric subring must satisfy any one of these properties if the whole 

ring does. 

In this paper, we continue our investigations begun in [6], in which we 
determined conditions on the symmetric elements of a ring witn involution 
that force the ring to be an I-ring. In the spirit of [S], the conditions of 

van Neumann reguhxrity, r-regularity, and being an I-ring are assumed for 
certain subrings generated by symmetric elements, to see if these conditions 
are then implied for the whole ring. Any of these conditions on the ring wiil 
restrict to the subrings under consideration, but we can only show that the 
I-ring condition extends up. In addition, we prove that r-regularity extends 
to the whole ring in the presence of a polynomial identity, and that the 

regularity condition cannot in general, be extended to the whole ring. 

Throughout this work, R will denote an associative ring with involution *. 
Let S = {.x E R i x:” = x> be the symmetric elements of R, 2” = {x L .x* i x E R] I 
the set of traces, and A’ = (xxx 1 x E RI, the set of norms. In [5], we con- 
sidered various conditions placed on the subring generated by S. Here, 

we move to a more general setting, that of symmetric subrings, introduced by 
Lee in [‘il. 

* This work was supported by SSF Grant GP-38601. 
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DEFINITIOS. A subring U of R is a sJTmmetric subring if: 

(1) U is generated as a ring by elements of 5’; 

(2) T u LV C c and 

(3) xL:x* C ?I? for all x E R. 

Condition (1) implies that G* = G, and condition (2) implies that U is 
a Lie ideal of R (See [5, Lemma l.l]), that is, ux - xu E ZI’ for all u E U and 
x E R. Consequently, as is well known, L,’ is either commutative, or contains 
the nonzero ideal of R generated bp [u, E] = uz - w for all u, z E LT. 
(See [3, Lemma 1.31 or [5, Lemma 1.2]), Henceforth, this fact will be used 
without further elaboration. That the subring generated by S, or by T u K, 

is a sgmmetric subring follows, as in [7, Lemma 21 by induction and the 
identity, xur ... u,~-~u~x* = [x, ur ... u,-,][u, , N*] + zcr ... u,-i(xu,x*) + 

( x2+ ... u,&) 24, - 241 ... u,n~p*u, . 
The question of generaliq aside, the advantage of considering symmetric 

subrings, rather than the subring generated by S, and the importance of this 

new idea, stems from the fact that any *-homomorphic image of a symmetric 
subring is again a s>Tmmetric subring. Specifically, if A* = A is an ideal of R, 
then R/A inherits the involution (r + A)* = Y* + A. It is easy to show 
that the image in R/A of a symmetric subring U is a symmetric subring of 
R/A. However, since R/A may contain symmetric elements that are not 
images of symmetric elements of R, properties of the image in R/A of the 
subring generated by S ma>; not extend to the ring generated bg al1 the svm- 

metric elements of R/A. 

2. VON NEUMANX REGULARITY AND P-REGULARITY 

We recall that a ring R is called van Neumann regular if for each x E R 
there exists y  E R with xyx = x. The ring R is called n-regular if for each 
x E R there is a y  E R and a positive integer n with xnyxl’ = x”. 

Note that a van Xeumann regular ring must be semisimple, since xy is a 
nonzero idempotent for x + 0. Similarly, when R is z-regular, j(R), the 
Jacobson radical of R, must be nil. 

Our first result, which is quite easy, was discovered independently by 
Herstein, and the proof is essentially his. 

PROPOSITION 1. If R is aon :Veumann (TP) regular, so is any symmetric 
subring U of R. 

Proof. I f  R is van I\Teumann regular and t G U, then tyt = t for some 
y  E R. Consequently, ty*t = (tyt)y*t, so t(y + y* - yty*)t = t and 
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y  -+ y* - yty* E C, by definition. If  R is r-regular, then t E U satisfies 
t”yt” = t” for some y  E R, and we proceed as above. 

The converse to Proposition 1, for von Neumann regularity, is false, as one 
can see by considering the direct sum of an n x n matrix ring over a field with 
a 2-torsionfree ring with trivial multipIication. Using transpose as the 
involution on the matrix ring and the map X* = -X on the second factor, 

one obtains a ring that is not von Neumann regular, but in which the subring 
generated by S is von Neumann regular. 

Even assuming that R is semiprime, one cannot prove the converse to 
Proposition 1, as [6, Example 21 shows. The defect with rhis example is that S 
is in the center of R, which implies that R is a subdirect product of orders in 
simple algebras, each four-dimensional or less over its center. Since it 
frequently happens that such “small” algebras must be excluded from 
consideration, one would like a better example. We present such an example 
when R is primitive. Xote that one cannot assume much more and obtain a 
counterexample, since, when R is simple, either R = I/’ or R is finite- 
dimensional over its center; in either case, R is van Neumann regular if E.; is. 

EXAMPLE. LetF be a field with char F + 2, and Va countable dimensionai 

vector space over F with basis @zO , cl ,... ). Define a bilinear form ( , ) on V 
by setting (zei ) z.& = 1, (V 32+1,~zi) = -1, and !@h:,,~j) =O forj=K : 
or j j - A. 1 > 1, and extending to V bilinearly. Let H be the ring of all 
finite-rank continuous linear transformations from V to TJ. Then, H is a 
simple ring with involution, where * is the adjoint with respect to ( , ) 
[4, Chap. 4]. Furthermore, H is von Neumann regular, which follows in our 
situation from the fact that H is isomorphic to the ring of countable by 

countable matrices overF having only finitely many nonzero entries [4, p. X9]. 
Define T on V b!- (zzi)T = zpitl and (;Uzi.+l)T = 0. Then, T2 = O? T $ H: 

and T* = -T. The last fact follows from the relations 

(a,,,,T, zzj) = 0 = (Q+~ , (vsj)(-T)), 

(cziT, z2J = 0 if ;+i 

=- 1 if i =J;, 

and 

(czi , (vBj)(-T)) = 0 if ;+j 

=- 1 if i = ;. 

Let R be the subalgebra of Hom,( V, V) generated by H and T. R is primitive 
since V is irreducible as an H module, and the subring generated by S is H, 
so it is von Neumann regular. Given that r E R, write I’ = h +fT for iz E H 
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and f EF. If T is a regular element of R, then TrT = T for some 1’ E R. 
But T(h + fT)T = ThT c H, since H is an ideal of R and T” = 0. Thus, 
T $ TRT and R is not van Neumann regular. 

Note that in our example, Rg C H, so R is n-regular. In fact, this must be 
the case for any such example, as we shall show in Theorem 4. Our next 
result considers the situation when a symmetric subring is r-regular. 

THEOREM 2. If R satisfies a polynomial identity and G is a ;T-regular 
symmetric subring of R, then R is r-regular. 

Proof. Using [2, Theorem 2.3, proof of Corollary 2.41, it suffices to show 
that each prime factor ring of R is ron Neumann regular. Begin by con- 
sidering a prime ideal P of R with P* f  P. The image of PF in R/P is a 
nonzero ideal, each element of which is the image of a trace from R. Con- 
sequently, (P* + P):‘P C (U -+ P)/P and is n-regular. Also, (P” + P)P 
satisfies a polynomial identity and is a prime ring, since it is an ideal of R/P. 
Hence, .Z((P* + P)/P), the center of (P* I P),/P, is not zero [8], and for 
E E z((P* + P)/P), (c>“a(r>?i = (c)“, where SE (P* + P)/P. But c is not 
a zero divisor in R/P, so by standard arguments, R/P has an identity and E 
is invertible. Hence, (P* + P)P = R/P, the center is a field, so R/P is a 
simple ring [8] satisfying a polynomial identity, forcing R’P to be van 
Seumann regular by Kaplansky’s theorem [4, p. 2261. 

Now, assume that P* = P. Then, R/P is a prime ring with involution and 
satisfies a polynomial identity. As above, Z(R/P) + 0, and for CE Z(R/P), 
we have CC* c ((U + P)!P) n Z(R,/P). We obtain that E* is invertible when 
F + 0, so c is invertible, and the same argument as before yields that R/P is 
van Neumann regular. Having shown that each prime factor ring of R is van 

Neumann regular, the proof is complete. 

COROLLARY 3. If  U is a commutative symmetric subring of R and is 5~- 
regular, then R is r-regular. 

Proof. Since the set of- traces satisfies the identity xy - yx, R itself 
satisfies a polynomial identity by a result of Amitsur [I]. The corollary is 
now immediate from Theorem 2. 

Of course, the proof of Corollary- 3 works just as well under the assumption 
that U satisfies any polynomial identity, but for our next theorem, we need 
the corollary only for E commutative. 

THEOREM 4. If  L7 is a con :\reumama leg&au, symmetric subring of R, 
then R is n;regular. 

Proof. Should L’ be commutative, the result follows from Corollary 3. 
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Assuming that C is not commutative, it contains the ideal K of I? generated 
bv all xy - FX, for X, y  E G. Since K is an ideal of I?, it is a van Keumann d 
regular ring. The image of U in R/K is a symmetric subring of R/K and it is 
also van Neumann regular. Furthermore, the definition of K implies that 
this image of U is a commutative ring. Applying Corolla?7 3 yields that R!K 
is z-regular. Hence, for any x E R, x’“yx” - x’~ E K for some y  E K and for 
some integer n. Using the fact that K is van Neumann regular, one easily 
obtains that x”t~ = P for some t E R, proving that R is z-regular. 

3. I-RIKGS 

A ring is called an I-ring if each nonnil left (right) ideal contains a nonzero 
idempotent. Equivalently, the Jacobson radical R(R), of R, is nil and each 
x E R - f(R) has a multiple that is a nonzero idempotent. In this section, 
we show that R is an I-ring if and only if C is, for U a symmetric subring 
of R. The first lemma appears in [7] and is important for reducing to the 
semisimple case. 

LEMMA 5. If  C is a symnet~ic sub&g of R, then f( 1-j = L7 r? $(R). 

Fyoof. 17, Theorem 171. 
To show that L’ an I-ring forces R to be an I-ring we must know that z(R) 

is nil. Our next lemmas demonstrate this fact. 

LEMBL4 6. If  U is a ail symmetric subring of R, then R is nii. 

Proof. The result follows from [7, Theorem 11, Lemma 31. Also, [5, proof 
of Theorem 2.21, which is a statement of the lemma for the subrmg generated 

b3; S, can be followed exactly for an arbitrary symmetric subring. 

LEMMA 7. Let L’ be a symmetric subring of R. Then, y(R) is nil if and on<v 
if $(U) is nii. 

Proof. That g-(R) is nil implies that #(r;‘) is nil follows immediately 
from Lemma 5. Suppose that f(U) = I;’ n $(Rj is nil. Since 2(R)* = 
d(R), all norms and traces of #F(R), considered as a ring with involution, 
are contined in Ly n x(R) = f(C). H ence, the subring generated by these 
norms and traces is nil. But the subring generated by the norms and traces 
in any ring with involution is a symmetric subring, as we indicated in 
Section 1. Thus, from Lemma 6 we may conclude that y(R) is nil. 

The main step in showing that R is an I-ring when 1’ is comes from a 
modification of [6, Theorem 31. 



90 CHARLES LANSKI 

LEMMA 8. Let U be a symmetric subring of R. If Li is a semisimple I-ring, 
then R is au I-ring zu’th f(R) nil of index 2. 

Proof. First, for x E &(R), XX* and x + x* are in y(R) r\ U = fl( U) = 0. 
Thus, x2 = X(X + x*) = 0 and &(R) is nil of index 2. To complete the 
proof, we show that if x E R has no nonzero idempotent as a multiple, then 

x E f(R). 
Since no multiple of x is a nonzero idempotent, and eve? nonzero eIement 

of Uhas such a multiple, we conclude that XX* = x*x = xUx* = x*Ex = 0. 
If  x + x* + 0, then for some t E U, (X + x*)t(x + x*)t = (x + x*)t # 0. 
Using xi?x* = X*UX = 0, this equation reduces to xtxt f  x*txvt = 
xt + x3. Right multiplication by xt yields (xt)” = (xt)“, forcing (xt)’ to be 
an idempotent, and so, (xt)2 = 0. Similarlp, (x-t)” = 0, which implies that 
(X + x*)t = 0. Consequently, x + X” = 0 and .vs = XX* = 0. But is no 
multiple of x is a nonzero idempotent, the same must hold for xr, for anq’ 
r E R. Thus, (XT>” = 0, xR is a nil right ideal of R, and as desired, x E j(R). 

Finally we can prove 

THEOREM 9. If Ci is an I-ring and a symmetric subring of R, then R is an 

I-ring. 

Proof. I f  U is semisimple, just apply Lemma 8. Assuming that /Z(U) + 0, 
then j(R) is nil by Lemma 7, so it suffices to show that R/#(R) is an 
I-ring. The image of U in R/$(R) is (U $ &(R)/&(R) E U/( U n &(R)) s 
E/f(U), by Lemma 5. Thus, the image of U is a semisimple J-ring, and a 

sjmrnetric subring of R/$(R). 0 rice again, using Lemma 8 will establish the 

theorem. 
The converse to Theorem 9 is our most difficult result, and we begin by 

considering the case when U is commutative. The argument for this special 

case is an adaptation of the proof of [6, Theorem 51. 

LEMMA 10. Let I;: be a commutative symmetric subring of R. If R is an 
I-ring, then L: is an I-ring. 

Proof. Since G is commutative, c,’ C S. Also, because f(G) = c’ n g(R) 
from Lemma 5, we have that x E G - ,$(C) implies that x $ &(R), and of 
course, that f(U) is nil. Thus, for any x E U - f( II:), there is some y  E R 
with ~yxy = my + 0. We may assume that y~y = y, for if not, with yi = yxy 
one easily shows that (xyJ2 = my, + 0 and yi~yr = y1 . Consequently, 
y*.xy* =y*, so xy* = f  and my = e are nonzero idempotents. 

Considering that ef = ~y~y* = a( yxy*) E U and fe = xy *xy = x( y  *xy) E LT, 
we must have efPe = fe2f, or equivalently, efe = fef. Thus, (ef )” = fef and 
(ef)" = (efe)(fef) = (efe)(efe) = e(fef)e = efe = fef = (ef )‘. As a result, 
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(ef)' = x(yxy*)x(yxy*) = t x is an idempotent with t E G. Should (ef)2 = 0, 

then j>f = efe = 0. But now, g = e f  f  - ef - je is an idempotent and 
g = x(y + y* - yxy* - y*xy) = xt for t E CF. Finally, should g = 0, then 
e + f  = ef - fe and multiplication bl~ e on both sides gives e = 0, a contra- 
diction. Hence, either (ef)" + 0 or g f  0, so xt is a nonzero idempotent for 
some E E G, and G is an I-ring, completing the proof. 

Before our final result, we recall an important definition and some trivial, 
but useful, facts pertaining to it. 

DEFINITIOS. For J an ideal of R, 4nn J = (x E R I J.x = 0). 

When R is semiprime one has that Ann J = {x E R j xJ = 01, J fi Ann J = 0, 
and if J” = J, then (Ann J)* = Xnn J. 

THEOREX 11. If R is an I-ring, then any symmetr.ic sdwing CT of R is a.!sso 
an I-ring. 

Proof. That f(U) - IS nil follows at once from Lemma 7. Also, using 
f( IJ) = C’ n y(R) from Lemma 5, the image of Gin R/$(R) is isomorphic 

to ITj$( C), a symmetric subring of R//(R). Thus, it suffices to prove that 
IY/$‘( U) is an I-ring, so we have reduced to the case when R is semisimple, 

Should L’ be commutative, we may conclude that it is an I-ring by 
Lemma 10. If  L’ is not commutative, it contains the ideal K of R, generated 
by all xy - yx for x, y  E IY. Since K is an ideal of R, it is itself an I-ring. 
ConsequentI>:, if x E U and XK + 0, then xkt + 0 is an idempotent, where 
k, f  E K. Hence, x(kt) is an idempotent for kt E K C CT. So if some x E U 
fails to have a multiple in li that is an idempotent, xk = 0, or equivalently, 
x E Ann K. We wish to show that U n Ann K is an I-ring. 

First, note that as a consequence of the definition, K* = K, so (Ann K)* = 
Ann K, and also, as an ideal of R, Ann K is an I-ring. For x, y  E I,- n Ann K, 
cxy - yx E K n Ann K = 0, since R has no nilpotent ideals. Thus, L’ n Ann K 
is a commutative subring of R. Since U n Arm K is invariant under the 
involution, its set of symmetric elements is S n U n Ann K, which is a 
subring ‘because of commutativity-. 

For an>; .k E Ann K, k + k* and kk* are in Ii, bq’ definition of symmetric 
subring, so k +- k”, kk” E S n U n Ann K. Also, for t E S n L; n Ann K 
and kE4nnK, ktk*~SnDLinhnK. Thus, SnlYnn4nnK is a 
symmetric subring of Ann K, so applying Lemma 10 with Ann K replacing R 
and with S n G n 4nn K as the sgmmetric subring, we may conclude that 
S n U n Ann K is an I-ring. Clearly, S n U n Ann K is also a symmetric 
subring of C n Ann K. Therefore, bg Theorem 9, Li n Ann K is an I-ring. 

Recall that if x E I? and has no multiple in G that is an idempotent, then 
x E U n Ann K. Since U n Ann K is an I-ring, it follows that 
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x E f( ?I,’ n Ann K), which, of course, is nil. For y  E 77, xy must not have anI7 
multiple in G that is an idempotent, so XU C f( U n Ann K) is a nil right 
ideal of U. Thus, x E &(U) = U n x(R) = 0, proving the theorem. 
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