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A parameter for subdirectly irreducible modular lattices
with four generators

CHRISTIAN HERRMANN

BirkHOFF [1; Problem 43] suggested to study modular lattices with four gen-
erators by imposing relations, first—e.g. —the relations expressing that the generators
split into two complemented pairs. Basing on more special results of DAv, HERr-
MANN, and WILLE [2] and SAUER, SEIBERT, and WILLE [9] Birkhoff’s problem has
been solved in [6]. Remarkably enough, the subdirectly irreducible factors can be
given by diagrams (including infinite ones) — these factors are the lattices M,
S(n, 4), R, and its dual defined in §I. In [7] there have been constructed lattice
polynomials s, (and their duals s — see §2) such that a subdirectly irreducible
modular lattice M (with more than 5 elements) is one of the above if and only if
s,=1 and s*=0 holds in M for all n. In the present note we want to provide a
basis for the study of subdirectly irreducible four generated modular lattices not
being one of the above. In particular, we show that an inductive approach is possible
using the polynomials s,.

Theorem. Let M be a subdirectly irreducible modular lattice with four gen-
erators a, b, ¢, d not being isomorphic to any of the lattices M, S(n,4) (n<e),
R, or its dual. Then there is an n such that either

@ s,(a,b, c,d) =0=ab=ac=ad =bc=>bd=cd
or
(i) s¥(a,b, c,d)=1=a+b=a+c=a+d=b-+c=Db+d=c+d.

Examples of such lattices are the rational projective geometries of finite dimen-
sion (GELFAND and PONOMAREV [4; § 8]) and, more generally, all subdirectly irre-
ducible modular lattices generated by a frame ([5] and [7]). The use of the s, in the
analysis these examples has been pointed out in [7]. Clearly, such lattices can be
visualized by diagrams in the most trivial cases, only.
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170 C. Herrmann

Corollary. The My, S(n, 4) (n<e), R, and its dual are the only subdirectly
irreducible modular lattices generated by a, b, ¢, d such that a+b=c4-d=1 and
ab=cd=0[6). M, and R_, are the only ones for which, in addition, ac=ad==bc=>bd=0
(SAuer, SEIBERT, and WILLE [9]). R_, is the modular lattice freely generated by the
partial lattice J; (DAY, HERRMANN, and WILLE [2]).

Also, it follows that the lattices listed in the Corollary are the only four generated
subdirectly irreducible modular lattices of breadth =2 (Frsust [3]) or, more gen-
erally, satisfying the 2-distributive law ([6]).

The proofs do not depend on [2] nor [9]. From [6] we need only § 2 and 3 and
from [7] § 1 and 5. The basic tool is the neutral element methiod {rom [6] — see § 3.

Figure 1

Replace a,, by, ¢;, d,, my, ki, 1, 0, 1 respectively
a) by di! 51: éi’ Ji’ mi) il’ fl) 6’ i; b) by ﬁl) Eu bn ‘7!" ’ﬁl, ll’ Fl, GT;

~ o~

9] by Zih Ji: El: Ei: ’7’1: ih Fi’ 0: 1.
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§ 1. The breadth two models

First, let us introduce the lattices referred to in the main theorem. M, is the
length two lattice with n atoms. Let A_ (cf. Fig. 1) consist of the elements x(j, j)
O=sisj=c, x€E={a, b, ¢, d} withthe equalities a(i, 1)=b(i, )=c(i, i)=d(i, ) =:m,
(0=iz=e0), a((—1,)=b(—1,i)=:1, and c(—1,i)=d@—1,{)=:r; (1=i<e) and
no others. The relation = on A, is defined in the following way (with x>y in E,
0=isj=sco, and 0=k=[=w)

x(,j)=x(k,]) il and only if k=i and (=},

=i for {x,y}s{a, b}, {c, d}

x(i,j) = y(k, ) if and only if {Ié i+1 and k=1 else.

This yields a modular lattice order on 4_, such that
x(@,))+xk, 1) =x(s,£) with s=min(i, k), ¢=min (j,])
x( ) x(k,) = x(s,) with s=max(i, k), t=max(j,])

x(, ))+y(k, ) =x(,s) for i =k and s = min(Jj, k)

x(i,j) y(k, 1) =x(s,j) for j=1 and s = max(i,]) } if {x, 7} 7 {, b}, {e, d}

x(i, ))+yk, 1) =x(@,s) for i =k and s =min(k+1, j, )
x(i, /) y(k,I) =x(s,j) for j=1 and s =max(i, ) erse.

Put x;=2x(i, «). Then every clement of 4, has a unique representation n1;,(0=i=oo),
I, r; (Isi<e), x; (0=i=eo), ot x;+m, (0=i=n—2) with x in E. A_ is gen-
erated by the x, (¥€FE) as one derives from the relations my=1, m_=0, [, ;=
=0, tbys Fyr1=CFdy, Myp1=Fyp1lip1, and X, =XgM, 4.

Observe that every proper quotient of A_, contains a prime quotient x (i, j)/x(k, 1)
with /=j and k=i+1 or k=i and I/=j+1. Moreover, x(i,j)/x@+1,j) is
transposed upward to y(k,/y(s,t) if and only if x=y, i+1=s=k+1, and
j=l=t or x#y, {x,y}#{a, b}, {c,d}, k=s, and i+1=t=/+1 or, finally,
{x, y}e{{a, b}, {c, d}} and [=s=t=i+1=k+1 or k=s=/, t=i+2, and t=I/+1.
On the other hand x(7, j)/x(i, j+1) is transposed upward to y(k, I)/y(s, t) il and
only if x=y, k=s=i, I=j, and t=j+1 respectively {x, y}E{{a, b}, {ec, c/}} and
i=j=I, k=i—1=s, t=i+1 or i=j, k=s=i—2, I=i=¢—1. Thus, every prime
quotient is projective to one of 1/ and 1/r,. Let Q consist of all quotients
x(,m)fx(@+1,n) with / even and x=c¢,d or i odd and x=a, b as well as the
quotients x(/, n)/x(i, n+1) with n even and x=a,b or n odd and x=c¢, d and,
finally, the ry/r,,, with { odd and 7,/l,,; with i even. Then 1/, is in Q and Q
describes a minimal congruence 0. Let R_, be the homomorphic image A4_/0. Tts
operation table can be derived easily from that of 4,,. (Actually, R,, is the lattice
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172 C. Herrmann

FM(J}) from [2] where its diagram is given.) Let ¢ be defined as 0 interchanging
“odd” with “even”. By symmelry, A_[/¢ is isomorphic to R_. The intersection
0Ng is the identity and every proper congruence of 4., contains 0 or ¢. Thus, R_,
is subdirectly irreducible. Since A_/0V ¢ is the simple lattice M, therc are no other
homomorphic images of 4.

The section [m,, 1] of A_, is called 4,. It is gencraled by the x(0, #n) (x in E).
The restrictions of the congruences 0 and ¢ to A, yield a subdirect decomposition
into two isomorphic simple factors called S(n, 4) — use the same arguments as
above! Clearly, S(n, 4) is isomorphic to the section [[m,]0, 1] of R,,.

§ 2. Some latilce polynomials

We have 1o recall some definitions and results from [7]. Let I be the modular
lattice with O and 1 freely generated by four elements a=e,, b=e,, c=¢;, d=e,.
Write E={a, b, c,d} and n={l,...,n}. Put ¢, =(a+Db)(c+d), gs=(a+c)(b+d),
gs=(a+d)(b+c). Let x—>x'=x(aq;, bq, cq;, dq;) denote the endomorphism of
F with 1—g¢;, 00, and e—-eq; for ecE. Define by induction

so=1, s =a+b+c+d, Sprr = 2, (sili€3)
th=1, ti=(a+b+c)(a+b+d)(a+c+d)(b+c+d), t,..= 2 (lli€3).
Let x* be the dual of x. Then 1.1, 1.3, 1.2, and 5.1 of [7] yield
Lemma 2.1. For n=0 and i#j in 3 one has
D) qq;=4q; and (XY = &) for all x in F.
Q) syp1=Si+si and t,.,=ti+8 for n=1.
P @S =sh and gt =1
@ st=s1=t,=s, and ef=s, forall m and es#f inE.
(5) qile,+e) = qie+qie, for k=1 in 4 with |{i,i+1,k, 1} =3.

Lemma 2.2. 8, 4, Sy, and t, are neutral elements of F. For i>j in 3 and e
in E one has $3q;+S,q;=5, and ety=etyq;+elyq;.

Lemma 2.3. Let u be s, or t, (n=1), iin 3, and e, f, g distinct elements of E.
Then the sublattices generated by e,f+g,u and e, q;, u and e, f, u, respectively,
are distributive. Moreover

gi(a+u,btu,ctu,d+u)=q;+u and ua+u,b+u,ctu,d+u) =u,

q:(au, bu, cu, du) = q;u and u(au, bu, cu,du) = u.
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Proof, For n=2 anything follows by neutrality (Lemma 2.2). The distributivity
of {e,f+g,uy and (e q,,uy and u=u(a+u,b+u,c+u,d-+u) have been shown
in [7; 5.3]. Thus, e+h,f+g u is distributive, too. Assuming #;=1 we have
e+hu+(f+gu=ecu+(f+gu=u. We prove the remaining claims by induction.
For n=2 we get by 2.1 and the inductive hypothesis as, .+ bs,;=a%s2+b2s2+
+ @B+ b2y = (a2 + D) s+ (a® + %) sp=(a + D) gu, 1 + (@ + b)) s =(a + b) 8, 4 1(qa +
+(@®+b9)s3). Now ¢p+(a®+b%)si=qa+ a5+ gisi=qp+s3=s,,1 by 2.1 (2) whence
(lSn 11 + bS,, +1= (a + b) Sn 41 By symmetry, es,, +1 +ﬁn 1= (e +f) Su+1 fO]’ all e #f in
E, ThllS, (eS,, +1 + hS,,_,_]_) (f:S,, +1 + 85y +].) = (6 + h) (f+ g) Sp+1:

By the inductive hypothesis we have (g,5,)'=(gz(as,, bs,, cs,,ds,))'=((as,+
+ CS,,) (bS,, + dS,,))l = (al Sllt + c S}x) (bl S% + dt S,l,) = (61103,, +1 + q1CSy 1) (ql bS,, +1 + Ui dsn + ].) =
= q%(aszﬁl s bS”+1 s CSp+1, dS,,.,.]_)é 6]1(aSn+1, bsn+1 > CSpt1s dS,,+]_) using 2.1 (3) and (1)'
Similarly, (g5 Su)l =q¢ (as,, +15 DSyt CSy+1s ds,+y) whence ¢y Sp+1= Slll =(qaSut s Sn)l =
=(qaS)* +(gs5,) = q1(aS, 41, b, 4158, 11, dS,+1) bY2.1(2)and (3). The converse inclu-
sion holds due to monotony. By symmetiy we get ¢;5,+.1=q; (S, +1, BSy115 CSyr1,dSy41)
for all i€3. Finally, with the inductive hypothesis and 2.1 (3) it follows

s,,+1(as,,+1, bS,,+1, CSyr1s dS,,+1) = Z Slit(asll'l'l’ bS,,+1, CSy+1s dSn+1) =
= Z Sn(qiasn+1a qibsn+1a qiCSy+1> Qidsnﬂ) = Z S,,(aiSf,, br‘s,i” ciffn disli’) =
= >5,(as,, bs,, ¢s,,ds,) = > st = 8,11
For t, the proof is quite analogous.

Corollary 2.4. Let u and v be any of the s,, t, (n=0) such that u=v. Then
u(au+v, bu+v, cu+v, du+v)=u, v(au+v, bu+tv, cu+v, dutv)=v, and ¢;(au+
+v, bu-+v, cu+v, dut-v)=q;u+v forjin 3.

Define by induction go;=1 and ¢,+1,;=4:(aq,;> bqui> €4ui> dg,). Write ¢;x=x'
and @) x=ux.

Lemma 2.5. ¢{1=gq,;, and ¢je=eq,; foriin 3 and e in E.

Proof. The first claim is 1.5 in [7]. The other follows by induction on n: g!*'e=
=g} que=qjqucie=el" leq,=eq, 1,

§ 3. The neutral element method revisited

An element of a modular lattice M is neutral, if for all a and b in M the sub-
lattice generated by w, a, and b is distributive. Then the map x~»(ux, u+x) yields
a subdirect representation of M. In [6] we proved

Proposition 3.1. Let u be an element of a modular lattice M. Let S be a lattice
and o an order preserving map of S in M such that x—u-tox preserves meets and
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x-yox preserves joins. Moreover, let M be generated by the union of all intervals
[uox, ax] and [uax, u] with x in S. Then u is a neutral element of M.

Here, we necd a more sophisticated version.

Proposition 3.2, Let M be a finitely generated subdirectly irreducible modular
lattice and u, (n=0) a descending chain of elements of M. Let S be a lattice and y
a meet homomorphism of S into M such that M is generated by the image of y. Assume
that for all x and y in S and n=0 there is an m=n with w,yx+u,yy=u,y(x+y).
Then either M is a homomorphic image of S or there is an n such that u, is the smallest
element of M.

Proof, Let & (M) denoic the lattice of all filters on M with partial order
dual to set inclusion. Then % (M) is a dually algebraic lattice having M as a sub-
latticc. Write ] for the meels in & (M). In particular, let u= ][] u, be the filter
gencrated by the u, (n=0). Let M’ be the sublattice generated by M and u. By
lower continuity and the hypothesis we have for any x, y in S: uyx+uyy= [ u,yx+
+ [T wyyy=[] yyx+u,y9)= [ yy(x+»)=uy(x+y)=u(yx+yy). Thus, x—>uyx
is a join homomorphism of § into M’ and the sublattice generated by wu, yx, and
yy is distributive for all x, y in S. Consequently, (u+yx)(u+yy)=u+yxyy=u+yxy
and Prop. 3.1 applies to conclude that u is neutral in M".

Therefore, the map x~»(ux, u+x) yields a subdirect representation of M’.
M being subdirectly irreducible the induced subdirect representation of M has to
be trivial, i.e. one of the maps xw—ux (x€ M) and x—u+x (x€ M) has 1o be an
embedding. In the first case we get x=wux i.e. x=u for all xin M. Then, x+—>uyx=
=yx is a homomorphism of S onto M.

In the second case we have x=u+x ie. x=u for all x in M. Then, u=0,,,
the smallest element of M. Since 0,, is the smallest element of % (M), too, it follows
u=0,;. The filter u being generated by the descending chain u, (n=0) there has
to be an n such that u,=0,,.

§ 4. Proof of the Theorem

Let M be as in the Theorem. The Lemma in [6] states that either
(') ab=ac=ad=bc=>bd=cd= [[(qudumguln <)

or the dual of (i") takes place. Thus, let us assume (i"). For any map & of {ay, by, c,, do}
onto {a, b, c,d} we define a map y=y* of 4_, into M recursively:
ym, =1
Vi1 = 8agyMy+eboym,, V1,4 = ecoym,+edoym,
Y,y 1F+ %) = eXg+yhy for x =a,b, y(m, . +x) = exo+yr,,, for x=c,d,
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and for 1=i=n-1

y(m,,+1+x,) = y(m,,+1+xo)y(m,,+x,-); Yy 41 = ’)?I,,+1')’"n+1;

yx, = exoym, for x=a,b,c,d; yM. =0.

Claim 1. y* is a meet homomorphism of A, into M.

Proof. In section 2 of [6] it has been shown that y° restricted to 4, is a meet
homomorphism for every n. Due to (i) and the definition of y® the claim follows,
immediately.

Proposition 3.2 will be applied with L being a subdirect product of three copies
of 4.. We use the notation £=x for elements in the first, a,=a;, b;=c;, d;=d;,
m,=m, for elements in the second, and d,=a;, b;=c,, &=d,;, d;=b,, m;=m, for
elements in the third copy — see Fig. 1. In analogy, we write 9=y° with ¢é,=e,
7=9° with sg,=e, and $=9° with e&,=e for e€E. Observe (by induction) that
?mn:qulz:qu’ ym,=q,,=:4q,, and i, =g =14, Define L= {(O’ 0, 0)}U U
U([(’nia my;, mk), (1s 1: 1)]U{(€,-, ;> ek)leEE})[i’ja k<°°)

Claim 2. L is the sublattice of 4_XA_ XA, generaled by the elements
é’=(é0, éo, é’o) With BEE.

Proof. Component wise calculation yields the sublattice property, casily. We
show by induction on i that the union of the intervals [(m;, 1, 1), (1,1,1)] and
[é;, &) (e€E) belongs to ihe sublattice .S generated by the & Namely, with g=(#;, 1, 1)
we have (#.q,1, 1):(dg+77g)(ég+cvz'g) in S whence (&;4.q,1,1) for j=i
and (€41, 1, )=(&y, 1, {44, 1, 1) are in S, too. Using symmetry and {orming
meets we get that S contains L. Trivially one obtains

Claim 3. y(2, y, £)=92995Z defines a meet homomorphism of L into M with
yé=e, y(y, m;, M)=4§,3;d, and y(é, &;, &)=ed;q;q,.

For m=0 definc the map ¢,,: LM by o, x=s,px. For n=0 define
Sn = [(n/}ln, mn’ ﬁ:'n)s (13 1) 1)]U {(éi$ éj: é‘k)IGEE, i: j’ k - n}'

Claim 4, S, is a join subscmilattice of L and o,|S, a join homomorphism if
m=3n,

Proof. Let us write 1=(1, 1, 1), Observe that for i=n—1 and e#f in E
(éia éi’ e~1) +(f4i> ﬂ’fi) E(’/hn’ mn’ mn) Since {(éi: éja ék)linj’ ]C<n}=[(én—1a én—] s é'”__]_),
(8, &, &)] and [(#,, m,, M,), 1] are intervals this suffices to prove that S, is closed
under joins.
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The second claim will be shown by induction on 7. The modular lattice identitics
(a)—(f) we refer 1o shall be proved at the end of the section. The casc n=0 is trivial.
Lct be n=1, m=3n, and assume that ¢,,|S,_; is a join homomorphism.

Step 1. a,,,l[(f,,, 1,1),1] and a,l[(%,, 1, 1), 1] preserve joins. Since [(/,, 1, 1), 1]
is the union of [(#,_q, 1, 1), 1], {(,, 1, 1)}, and the chains [(é,5-+,, 1, 1), (é-+
+’ﬁn’ 1’ 1)] (e=a, b) it suffices to show o-m(du—z’ 1) 1) 'I‘O'm(Bu—z: 1’ 1)%’0’,,,(#1,,_1, 19 1)]
i.c.

(a) Sm‘”]n—2+ S b(?n—z = Sm‘?n—l

and o-m(él, l, 1)+0’,,,(I’f1,,_1, 1’ l)=0’,,,(é,-'|'l7’;l,,_1, 11 1); le
(b) Sllleqi+slllqll—l = Sm("""fén—-Z)éi fOl’ {e’f} = {a; b} and i= n—2.

(We have (&4 1, ) =9(8y+,_y) piy; since § is a meet homomorphism.) The
second claim follows by symmetry.

Step 2. o,|[(m,, 1, 1), 1] is a join homomorphism. Since [(s#,, 1, 1), 1] is the
union of [(},, 1, 1), 1], [(#,, 1,1),1] and {(#,, 1, 1)} and because of (f,, 1, 1)+
+(fy, 1, 1)=(rh1,_1,1, 1) it suffices to show o, ([;, 1, ) +06,,(%,, 1, D=0, {1, 1, 1), i.c.

(C) Sm(‘”?n—l'l'bq:;—l) +Sm(04n—1 +quxx—D = Smén—-l'

Step 3. o,|l(#,,m,, M), 1] is a join homomorphism. By symmetry, the restric-
tion of Oy to any of [(mix, 1: 1)9 1]’ [(1; m,, 1), 1], and [(19 1, m,l), 1] is ajoin homo-
morphism. In view of

(i) Sm qll + s"l qll = Sm and Sm q‘" + Sm qll q~" = Sm

the o,(m,,1,1), o,(1,,,1), and o,(l,1,7,) are dually independent in [0, s,].
o,l[(?,, m,, m,), 1] being the product of the above three restrictions it is a join
homomorphism, too.

Step 4. 6,|{(é;, ¢, 8)i,j, k<n} is a join homomosphism for e€E. This
means for i,j, k,r, s, t<n, u=min (i, r), v=min (j, s), w=min (k, 7)

(d) S eqi q J q~k + S eqr qs q~t = sm eér: qu qw M

Step 5. 0,5, is a join homomorphism. Since S, is the union of the intervals
[(mll, mn, mn): 1] and [(éi, .éi; gi)’ (éo, éo, go)] (l=n _1, eEE) it sufﬁces to ChCCk
Gm (él > éi ’ gi) + o-m(f; ’fi ’ fi) EO’,"{I’I”‘I,, > "_111 > l’?l,,), i'e'

(e) SmeQ1qiq‘i+squiqiqi = mquqnqn for i= n_l: e #f ill E
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and artz(éi> éj: ék) -|-0'm(7’fl,,, mna ﬁ’l,,) =0y, (éi'l'mns éj -|-7?l,,, é'k -|-l’71,,) for i’ j: k<n and
e in E. Due to symmetry and Step 3 the latter is satisfied if ,(¢;,&,, &)+
+ o-lll (mn ’ mn > ﬁ;lll) = o-l" (éi + ’ﬁll B mn 2 ;;hn), i‘e'

(f) S eéi‘jn q]l+sl)lqllqll qn = Sm (e +féu—1) Qiqn qn for i< n and {e,f} = {a’ b}-

Now, we are ready to prove the Theorem. Observe that M, and R_ are the
only subdirectly irreducible homomorphic images of L. Namely, L is a subdirect
product of six copies of R, having M, as its only proper homomorphic image,
Thus, the subdirectly irreducible lattice M cannot be a homomorphic image of L.
Due to Claims 3 and 4 we may apply Proposition 3.2 and conclude that there is an
n such that s,=0,1=0.

To prove the Corollary observe that induction yields s,=1 and s¥=0 for
all n and all lattices listed there. Namely, ¢;=1 whence by Lemma 2.1 s,,,=
=gq,5,=s,=1. For the additional results recall that according to A. HUHN [8] in
a 2-distributive lattice frames may have order at most 2. In view of Corollary 1.4
and 2.1, 3.2, and 3.3 from [7] this implies that #,=s,,; for n=1 and t,=s, for
n=3. Thus, by Lemma 2.2 the only subdirectly irreducibles with s,=0 for an »
may be D, and Mj.

Before we come to the proof of the formulas (a)—(f) we need a Lemma.

Lemma 4.1. For all m=n and i€3 one has $,q,;=0}Sm_n. Also, e, q,,
and s, generate a distributive sublattice for all e in E.

Proof. By induction on n. For n=1 this is Lemma 2.1 (3) and 2.3. For n=>1
one has by 2.5 S Dni =S qi Dni = Qi S ~1 Q1 qn—l,i:Qi Q,il_lsm—n= Q'ilsm—n . ShOW
o'(e+s)=qy(e+ses,) for all k. Indeed of*'(e+s)=0l0;(e+s)=0a}(g:e+
+ qisk+l) = Q'il qi(e + Sk+l.) = Q,l; q; Q'il(e + Sk+1) = qn+1,iqm(e + Sk+1+n)= qn+1,i(e +Sk+n+l)
by the hyp()theSis’ and 2' 5' Thlls’ eqlli + SI" QIli = Q’i’ e + Q? Sm -n = Q’i’ (e + Sl" —”) = qlli (e + Sm)
and the distributivity follows.

Proof of (a) S;t:“él—1+smqul—1:Qll_l(asm—-l+1+bsm—l+1):Qll_l(a+b)sm—-l+1§
=0 gy Sy_141=4iS, for I=m+1 by 2.5 and 4.1, 2.3 and 2.5, and 4.1 again.

Proof of (c). By 2.3 one has s (a+b)+s,(c+d)=s, for k=1. (c) follows
immediately applying the homomorphism g}-! in the case k=m—n-+1 and
appealing to 2.5 and 4.1.

Proof of (b). By 4.1 one has sya+s.d;=s,(a+g;) for k=j. Apply the
homomorphism @} in the case j=I—i and k=m—i (for i=I<m) to obtain
Smaéi—}-smél=Sméi(aét+él):Sin(a'l_él)' Now a+él=a+(a+bél—l)(cél—1+dél—1):"
=(a+Dbg,_)(a+cd;-1+dg,_y) by modularity and a+c+d=t=s,_,,; whence
a+cq_y+dg_1=s, (applying o™ and s,aq,+s,d=s,4;(a+¢-). Due to
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S 41912 504,44, and the following Lemma (e) may be obtained from ihe for-
mula proved under (a) (with l~l=i=n—1 and m=>3n~2i=1) by application
of the homomorphism g} o}.

Lemma 4.2, 05q,,=qu;qu for all ixj in 3 and m, n=0,

Proof. We show ¢;9,=¢;q,; by induction over n: @;¢,.1, 1= 0;019i=
=0;0; 4= 0:(q; 9u) =195 Q1 9w=9:9; In+1,i=959u+1,; by 2.1 (1) and 2.5. Now we
inducc over m: QT“%:; Qj Q"inqui = Qj (qjm qni) = Qj qmj quuix /M 1,7 qmj Gn= 1, qu .

Next, observe that (f) and (d) are consequences of the following formula

(g) qjqksme""@&u quqksrxz(e'l'qAI) fOl‘ ]+k+l<m illld e ill E.

Namely, for (f) pul j=k=I=n, multiply both sides with §;3,§, and observe a+4,=
=s,, (a+bg,_,) as proved under (b).

For (d) assume w.lo.g. j=s, k=t, and i=r=/ and multiply both sides of (g)
with ed;g,4;.

In the proof of (g) assume w.l.o.g. e=a. Fisst, we show that ¢,, as;, and gss,
distribute for A=3: By 2.1 and 2.3 we have ¢;s,a+¢:q35,=(s,_1a+q38,-)'=
=(sy—1(@+ gl = (s4-1(@+ b+ @+ D) =(s—1(a + D)) =s,1q:a + g, d) =35, q(a(c+

+d)+d)=s,q,(a+d) = g1 (spa+53,q5)-
Now, @i(ssa+syqgs)=qu(Sp10+54419) for h=2 follows by induction:

o+t (spa +5,q5) = dho (na+5,99) = 0l (@1Sp10+ 15p4199) =04 G1(Spe10+ Sp192)=
=0} 1 Q4 (Sh410 + Sp4198) = Tr41,1 91 Sh+ 1412+ S 14198) = Gre1,1 Spp14198 + S 0419
using 2.1 and 2.5. Thus, for h—1=2 ¢y, s,a, and s, q; distribute: qpus,a+ g1 5,93=

=0 1@+ 04 54— 195= 04 (S4-10 +54-1 9 =dn (sya+s5,95) by 4.1 and 4.2.

Induction on j+k yields ofo5(sya+5)91)= 952 9is(@ShjrnF GunSua j 410
for h=>I: olok(sya+syan)=clos "es(sia+tsudn) =eles " (adsSps1+ s g i) =
= 040%™ 45(a5} 1+ Gu1Sh+1) = 0405~ 420405~ NSy 11+ G1uSn+ ) = D12 Ts(@Sht 4k DirShet 1)
assuming k>0 w.lo.g. (since gfok=ckef by 2.1(1)), and using 2.3 and 4.2.
Finally, we get qjqksma +qu S éqjq’k Sma-l_qjqkqlsm ::Qéegsm—j—ka +Q’£Q§qﬂl Sm—j—k=
= Q% Qg (asm—j -k + qu Sm—j—k) = qj qk (asm + ql Sm) =‘_1j qk Sm (a + ql) applylng the above,
4.2 and 4.1.

Finally, to prove (i) we show by induction on m:

(J) Srnqj'l'smqkql:Sm for J+k+l§m
The cases m=1, j=0, or k=1=0 being trivial, le¢ m=2, j=1, k=1. Then
Sméj+qukql=squj+squ1qkql+ququl+qukql = @(Sm-léj-1+sm~1cjkq,)+

+é(sm—14j+sm—1qk—1ql) = ésm-l +ésm—1 = Sm'
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