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Algebra Universalis

On perfect pairs for quadruples in complemented
modular lattices and concepts of perfect elements

Christian Herrmann

Abstract. Gel’fand and Ponomarev [11] introduced the concept of perfect elements
and constructed such in the free modular lattice on 4 generators. We present an alter-
native construction of such elements u (linearly equivalent to theirs) and for each u a
direct decomposition u, u of the generating quadruple within the free complemented
modular lattice on 4 generators; u, u are said to form a perfect pair. This builds on
[17] and fills a gap left there. We also discuss various notions of perfect elements and
relate them to preprojective and preinjective representations.

1. Introduction

According to Gel’fand and Ponomarev [11], a K-perfect element for a par-

tially ordered set S is given by a lattice term u over S such that under any

representation ρ of S in a finite dimensional K-vector space Vρ, i.e., order pre-

serving map ρ : S → L(Vρ) into the lattice of subspaces, the subspace ρu given

by the evaluation of u admits a complement Uρ such that ρx = ρu∩ρx+Uρ∩ρx

for all x ∈ S, i.e., a direct decomposition of ρ. Equivalently, ρu ∈ {0, Vρ} for

any indecomposable ρ. u is perfect if it is K-perfect for all fields K. The

stricter concept referring to all division rings has gained less attention in the

literature.

We follow common usage and speak, instead of terms, of elements of lattices

freely generated by S in suitable varieties of modular lattices. The proper

framework is the variety generated by all lattices L(V ) over a fixed field K,

resp. arbitrary, fields or, slightly more generally, all complemented modular

lattices. In the first case, equality in the free lattice is K-linear equivalence (but

only the characteristic of K matters), in the second, linear equivalence. Also,

perfect elements are neutral in these lattices. See Section 9 for a discussion.

In the context of preprojective and preinjective representations, perfect el-

ements have been established by Gel’fand and Ponomarev [11] for n-element

antichains. These form a sublattice of the free modular lattice on n generators

which is a linear sum of 2n-element Boolean lattices.

For the union 2 + 2 + 2 of three 2-element chains, Stekolshchik [31, 32]

gave an explicit construction of perfect elements based on atomic elements
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and a detailed analysis of the related structure. Again, these are associated

with preprojectives, resp. preinjectives. The preprojective part of the lattice

is a union of a chain of sublattices isomorphic to C3, C a 4-element chain,

neighbouring ones related via an isomorphism between a boolean, upper resp.,

lower section.

All these constructions are independent of the base field. Cylke [6] suggested

a notion of stable perfect elements reflecting this independence and studied

the relations between perfect elements of posets arising by differentiation with

respect to a maximal element. Cylke [6] also shows that in the case of tame

posets with a chain of strongly coupled critical subsets each perfect element

induces an oriented partition of the Auslander-Reiten quiver with one class

finite (whence consisting of preprojectives, resp. preinjectives).

These results are based on the functorial methods of representation theory,

Coxeter functors in particular. Cf. Simson [30] for representation theory of

partially ordered sets in general.

The classification of indecomposable representations of quadruples in finite

dimension was given by Nazarova [25], Gel’fand and Ponomarev [10], and

Brenner [3]. The defect of ρ being defined as
∑4

i=1 dim ρei −2 dim V , the only

values are 0,±1,±2 with −1 and −2 corresponding to the preprojective, 1 and

2 to the preinjective indecomposables. In [17] elements sn+1 ≤ tn ≤ pni ≤ sn

(n ∈ N, i = 1, 2, 3, 4) in the modular lattice on 4 free generators have been

defined by a simple recursion (also used in [14, 15, 16] and Baur [1]) such that

defect −2 is characterized by the relations ρtn = Vρ, ρsn+1 = 0 and defect

−1 by ρtn = 0 and, for some i, ρpni = Vρ, ρpnj = 0 for j �= i. The dual

elements s∗n+1 ≥ t∗n ≥ p∗ni ≥ s∗n are associated with preinjectives and sn ≥ s∗n
for all n. In defect 0 one has sn = 1 and s∗n = 0 for all n. Thus, these

elements are perfect and linearly equivalent to those established by Gel’fand

and Ponomarev [11]. A detailed analysis of the relationship between both sets

of elements has been given by Stekolshchik [32].

The idea of a perfect pair is to give a uniform description of the Uρ, too, and

to generalize to representations ρ : S → L in arbitrary complemented modular

lattices L. Thus, we consider a term u involving an additional unary operation

symbol and require that ρu, ρu is a direct decomposition for any modular

lattice L endowed with a unary operation x �→ x′ such that x ⊕ x′ = 1. Then

u, u is a perfect pair.

In [17] a recursion for completing elements u ∈ {sn, tn, pni} to perfect pairs

u, u was described. However, a faulty claim [17, 6.4] was used for the case

n = 2. Here, we replace this by more specific arguments to make the construc-

tion work. Our methods are purely lattice theoretic, but guided by structural

insight due to representation theory.

In Sections 10–12 we will discuss different notions of perfect elements, in

particular one which relates perfect elements to the Auslander-Reiten quiver

of preprojectives, resp. preinjectives. More precisely, a GP-system of perfect
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elements is an embedding X �→ γ(X) = u of the quiver of preprojectives,

resp. preinjectives, into the ordered set of perfect elements such that for any

indecomposable representation, independently of the base field, ρu = 0 if and

only if there is path from ρ to X, resp. dually. The results quoted above

provide GP-systems.

Extending work of Gel’fand and Ponomarev [11, 12, 13] on antichains it

is shown in Section 12 that, given a GP-system, the only neutral elements u

not K-linearly equivalent modulo some K to some element in the image of γ

satisfy γ(Y ) < u < γ(X) for all preprojective X and preinjective Y . It follows

that for fixed K there are at most two perfect elements not in the image of

γ, provided that any two regular indecomposables are connected by a chain

of non-zero morphisms — as established by Dlab and Ringel [8] for antichains

with more than 4 elements.

In Section 13 we give a summary of results about modular lattices with four

generators. We describe in more detail how the lattice structure is related to

the perfect elements from the GP-system. In particular, we recall from [17]

that for fixed K the neutral elements are exactly the members of perfect pairs

as described above.

2. Basic concepts

We consider modular lattices with constants 0 and 1 for smallest and great-

est element. We write meets as a · b = ab and joins as a + b, resp. a ⊕ b, if

ab = 0. We follow the usual bracket rules. a and b are complements of each

other if a ⊕ b = 1. Any section [0, u] = {x ∈ L | x ≤ u} of L is a section

sublattice with the constants taking value 0 and u.

An element u of L is neutral if the sublattice generated by u, a, b is distribu-

tive for all a, b ∈ L. It follows that the maps x �→ xu and x �→ u+x are lattice

homomorphisms onto the intervals [0, u] and [u, 1] of L, respectively, providing

a subdirect decomposition of L. The neutral elements of L form a distributive

sublattice; cf. [2, 5].

Let C be the class of all complemented modular lattices and VC the variety

generated by C. Let F (S) denote the lattice (with 0, 1) freely generated in VC

by the finite partially ordered set S.

Lemma 2.1. S embeds into F (S), canonically. F (S) embeds into some com-

plemented modular lattice.

Proof. The first claim follows from the fact that S embeds into a Boolean

lattice. Since posets can be retracted under lattice homomorphisms, F (S)

can be constructed as sublattice of a direct product of complemented modular

lattices, which is itself complemented modular. �

A representation of S in a complemented modular lattice, L, is an order pre-

serving map ρ : S → L. Equivalently, we have a homomorphism ρ : F (S) → L,
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in particular, ρ0 = 0L and ρ1 = 1L. Given elements a1, . . . , an in L we consider

this as a representation of the n-element antichain, n, naturally. A decompo-

sition of ρ is given by a pair u, v of mutual complements in L satisfying for

each x ∈ S some of the following

u + vρx ≥ ρx, v + uρx ≥ ρx, (u + ρx)v ≤ ρx, (v + ρx)u ≤ ρx.

Lemma 2.2. Let ρ : S → L be a representation with decomposition u, v. Then

u, v ∈ L are neutral in the sublattice of L they generate together with the

ρx (x ∈ S). In particular, this lattice is a direct product of the sublattice of

[0, u] generated by the uρx (x ∈ S) and the sublattice of [0, v] generated by the

vρx (x ∈ S). Moreover, ρx = uρx+ vρx = (u+ ρx)(v + ρx) for all x ∈ F (S).

Proof. Modularity yields the identities for x ∈ S which then are inherited by

the sublattice of L generated by u, v and the ρx (x ∈ S): If ρx = uρx+vρx and

ρy = uρy+vρy, then ρ(x+y) ≥ uρ(x+y)+vρ(x+y) ≥ uρx+uρy+vρx+vρy =

ρx+ρy = ρ(x+y) and dually for meets. It follows that this lattice is isomorphic

to the direct product of its interval sublattices [0, u] and [0, v] with u �→ (u, 0)

and v �→ (0, v). Cf. Poguntke [26]. �

More generally, a representation of a lattice F is a 0-1-homomorphism

ρ : F → L into a complemented modular lattice L. Then, the decomposi-

tion condition has to be required for all x ∈ L. The lemma shows that this

is consistent with the definition in the special case where F = F (S). Observe

that ρ does not admit any nontrivial direct decomposition if ρ is surjective and

L directly indecomposable.

3. Auxiliary results

Lemma 3.1. Let L be a modular lattice generated by a, b, c, d such that a⊕b =

c⊕ d = a + c = 1 and the sublattices generated by a, b, c and a, c, d respectively

are distributive. Then L is distributive and ac ⊕ (b + d) = 1.

Proof. By the supposed distributivity, ad(b + c) = d(ab + ac) = dac = 0 and

ad + b + c = (a + c)(d + c) + b = d + c + b = 1. Now, each x = a, b, c, d

is comparable with ac or with b + d and, due to modularity, the sublattice

generated by x, ac, b+d is distributive. Therefore, ad, b+c is a decomposition

of the quadruple a, b, c, d. By symmetry, we have the decomposition bc, a + d.

From Lemma 2.2 it follows that L is isomorphic to a direct product of a

factor with ad = 1 and a factor with ad = 0. If ad = 1, then we have

complements b = c = 0 and a 2-element distributive factor. Applying the

second decomposition to the second factor, the latter decomposes into a direct

product of two factors with bc = 1, resp. bc = 0. bc = 1 yields a 2-element

factor, again. It remains to consider the case ad = bc = 0 with complements

b+c = a+d = 1. From 1 = a⊕b = b⊕c and the distributivity of the sublattice

generated by a, b, c we conclude a = c = a + c = 1. Again, b = d = 0 and



Perfect pairs for quadruples 5

the factor is 2-element. Thus, L ∼= {0, 1}3 is distributive, and it follows that

ac(b + d) = acb + acd = 0 and ac + b + d = (a + b + d)(c + b + d) = 1. �

Corollary 3.2. Let ρ : S → L be a representation. If u, v belong to the sub-

lattice generated by ρ(S), if u + v = 1, and if u, u and v, v are decompositions

of ρ, then uv, u + v is also a decomposition of ρ.

Proof. By Lemma 2.2, the sublattices generated by u, u, v, resp. v, v, u, are

distributive. Thus, by Lemma 3.1, uv ⊕ (u + v) = 1. Again by Lemma 2.2,

for x ∈ S the sublattice generated by u, u, and vρx ∈ ρ(F (S)) is distributive,

whence uvρx + (u + v)ρx ≥ uvρx + uvρx + vρx = vρx + vρx = ρx. �

Proposition 3.3. Let L be a complemented modular lattice with sublattice M

generated by a1, a2, a3, a4 where u ≥ a4 is a neutral element of M such that

(a) u + ai + aj = 1L and (b) (u + ai)(u + aj) = u,

for i �= j.

Define bi = ai(aj + ak) for {i, j, k} = {1, 2, 3} and consider wi ∈ L such

that

(c) b1 = w1 ⊕ ub1 and (d) b2(w1 + b3) = w2 ⊕ b2b3.

Then u,w1 + w2 is a decomposition of the quadruple a1, a2, a3, a4.

Proof. This can be derived from the proof of Satz 1.2 in Poguntke [26]. We

give a direct proof, here. We write (m) and (n) for application of modularity

and of neutrality of u, respectively. Observe that

(e) bi ≤ bj + bk, (f) u + bi = u + ai.

The first is immediate by modularity, in the second we have

u + ai(aj + ak) =(n) (u + ai)(u + aj + ak) =(a) u + ai.

Calculating meets we get

u(w1 + b3) =(m),(c) u((u + b3)b1w1 + b3)

=(n) u(ub1 + b3b1)w1 + b3) ≤(b) u(uw1 + b3) =(c) ub3.

It follows that uw2 =(d) u(w1 + b3)b2w2 ≤ b3b2w2 =(d) 0. On the other hand,

(u + w2)w1 ≤(d) (u + b2)w1 ≤(b) uw1 =(c) 0. Thus we obtain u(w1 + w2) =(m)

u((u + w2)w1 + w2) = uw2 = 0.

The decomposition condition for a4 follows from u ≥ a4, that for a2 and a1

is obtained as follows:

u(a2 + w1 + w2) =(d) u(a2 + w1) =(m) u(a2 + (u + a2)w1)

=(b) u(a2 + uw1) =(c) ua2

and

a1u + w1 + w2 ≥(c) a1u + b1 =(m) a1(u + b1) =(f) a1.
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Concerning a3 we get

ua3 + w1 + w2 ≥(b) ua3 + w1 + w2 + b2b3 ≥(d) ua3 + w1 + b2(w1 + b3)

=(m) ua3 + (w1 + b2)(w1 + b3)

= ua3 + (w1 + a2(a1 + a3))(w1 + a3(a1 + a2))

=(m) ua3 + (w1 + a2)(w1 + a3)

=(m) (ua3 + w1 + a2)(w1 + a3) ≥ a3

since

ua3 + w1 + a2 =(n) w1 + u(a2 + a3) + a2 + ua3 ≥(a) w1 + ub1 + a2 + ua3

=(c) b1 + a2 + ua3 ≥(n) (b1 + a2 + a3)(b1 + a2 + u) ≥(f),(a) a3.

Finally, it follows u+w1+w2 ≥ u+ua1+ua3+w1+w2 ≥ u+a1+a3 =(a) 1. �

4. Perfect pairs

According to Gel’fand and Ponomarev [11] an element u of F (S) is perfect

if for all subspace lattices L of finite dimensional vector spaces and represen-

tations ρ : F (S) → L there is a decomposition ρu, v of ρ. We shall consider

the case where any complemented modular lattices L are admitted and where

v can be chosen “uniformly” for all ρ.

In order to do so, we consider modular lattices endowed with a unary op-

eration, complementation, x �→ x′ such that x ⊕ x′ = 1. Observe that each

section sublattice [0, u] inherits the complementation x �→ ux′ and so becomes

a section subalgebra.

Let FU(S) be the free object generated by S in the class of all modu-

lar lattices with complementation operation. In view of Lemma 2.1 we may

identify F (S) with the sublattice of FU(S) generated by S. Given a represen-

tation ρ : F (S) → L and a complementation operation on L there is a unique

homomorphism FU(S) → L extending ρ and also denoted by ρ.

For t ∈ F (S), let Ft(S) denote the sublattice generated by the xt (x ∈ S)

in the section sublattice [0, t] of F (S) and FUt(S) the subalgebra generated

by the xt (x ∈ S) in the section subalgebra [0, t] of FU(S).

Lemma 4.1. Let t be neutral in F (S) and τ the representation of S in the

section subalgebra [0, t] of FU(S) given by τx = tx for x ∈ S. Then τt = 1 and

τ is identity on FUt(S). For any representation ρ : P → L such that ρt = 1

there is a homomorphism σ : FUt(S) → L such that ρ = σ ◦ τ .

In other words, FUt(S) is freely generated (in the class considered) by S

subject to the relation t = 1.

Proof. By neutrality, x �→ tx (x ∈ L(S)) is a lattice homomorphism with t �→ t.

On the generators, it coincides with τ , so it coincides with τ on L(S). This

proves τt = t and it follows τtx = τtτx = tx for x ∈ S. Thus τ is identity on

FUt(S) since it is so on the generators. Now, given ρ with ρt = 1, let σ be
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ρ restricted to FUt(S). For x ∈ S one has ρx = ρtρx = ρtx = στx whence

ρ = σ ◦ τ . �

Let t ∈ F (S), u ∈ Ft(S), and u ∈ FUt(S). Then u, u form a perfect pair for

S under the proviso t = 1 if, for each representation ρ : F (S) → L such that

ρt = 1 and complementation on L, the pair ρu, ρu provides a decomposition of

ρ. Here, if t is the element 1 of F (S), then u, u are said to form a perfect pair.

Equivalently, we have u, u a decomposition of the identical representation of

S in FU(S). With Lemmas 2.2 and 4.1 and Corollary 3.2 it follows:

Corollary 4.2. If u, u is a perfect pair for S, then u is neutral in F (S).

Corollary 4.3. Let t be neutral in F (S), u ∈ Ft(S), and u ∈ FUt(S). Then

u, u form a perfect pair under the proviso t = 1 if and only if they yield a

decomposition of the representation τ of S in FUt(S) given by τx = tx for

x ∈ S.

Corollary 4.4. Let t be neutral in F (S), u, v ∈ Ft(S) with u + v = t, and

u, v ∈ FUt(S). If each u, u and v, v is a perfect pair under the proviso t = 1,

then so is uv, u + v.

Lemma 4.5. Let u ≤ t in F (S) and t, u ∈ FU(S) such that t, t is a perfect

pair and u, u is a perfect pair under the proviso t = 1. Then u, u + t is a

perfect pair.

Proof. Consider the identical representation of S in FU(S). By Corollary 4.2,

t is neutral in F (S) and we have a representation τ as in Lemma 4.1. By

hypothesis, τu, τu is a decomposition of τ . Put v = u + t = τu + t. Since

τu = u ≤ t and τu ≤ t, it follows by modularity: uv = τu · t(τu + t) =

τu(τu + tt) = τu · τu = 0. Also,

u + v = τu + τu + t = τt + t = t + t = 1

and

xu + v = τxu + τu + t ≥ τxt + t = xt + t ≥ x

for x ∈ S. �

5. Relevant elements of F (4)

In the sequel, we deal with the 4-element antichain S consisting of a = e1,

b = e2, c = e3 and d = e4, and F (4) = F (S). Consider the following pairwise-

commuting permutations of {1, 2, 3, 4}:

α1 = (12)(34), α2 = (13)(24), α3 = (14)(23).

Following [17] we define elements of F (4) for i = 1, 2, 3:

qi = (ek + eαik)(el + ej), where {k, αik, l, j} = {1, 2, 3, 4}.
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1 = s0 = t0

s1

r12 r13
r11 r14

p14 p13 p12

p11

t1

s2

r22 r23
r21 r24

p24 p23 p22

p21

t2

Figure 1. Perfect elements in D4 = FM(1 + 1 + 1 + 1)
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Let φi be the homomorphism of F (4) into the section sublattice [0, qi] such

that

φie = eqi (e ∈ S).

Define by simultaneous recursion

s0 = 1, s1 =
∑4

i=1 ei, sn+1 =
∑3

i=1 φisn,

r0k = 1, r1k =
∑

i�=k ei, rn+1,k =
∑3

i=1 φirnαik,

t0 = 1, t1 =
∏4

k=1 r1k, tn+1 =
∑3

i=1 φitn,

p0k = 1, p1k = ek + t1, pn+1,k =
∑3

i=1 φipnαik.

Recall from §1 and Lemma 3.1 in [17] the following, which are rather immediate

consequences of modularity:

φiqj = qiqj , for i �= j, (5.1)

φi ◦ φj = φj ◦ φi, (5.2)

sn+1 = φisn + φjsn, for i �= j, n ≥ 1, (5.3)

tn+1 = φitn + φjtn, for i �= j, n ≥ 1, (5.4)

pn+1,k = φipnαik + φjpnαjk, for i �= j, n ≥ 1, (5.5)

qisn+1 = φisn, for n ≥ 0, (5.6)

qitn+1 = φitn, for n ≥ 0, (5.7)

qipn+1,k = φipnαik, for n ≥ 1, (5.8)

tn+1 ≤ sn+1 ≤ tn ≤ pni ≤ rnj ≤ sn, for i �= j, (5.9)

s2 ≤ qi + qj , for i �= j, (5.10)

et2 ≤ eqi + eqj , for e ∈ S, i �= j, (5.11)

rnk =
∑

i�=k pni, (5.12)

sn = pn1 + pn2 + pn3 + pn4, for n ≥ 1. (5.13)

For n = 1, identity (5.12) follows immediately from t1 ≤ r1k and then (5.13)

from r11 + r12 = s1. Induction yields the general case.

Proposition 5.1. The sn, tn, pni, rni (n ≤ 2) are neutral in F (4). A modular

lattice has generators e1, e2, e3, e4 such that s2 = 1 > r2k = 0 if and only if it

is 5-element with atoms ei (i �= k) and ek = 0.

Proof. The neutrality is Satz 5.1 in [17]. The second claim follows from Satz

3.2 and 3.3 or the proof of Satz 5.1. �

We need some more information about the rnk.

rn+1,k = φirnαik + φjrnαjk, for i �= j, n ≥ 1, (5.14)

rnαik = qirn+1,k, for n ≥ 0. (5.15)
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Proof. In (5.14) let, e.g., i = 1, j = 2, k = 1. By (5.12) and (5.5),

rn+1,1 =
∑

k �=1 pn+1,k =
∑

k �=1 φ1pnα1k + φ2pnα2k

=
∑

k �=2 φ1pnk +
∑

k �=3 φ2pnk = φ1rn2 + φ2rn3.

(5.15) follows with induction. For n = 0 we have qir1k = qi = φ1r0. Now by

(5.14), for n ≥ 1 and i �= j, qirn+1,k = φ1rnαik + qiφjrnαjk = φ1rnαik since

qiφjrnαjk = qiqjφjrnαjk = φj(qirnαjk) = φjφirn−1,αiαjk = φiφjrn−1,αjαik ≤

φirnαik by (5.1), induction, and definition. �

Lemma 5.2. Let ρ : F (4) → L be a surjective homomorphism and u ≤ ρs2 be

neutral in L. Then u = uρqi + uρqj for i �= j.

Proof. uρqi + uρqj = u(ρqi + ρqj) = uρ(qi + qj) ≥ uρs2 ≥ u by neutrality and

(5.10). �

6. Perfect pairs for quadruples

Theorem 6.1. Each of the elements sn, tn, and rni of F (4) can be completed

to a perfect pair. In particular, each is neutral in F (4).

The proof is by induction on n ≥ 1. In the next section, assuming that

the perfect pair tn, t̃n is already given, we define sn+1 such that sn+1, sn+1 is

perfect under the proviso tn = 1. We then apply Lemma 4.5 to obtain the

perfect pairs sn+1, s̃n+1 with s̃n+1 = t̃n + sn+1. Continuing in the section to

follow, we define rn+1,i such that rn+1,i, rn+1,i is perfect under the proviso

sn+1 = 1 and, in turn, the perfect pair rn+1,i, r̃n+1,i with r̃n+1,i = rn+1,i +

s̃n+1. In particular, the rn+1,k neutral in F (4) by Corollary 4.2. And so is

u =
∏4

k=1 rn+1,k. Applying Lemma 5.2 and induction we get

tn =

4∏

k=1

rnk. (6.1)

Indeed,

u = q1u + q2u =

2∑

i=1

4∏

k=1

qirn+1,k =

2∑

i=1

4∏

k=1

φirnαik

=

2∑

i=1

φi

4∏

k=1

rnαik = φ1tn + φ2tn = tn+1

by (5.15) and (5.4). Due to (5.13), under the proviso sn+1 we may apply

Corollary 4.4 to the perfect pairs rn+1,i, rn+1,i with i �= j to obtain the perfect

pairs rn+1,1rn+1,2, rn+1,1 + rn+1,2 and rn+1,3rn+1,4, rn+1,3 + rn+1,4 and then

the perfect pair tn+1,
∑4

i=1 rn+1,i under the proviso sn+1 = 1. Finally, we get

a perfect pair tn+1, t̃n+1 according to Lemma 4.5.
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We denote the complementation on FU(S) by x �→ x′ and observe that the

homomorphisms φi defined in the preceding section extend to unique homo-

morphisms φi of FU(4) into its section subalgebras [0, qi] and that as before

φi ◦ φj = φj ◦ φi. (6.2)

Considering a representation ρ : S → L with ρt = 1 we do the actual com-

putations in L but use elements of FU(S) to denote their images in L. We also

use the φi in that notation, but we do not suggest that there are corresponding

homomorphisms defined on (parts of) L. All these calculations could be done

within suitable FUt(S) according to Corollary 4.3 if we would replace e ∈ S

by et, everywhere.

7. Perfect pairs with sn

We define

s1 = s′1,

s2 = x1 + xa + xc,

sn+1 = φ1sn + φ2sn, for n ≥ 2,

where

x1 = (q1s2)
′q1, xa = (ab)′(x1 + b)at1, xc = (cd)′(x1 + d)ct1.

We claim that, for n ≥ 1, the pair sn, sn is perfect under the proviso tn−1 = 1.

The proof is by induction on n, the case n = 0 being trivial. We add the

following claim to be proved:

q1sn = φ1sn−1, for n ≥ 2. (7.1)

Let us consider the pair s2, s2. Observe that the symmetry interchanging

a and c as well as b and d leaves s2 and s2 invariant. By neutrality of t1
(Proposition 5.1) we have q1, s2 ∈ FUt1(4) whence x1, xa, xc ∈ FUt1(4) using

modularity and ab ≤ t1, cd ≤ t1. Thus, s2 ∈ FUt1(4).

Now, consider any representation ρ : S → L satisfying ρt1 = 1 and calculate

in L. By modularity and t1 = 1 we have a + q1 = b + q1 = a + b, by neutrality

and definition of s2,

(a + s2)(b + s2) = (a + s2)(q1 + s2) = (b + s2)(q1 + s2) = s2.

By modularity, q1 = q1s2⊕x1 and xa +ab = ((ab)′+ab)(x1 +b)at1 = (x1 +b)a

since t1 = 1 whence xa ⊕ ab = (x1 + b)a. Thus, we may apply Proposition 3.3

with a1 = q1, a2 = a, a3 = b, a4 = u = s2 and w1 = x1, w2 = xa in the section

sublattice [0, a+ b+ s2] of L. It follows that s2, x1 +xa is a decomposition for

the quadruple q1, a, b, s2, in particular

a + b + s2 = s2 ⊕ (x1 + xa), x1 + xa + s2a ≥ a, x1 + xa + bs2 ≥ b.
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By symmetry, we have

c + d + s2 = s2 ⊕ (x1 + xc), x1 + xc + s2c ≥ c, x1 + xc + ds2 ≥ d.

Now, by neutrality and definition of s2,

(s2 + c)(a + b) ≤ (s2 + c)(s2 + a + b) = s2 + c(a + b) = s2,

whence

(s2 + c)(x1 + xa) ≤ (s2 + c)(a + b)(x1 + xa) ≤ s2(x1 + xa) = 0

and, by modularity,

s2(x1 + xa + xc) = s2(xc + (s2 + c)(x1 + xa)) = s2xc = 0.

It follows that s2 ⊕ s2 ≥ s1 = 1 showing that one has a decomposition, indeed.

In the inductive step observe that, by hypothesis, sn ∈ FUtn−1
(4) which is

generated by the etn−1 (e ∈ S). It follows that φisn is in the subalgebra of

[0, φitn−1] generated by the φi(etn−1) = eqitn = etn(atn + btn)(ctn + dtn) (by

(5.7) and the neutrality of tn given by the inductive hypothesis and Lemma

4.2) whence in FUtn
(S). Thus, sn+1 ∈ FUtn

(S).

Next, we verify q1sn+1 = φ1sn. Indeed, by definition and modularity,

q1sn+1 = φ1sn + q1φ2sn = φ1sn since q1φ2sn = q1q2φ2sn = φ2(q1)φ2sn =

φ2(q1sn) = φ2φ1sn−1 = φ1φ2sn−1 ≤ φ1sn by (5.1), induction, (6.2), and defi-

nition.

Now, consider any representation ρ : S → L such that ρtn = 1. Calculating

in L, for e ∈ S we have

esn+1 + sn+1 ≥ eφ1sn + eφ2sn + φ1sn + φ2sn

≥ φ1(esn + sn) + φ2(esn + sn) ≥ φ1e + φ2e ≥ et2 ≥ etn = e

by (5.11). It follows that sn+1 + sn+1 ≥ s1 = 1.

On the other hand, the elements φ1sn + q1q2, φ1sn + q1q2, φ2sn + q1q2, and

φ2sn + q1q2 are independent in the interval [q1q2, 1]. Indeed, the join (≤ q1)

of the first two meets the join (≤ q2) of the last two in q1q2 and

(φisn + q1q2)(φisn + q1q2) = q1q2 + φi(sn(sn + qj)) = q1q2

for {i, j} = {1, 2} since φi(sn(sn + qj)) ≤ φi(sn(s̃n + qj)) ≤ φiqj = qiqj from

the fact that sn, s̃n is a decomposition, Lemma 2.2, and (5.1). It follows that

sn+1sn+1 ≤ (φ1sn + φ2sn + q1q2)(φ1sn + φ2sn + q1q2) ≤ q1q2,

whence sn+1sn+1 ≤ q1sn+1sn+1 ≤ φ1snφ1sn = φ1(snsn) = 0 using (5.6),

(7.1), and induction.
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8. Perfect pairs with rni

For n = 1, let

r1k = (ekr1k)′ek.

Consider ρ : S → L with ρs1 = 1. Then in L, ek = r1k ⊕ ekr1k whence

r1kr1k = r1kekr1k = 0, r1k + r1k = ek + rik = s1 = 1. Also, ek ≥ r1k and

ei ≤ r1k for i �= k, whence one has a decomposition of ρ.

Let n = 2, {k, α1k, i, j} = {1, 2, 3, 4}, and i < j. We define

r2k = uk + vk, where uk = φ1r1α1k, vk = (eiej)
′(uk + ej)ei,

rn+1,k = φ1rnα1k + φ2rnα2k,

and add the following claim to be proven

q1rn,k = φ1rn−1,α1k for n ≥ 2. (8.1)

Considering n = 2, observe that eiej ≤ s2 and eiqj ∈ Fs2
(4) by the neutrality

of s2 (Proposition 5.1). Thus, uk ∈ FUs2
(4). Since uk ≤ φeα1k ≤ eα1k,

modularity yields

(uk + ej)ei = (uk + ej(eα1k + ei))ei(eα1k + ej) (8.2)

whence vk ∈ FUs2
(4). By the case n = 1, definition, and (5.14), (5.15) we

have

uk ⊕ φ1(eα1kr1α1k) = uk ⊕ eα1kq1r2k = φ1eα1k = q1eα1k, (8.3)

vk ⊕ eiej = (uk + ej)ei. (8.4)

Now, consider any representation ρ : S → L with ρs2 = 1. We calculate in L,

using notation from FU(4). By Proposition 5.1 we have u = r2k neutral in

M = ρ(F (S)), u = u + ek, and pairwise complements u + el (l �= k) in [u, 1].

Consider

a1 = eα1k, a2 = ei, a3 = ej , a4 = ek,

b1 = a1(a2 + a3), b2 = a2(a1 + a3), b3 = a3(a1 + a2).

By (8.3) we have uk ⊕ ub1 = b1. As uk ≤ φ1eα1k ≤ eα1k it follows by (8.2)

and (8.4) that

vk ⊕ b2b3 = vk ⊕ eiej = (uk + ej)ei = (uk + b3)b2.

Thus, we may conclude from Proposition 3.3 that r2k, r2k is a decomposition

of ρ.

Finally,

q1vk ≤ q1(uk + ej)ei = (uk + q1ej)q1ei = (φ1r1α1k + φ1ej)φ1ei

≤ φ1((r1α1k + ej)ei) = φ1((r1α1k + ej)r1α1kei) ≤ φ1(ejei) ≤ eiej

since ei ≤ r1α1k. It follows by (8.4) that q1vk = 0 and q1r2k = q1(uk + vk) =

uk + q1vk = uk = φ1r1α1k, verifying (8.1) for n = 2.

The inductive step is similar to that in case of defect −2, one just has to pay

heed to the second index. Observe that, by hypothesis, rnαik ∈ FUsn
(4) which
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is generated by the esn (e ∈ S). It follows that φirnαik is in the subalgebra

of [0, φisn] generated by the φi(esn) = eqisn = esn+1(asn+1 + bsn+1)(csn+1 +

dsn+1) (by (5.7) and the neutrality of sn+1 given by inductive hypothesis and

Lemma 4.2) whence in FUsn+1
(S). Thus, rn+1,k ∈ FUsn+1

(S).

We verify q1rn+1,k = φ1rnα1k. Indeed, by definition and modularity,

q1rn+1,k = φ1rnα1k + q1φ2rnα2k = φ1rnα1k since by (5.1), induction, (6.2),

and definition

q1φ2rnα2k = q1q2φ2rnα2k = φ2q1φ2rnα2k

= φ2(q1rnα2k) = φ2φ1rn−1,α1α2k = φ1φ2rn−1,α2α1k ≤ φ1rnα1k.

Now, consider any representation ρ : S → L such that ρsn+1 = 1. Calculating

in L, for e ∈ S we have

ern+1,k + rn+1,k ≥ eφ1rnα1k + eφ2rnα2k + φ1rnα1k + φ2rnα2k

= φ1(ernα1k + rnα1k) + φ2(ernα2k + rnα2k)

≥ φ1e + φ2e ≥ et2 = e

by induction and (5.11). It follows rn+1,k + rn+1,k ≥ s1 ≥ sn+1 = 1.

On the other hand, the elements φ1rnα1k + q1q2, φ1rnα1k + q1q2, φ2rnα2k +

q1q2, φ2rnα2k + q1q2 are independent in the interval [q1q2, 1]. Indeed, the join

(≤ q1) of the first two meets the join (≤ q2) of the last two in q1q2 and

(φirnαik + q1q2)(φirnαik + q1q2) = q1q2 + φi(rnαik(rnαik + qj)) = q1q2

for {i, j} = {1, 2}. Namely,

φi(rnαik(rnαik + qj)) ≤ φi(rnαik(rnαik + sn+1 + qj)) ≤ φiqj = qiqj ,

since by inductive hypothesis rnαik, rnαik + sn+1 is a decomposition. Also use

Lemma 2.2 and (5.1). It follows that

rn+1,krn+1,k ≤ (φ1rnα1k + φ2rnα2k + q1q2)(φ1rnα1k + φ2rnα2k + q1q2) ≤ q1q2

whence, using (5.6), (8.1), and induction,

rn+1,krn+1,k ≤ q1rn+1,krn+1,k ≤ φ1rnα1kφ1rnα1k = φ1(rnα1krnα1k) = 0. �

9. Some theory of modular lattices

See [2, 5] for general reference. D2 denotes the 2-element lattice and Mn

the height 2 lattice with n atoms. In a distributive lattice L, quotients a/b

(i.e., a ≥ b) and c/d generate the same congruence if and only if they are

transposed, i.e., b = ac and c = a + d or, dually, d = bc and c = a + d; cf. [5].

This congruence is minimal, if and only if a/b is a prime quotient, i.e., if the

interval [b, a] is 2-element. Also, if L satisfies the ascending chain condition,

then for each prime quotient a/b there is a unique meet irreducible element c

such that c ≥ a, c �≥ b and, consequently, a/b transposed to (b + c)/c.

Consider a poset S with largest element 1 such that all intervals [x, 1] are

finite. Then the finitely generated filters of S form a distributive lattice L(S) in
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which all intervals [u, 1] are finite and the mapping x �→ [x, 1] is an isomorphism

of S onto the poset of meet irreducible elements of L(S).

Within the class of all lattices, posets are projective in the following sense:

there are lattice terms tx (x ∈ S) such that for any order preserving φ : S → L,

surjective homomorphism π : M → L, and choice of ay ∈ M with πay = φy

for y ∈ S, it follows that the map ψ : S → M with ψx = tx(ay | y ∈ S) is order

preserving and satisfies φ = π ◦ ψ.

Recall that 0 and 1 are considered as constants and that, for any class L,

the variety VL generated by L is the model class of the equations valid in L and

consists of the homomorphic images of sublattices of direct products of lattices

in L (if 0, 1 are not considered as constants one obtains all lattices which

become members of this class after adding 0, 1). For a variety L let FL(S)

denote the lattice in L freely generated by the finite partially ordered set S.

Write FL(n) if S is the n-element antichain. In particular, F (4) = FVC(4).

We write φ : S → L if φ is order preserving and consider φ : S → L ∈ VL also

as a homomorphism of FVL(S) into L and write imφ for its image, i.e., the

sublattice of L generated by the φa (a ∈ S).

Lemma 9.1. Given a set L of lattices, FVL(S) is a subdirect product of the

imφ where φ : S → Lφ ∈ L is order preserving.

Proof. As in the construction of free algebras (cf. [2]), FVL(S) can be con-

structed as the sublattice generated by the (φa | φ ∈ I) (a ∈ S) in
∏

φ∈I Lφ

where I is the set of all φ : S → Lφ ∈ L. �

Let M and A denote the class of all modular, resp. all Arguesian, lattices.

Let L(V ) denote the subspace lattice of the K-vector space V and LK the va-

riety generated by all such lattices. Kp denotes the prime field of characteristic

p and Lp = LKp
. See [20], [24], and [21] for the following.

Proposition 9.2. LK is generated by the L(Kn), n < ∞. For any K-vector

space V with dimV ≥ 3, L(V ) ∈ Lp if and only if p is the characteristic of K

and, in this case, LK = Lp.

Corollary 9.3. Given p < ∞ and K of characteristic p, FLp(S) is a subdirect

product of imρ where ρ : S → L(Kn), n < ∞.

Proposition 9.4. L(Kn
0 ) belongs to the variety generated by the L(Kn

p ) with

prime p → ∞.

Proof. Any ultraproduct of the L(Kn
p ) is isomorphic to some L(Kn) where K

is of characteristic 0 so that L(Kn
0 ) is a sublattice. �

Corollary 9.5. The variety L∞ generated by all L(V ) is generated by the

L(Kn
p ), p prime, n < ∞.

L∞ is generated by A ∩ C. VC is generated by A ∩ C together with the

non-desarguean projective planes; cf. [5]. In the sequel, we consider p ranging
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over 0, ∞, and all primes, and say that p divides ∞. From [20, 24] and

projectiveness of posets one obtains the following.

Proposition 9.6. The equational theory of Lp is decidable. The word problem

for FLp(S) is solvable.

In order to discuss the role of characteristics, we refer to the concept of

an n-frame Φn, originally due to von Neumann (cf. [21]), a system of lattice

generators and relations mimicking projective coordinate systems in lattices

L(V ) with dimV = n. In particular, M3 can be viewed as a 2-frame. Within

modular lattices, frames are projective systems of generators and relations (in

the sense explained above for posets). In particular, FVL(Φn) is a subdirect

product of sublattices of lattices in L.

Proposition 9.7. The subdirectly irreducible members of L∞ generated by a

frame of order n ≥ 3 are exactly the lattices isomorphic to some L(Kn
p ). The

lattice freely generated by a frame of order n ≥ 3 in L∞ is a subdirect product

of the L(Kn
p ), p prime. Moreover, for each square-free m there is a direct

decomposition um, vm such that um (vm) is the direct sum (meet) of the up

(vp), p a prime dividing m, and [0, up] ∼= [vp, 1] ∼= L(Kn
p ).

Lemma 9.8. For modular lattices L1 and L2 of finite height, E ⊆ L1×L2 with

π1(E) generating L1, and a join preserving map σ : L1 → L2 with σπ1x ≤ π2x

for all x ∈ E, it follows that σ = 0 if (1, 0) belongs to the sublattice L generated

by E.

Proof. Consider such σ. The map γx = inf{y ∈ L | π1y = x} is a meet

preserving map γ : L1 → L and π1γx = x for all x ∈ L1. Thus

L′ =
⋃

x∈L1

[(x, σx), γx]

is a sublattice of L1 × L2. For x ∈ E we have (π1x, σπ1x) ≤ (π1x, π2x) =

x ≤ γπ1x whence E ⊆ L′ and L ⊆ L′. In particular, (1, 0) ∈ L′ whence

(x, σx) ≤ (1, 0) ≤ γx for some x ∈ L1. Now γx ≤ (x, 1) whence x = 1 and so

σ1 = 0. �

10. Perfect elements

The representations of S considered in representation theory are order pre-

serving maps ρ : S → L(V ) where dimV < ∞. Two elements of FL(S) are

K-equivalent if ρs = ρt for all representations ρ : S → L(V ) over K with

dimV < ∞. By Proposition 9.2, this depends only on the characteristic p

of K; we write s ∼p t and speak of p-equivalence. Elements s, t are linearly

equivalent (s ∼ t) if they are p-equivalent for all p < ∞. Corollary 9.5 and

Proposition 9.6 imply the following.

Corollary 10.1. Consider L ⊇ Lp. Then ∼p is the kernel of the canonical

homomorphism of FL(S) onto FLp(S). In particular, FLp(S) is FM(S)
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modulo p-linear equivalence. On the free lattice over S, the relation of p-linear

equivalence is decidable.

A finite dimensional representation is indecomposable if it admits the trivial

decomposition, only.

Corollary 10.2. FLp(S) is a subdirect product of the imρ, ρ : S → L(Kn)

indecomposable and n < ∞, where K is any fixed field of characteristic p if

p < ∞, and K ranges over all Kp, p prime, if p = ∞.

Adapting terminology of Gel’fand and Ponomarev [11], we call an element

u of FL(S) K-perfect if ρ(u) ∈ {0, V } for each indecomposable representa-

tion ρ : FL(S) → L(V ) over K with dimV < ∞. Equivalently, for every

representation ρ : FL(S) → L(V ) over K with dimV < ∞ there is a direct

decomposition ρu, Uρ. We call u perfect if it is K-perfect for all K.

Corollary 10.3. The perfect, resp. K-perfect, elements of a lattice FL(S)

form a sublattice. For perfect elements of FLp(S) one has u ≤ v if and

only if ρv = 0 implies ρu = 0 (equivalently, ρu = 1 implies ρv = 1) for all

indecomposable ρ : S → L(Kn
q ) with n < ∞ and q dividing p.

Gel’fand and Ponomarev [11] also noticed the relation to neutrality. They

called a subspace U of V admissible for ρ : S → L(V ) if U + ρ(xy) = (U +

ρx)(U +ρy), equivalently Uρ(x+y) = Uρx+Uρy, for all x, y ∈ FL(S). If U,W

provide a decomposition of ρ, then they are admissible for ρ; cf. Lemma 2.2.

Moreover, they are unique complements of each other in the sublattice they

generate together with imρ; cf. [7]. The converse is not true even if one of U,W

is an admissible element of imρ: viz. the representation of {a, b} in V with

basis e1, e2, e3, e4 and U = ρa, ρb, and W spanned by e1, e3, by e1 + e2, and

by e2, e4 respectively. Also, Poguntke [26] has given an example of a represen-

tation of the 5-element antichain and a U such that there is no decomposition

U,W . But, as shown by Dilworth [7], for a neutral element u of complemented

modular lattice L, the unique complement v yields a decomposition u, v of L.

Also, from Corollary 9.3 and Proposition 9.6 we get the following.

Corollary 10.4. Let u ∈ FM(S). Then ρu is admissible for all finite di-

mensional representations, resp. all those over K, if and only if its image in

FL∞(S), resp. FLp(S), is neutral, where p is the characteristic of K. Both

properties are decidable. If u is perfect, resp. K-perfect, then its image in

FL∞(S) (resp. in FLp(S)) is neutral.

Lemma 10.5. If v/u and ṽ/ũ are quotients in a distributive sublattice B of

FL(S) generating the same congruence relation in B, then ρu = 0 and ρv = 1

if and only if ρũ = 0 and ρṽ = 1 for any representation ρ.

Proof. Without loss of generality, we have u = vũ and ṽ = v + ũ. Assume

ρu = 0 and ρv = 1. Then ρṽ ≥ ρv = 1 whence ρũ = ρũρv = ρũv = ρu = 0.

The converse follows by duality. �
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In the other direction, we have to discuss strengthenings of the concept of

perfect elements. Replacing C by C ∩ L in the definition of perfect pairs, we

arrive at the concept of L-perfect pairs. Observe that V(C ∩ Lp) = Lp.

Corollary 10.6. u, u in FLpU(S) with u ∈ FLp(S) form a Lp-perfect pair

if and only if ρu, ρu is a direct decomposition of ρ for each representation

ρ : S → L(Kn), n < ∞ and K = Kp if p < ∞, and K any finite prime field if

p = ∞.

Proof. [22, Cor. 34] carries over to the classes considered, here: the lattices in

Lp with complementation operation are obtained as homomorphic images of

complemented sublattices of direct products of lattices Kn, K = Kp if p < ∞

and K ranging over all finite prime fields if p = ∞. Also, Proposition 10 in

[22] generalizes to projective systems of generators, posets in particular. Thus,

FLpU(S) is a subdirect product of lattices L(Kn) with complementation. �

As defined in [17], u ∈ FL(S) is strongly perfect if for each homomorphism

ρ : FL(S) → L into a complemented modular lattice there is v ∈ L such that

ρx = ρuρx + vρx for all x ∈ FL(S) (equivalently, all x ∈ S; cf. the proof of

Lemma 2.2). Considering the identical representation in FLU(S) we get the

following corollary.

Corollary 10.7. For L ⊆ VC, u ∈ FL(S) is strongly perfect if and only if

there is u ∈ FLU(S) such that u, u is an L-perfect pair.

Proposition 10.8. The strongly perfect elements in FL(S) form a sublattice.

Proof. We show that, for decompositions u, u and v, v of ρ with u, v ∈ imρ, also

uv, u+uv is a decomposition. Namely, uv(u+uv) = v(uu+uv) ≤ vv = 0 and

uv+u+uv = (u+u)(v+u)+uv = v+u+uv = u+(v+u)(v+v) = u+v+u = 1.

Moreover, for x ∈ imρ one has uv(x+u+uv) = v(u(x+u)+uv) = v(ux+uv) ≤

v(ux + v) ≤ ux since ux ∈ imρ. �

Obviously, the decomposition to be associated with uv is not unique. Also,

contrary to the claim in [17, 6.2], uv, u + v is not even a pair of complements,

in general; M3 with atoms u = v, u, and v yields a counterexample.

To summarize, we have the following implications for u ∈ FLp(S):

there is u with u, u a Lp-perfect pair ⇔ u strongly perfect

⇒ u perfect ⇒ u neutral ⇔ ρu admissible for all ρ : FLp(S) → L(V ).

11. Dependence on the base field

Consider a field extension K ′ of K. With any representation ρ : S → L(V )

over K tensoring yields a representation ρ⊗K ′ in L(V ⊗K ′) over K ′ since L(V )

is embedded into L(V ⊗K ′), canonically. If ρ⊗K ′ is indecomposable then so



Perfect pairs for quadruples 19

is ρ but the converse may fail as witnessed by the quadruples associated with

the classification of endomorphisms. On the other hand, in general there are

representations over K ′ not isomorphic to any ρ ⊗ K ′. Therefore, it remains

open how the sets of K-perfect and K ′-perfect are related.

In contrast, by Corollary 9.3, strongly perfect elements in FLp(S) are K-

perfect for all K of characteristic dividing p. Though, in FL∞(S), the notion

of strongly perfect depends on characteristic, substantially.

Proposition 11.1. Let u, v be (strongly) perfect elements in FL∞(S) such

that the interval [u, v] is generated by an n-frame with n ≥ 3 and m a square-

free number. Then there is a (strongly) perfect element um, u ≤ um ≤ v such

that in any representation ρ : P → L(V ) over K with ρu = 0 and ρv = 1, one

has ρum = 1 if and only if the characteristic of K divides m, and ρum = 0

otherwise. Moreover, if [u, v] is freely generated in L∞ by Φn, then there are

infinitely many non-neutral elements in [u, v] that are K-perfect for all these

K.

Proof. Choose um, vm as a direct decomposition of [u, v] according to Propo-

sition 9.7. Then um is perfect. If w ∈ [u, uq] with a prime q not dividing m,

then by Proposition 9.2 it follows that ρw = ρu for any indecomposable rep-

resentation over a field K of characteristic p dividing m, i.e., w is K-perfect.

For any prime q, the neutrality of u and uq implies that ρx = uqx+u is a rep-

resentation ρ : S → [u, uq] ∼= L(Kn
q ) such that ρx = x for all x ∈ [u, uq]. Since

ρ is onto, it must be indecomposable. Thus, u and uq are the only neutral

elements in [u, uq].

Now, assume that u, u and v, v are perfect pairs. Then um, vmu is perfect

under the proviso v = 1. Indeed, umvmu = uu = 0 and um + xvmu ≥

um + xvm ≥ x for x ≤ v. Thus, um is strongly perfect by Lemma 4.5. �

In order to introduce a notion of perfectness capturing independence of the

base field we recall some facts about the Auslander-Reiten translation quiver

ΓK(S). See [9, 27, 4, 28, 30] for more detailed explanation.

A morphism φ between representations ρ : S → L(V ) and ρ′ : S → L(V ′)

over K is a linear map φ : V → V such that φρx ≤ ρ′x for all x ∈ S. Hom(ρ, ρ′)

denotes the set of all such φ. The indecomposable projectives are the ρx : S →

L(K) (x ∈ S) with ρxy = K if and only if x ≤ y and ρω : S → L(K) with

ρωx = 0 for all x.

Lemma 11.2. Given a field K of characteristic p, a variety L ⊇ Lp, a K-

perfect element u ∈ FL(S), and finite dimensional representations ρ, ρ′ of S

over K such that ρu = 1 and Hom(ρ, ρ′) �= 0, it follows that ρ′u = 1.

Proof. Given φ, by induction one proves φρt ≤ ρ′t for all t ∈ FL(S). In

particular, passing from t1, t2 to t = t1t2 one has φρ(t1t2) = φ(ρt1 · ρt2) ≤

φρt1 · φρt2 ≤ ρ′t1 · ρ
′t2 = ρ′(t1t2). �
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s1

r12 r13 r14

s2

r22 r23r11 r24

r21

Figure 2. Auslander-Reiten quiver: Γ+(1 + 1 + 1 + 1)

A translation quiver is a locally finite directed graph together with an in-

jective partial map τ such that the number of arrows from τz to y equals the

number of arrows from y to z. The vertices of ΓK(S) are the isomorphism

types of finite dimensional irreducible representations of S over K. There are

no loops. For ρ �= ρ′ there is at most one arrow from ρ to ρ′; if so then

Hom(ρ, ρ′) �= 0. τ is given by the Coxeter functor Φ+. Exactly the projectives

are not in the image of τ .

ρ is preprojective if it belongs to the τ -orbit of some projective. The set

Γ+
K(S) of preprojectives is a connected component of ΓK(S) and closed under

τ , thus it forms a translation quiver, too. Defining ρ ≥ ρ′ if ρ = ρ′ or if

there is a path from ρ to ρ′ turns Γ+
K(S) into a poset with largest element

ρω and all intervals [ρ, ρω] finite. Moreover, Hom(ρ, ρ′) �= 0 implies ρ ≥ ρ′ for

ρ, ρ′ ∈ Γ+
K(S). On the other hand, if ρ ∈ Γ+

K(S) and ρ′ ∈ ΓK(S)\Γ+
K(S), then

Hom(ρ, ρ′) �= 0 and Hom(ρ′, ρ) = 0.

Given fields K,K ′ there is a unique isomorphism from Γ+
K(S) onto Γ+

K′(S)

matching the projectives ρx over K and ρ′x over K ′; cf. [28, 29]. This allows us

to speak of the preprojective translation quiver Γ+(S) and its isomorphisms

πK onto Γ+
K(S). Let Xω denote the largest element. Figure 2 shows the

uppermost part of Γ+(S) where S is the 4-element antichain.

Dually (with injectives and τ−1) we have the preinjective translation quiver

Γ−(S) and its isomorphisms onto Γ−
K(S). Either Γ(S) = Γ+(S) = Γ−(S) is

finite or Γ+(S) and Γ−(S) are disjoint and Γ+(S) has no minimal, Γ−(S) no

maximal element.
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Lemma 11.3. The set of all pairs (X,u) with X ∈ Γ+(S) and u ∈ FL∞(S)

perfect such that

ρ ∈ [πKX, ρω] ⇔ ρu = 0, for all fields K and all ρ ∈ ΓK(S),

defines a partial order embedding γ+ from Γ+(S) into FL∞(S).

Compare Figures 1 and 2.

Proof. Consider perfect u, v such that ρv = 0 ⇒ ρu = 0 for all primes p and

ρ ∈ ΓKp
(S). Then u ≤ v by Corollary 10.3. Thus, γ+ is well defined and

order preserving. Conversely, consider X,Y ∈ Γ+(S) and perfect u ≤ v such

that ρ ∈ [πKX, ρω] ⇔ ρu = 0 and ρ ∈ [πKY, ρω] ⇔ ρv for some K and all

ρ ∈ Γ+
K(S). In particular, for ρ = πKY one has ρv = 0 whence ρu = 0 and

ρ ∈ [πKX, ρω]. Then X ≤ Y since πK is an order isomorphism. �

We say that γ+ is a Γ+-system of perfect elements for S if γ+ is defined on

all of Γ+(S). B+(S) denotes the sublattice (with 1 but without 0) of FL∞(S)

generated by the image of γ+. By Corollary 10.3, B+(S) consists of perfect

elements.

Proposition 11.4. Suppose that γ+ is a Γ+-system of perfect elements for

S. Then γ+ is an order embedding of Γ+(S) into FL∞(S) and may be defined

referring to the K = Kp, p prime, only. The map F �→ γ+F =
∏

X∈F γ+X is

an isomorphism of the lattice of finite filters of Γ+(S) onto B+(S).

Proof. Define γ̃ as in Lemma 11.3 but referring to the K = Kp, only. Then

according to the proof of the lemma, γ̃ is a well-defined map. By definition,

γ+X = u implies γ̃X = u. Thus γ̃ = γ+ proving the first claim.

Next, we show that for ρ ∈ ΓK(S) and a finite filter F of Γ+(S) one has

ργ+F = 0 if and only if ρ ∈ πK(F ). Indeed, if ρ = πKX for some X ∈ F

then ργ+X = 0. Conversely, if ρ �∈ πK(F ) then, for all X ∈ F , ρ �∈ [πKX, ρω]

whence ργ+X = Vρ. Thus, ργ+F = Vρ. This proves that γ+ defines an order

embedding of the lattice of finite filters. Now, consider u = γ+F1, v = γ+F2

and w = γ+(F1∩F2). Trivially, u+v ≤ w. If ρ(u+v) = 0 for ρ ∈ ΓK(S), then

ρu = ρv = 0, whence ρ ∈ πK(F1) ∩ πK(F2) = πK(F1 ∩ F2) and ρw = 0. By

Corollary 10.3 it follows that u+v = w. Thus, the image under this embedding

is a sublattice, whence equal to B+(S) by definition. �

Corollary 11.5. If γ+ is a Γ+-system of perfect elements for S, then Γ+ is

isomorphic to the poset of meet irreducibles of B+(S). Every interval [u, 1] of

B+(S) is finite. For u ∈ B+(S) and finite filter F of Γ+(S), one has u ≥ γ+F

if and only if u = γ+X for some X ∈ F . For any u, v ∈ B+(S) and p prime

or p = 0, if u ∼p v then u = v.

Corollary 11.6. If γ+ is a Γ+-system of perfect elements for S, then for

any w ∈ B+(S) the interval [w, 1] of FL∞(S) is a subdirect product of the

intervals [u, v] where w ≤ u and v/u prime in B+(S). These in turn are

subdirect products of the imπKp
X where X ∈ Γ+(S) with πKp

Xu = 0 and
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πKp
Xv = 1 and their image in FLp(S) is isomorphic to imρ for a unique ρ

(associated with the meet irreducible x ≥ u, x �≥ v in B+(S)). Thus, the image

of [w, 1] in FLp(S), p < ∞, is of finite height.

Dually, we have γ−, the notion of a Γ−-system of perfect elements for S,

and the lattice B−(S). Put B(S) = B+(S) ∪ B−(S).

Proposition 11.7. If Γ(S) is finite and γ+ a Γ+-system of perfect elements

of S, then γ− is a Γ−-system of perfect elements for S and B+(S) = B−(S).

For infinite Γ(S), if γ+ is a Γ+- and γ− a Γ−-system of perfect elements for

S, then B(S) is a sublattice of FL∞(S) such that u < v for all u ∈ B−(S)

and v ∈ B+(S).

In the first case we call γ+, in the second γ+ ∪ γ−, a GP-system of perfect

elements for S.

Proof. In case of finite Γ(S) one has γ−X = v where v ∈ B+(S) is the unique

join-irreducible element which is minimal such that v �≤ u = γ+X. Assume

Γ(S) is infinite and consider X ∈ Γ+(S), u = γ+X, Y ∈ Γ−(S), and v = γ−Y .

For any K and ρ ∈ ΓK(S), if ρv = 1, then ρ ∈ Γ−
K(S), whence ρ �∈ [πKX, ρω]

and so ρu = 1. Thus v ≤ u for all u ∈ B+(S) and v ∈ B−(S) by Corollary 10.3

and v < u since there is w ∈ B+(S) with v ≤ w < u. �

A one-to-one function which associates with each isomorphism type of finite

dimensional preprojective representations ρ an n-tuple f(ρ) of natural numbers

will be called a Γ+-dimension function if, for any X ∈ Γ+(S), f(πKX) does

not depend on K. Such are the coordinate vector and the dimension vector as

defined in [30] 5.1, resp. 11.11.

The perfect element u ∈ FL∞(S) is compatible with the Γ+-dimension

function f if

{f(ρ) | ρ ∈ Γ+
Kp

(S), ρu = 0} = {f(ρ) | ρ ∈ Γ+
Kq

(S), ρu = 0} for all p, q < ∞.

A sublattice B+ of perfect elements of FL∞(S) is Γ+-complete if, for all

p < ∞, ρu = 0 with ρ ∈ ΓKp
(S) and u ∈ B+ implies ρ ∈ Γ+

Kp
(S) and if, for

any ρ ∈ Γ+
Kp

(S), there is u ∈ B+ such that, for all ρ′ ∈ Γ+
Kp

(S), ρ′u = 0 if and

only if ρ′ ≥ ρ. The following is obvious.

Proposition 11.8. Given any Γ+-dimension function, there exists a Γ+-

complete sublattice B+ of compatible perfect elements of FL∞(S) if and only

if γ+ is a Γ+-system of perfect elements for S. In this case, B+ = B+(S).

GP-systems of perfect elements have been established by Gel’fand and Pono-

marev [11] for antichains, Bünermann in his diploma thesis (and maybe by

others) for posets of finite representation type, and by Stekolshchik [31, 32] for

2+2+2, as revealed by inspection of the proofs. Also, Cylke’s constructions [6]

suggest that a GP-system of perfect elements exists for any poset of tame rep-

resentation type (and finite growth). On the other hand, given a GP-system,

in general there are many perfect elements not belonging to B(S).
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Corollary 11.9. If a GP-system of perfect elements for S exists and if u, v ∈

B(S) such that [u, v] is freely generated in L∞ by Φn, then in [u, v] there are

infinitely many perfect elements not in B(S).

Proof. Choose uq as in Proposition 11.1. Then one has u ∼p uq if and only if

p �= q, hence uq �∈ B(S). �

12. Completeness of systems of perfect elements

Theorem 12.1. For a poset S admitting a GP-system of perfect elements and

neutral element u of FLp(S), p < ∞, either u ∈ Bp(S) or w < u < v for all

w ∈ B−
p (S) and v ∈ B+

p (S).

Here, B+
p (S) denotes the image of B+(S) in FLp(S). For antichains and

perfect elements, this result has been attributed to Gel’fand and Ponomarev

[11, 12, 13] by Dlab and Ringel [8].

Proof. Claim 1. If w/v is prime in B+
p (S) and u ∈ [v, w] neutral, then u ∈

{v, w}.

By Corollary 11.6 there is unique ρ ∈ Γ+
Kp

(S) such that ρv = 0 and ρw = 1.

Define

ρ′x = ρu + ρx, x ∈ FLp(S).

By neutrality of ρu this is a representation ρ′ : S → ρu + Vρ of S satisfying

ρ′v = 0 and ρ′w = ρu + Vρ. The indecomposable summands satisfy these

relations, too, so they are copies of ρ. It follows that ρ′ = ρ or ρ′ = 0 since

dimVρ′ ≤ dimVρ. Thus ρu ∈ {ρv, ρw} and u ∈ {v, w} by Corollary 11.6.

Claim 2. If u is neutral and u0 < u < u2 with prime quotients u1/u0 and

u2/u1 in B+
p (S), then u ∈ B+

p (S).

Assume u �= u1. Then uu1 = u0 and u+u1 = u2 by Claim 1. By neutrality it

follows that u, u1 is a direct decomposition of [u0, u2]. First, assume that u0 is

meet irreducible in B+
p (S). With ρ0 and ρ1 in Γ+

Kp
(S) corresponding according

to Corollary 11.6 to u1/u0 and u2/u1, respectively, it follows ρ1 > ρ0 and there

is φ ∈ Hom(ρ1, ρ0), φ �= 0. But φ induces a nontrivial join homomorphism

σ : [u1, u2] → L(Vρ0
) contradicting Lemma 9.8.

In general, there is a (unique) meet irreducible v0 in B+
p (S) such that v0 ≥

u0 and v0 �≥ u1. If u2v0 = u0, then [u0, u2] is isomorphic to [v0, v0 +u2]. Thus,

u+v0 ∈ B+
p (S) by the case already considered, whence u = u2(u+v0) ∈ B+

p (S).

Otherwise, u2v0 > u0 and u2v0 is a complement of u1 in the height 2 interval

[u0, u2] of B+
p (S). By the distributivity of the lattice of neutral elements it

follows u = u2v0 ∈ B+
p (S).

Claim 3. If u is neutral and u ≤ v for some v ∈ B+
p (S), then u ∈ B+

p (S).

We show u ∈ B+
p (S) by induction on the height of [v, w] in B(S) such that

u ∈ [v, w]. Choose a maximal chain w = v0 > v1 · · · > vk = v. Assume
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u �∈ B+
p (S). Then v1 �≥ u �≥ vk−1. Applying the inductive hypothesis we have

uv1 and u+ vk−1 in B+
p (S). By distributivity, u+ vk−1/c and c/uv1 are prime

quotients in B+
p (S) where c = v1(u + vk−1). By Claim 2 it follows that u = c,

a contradiction.

Claim 4. Either u ≥ v for some v ∈ B+
p (S) or u ≤ v for some v ∈ B−

p (S)

or w ≤ u ≤ v for all w ∈ B−
p (S) and v ∈ B+

p (S).

Assume otherwise. Then there are w ∈ B−
p (S) and v ∈ B+

p (S) such that

uv < u < u + w. By Claim 3 and its dual we have u + w ∈ B+
p (S) and

uv ∈ B−
p (S) and we may assume that (u+w)/w and v/uv are prime quotients

in B(S). By distributivity, c = (u + w)v = uv + w is a complement of u in

[uv, u + w] and we get a contradiction as in the proof of Claim 2.

The theorem follows from Claims 3 and 4. �

Corollary 12.2. Assume that S admits a GP-system of perfect elements and

that, for a given K of characteristic p, for any X,Y ∈ ΓK(S) which are neither

preprojective nor preinjective there are X = X0, X1, . . . , Xn = Y for some n

with Hom(Xi, Xi+1) �= 0 for i < n. Then in FLp(S) there are at most two

perfect elements u0, u1 �∈ Bp(S). Namely, ρu1 = 0 if and only if ρ ∈ Γ+
K(S),

and ρ0u = 1 if and only if ρ ∈ Γ−
K(S).

Dlab and Ringel [8, Thm 2] verified the hypothesis for antichains with more

than 4 elements and derived the claim for perfect elements [8, Thm 1]. In view

of Corollary 10.2, their proof of the latter applies to prove the corollary.

We say that a GP-system of perfect elements for S is complete if, for any

perfect element u of FL∞(S) and prime p, there is v ∈ B(S) such that u ∼p v.

For quadruples, the GP-system is complete [17]; cf. Theorem 13.1 below.

For any poset of tame representation type with a chain of strongly coupled

critical subposets, Theorem 1(ii) of Cylke [6] implies that a GP-system of

perfect elements has to be complete.

Proposition 12.3. A GP-system of perfect elements for S is complete if and

only if for any perfect element u and any field K (equivalently, any K = Kp,

p prime) one of the sets {ρ ∈ ΓK(S) | ρu = 0} and {ρ ∈ ΓK(S) | ρu = Vρ} is

finite.

Proof. Assume that {ρ ∈ ΓKp
(S) | ρu = 0} is finite. Then {ρ ∈ ΓKp

(S) |

ρu = 0} = πK(F ) for some finite filter in Γ+(S). Choose v = γ+F ∈ B+(S).

Then ρu = ρv for all ρ ∈ ΓKp
(S) whence u ∼p v by Corollary 10.2. The

converse is trivial. �

A poset S1 ∪ {c} ∪ S2, where S1 and S2 are of infinite type and x < c < y

for all x ∈ S2 and y ∈ S1, has c as a strongly perfect element such that ρc = 0

for all preprojectives and ρc = Vρ for all preinjectives. Thus, such a poset does

not admit a complete GP-system of perfect elements.
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13. Results on quadruples

Theorem 13.1. For a quadruple, S, there is a complete GP-system of perfect

elements. Moreover, for all p ≤ ∞, considering B(S) as subset of FLp(S),

the following hold:

(i) Every element of B(S) is strongly perfect.

(ii) If v covers u in B(S), then the interval [u, v] of FLp(S) is isomorphic to

D2 or M3 or freely generated within Lp by some n-frame, n ≥ 3.

(iii) If v covers u in B(S) and if ρ is any indecomposable representation of S

in L(V ) over F , then one of the following takes place:

(a) [u, v] ∼= D2 and dim V = 1;

(b) [u, v] ∼= M3 ∼= imρ and dimV = 2;

(c) 3 ≤ dimV < ∞ and imρ ∼= L(Kn
p ) ∼= [u, v]/∼p, where p is the

characteristic of F .

(iv) imρ is subdirectly irreducible for any ρ ∈ Γ(S). If ρ is a finite dimensional

representation such that imρ is subdirectly irreducible, then imρ ∼= M4 or

ρ is indecomposable.

(v) For any neutral x ∈ FL∞(S) there is a prime quotient v/u in B(S) such

that x is a strongly perfect element of [u, v]. In particular, there is a finite

set I of primes such that x ∼p u for all p �∈ I or x ∼p v for all p �∈ I.

Corollary 13.2. For a quadruple S, and within FLp(S), the concepts of neu-

tral, perfect, and strongly perfect elements are equivalent. For p < ∞, the

image of B(S) under the canonical homomorphism is the sublattice of all neu-

tral elements of FLp(S).

FL∞(4) admits a sublattice L �= B(S) of strongly perfect elements such that

the canonical homomorphism πp onto FLp(4), p < ∞, induces an isomorphism

of L onto the lattice of all perfect elements in FLp(4). Indeed, for some

prime p choose upi, vpi in [t3, p3i] according to Proposition 9.7 and replace

in B(S) the sublattice generated by the p3i by the sublattice generated by

up1 + vp2, vp1 + up2, p33, p34.

Proposition 13.3. Fix n ≥ 2 and a division ring K. Up to isomorphism there

is exactly one indecomposable representation ρ0 of FL∞(Φn) over K. dim ρ0 =

n. Any nontrivial representation ρ (also in infinite dimension) is isomorphic

to a direct multiple of ρ0 and imρ ∼= imρ0 ∼= L(Kn
p ), p the characteristic of K.

Proof. [21, 2.2]. �

Proposition 13.4. A lattice freely generated in a modular variety L by a

quadruple satisfying tn = 1, sn+1 = 0 (pni = 1, tn = 0) is isomorphic

to D2 for n = 0 (D2, resp. M3, for n = 1, resp. n = 2) and, for n ≥ 1

(n ≥ 3) freely generated in L by a (2n − 1)-frame (n-frame) in analogy to

a (2n − 1)-dimensional (n-dimensional) indecomposable preprojective defect
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−2 (−1) representation ρ of a quadruple. imρ satisfies these relations for

all such ρ. Over K of characteristic dividing p, exactly these indecomposable

representations will occur in case L = Lp.

Proof. Satz 2.1 and 3.3 of [17] and Proposition 13.3. �

Proof of Theorem 13.1. Define B+ = {1} ∪
{ ∑

i∈I pni

∣∣ ∅ �= I ⊆ {1, 2, 3, 4}
}
.

From equations (5.12) and (5.13) it follows that the pni are independent in

[tn, sn] and generate a Boolean sublattice with bottom tn and top sn. Since

sn+1 ≤ tn ≤ sn by equation (5.9), B+ is a linear sum of these sublat-

tices, whence a sublattice, too. The existence of representations according

to Proposition 13.4 proves that pni are distinct atoms of the Boolean lattice

and s+1 < tn and that the same holds for the images in FLp(4).

Being freely generated by the antichain, FL(4) admits a unique dual auto-

morphism t �→ t∗ such that e∗i = ei and by [17, 1.3] it holds that s∗m ≤ sn for

all n,m. Defining B− = {t∗ | t ∈ B+} and B = B+ ∪B− it follows u < v and

[0, u] and [v, 1] finite for all u ∈ B− and v ∈ B+.

By Theorem 6.1, Proposition 10.8, and duality each element of B is strongly

perfect, whence neutral. If v covers u in B, then up to translation and duality,

v = tn, u = sn+1 or v = pni, u = tn. By neutrality, Propositions 13.4 and 13.3

can be applied to prove (ii) and (ii).

The Γ+-system γ+ is given by matching the representations πk(Xn) such

that tn = 1, sn+1 = 0 with sn+1 and the representations πK(Yni) such that

pni = 1, tn = 0 (equivalently, sn = 1, rni = 0) with rni. Recall that Γ+(S)

has exactly the arrows Xn → Yni → Xn+1 with n ≥ 1. (iv) follows from

inspecting the list of indecomposables of defect 0 and the associated lattices

imρ; cf. case (i) below. (v) is Satz 8.1 in [17]. �

According to Proposition 9.6 the word problem for FLp(4) is solvable. This

even extends to all systems of 4 generators and finitely many relations [14];

cf. [1].

By neutrality of the elements of B, the interval sublattices [sn, 1] of FLp(4)

are a subdirect product of the [u, v] (which are well understood), v/u ranging

over the prime quotients in maximal chain in the interval [sn, 1] of B. Under

the additional relation a+ b = 1, the structure of these subdirect products has

been analysed in [19] to such extent that neutrality could be proved requiring

only the classification of frame generated lattices according to Proposition 9.7.

The general structure of FLp(4) is still to be determined, based on the atomic

elements of Stekolshchik [32].

Considering all modular lattices with 4 generators, it has been shown in

[16] that any subdirectly irreducible either

(i) is of breadth 2, satisfies sn = 1 and s∗n = 0 for all n, and is in a list contain-

ing 2 infinite height lattices dual to each other, M4, and the finite height

n lattices S(n, 4) = imρ associated with n-dimensional non-homogeneous

defect 0 indecomposables ρ, or
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(ii) satisfies sn = 0 or s∗n = 1 for some n.

For ∅ �= I ⊆ {1, 2, 3} define unI =
∏

i∈I φnqi and vnI =
∑

i∈I(φ
nqi)

∗.

Corollary 13.5. For any representation ρ of FL∞(4) in V of dimV = n <

∞ such that ρsm = V and ρs∗m = 0 for all m, one has the decompositions

ρunI , ρvnI , and the ρunI , ρvnI for I ⊆ {1, 2, 3} form a Boolean sublattice of

imρ. Moreover, for I = {1, 2, 3}, [0, ρunI ] ∼= M4 or trivial and [0, ρvnI ] is a

subdirect product of some S(k, 4)’s with k ≤ n.

Proof. Each S(k, 4) has a unique set of generators which can be labelled by

a, b, c, d such that sn = 1 and s∗n = 0 for all n. And there are, up to isomor-

phism, six such labellings. In each, either qi = 1 or qi is a coatom such that

[0, qi] ∼= S(k − 1, 4). The claim follows easily. �

By [23, 6.3] the S(k, 4) are acyclic and have unique representation (and

that in dimension k) in analogy to Proposition 13.3. Finite subdirect products

of S(n, k)’s are acyclic, too, and their indecomposable representations factor

through some S(k, 4). A lattice theoretic proof of the classification of quadru-

ples of subspaces is easily derived. Observe that the vn{i} comprise two series

of inhomogeneous defect 0 quadruples.

The filters, resp. ideals, generated by the unI , resp. vnI , with n → ∞ yield

neutral elements in the ideal lattice of the filter lattice of FLp(4), forming a

16-element Boolean algebra — corresponding to the 16 candidates for perfect

elements according to Dlab and Ringel [8].

In contrast, in [19, Sect. 11] there has been given an example of a quadruple

in a subgroup lattice of an abelian group of exponent 4 generating a sublattice

in which t2 = 1 and s5 = 0 but t3 and s4 are not neutral and which is

subdirectly irreducible but not generated by a frame. This is behind the

undecidability of the word problem for FM(4) shown in [18] and indicates

that the varieties Lp are the proper lattice theoretic framework for the study

representations of posets.

14. Résumé

It has become clear that the varieties L∞ (Lp) generated by subspace lat-

tices of vector spaces (over fields of characteristic p) are the proper ones to

discuss perfect elements. The concepts of neutral and strongly perfect elements

are primarily lattice theoretic while perfect elements belong to representation

theory. We expect that, in general, only the obvious implications from strongly

perfect to perfect to neutral will take place.

We suggest that one should study perfect elements primarily related to

preprojective and preinjective representations and consider such which do not

depend on the base field. Being independent of the base field, the preprojective

and the preinjective component of the Auslander–Reiten quiver of a poset
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provide the proper framework for this and allow us to define the notion of a

GP-system of perfect elements.

We conjecture that every poset S admits a GP-system of strongly perfect

elements and that (ii) and (iii) of Theorem 13.1 hold, while (v) holds for neutral

x in [w, 1] with w ∈ B+(S), resp. [0, w], with w ∈ B−(S). We conjecture also

that, for posets of finite representation type and posets of tame representation

type, which are critical or have their critical subposets forming a strongly

coupled chain, any neutral element of FLp(S) is in Bp(S); moreover, that

any neutral element of FL∞(S) is strongly perfect and FL∞(S) a subdirect

product of the interval sublattices [u, 1] (u ∈ B+(S)) and [0, u] (u ∈ B−(S)).

Acknowledgement. Thanks go to the referee for a lot of helpful suggestions,

in particular on the proper statement of Corollary 3.2 and the proof of Propo-

sition 10.8. Also, in discussing the relationship between the various concepts

of perfectness, in general and for quadruples, we follow the referee’s advice.
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