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(German) [Frames and generating quadruples in modular lat-
tices] Algebra Universalis 14 (1982), no. 3, 357–387.

Hilfssatz 6.4 is not correct. It has been replaced in the fol-
lowing by a reasoning closer to the structure to be considered.

On perfect pairs for quadruples in complemented modular
lattices and concepts of perfect elements. Algebra Universalis
61 (2009), no. 1, 1–29.

(36) On the word problem for the modular lattice with four free
generators. Math. Ann. 265 (1983), no. 4, 513–527.

(37) On varieties of algebras having complemented modular lattices
of congruences. Algebra Universalis 16 (1983), no. 1, 129–130.
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