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Abstract. Goodearl, Menal, and Moncasi [11] have shown that
free regular rings with unit are residually artinian. We extend this
result to the case without unit (in case of rings without unit, ‘ar-
tinian’ is used in the sense that the lattice of right ideals is of finite
height) and use it to derive that free regular rings as well as free
complemented (sectionally complemented) Arguesian lattices are
residually finite. Here, quasi-inversion for rings and complementa-
tion (sectional complementation, respectively) for lattices are con-
sidered as fundamental operations in the appropriate signature. It
follows that the equational theory of each of the classes listed above
is decidable. The approach is via so called existence varieties in
ring or lattice signature. Those are classes closed under operators
H, S, and P within the class of all regular rings or the class of all
sectionally complemented modular lattices. We show that any ex-
istence variety in the considered classes is generated by its artinian
or finite height members.

Dedicated to the memory of George Hutchinson

1. Introduction

Dealing with (von Neumann) regular rings (sectionally complemented
modular lattices), more precise information is obtained, if the concept
of a variety is modified to that of an existence variety; that is, such
a class which is closed under homomorphic images, direct products,
and substructures which are regular rings (sectionally complemented
modular lattices, respectively) themselves. Existence varieties have
been studied in the context of regular semigroups, see Hall [12] and
Kadourek and M. Szendrei [22].

For regular rings, the most prominent result on existence varieties
states that free regular rings are residually artinian, see Goodearl,
Menal, and Moncasi [11]. The key fact is that a regular algebra of
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countable dimension over a commutative field F is within the exis-
tence variety generated by matrix algebras F n×n, n < ω. This had
been shown in Tyukavkin [31] for ∗-regular algebras and is the basis
for the study of (existence) varieties of ∗-regular rings, cf. Micol [25].

Based on the close relationship between regular rings and their (sec-
tionally complemented Arguesian) lattices of principal right ideals and
the above mentioned result of Goodearl, Menal, and Moncasi, we shall
prove that any existence variety of regular algebras over a given com-
mutative ring is generated by its artinian members (in case of rings
without unit, ‘artinian’ is used in the sense that the lattice of right
ideals is of finite height), and that any existence variety of (section-
ally) complemented modular lattices is generated by its finite height
members. Since free objects in these existence varieties are subdirect
products of generators, it follows that they are residually artinian, of
finite height, respectively.

Considering the existence variety of all regular rings (with unit), or
of (sectionally) complemented Arguesian lattices, the matrix rings over
finite prime fields and their lattices of right ideals, respectively, already
provide sets of generators. Hence, free objects, with quasi-inverse,
or with (sectional) complementation as a fundamental operation, are
residually finite and have a solvable word problem. In contrast, the
word problem for finite presentations in the ring (or lattice) signature
is unsolvable for existence varieties admitting no bound on the height
of subdirect irreducibles (see Hutchinson [18]).

The lattice results can be derived form the ring results via coor-
dinatization. The more direct access, used here, is based on Frink’s
embedding of a complemented modular lattice into the subspace lat-
tice of a projective space, see Frink [8], and Jónsson’s fine analysis of
that embedding, see Jónsson [20, 21].

We also analyse atomic complemented modular lattices, the Frink
extension in particular, in terms of existence varieties and deal with
the class of sublattices of complemented modular lattices. It is an
open problem whether that class is a variety. We can show that it is,
at least, closed under formation of ideal lattices.

The authors thank Fred Wehrung for constructive criticism of the
first version of the present paper and also for encouragement to discuss
the subject thoroughly. The authors are deeply obliged to an anony-
mous referee for a perfect and prompt report giving rise to numer-
ous improvements, many of them quite substantial. In particular, the
present proof of Theorem 16 and the extension to regular Λ-algebras
are based on his suggestions,
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2. Sectionally complemented modular lattices

Joins and meets in lattices are written as a+ b and ab, respectively.
If a, b ∈ L, L has a least element 0, and ab = 0, then we write a ⊕ b
instead of a+ b. In a lattice with least element 0 and greatest element
1, the element b is a complement of a, if a ⊕ b = 1. Elements a and b
are perspective (a ∼ b in symbol), if they have a common complement
within the interval [0, a+ b].

A complemented modular lattice (CML, for short) is a modular lattice
L with 0 and 1 considered as constant operations, where any element
admits a complement. A modular lattice L with least element 0 consid-
ered as a constant operation is sectionally complemented (SCML, for
short), if for any u ∈ L, the interval [0, u] is a complemented lattice.
Obviously, any ideal of an SCML is an SCML. Any CML L can be
considered an SCML, since for any a ∈ L and for any u ∈ L such that
a ≤ u, ub is a complement of a in [0, u], whenever b is a complement
of a in L.

For a lattice L, we denote its ideal lattice by IdL. Also, let htL
denote the height of L, so that htL equals the supremum of the set
{|C| − 1 | C is a chain in L}, whenever it is finite; htL =∞, whenever
the latter supremum is infinite. For a modular lattice L with least
element 0, let Lfin denote the sublattice of all elements of finite height
in L.

An element a of a lattice L is neutral, if for any x, y ∈ L, the
sublattice of L generated by a, x, and y is distributive. An ideal I
of a lattice L is neutral, if it is a neutral element in the ideal lattice
IdL. If L is an SCML, then this is equivalent to I being closed under
perspectivity, see Birkhoff [1, Chapter V, Theorem 3.2]. Moreover, the
map

ϕ : θ 7→ {x ∈ L | x θ 0}, θ ∈ ConL

establishes an isomorphism between the congruence lattice ConL and
the lattice of neutral ideals of L. The followingstatement is the content
of Lemma 1.5 and Lemma 2.2 in Jónsson [21].

Proposition 1. Let L be a SCML and let a ∈ L. Then the following
holds:

(i) The neutral ideal generated by a consists of all finite sums of
elements which are perspective to some elements from ↓a;

(ii) If L is simple and I ∈ IdL, then I is a simple SCML.

Proposition 2. Let L be a subdirectly irreducible SCML and let I ∈
IdL be nonzero neutral. Then the following holds:

(i) L 0-embeds into Id I;
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(ii) Let I be the minimal neutral ideal. If ht I < ∞, then L = I
is a simple CML. If htL = ∞, then I is a simple SCML of
infinite height;

(iii) Any J ∈ IdL is a subdirectly irreducible SCML with minimal
neutral ideal I ∩ J , where I ∈ IdL is minimal neutral.

Proof. (i) Let ϕ : L → IdL, ϕ : x 7→ ↓x, be the canonical embedding.
Since I is a neutral element in IdL, IdL is a subdirect product of
ϕ0(IdL) and ϕ1(IdL), where ϕ0(J) = I ∩ J and ϕ1(J) = I + J for any
J ∈ IdL. As L is subdirectly irreducible, there is i < 2 such that ϕi ◦ϕ
is an embedding. Suppose that i = 1. For any a ∈ I, ϕ1ϕ(a) = I is
the zero element of ϕ1(IdL) = [I, IdL]. As ϕi ◦ ϕ is an embedding, it
follows that I = {0}, a contradiction. Therefore, i = 0 and L embeds
into the interval [0, I] of IdL which is Id I.

(ii) Suppose that I has finite height. Then I = ↓u for a neutral
element u ∈ L. Consider the set J = {x ∈ L | ux = 0}. Since u is
neutral, J is an ideal of L. To prove that this ideal is neutral, let x ∈ J
and x ∼ y. Then yu ∼ z for some z ≤ x. Neutrality of I implies that
z ∈ I, whence z ≤ ux = 0. Therefore, yu = 0 and y ∈ J .

On the other hand, I ∩ J = {0}. Since L is subdirectly irreducible,
this yields J = {0}. Now, consider any a ≥ u in L. If x is a complement
of u in [0, a], then ux = 0, whence x ∈ J = {0}. Thus, x = 0, a = u,
and u is the greatest element of L.

(iii) Clearly, I ∩ J is a neutral ideal in J . Let 0 6= a ∈ J and let
b ∈ I ∩ J . By minimality of I, b belongs to the neutral ideal generated
by a in L. By Proposition 1(i), b =

∑
i<n bi, where for all i < n, there

is xi ≤ a such that bi ∼ xi. Since a ∈ J ∈ IdL, we conclude that
xi ∈ J , whence yi ≤ bi + xi ∈ J for all i < n. This means that b is in
the neutral ideal generated by a in J . �

Let n < ω be a positive integer, let a = {ai | 0 6 i < n} and c =
{ci,j | 0 6 i, j < n, i 6= j} be sequences of elements of a SCML L such
that ci,j = cj,i for all i, j < n. We say that the pair 〈a, c〉 is an n-frame,
if the following conditions are satisfied:

(i) aj ·
∑

i 6=j ai =
∏n−1

i=0 ai <
∑n−1

i=0 ai for all j < n;

(ii) ai + aj = ai + ci,j and aici,j =
∏n−1

i=0 ai for all distinct i, j < n;
(iii) ci,j = (ci,p + cp,j)(ai + aj), for all distinct i, j, p < n.

An n-frame 〈a, c〉 is an n-frame at 0, if
∏n−1

i=0 ai = 0L. This frame is

spanning in L, if it is at 0 and
∑n−1

i=0 ai = 1L. For a right R-module
MR, let L(MR) denote the lattice of right submodules of MR. The
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canonical spanning n-frame in L(Mn
R) is given by

ai = {(x0, . . . , xn−1) ∈Mn
R | xj = 0 for all j 6= i}

ci,j = {(x0, . . . , xn−1) ∈Mn
R | xj = −xi, xh = 0 for all h 6= i, j}.

Corollary 3. A subdirectly irreducible SCML of height at least n con-
tains an n-frame at 0.

Proof. For any u in the minimal neutral ideal of L with htu > n,
Jónsson [21, Theorem 1.7] applies to yield a “large partial n-frame” in
[0, u], the 〈a, c〉 part of which forms an n-frame at 0. �

3. Regular algebras

Let Λ be a commutative ring which is associative and with unit.
An associative Λ-algebra R (with or without unit) is (von Neumann)
regular, if for any a ∈ R, there is b ∈ R such that a = aba. If Λ
is the ring of integers, then we get a dfinition of a regular ring. See
von Neumann [27], Goodearl [10], and Skornyakov [30] for basic results
about regular rings. In particular, according to [9, Lemma 2], for any
a ∈ R, there is an idempotent e ∈ R such a = ea = ae. Thus, if R is a
regular Λ-algebra, then any ideal is also a Λ-subalgebra. Moreover, if
e ∈ R is an idempotent, then eRe is a regular Λ-subalgebra of R with
unit e.

For any regular ring R, let L(R) denote the set of principal (right)
ideals of R. It is well-known that for any a ∈ R, there is an idempotent
e ∈ R such that aR = eR (Ra = Re, respectively). Ordered by
inclusion, L(R) is an SCML sublattice of the lattice of all right ideals
of R. Indeed, for any two idempotents e, f ∈ R,

eR + fR = (e+ g0)R, eR ∩ fR = (f − fg1)R,

where g0 is an idempotent such that g0R = (f − ef)R and g1 is an
idempotent such that Rg1 = R(f − ef). Moreover, eR ⊆ fR for
idempotents e, f ∈ R if and only if fe = e, and then (f − ef)R is a
complement of eR in [0, fR].

If R is regular and has a unit 1, then R ∈ L(R) and L(R) is a
CML. In this case, (1 − e)R is obviously a complement of eR for any
idempotent e ∈ R. Moreover, R is artinian if and only L(R) is of finite
height (and thus has a unit). The analogous results hold for left ideals.

Proposition 4. Any regular Λ-algebra R is the directed union of its
subalgebras of the form eRe, e = e2 ∈ R. In particular, R embeds into
an ultraproduct of those. and so in a regular Λ-algebra with unit.
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Proof. We adapt the proof of Lemma 2 in Fuchs and Halperin [9].
Given a0, a1 ∈ R, there is an idempotent f ∈ R such that ai ∈ fR for
all i < 2; in particular, ai = fai for all i < 2. On the other hand, there
is an idempotent g ∈ R such that Rg = R(a0− a0f) +R(a1− a1f). In
particular, g = r0(a0 − a0f) + r1(a1 − a1f) for suitable ri ∈ R, i < 2.
Straightforward calculation shows that gf = 0. Put e = f + g − fg.
Then e2 = e, eai = efai = fai = ai, and aie = aif + (ai − aif)g =
aif + ai − aif = ai since ai − aif ∈ Rg. �

The following statement is due to Jónsson [21, proof of Lemma 8.2]
and Wehrung [32, Theorem 4.3], respectively.

Proposition 5. Let R be a regular ring. Then the following holds:

(i) L(eRe) ∼= [0, eR] ⊆ L(R) for any idempotent e ∈ R;
(ii) The map

ϕ : I 7→ {J ∈ L(R) | J ⊆ I}, I ∈ IdR,

establishes an isomorphism between the lattice IdR of two-sided
ideals of the regular ring R and the lattice of neutral ideals of
the lattice L(R).

Corollary 6. For a regular algebra R, the lattice L(R) is subdirectly
irreducible if and only if R is. In that case, eRe is subdirectly irreducible
for any idempotent e ∈ R and eRe is simple, if e is in the minimal ideal
of R.

Proof. This follows with Proposition 2 and Proposition 5. �

Proposition 7. Any subdirectly irreducible Λ-algebra is, naturally, an
F -algebra, where F is the quotient field of Λ modulo some prime ideal.
Such F is unique up to isomorphism.

Proof. For algebras with unit, the statement was verified within the
proof of [11, Proposition 1.5]. Following the idea there, we observe
that for any idempotent e ∈ R, the center Z(eRe) of the algebra eRe
is a field, cf. [10, Corollary 1.15]. Given an idmpotent e ∈ R, we define
the homomorphism

ϕe : Λ→ eRe, ϕe : λ 7→ λe,

whose image is contained in Z(eRe). Also, for any idempotent f ∈ eRe
we define

ψf : Z(eRe)→ Z(fRf), ψf : a 7→ faf.

which is an embedding since Z(eRe) is a field. Now, ψfϕe(λ) = fλef =
λfef = λf = ϕf (λ), whence kerϕe = kerϕf . From Proposition 4 it
follows that all ϕe have the same kernel P which is a prime ideal, since
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the image is contained in a field. Again in view of Proposition 4, the
action of Λ on R has kernel P and induces an action of the quotient
field F = Λ/P as observed in the proof of [11, Proposition1.5]: if λ is
invertible modulo P and a ∈ eRe, we define (λ+P )−1a = λ−ea, where
λ−e is the inverse of λe in Z(eRe). This definition is correct, since
λ−f = λ−ef for any f ∈ eRe. Also, F is isomorphic to the subfield
of Z(eRe) generated by the image of ϕe, whence it is unique up to
isomorphism. �

4. Existence varieties of regular rings and SCMLs

Let K be a class of algebraic structures of the same finite similarity
type σ. Then H(K), S(K), P(K), Ps(K), and Pu(K) denote the class
of structures isomorphic to homomorphic images, substructures, direct
products, subdirect products, and ultraproducts of structures from K,
respectively. Let also V(K) denote the variety generated by K; due to
Birkhoff’s theorem, V(K) = HSP(K).

In the case of lattices, σ = {·,+, 0}; in the case of rings, σ is just the
ring signature. In the case of an Λ-algebra R, the elements of Λ are
considered as unary operations on R. Additional operations of interest
are the constant 1 for top element in lattices and for unit in algebras,
as well as an involution operation for algebras. Let Σ consist either of
the axioms defining regular Λ-algebras or of those defining SCMLs. In
particular, we include the following axiom α

∀x∃y xyx = x (for rings and algebras);

∀x∀y∃z (xyz = 0)&(xy + z = x) (for lattices).

CMLs are considered as SCMLs with 1.
Observe that the model class Mod Σ is closed under H and P. Define

the following operators:

S∃(K) = Mod Σ ∩ S(K), Ps∃(K) = Mod Σ ∩ Ps(K)

A class K is an existence variety, shortly ∃-variety, if it is closed under
H, P, and S∃. In particular, K is closed under Pu and elementary
substructures, whence it is an axiomatizable class. Due to the above
observations and the definition of an existence variety, Mod Σ is an
∃-variety.

For rings and Λ-algebras, let σ∗ = σ∪{′}, where ′ is a unary operation
symbol standing for the quasi-inverse operation. For lattices, let σ∗ =
σ ∪ {\}, where \ is a binary operation symbol standing for sectional
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complementation. Then the above axiom α translates into identity α∗:

∀x xx′x = x (for rings and algebras);

∀x∀y (xy(x\y) = 0)&(xy + (x\y) = x) (for lattices).

If 〈A, σ〉 ∈ Mod Σ, then 〈A, σ∗〉 is a companion of 〈A, σ〉, if 〈A, σ∗〉 |=
α∗; this concept is due to Thoralf Skolem. Then for any class K ⊆
Mod Σ, the companion T(K) of K consists of all companions 〈A, σ∗〉,
where 〈A, σ〉 ∈ K. The following lemma is straightforward to prove.

Lemma 8. For any K ⊆ Mod Σ, the following statements hold:

ST(K) = TS∃(K), PT(K) ⊆ TP(K), HT(K) ⊆ TH(K).

In particular, if K is an ∃-variety, then T(K) is a variety in the
extended signature. In this case, for any set X, by FT(K)(X) we denote
an algebraic structure freely generated in T(K) by X and call it T-
freely generated in K by X. So far, we have just reviewed what can be
said about existence varieties relative to axioms which are quantified
conjuncts of identities in general. It is in the following lemma that we
have to deal with our particular cases of regular rings, algebras and
SCMLs.

Lemma 9. For any K ⊆ Mod Σ, the following holds: TH(K) = HT(K),
S∃H(K) ⊆ HS∃(K), TS∃H(K) ⊆ HST(K), TS∃P(K) = SPT(K).

Proof. Let A ∈ K and let ϕ : A � B be a surjective homomorphism.
Let B∗ be a companion of B in T(K). We prove that there exists a
companion A∗ of A in T(K) such that ϕ : A∗ → B∗ is a homomorphism.

For regular algebras, the proof of this statement essentially goes as
in [11, Lemma 1.4]. Indeed, in the case of regular algebras, the two-
sided ideal I = kerϕ is regular. Let a ∈ A and let b = ϕ(a)′. There
is y ∈ A such that ϕ(y) = b. Then a − aya ∈ I. Since I is regular,
there is u ∈ I such that (a− aya)u(a− aya) = a− aya. It follows from
the latter that aua − ayaua − auaya + ayauaya + aya = a. Taking
x = u− uay− yau+ yauay + y, we get axa = aua− auaya− ayaua+
ayauaya + aya = a and x − y = u − uay − yau + yauay ∈ I, whence
ϕ(x) = b. So, we may put a′ = x in A∗.

We prove now the statement for SCMLs. Let I = kerϕ. Given a ≤ u
in A and a complement b + I of a + I in [I, u + I] ⊆ A/I, we must
find a complement a′ of a in [0, u] ⊆ A such that a′ + I = b+ I. After
replacing b by bu, we may assume that b ≤ u. Since a+b+I = u+I and
a+b ≤ u, there is c ∈ I such that a+b+c = u. Let a′ be a complement
of a(b+ c) in [0, b+ c]. Then a+ a′ = a+ a(b+ c) + a′ = a+ b+ c = u
and aa′ = a(b + c)a′ = 0, whence a′ is a complement of a in [0, u].
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Moreover, since b + c + I = b + I, we get using neutrality of I that
a(b + c) + I = (a + I)(b + c + I) = (a + I)(b + I) = I. This implies
a′ + I = a′ + a(b+ c) + I = b+ c+ I = b+ I, as desired.

This proves that TH(K) ⊆ HT(K). The reverse inclusion i follows
from Lemma 8. Hence, TH(K) = HT(K).

To prove the second inclusion, suppose that C ∈ S∃(B), where A and
B are as above. If C∗ ∈ T(C), then by Lemma 8, there is B∗ ∈ T(B)
such that C∗ ∈ S(B∗). The statement we have proved above implies
that there is A∗ ∈ T(A) such that B∗ ∈ H(A∗). Hence C∗ ∈ SHT(A) ⊆
HST(A) = HTS∃(A) = THS∃(A), whence C ∈ HS∃(A). This shows
that S∃H(K) ⊆ HS∃(K).

To prove the next inclusion, we note that by the above and by
Lemma 8, TS∃H(K) ⊆ THS∃(K) = HTS∃(K) = HST(K).

To prove the last statement, we note that by Lemma 8, SPT(K) ⊆
STP(K) = TS∃P(K). For the reverse inclusion, let A ∈ TS∃P(K) and
let Aσ be its σ-reduct. Then Aσ ∈ S∃P(K). This means that Aσ |= Σ
and there is a set I and there are Bi ∈ K, i ∈ I, such that Aσ embeds
into

∏
i∈I Bi. Let π denote the corresponding embedding and let πi

denote the ith projection from
∏

i∈I Bi onto Bi, i ∈ I. For any i ∈ I,
the homomorphism πi ◦π : Aσ � πi ◦π(Aσ) gives rise, in a natural way,
to a homomorphism ρi : A � πi ◦ π(Aσ)∗. Since πi ◦ π(Aσ) ∈ S(Bi)
and πi ◦ π(Aσ) |= Σ, we conclude that πi ◦ π(Aσ) ∈ S∃(Bi), whence
πi ◦π(Aσ)∗ ∈ TS∃(Bi) ⊆ TS∃(K) = ST(K). Moreover, the map ρ : A→∏

i∈I πi ◦ π(Aσ)∗, ρ : a 7→ 〈ρi(a) | i ∈ I〉 is a σ∗-embedding, whence
A ∈ SPST(K) = SPT(K). Therefore, TS∃P(K) ⊆ SPT(K). �

Proposition 10. Let K ⊆ Mod Σ.

(i) The class V∃(K) = HS∃P(K) is the smallest ∃-variety contain-
ing K, and TV∃(K) = VT(K).

(ii) The σ-reduct of any T-free algebraic structure in V∃(K) belongs
to Ps∃(K) – the corresponding subdirect decomposition giving
rise to one in TV∃(K), too.

(iii) Any subdirectly irreducible structure from V∃(K) belongs to the
class HS∃Pu(K).

(iv) Any ∃-variety is generated by its finitely generated subdirectly
irreducible members.

Proof. (i) By Lemma 9, the class HS∃P(K) is closed under S∃. Since
HS∃P(K) is obviously closed under H and P, it forms an ∃-variety,
the smallest one containig K. Furthermore, by Lemma 9, TV∃(K) =
THS∃P(K) = HTS∃P(K) = HSPT(K) = VT(K).

(ii) Since any free algebraic structure in the variety generated by
T(K) belongs to PsT(K), its σ-reduct belongs to Ps∃(K).
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(iii) Let A ∈ H(B) be subdirectly irreducible, where B ∈ S∃P(K).
Both SCMLs and regular rings are congruence distributive. Hence
Jónsson’s Lemma implies the existence of C ∈ SPu(K) such that A ∈
H(C) and C ∈ H(B). The last relation implies that C ∈ S∃Pu(K).

(iv) Let K be an ∃-variety, let KωSI denote the class of its finitely
generated subdirectly irreducible members, and let T(K)ωSI denote the
class of finitley generated subdirectly irreducible members of the vari-
ety T(K). Then the class of σ-reducts of structures from T(K)ωSI is a
subclass of KωSI . Given A ∈ K, let A∗ be a companion of A in T(K). Ac-
cording to Mal’cev [23], A∗ embeds into an ultraproduct B∗ of finitely
generated substructures of A∗. All those belong to SP

(
T(K)ωSI

)
by

Birkhoff’s Theorem. Therefore, A∗ ∈ SPuSP
(
T(K)ωSI

)
. When passing

to σ-reducts, we get A ∈ S∃PuS∃P(KωSI) ⊆ V∃(KωSI). �

Proposition 11. The following statements hold:

(i) Any SCML L embeds into a CML which is the ultraproduct of
intervals [0, u], u ∈ L;

(ii) If L is a CML and u ∈ L, then [0, u] ∈ HS∃(L);
(iii) If R is a regular Λ-algebra with unit and e2 = e ∈ R, then

eRe ∈ HS∃(R).

Consequently, if K ⊆ Mod Σ is a class of CMLs and L is a CML such
that L ∈ V∃(K) in the sense of SCMLs, then L ∈ V∃(K) also in the
sense of CMLs. The same statement holds, if we consider regular rings
with unit instead of CMLs.

Proof. The statement (i) is obvious. To prove (ii), let v be a comple-
ment of u in L. Then C = [0, u] ∪ [v, 1] is a complemented sublattice
of L, and ϕ : C → [0, u], ϕ : x 7→ ux, is a homomorphism from C onto
[0, u], that is, [0, u] ∈ HS∃(L).

(iii) eRe + (1 − e)R(1 − e) is a regular subalgebra of R with unit
having eRe as a homomorphic image. �

5. Free regular algebras

For the case of algebras with unit, the following is the main result
of Goodearl, Menal, and Moncasi [11, Theorem 2.5].

Theorem 12. For any commutative ring Λ, the ∃-variety of regular
Λ-algebras (with or without unit) is generated by the Λ-algebras F n×n,
n < ω, where F ranges over quotient fields of Λ modulo prime ideals.
In particular, free regular Λ-algebras are residually artinian.

Proof. Due to Proposition 4, every ∃-variety of regular Λ-algebras is
generated by its members with unit. To those, [11, Theorem 2.5] applies
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to yield the desired conclusion. The claim about free objects follows
with Proposition 10. �

Corollary 13. Let R be a regular F -algebra over a commutative field
F . Then R ∈ V∃(F

n×n | n0 6 n < ω) for all n0 < ω.

The crucial step in the proof of the Theorem is the instance of the
Corollary where R has countable dimension over F , see [11, Proposition
2.2] and [31]. For countable F , the Theorem can be derived from this
using Proposition 10(iv). The general case would require to consider
2-sorted ∃-varieties. Actually, the proof of [11, Theorem 2.4] is based
on a 2-sorted approch.

Let P consist of all primes and 0 and let Fp denote the prime field
Z/pZ for p ∈ P\{0}; we also put Fp = Q, if p = 0. Let R denote the
∃-variety of all regular rings (with or without unit)

Corollary 14. For any n0 < ω, R = V∃(Fpn×n | n0 6 n < ω, p ∈
P\{0}). In particular, free regular rings (with or without unit) are
residually finite, and the equational theory of regular rings with quasi-
inversion, considered as a fundamental operation, is decidable.

Proof. Taking Λ = Z and applying Theorem 12, one sees that any
regular ring (with or without unit) belongs to V∃(Fpn×n | n0 6 n <
ω, p ∈ P). Moreover, Qn×n embeds into the ultraproduct of Fpn×n,
p ∈ P\{0}, over a non-principal ultrafilter on P\{0}. Indeed, such an
ultraproduct is an algebra over a field of characteristic 0 and contains
the set of (n× n)-matrix units. Thus, the first statement follows.

Due to J. C. C. McKinsey [24], residual finiteness implies decidability
of the equational theory. �

Corollary 15. Let F be a field. The ∃-variety of regular F -algebras is
generated by its members of the form F n×n, n < ω. If F is recursive,
then the equational theory of regular F -algebras with quasi-inversion
is decidable. If F is finite, then free regular F -algebras are residually
finite.

Proof. The first claim is immediate by Corollary 13. If F is recur-
sive, then the theory of regular F -algebras is recursively axiomatiz-
able. On the other hand, in this case, the set of all equations falsified
in some F n×n (with a quasi-inversion) is recursively enumerable, since
any equation is equivalent to a universal sentence in the signature of
F -algebras. �
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6. Artinian generators of ∃-varieties

Theorem 16. Let R be a subdirectly irreducible non-artinian regular
Λ-algebra. Then there exists a field F such that V∃(R) = V∃(F

n×n |
n0 6 n < ω) for all n0 < ω.

Proof. By Proposition 7, R is an F -algebra for a quotient field F of Λ.
By Corollary 13, R ∈ V∃(F

n×n | n0 6 n < ω). Further, by Corollary 6,
the lattice L(R) is subdirectly irreducible and of infinite height. By
Corollary 3, L(R) has an n-frame at 0 for any 0 < n < ω. Fixing
0 < n < ω, there is an idempotent e ∈ R such that the lattice L(eR)
contains a spanning n-frame. By Proposition 5(i), L(eRe) ∼= L(eR).
Putting S = eRe, we conclude that L(S) contains a spanning n-frame.
We prove that F n×n ∈ S(S), which implies F n×n ∈ S∃(R).

Indeed, since L(S) contains a spanning n-frame, there are nonzero
right ideals Si, i < n, in L(S) which are independent and pairwise
perspective (thus, isomorphic) such that S =

⊕
i<n Si. Now

End(SS) = End
(⊕
i<n

Si
) ∼= (End(S0)

)n×n
,

cf. [3, Corollary 2.20]. Associating with every λ ∈ F the left multipli-
cation x 7→ λx, one obtains an embedding of F into End(S0). Thus,
F n×n embeds into End(SS) ∼= S. �

Corollary 17. Any ∃-variety K of regular Λ-algebras (with or with-
out unit) is generated by its artinian members. The T-freely generated
algebras in K are subdirect products of artinian members in T(K),

Proof. By Theorem 16, K is generated by its artinian members. The
claim about free objects follows by Proposition 10(ii). �

Corollary 18. If R is a subdirectly irreducible regular Λ-algebra and
I is the minimal ideal of R, then R ∈ V∃(I). More precisely, R ∈
V∃(eRe | e2 = e ∈ I).

Proof. By Proposition 5(ii), [0, I] is a minimal neutral ideal in L(R).
By Proposition 2(ii), either I = R or L(I) is a simple SCML of infinite
height. In the latter case, applying Theorem 16 to I, we get that
F n×n ∈ V∃(I) for all 0 < n < ω. Again by Theorem 16, R ∈ V∃(I). �

7. Projective spaces and Frink’s embedding

For what follows, we also refer to [4, 5, 19, 20].
An atom in a lattice L with zero 0 is an element p > 0 such that

p > x > 0 holds for no x ∈ L. By PL, we denote the set of all atoms in
L. We say that L is atomic, if for any a > 0, there is p ∈ PL such that
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p ≤ a. We say that L is upper continuous, if for any upward directed
set X ⊆ L such that

∑
X exists and for any a ∈ L, a·

∑
X =

∑
{a · x |

x ∈ X}.
A projective space is defined by a set P of points together with a

distinguished set ∆ of 3-element subsets of P called collinear triplets,
such that the triangle axiom holds:

if {p, s, q}, {q, t, r} ∈ ∆, and {p, q, r} /∈ ∆,

then there is a unique u ∈ P such that {p, u, r}, {s, u, t} ∈ ∆.

Q ⊆ P is a subspace of P , if p, q ∈ Q and {p, q, r} ∈ ∆ imply r ∈ Q.
The set of all subspaces of P forms an atomic upper continuous CML
under inclusion, which we denote by L(P ).

We say that P is irreducible, if for any p, q ∈ P , p 6= q, there is r ∈ P
such that {p, q, r} ∈ ∆. Each projective space is (uniquely) represented
as a disjoint union of its irreducible subspaces, so called components. If
{Pi ⊆ P | i ∈ I} is a partitiobn of P into irredicible components, then
the maps X 7→ X ∩Pi provide a direct decomposition of L(P ); that is,
L(P ) ∼=

∏
i∈I L(Pi). We call the L(Pi) the components of L(P ). Then

L(P ) is subdirectly irreducible if and only if P is irreducible.
For a modular lattice M with 0, PM is a projective space, where a

triplet {p, q, r} is collinear if and only if p + q = p + r = q + r. If
M is a CML of finite height, then M ∼= L(PM). If M is atomic, then
Mfin

∼= L(PM)fin.
Let D be a division ring. For any (right) vector space VD over D,

we denote the lattice of all vector subspaces of VD by L(VD). Then
M = L(VD) is a subdirectly irreducible CML which also satisfies the
Arguesian identity, see Jónsson [20]. Moreover, L(PM) ∼= M . Con-
versely, if P is irreducible and htL(P ) = n > 4 (or n > 3 and L(P )
is Arguesian), then L(P ) ∼= L(VD) for some division ring D and some
vector space VD over D such that dimVD = n.

According to Sachs [29], for any lattice L, its ideal lattice IdL, as
well as its filter lattice FilL (ordered by inverse inclusion), belongs to
V(L). The following result is well known, cf. Freese [7].

Lemma 19. Let ϕ : L → N be a lattice homomorphism and let N
be an upper continuous lattice. Then ϕ extends to a homomorphism
ϕ : IdL→ N by setting ϕ(I) = supϕ(I).

The following result is contained in Frink [8] implicitly, cf. Herrmann
and Roddy [17].
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Lemma 20. Let L be an SCML, let M be a modular lattice, and let
ε : L→M be a 0-preserving homomorphism. Then

ϕ(a) = {p ∈ PM | p ≤ ε(a)}
defines a 0-preserving lattice homomorphism from L into L(PM). More-
over, ϕ is an embedding provided that for any a > 0 in L, there is
p ∈ PM with p ≤ ε(a).

Thus by Lemma 20, for any SCML L, the canonical embedding,
a 7→ ↑a, of L into the filter lattice FilL (ordered by reverse inclusion)
defines the embedding

ϕFr : L→ L(PFilL), a 7→ {F ∈ PFilL | a ∈ F}.
Putting FrL = L(PFilL), we call the pair 〈FrL, ϕFr〉 the Frink extension
of L.

Theorem 21. Let L be an SCML. Then the following holds:

(i) FrL ∈ V(L);
(ii) L ∈ S∃(FrL) and ϕFr : L → FrL is the corresponding 0-lattice

embedding;
(iii) M ∈ HS∃(L) for any finite height component M of FrL.

Proof. Most of this is due to Jónsson [20]. By Lemma 19, Fr(L) ∈
H(Id FilL), whence FrL ∈ V(L), and (i) holds. By Lemma 20, L
embeds into Fr(L), whence (ii) holds.

As to (iii), suppose now that M = L(Q) is a finite height component
of FrL. Recalling that the elements of Q are given as maximal filters
of L, let F =

⋂
Q ∈ FilL and let u ∈ F . Of course, Q = πϕFr(u),

where π is the projection of FrL onto M . For each lower cover Q′ of
Q in M , there is a ∈

⋂
Q′\

⋂
Q such that a ≤ u. As πϕFr(a) = Q′,

π ◦ ϕFr maps the interval [0, u] of L onto M . Since [0, u] ∈ S∃(L) for
any u ∈ L, we get that M ∈ HS∃(L). �

Corollary 22. Every subdirectly irreducible SCML L with htL > 4
is Arguesian. For any subdirectly irreducible Arguesian SCML L with
htL > 3, there are a division ring D and a vector space VD over D
such that L ∈ S∃(L(VD)) and L(VD) ∈ V(L).

Proof. Since L is subdirectly irreducible, it embeds into some compo-
nent M of FrL by Lemma 20. In particular, htM > htL. Thus, if
htL > 4, then M ∼= L(VD) for some vector space VD over a division
ring D, whence both M and L are Arguesian. Further, if L is Argue-
sian and htL > 3, then the same holds for M and, again, M ∼= L(VD).
The rest follows from Theorem 21(i)-(ii). �
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8. Frames in SCMLs

Lemma 23. Frames at 0 are projective configurations within the class
of SCMLs.

Proof. Let L and M be SCML, let f : L→ M be a homomorphism of
SCMLs, and let 〈a, c〉 be an n-frame at 0 in M . Since n-frames are
projective configurations within the class of modular lattices, there is an
n-frame 〈u,v〉 in M such that 〈f(u), f(v)〉 = 〈a, c〉. Let u =

∏n−1
i=0 ui,

let u′ =
∑n−1

i=0 ui, and let w be a complement of u in the interval [0, u′].
Then the pair 〈r, s〉, where ri = wui and si,j = wvi,j for all i, j < n, is
an n-frame at 0 in L, and 〈f(s), f(r)〉 = 〈a, c〉. �

We cite several results on frames in subspace lattices, which are due
to Herrmann and Huhn, see [14] and [16].

Proposition 24. [14] Let D be a divison ring with prime subfield P ,
let VD be a vector space over D, and let n > 3. Then every n-frame in
the lattice L(VD) generates a 0-sublattice isomorphic to L(P n

P ).

If p ∈ P and n < ω, we put Fn
p = (Fp)nFp . We say that a modular

lattice L has characteristic p, if all proper 3-frames in L generate a
sublattice isomorphic to L(F3

p). This property can be expressed by one
identity, if p 6= 0, and by infinitely many identities, if p = 0, see [15].
Therefore, Corollary 22 implies

Corollary 25. Every subdirectly irreducible Arguesian SCML L with
htL > 3 has a uniquely determined charcteristic p. If L ∈ S(L(VD))
then p is the characteristic of D.

Proposition 26. [14] Let ∀V be a lattice variety generated by SCMLs
and let n > 3. If L ∈ ∀V is generated by an n-frame and if either n > 4
or L Arguesian, then either L ∼=

∏
p∈I L(Fn

p ) for some finite I ⊆ P or

{L(Fn
p ) | p ∈ I} ⊆ H(L) for some infinite I ⊆ P.

Proposition 27. [16] Let D be a division ring with prime subfield P ,
let VD be an infinite dimensional vector space over D, and let VP be
the induced P -vector space. Then for any n0 < ω,

{L(P n
P ) | n < ω} ⊆ S∃(L(VD)) ⊆ S∃(L(VP ));

V(L(VD)) = V{L(P n
P ) | n0 6 n < ω}.

Lemma 28. Let L be an SCML, let n > 4, and let P be a prime field.
If L(P n

P ) ∈ V(L), then L(P n
P ) ∈ S∃Pu(L).
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Proof. By assumption, L(P n
P ) ∈ HSP(L). Since L(P n

P ) is a SCML, it
suffices to show that L(P n

P ) ∈ SPu(L). If P is finite, then according
to Freese [6], the lattice L(P n

P ) is a projective modular lattice, whence
L(P n

P ) ∈ SP(L). Since L(P n
P ) is simple, the inclusion L(P n

P ) ∈ SP(L)
implies that L(P n

P ) ∈ S(L), and we are done.
Suppose that P is infinite, so that L(Qn

Q) ∈ HSP(L). Then there
is M ∈ SP(L) such that L(Qn

Q) ∈ H(M). By Lemma 23, there is an
n-frame Φ at 0 in M mapped onto the canonical n-frame of L(Qn

Q).
Taking the sublattice M ′ of M generated by Φ instead of M , we may
assume that Φ is a spanning n-frame in M . By Proposition 26, either
L(Qn

Q) is a direct factor of M , or there is an infinite set I ⊆ P of primes
such that L(Fn

p ) ∈ H(M) for all p ∈ I. In the first case, L(Qn
Q) ∈

S(M) ⊆ SP(L). Since L(Qn
Q) is simple, we get immediately L(Qn

Q) ∈
S(L), whence L(Qn

Q) ∈ S∃(L).
In the second case, L(Fn

p ) ∈ H(M) for any p ∈ I. By the first case,
one gets L(Fn

p ) ∈ S(L), for any prime p ∈ I. Therefore,

L(Qn
Q) ∈ SPu(L(Fn

p ) | p ∈ I) ⊆ SPuS(L) ⊆ SPu(L).

So, L(P n
P ) ∈ SPu(L) in any case. �

Corollary 29. Let L be a subdirectly irreducible Arguesian SCML and
let htL > 3. There are a prime field P , unique up to isomorphism,
and a vector space VP over P such that L ∈ S∃(L(VP )). If htL = ∞,
then L(P n

P ) ∈ S∃(L) for all n < ω and V(L(VP )) = V(L).

Proof. By Corollary 22 and Proposition 27, L ∈ S∃(L(VD)) ⊆ S∃(L(VP ))
for some VD with prime subfield P of D which has the same charac-
teristic as L. Suppose that htL = ∞. By Corollary 3, for any n > 3,
there is a nontrivial n-frame in L. Since L embeds into L(VP ), by
Proposition 24 we get that L has a 0-sublattice isomorphic to L(P n

P );
the latter contains L(Pm

P ) as a 0-sublattice, for all m 6 n. Applying
Proposition 27 with D = P we get V(L(VP )) = V(L). �

9. Finite height generators for ∃-varieties of SCMLs

The main result of this section can also be derived from Theorem 16
and Lemma 30. This would mean using coordinatization theory; hence,
we rather give a more direct proof.

Lemma 30. Let R, S, Ri, i ∈ I, be regular algebras. Then
∏

i∈I L(Ri) ∼=
L(
∏

i∈I Ri). Moreover, L(S) ∈ H(L(R)) whenever S ∈ H(R), and
L(S) ∈ S(L(R)) whenever S ∈ S(R).
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Proof. By the observation at the beginning of Section 3, eR + fR
and eR ∩ fR can be defined as subsets of R by existentially quan-
tified conjunctions of identities with parameters e, f . Those sentences
are preserved under products and surjective homomorphisms which ac-
counts for the first two claims (the second one also follows from Propo-
sition 5(ii)).

Now, let S be a regular subalgebra of R. For all I ∈ L(S), put
ϕ(I) = IR. Then ϕ(eS) = eR for any idempotent e, and ϕ is a join-
homomorphism. Let idempotents e, f , g1 ∈ S be such that Sg1 =
S(f − ef). Then Rg1 = RSg1 = RS(f − ef) = R(f − ef). Therefore,
(eS ∩ fS)R = (f − fg)SR = (f − fg)R = eR ∩ fR = eSR ∩ fSR,
whence ϕ is also a meet-homomorphism. Finally, ϕ is one-to-one, since
eS ⊆ fS if and only if fe = e, which is equivalent to eSR = eR ⊆
fR = fSR. Thus, L(S) ∈ S(L(R)). �

From Corollary 13 and Lemma 30, we get immediately the following

Corollary 31. If F is a commutative field and R is a regular F -algebra,
then for all n0 < ω,

L(R) ∈ HS∃P{L(F n
F ) | n0 6 n < ω}.

Theorem 32. Let L be a subdirectly irreducible SCML (CML) of infi-
nite height. Then there is a prime field P , unique up to isomorphism
(namely, the prime subfield of D, if L ∈ S(L(VD))), such that for all
n0 < ω,

V∃(L) = V∃(L(P n
P ) | n0 6 n < ω)

Proof. By Corollary 22, L is Arguesian. By Corollary 29, there is
a unique prime field P and there is a vector space VP over P such
that L ∈ S∃(L(VP )) and L(P n

P ) ∈ S∃(L) for all n < ω. Since L(VP ) ∼=
L(EndVP ) and EndVP is a regular P -algebra, L(EndVP ) ∈ V∃(L(P n

P ) |
n0 6 n < ω) by Corollary 31. Hence L ∈ V∃(L(P n

P ) | n0 6 n < ω). �

Corollary 33. Any ∃-variety of SCMLs (CMLs) is generated by its
finite height members.

Corollary 34. The ∃-variety of Arguesian SCMLs (CMLs) is gener-
ated by lattices of the form L(Fn

p ), where n < ω and p ∈ P\{0} is a
finite prime field. In particular, free Arguesian SCMLs (CMLs) are
residually finite.

Proof. It suffices to note that L(Qn
Q) belongs to S∃Pu(L(Fn

p ) | n <
ω, p ∈ P\{0}). �
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Corollary 35. The equational theory of Arguesian SCMLs (CMLs)
with sectional complementation as a fundamental operation is decid-
able. The same is true for a fixed characteristic.

Proof. This follows from Corollary 34. In the case of characteristic 0, we
observe that the set of sentences falsified in some L(Qn

Q) is recursively
enumerable. We also may refer to [24]. �

Corollary 36. The equational theory of SCMLs (CMLs), where sec-
tional complementation is a fundamental operation (complementation
and unit 1 are fundamental operations, respectively), is decidable.

Proof. It suffices to provide a decision procedure for those of height at
most 3. This is done by giving an effective description of the finite
partial substructures containing 0 and 1, which is trivial for height 1.
For height 2, we just have a finite lattice Mn, where 0 < n < ω, with n
atoms and a binary relation ρ on atoms, where aρb, if b = a′. If there is
only one atom a, add a new atom b, and put a′ = b, b′ = a. Otherwise,
choose any atom a′ 6= a, if aρb for no b.

In height 3, one has a partial projective plane, and aρb for some
pairs where a is a point and b a line or vice versa. Any such plane
has a free completion to a (possibly degenerated) projective plane, see
Pickert [28]. If a is a point and aρb for no b, then choose a line b,
which is not incident with a, and put a′ = b. For lines, the procedure
is similar. �

10. The ∃-variety generated by an atomic SCML

Corollary 37. If L is an atomic SCML, then

V∃(L) = V∃([0, a] | a ∈ Lfin) = V∃(L(PL)).

Proof. By Lemma 20, L ∈ S∃(L(PL)) and by Proposition 11, V∃([0, u] |
u ∈ Lfin) ⊆ V∃(L). Hence, it suffices to show that L(PL) ∈ V∃([0, u] |
u ∈ Lfin). Let M be a component of L(PL). If htM < ∞, then
M ∼= [0, u] for some u ∈ Lfin ∼= L(PL)fin. If htM = ∞, then, by
Corollary 22, M ∼= L(VD) for a vector space VD over a division ring
D. By Theorem 32, V∃(M) = V∃(L(P n

P )) | n < ω), where P is the
prime subfield of D. Now, if ht[0, u] = n, then [0, u] ∼= L(Dn

D), into
which L(P n

P ) embeds by tensoring with D. Since L(PL) belongs to the
∃-variety generated by its components, we are done. �

Corollary 38. If L is a SCML, then V∃(FrL) = V∃(L).

Proof. By Theorem 21(ii), L ∈ S∃(FrL), whence V∃(L) ⊆ V∃(FrL).
Let M be a component of FrL. If htM <∞, then by Theorem 21(iii),
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M ∈ HS∃(L) ⊆ V∃(L). If htM = ∞, then by Theorem 32 and Theo-
rem 21(i), there is a prime field P such that

V∃(L(P n
P ) | 4 6 n < ω) = V∃(M) ⊆ V (FrL) ⊆ V(L).

By Lemma 28, L(P n
P ) ∈ V∃(L). Thus, M ∈ V∃(L) for all components

M of FrL, whence FrL ∈ V∃(L) and V∃(FrL) ⊆ V∃(L). �

11. An embedding result for ideal lattices

Let C denote the class of CMLs. The class S(C) is obviously a qua-
sivariety. It is still an open question whether S(C) is a variety, cf. [13]
for a failed approach. Due to Sachs [29], for any lattice L, the ideal
lattice IdL belongs to V(L). Therefore, it is of some interest to know
whether the ideal lattice of a lattice which embeds into a (sectionally)
complemented modular lattice, also does. In this section, we prove that
this is, indeed, the case. An analogous result for lattices of permuting
equivalence relations has been obtained by Nation [26].

Consider a structure 〈A, σ〉 of finite signature σ. Let σ denote the
extension of σ by elements of A as constants, that is,

σ = σ ∪ {ca | a ∈ A},
where ca /∈ σ, for all a ∈ A. Call a set Σ(x) of formulas of signature σ
(with free variables in {x}) satisfiable in A, if there is a in A such that
〈A, σ〉 |= Φ(a) for all Φ(x) ∈ Σ(x) (under the natural interpretation of
the new constants). Call such a set Σ(x) of formulas finitely satisfiable
in A if any of its finite subsets is satisfiable in A. The structure 〈A, σ〉 is
saturated in cardinality κ, if any finitely satisfiable set Σ(x) of formulas
of signature σ, which contains less than κ new constants, is satisfiable in
A. Due to [2, Lemma 5.1.4], for any structure 〈B, σ〉 and any cardinal
κ such that κ > max{|σ|,ℵ0} and ℵ0 6 |B| 6 2κ, there exists a κ+-
saturated elementary extension 〈A, σ〉 of 〈B, σ〉; this extension can be
chosen as an elementary substructure of an ultrapower of 〈B, σ〉. In
particular, A ∈ S∃Pu(B), in the case B is a (sectionally) complemented
lattice.

Theorem 39. For any SCML C, there is C ′ ∈ V∃(C) such that IdL ∈
S(C ′) for all L ∈ S(C).

Proof. First of all, we may assume that C is infinite, as for finite C,
the conclusion is trivial. In view of Corollary 38, FrC ∈ V∃(C). Let
κ > |C| and let C∗ be a κ+-saturated elementary extension of FrC.
As FrC is an atomic CML, C∗ also is. Moreover, C∗ ∈ V∃(C). Since
C ∈ S∃(FrC), we get that C ∈ S∃(C

∗), that is, V∃(C
∗) = V∃(C). Put

Q = PC∗ and C ′ = L(Q). By Corollary 37, L(Q) ∈ V∃(C).
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Now, if L ∈ S(C), then L ∈ S∃(C
∗). Let ε embed L into C∗. One

may assume ε to be identical embedding. Let ϕ : L → L(Q) be the
embedding given by Lemma 20. Then the map ϕ : IdL→ L(Q) defined
as in Lemma 19, is a lattice homomorphism, and it remains to show
that it is one-to-one. For ideals J * I of L, we choose b ∈ J\I. It
suffices to show that there is an atom p ∈ C∗ such that p ∈ ϕ(J) and
p /∈ ϕ(I).

Consider the following set of formulas:

Σ(x) = {Ψ(x)} ∪ {x 6 cb} ∪ {x 66 ca | a ∈ I},

where Ψ(x) is the formula ¬(x = 0) & ∀y[y 6 x→ (y = 0) ∨ (x = y)].
Obviously, for any lattice K and any a ∈ K, one has K |= Ψ(a) if and
only if a is an atom.

Then Σ(x) is finitely satisfiable in C∗. Indeed, let a1, . . . , an in I.
Then a = a1 + . . . + an ∈ I. Now, ab < b, since b /∈ I. Let d be a
complement of ab in [0, b] ⊆ C∗. Obviously, d > 0. Since the lattice
C∗ is atomic, there is an atom p ∈ C∗ such that p ≤ d. In particular,
p ≤ b and p � ai for any i 6 n. Since C∗ is κ-saturated, the set
Σ(x) is satisfiable in C∗, whence there is an atom p ∈ C∗ such that
p ≤ b and p � a for all a ∈ I. This implies that p ∈ ϕ(b) ⊆ ϕ(J) and
p /∈ ϕ(a) for all a ∈ I, whence p /∈

⋃
a∈I ϕ(a) = ϕ(I). Therefore, ϕ is

an embedding. �

Corollary 40. If L and C are SCMLs such that L 0-embeds into IdC
then L ∈ V∃(C). In particular, L ∈ V∃(I), whenever L is subdirectly
irreducible and I is the minimal neutral ideal of L.
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