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Abstract. We associate with each orthogeometry (P,⊥) a CMIL, i.e. a complemented
modular lattice with involution, L(P,⊥) consisting of all subspaces X and X⊥ with dimX <

ℵ0 and study its rôle in decompositions of (P,⊥) as directed resp. disjoint union. We also
establish a 1-1-correspondence between ∃-varieties V of CMILs with V generated by its finite
dimensional members and ‘quasivarieties’ G of orthogeometries: V consists of the CMILs
representable within some geometry from G and G of the (P,⊥) with L(P,⊥) ∈ V . Here, V
is recursively axiomatizable if and only if so is G. It follows that the equational theory of V
is decidable provided that the equational theories of the {L(P,⊥) | (P,⊥) ∈ G, dimP = n}
are uniformly decidable.

1. Introduction. Part I: The lattice associated with a geometry

In the present note we consider orthogeometries (P,⊥), where P is a projective
geometry defined in terms of a collinearity relation on the point set (which is also
denoted by P ) and ⊥ an orthogonality on P , i.e. p 7→ p⊥ = {q ∈ P | p ⊥ q}
is a polarity on P (cf. [5, sect.14.1]). Let L(P ) denote the modular lattice of all
subspaces of the projective geometry P and define X⊥ = {q ∈ P | ∀p ∈ X p ⊥ q}.

In the literature, two lattice structures have been associated with (P,⊥): The
lattice Lc(P,⊥) of all closed subspaces (which is a complete DAC-lattice [14], i.e. a
subprojective lattice [15, 18]) with involution X 7→ X⊥ and the ‘quadratic’ lattice
(cf. [9]) Q(P,⊥), namely L(P ) endowed with the unary operation X 7→ X⊥ (called
‘ortholattice’ in [5, Def.14.2.1]).

As a step towards an equational theory, in the present note we study comple-
mented lattices which are substructures of Lc(P,⊥) and Q(P,⊥), simultaneously.
Such are complemented modular lattices with involution (a dual automorphism of
order 2), CMILs for short. We consider these as algebraic structures with join,
meet, bounds 0, 1, and involution x 7→ x′ as fundamental operations.

In particular, with each orthogeometry (P,⊥) we associate the atomic CMIL
L(P,⊥) which consists of the X and X⊥ where X ∈ L(P ) is finite dimensional.
This may be viewed as an algebraic version of the subprojective spaces of Markowski
and Petrich [15, 18] - such appears as the incidence structure given by atoms and
coatoms of L(P,⊥).
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Conversely, each CMIL L gives rise to an orthogeometry G(L) the points of
which are the atoms of L with p, q, r collinear iff p + q = p + r = q + r and
p ⊥ q iff p ≤ q′. Let Lf consist of all elements of L having finite dimension or
codimension. By an equivalence between two classes of structures we mean an
equivalence between the corresponding categories where the morphisms are just
the isomorphisms. Moreover, the equivalences to be estabished are ‘concrete’ in
the sence of Giudici [6].

A subgeometry of (P,⊥) is an orthogeometry (Q,⊥Q) where Q is a proper pro-
jective subgeometry (cf. [5, Def.3.3.11]) and ⊥Q the induced orthogonality. In
particular, any non-degenerate subspace of an orthogeometry gives rise to a subge-
ometry. Let 2 denote the 2-element Boolean algebra.

Theorem 1.1. There is an equivalence between orthogeometries and atomic CMILs
L such that L = Lf given by L = L(P,⊥) and (P,⊥) = G(L). In particular, (P,⊥)
∼= G L(P,⊥) for any orthogeometry and L ∼= L G(L) for any finite dimensional
CMIL.

Theorem 1.2. Any orthogeometry (P,⊥) is the directed union of its finite dimen-
sional subspaces X with X ⊕ X⊥ = P and the CMIL L(P,⊥) is the directed union
of the complemented finite dimensional subalgebras LX = [0, X ] ∪ [X⊥, P ]. In par-
ticular, these X are non-degenerate and LX is isomorphic to the direct product
L(X,⊥|X) × 2 of CMILs (unless X = P ).

Theorem 1.3. L(Q,⊥Q) is a directed union of complemented subalgebras of the
CMIL L(P,⊥), for any subgeometry (Q,⊥Q) of the orthogeometry (P,⊥).

(P,⊥) is irreducible if the projective geometry P is irreducible. An irreducible
dual pair is an orthogeometry (P,⊥) such that the projective geometry P has
decomposition P = P1 ∪ P2 into irreducible components Pi ⊆ P⊥

i .

Proposition 1.4. Every orthogeometry is uniquely an orthogonal disjoint union of
irreducibles and irreducible dual pairs.

Proofs of the above will be given in Sect.5-7 and require only [5, Ch.1-4,11,14]
as background.

Corollary 1.5. If L is an atomic CMIL then Lf
∼= L(G(L)) and L is subdirectly

irreducible if and only if G(L) is irreducible or an irreducible dual pair. The first
case is characterized by L being subdirectly irreducible as a lattice.

For the finite dimensional case the last two results are due to Schweigert [20].
Prop.8.3, Lemma 10.9, and Cor.19.12 of Petrich [18] contain essential information
on the general case. Though, our proofs will not refer to these.

2. Introduction. Part II: Representations and equational theory.

A geometric representation of a CMIL, L, is given by an orthogeometry (P,⊥)
and a 0-1-lattice embedding ε : L → L(P ) such that ε(a′) = (εa)⊥ for all a ∈ L.
In particular, such represenation is faithful. Any atomic CMIL, L, has a canonical
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representation in G(L). In Sect.11 we show the following, which will be the key to
equational theory of CMILs.

Theorem 2.1. With every geometric representation η : L → Q(P,⊥) of a CMIL

there is an associated atomic CMIL-extension L̃ of η(L) which is a sublattice of
L(P ) containing L(P,⊥) and which is also a subalgebra of Lc(P,⊥). In particular,

G(L̃) = (P,⊥).

In view of Birkhoff’s Theorem, equational theory of algebraic structures can be
seen as the study of varieties, i.e. classes V closed under the operators H, S, and P

where H C, S C, and P C denote the classes of all homomorphic images, subalgebras,
and direct products of members of C, respectively. V C = H S P C is the smallest
variety containing C. All class operators are assumed to include isomorphic copies.

Dealing with CMILs, to pay heed to complementation (see e.g. Kadourek and
Szendrei [13] for a similar approach to regular semigroups), we replace varieties
by ∃-varieties, classes closed under the operators H, S∃, and P where S∃ C denotes
the class of all subalgebras of members of C which are complemented. Obviously,
∃-varieties are axiomatic classes. According to [11, Prop.10], V∃ = H S∃ P C is the
smallest ∃-variety containing the class C of CMILs, the ∃-variety generated by C.

In [22, 7, 16, 11, 10, 17] it has become apparent that geometric representations are
a primary tool in the equational theory of (ortho)complemented modular lattices
and regular rings (with involution).

For a class G of orthogeometries, denote by Pu G, UG, and Sg G the classes of
consisting of all ultraproducts, orthogonal disjoint unions, and subgeometries of
members of G. G is a U-quasivariety if it is closed under these operators. We show
that U-quasivarieties are axiomatic classes, that VG = Sg U Pu G is the smallest U-
quasivariety containing G, and that, for any ∃-variety V of CMILs, the class G(V)
of orthogeometries (P,⊥) with L(P,⊥) ∈ V is a U-quasivariety (consisting of the
G(L), L ∈ V).

For a class G of orthogeometries let L(G) denote the class of all CMILs admitting
a geometric representation within some (P,⊥) ∈ G. For a class G of orthogeometries
resp. V of CMILs let Gn (G<ω) resp. Vn (V<ω) denote the class of n-dimensional
(finite dimensional) members. In Sect.16. the proofs of the following main results
are completed.

Theorem 2.2. Given a U-quasivariety G of orthogeometries, the following hold.

(i) L(G) is an ∃-variety of CMILs.
(ii) Every member of L(G) admits an atomic extension within L(G).

(iii) L(G) = V∃{L(P,⊥) | (P,⊥) ∈ G<ω}.

Corollary 2.3. For any ∃-variety V of CMILs, V = V∃ V<ω if and only if V = L(G)
for some U-quasivariety G of orthogeometries, namely G = G(V).

In order the introduce complementation as an operation, given an ∃-variety V
of CMILs, consider a formula α(x, y) such that ∀x∃y.α(x, y) and ∀x∀y. α(x, y) ⇒
x ⊕ y = 1 hold in V . For C ⊆ V let Cα denote the class of all expansions of L ∈ C
by a unary operation x 7→ xc such that ∀x. α(x, xc) holds. Call α an equational
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definition of complement for V if (V∃ C)α = V(Cα) for all C ⊆ V . In particular,
x ⊕ y = 1 is such α for the class of all CMILs (cf. [11, Prop.10]) and y = x′ for
the class of orthocomplemented modular lattices. We include also the case α = ∅
where where no complementation operation is considered and V∅ = VV .

Proposition 2.4. For any U-quasivariety of orthogeometries, V = L(G) is recur-
sively axiomatizable if and only if G is so. In this case, also Vα is recursively
aximatizable for any equational definition α of complement for V.

Corollary 2.5. For any U-quasivariety G of orthogeometries and equational defi-
nition α of complement for V = L(G), if the equational theories of the Vα

n (n < ω)
are uniformly decidable then the equational theory of Vα is decidable.

This will be used, elsewhere, to obtain a decision procedure for the equational
theory of certain classes of ortolattices including projection ortholattices of type
II1 (resp. the class of all type In, n < ω) von Neumann algebra factors.

Problem 2.6. If the CMIL, L, is subdirectly irreducible as a lattice, does L have
a representation within an irreducible orthogeometry? Is every ∃-variety of CMILs
generated by its finite dimensional members?

Both questions have positive answers for the case of complemented modular
lattices (without involution) resp. orthocomplemented modular lattices [11, 10].

Extended preliminaries have been added on request. The typical reader of Al-
gebra Universalis may skip most of these.

Sincere thanks are due to Micheale S. Roddy and Luca Giudici for claryfing dis-
cussions and helpful suggestions based on thorough comprehension of the relevant
literature.

3. Preliminaries: Projective geometries and lattices

Basic notions and results can be found in [5, Ch.1-4,11,14]. Joins in a lattice will
be written as a + b, meets as a · b = ab. We adhere to the usual bracket saving rule
that meet has priority over join. We write a + b = a ⊕ b if ab = 0 and a ≺ b if b is
an upper cover of a, i.e. a < b and a < x < b for no x. An interval sublattice is of
the form [a, b] = {x ∈ L | a ≤ x ≤ b}. The height or dimension dim L of a lattice is
the supremum of all cardinalities |C| − 1, C a chain of L and dim u = dim[0, u]. A
quotient is a pair (x, y) with x ≥ y; we write it as x/y and dim x/y = dim[y, x]. By
Lfin (Lcofin) we denote the sublattice of all u with dim u < ℵ0 (dim[u, 1] < ℵ0). A
lattice homomorphism is a map φ such that φ(a+b) = φa+φb and φ(ab) = φaφb. In
a modular lattice one has [uv, u] ∼= [v, u + v] via the mutally inverse isomorphisms
x 7→ x + v and y 7→ yu cf. [5, Prop.1.5.4].

A lattice L with bounds 0, 1 as constants and endowed with an involution x 7→ x′,
i.e. x′′ = x and x ≤ y iff y′ ≤ x′ for all x, y ∈ L, is called an IL and an MIL if
it is modular. A subalgebra of an IL, L, is a sublattice M such that 0, 1 ∈ M and
x′ ∈ M for all x ∈ M ; in particular, M is again an IL. L is a directed union of its
subalgebras Li (i ∈ I) if L =

⋃
i∈I Li and if for any i, j ∈ I there is k ∈ I such that

Li ∪ Lj ⊆ Lk.
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A CML is a complemented modular lattice, i.e. has 0 and 1 and for all a there
is b such that a ⊕ b = 1. Homomorphic images and interval sublattices of CMLs
are CMLs. A CMIL is an MIL which is complemented.

For any lattice L with 0, 1, PL = {p ∈ L | 0 ≺ p} denotes the set of atoms of L
and HL = {h ∈ L | h ≺ 1} the set of all coatoms. L is atomic if for any a > 0 there
is p ∈ PL with p ≤ a.

Lemma 3.1. In an atomic CML, if b ≥ p for all p ≤ a in PL then b ≥ a.

Proof. Assume b 6≥ a. Then ab < a. Choose c such that a = ab⊕ c and atom p ≤ c.
Then p 6≤ b. �

We follow our principal reference [5, Ch.2] calling ‘projective geometry’ what is
traditionally and more correctly called a ‘projective space’. We consider a projective
geometry, P , to be defined in terms of the collinearity relation κ(p, q, r) on the
point set, also denoted by P . The subspaces of P form an atomic CML under
inclusion, which we denote by L(P ). L(P ) is a complete lattice with join

∑
i∈I Xi =⋃

{
∑

i∈F Xi | F ⊆ I finite} and meet
⋂

i∈I Xi. Points p are identified with singleton
subspaces {p}, i.e. atoms of L(P ). P is irreducible if any two points p 6= q are
perspective, i.e. there is a third point such that p, q, r are collinear. For any modular
lattice L there is a canonical projective geometry on PL with pairwise distinct points
p, q, r collinear if and only if p + q = p + r = q + r.

Lemma 3.2. If P, Q are projective spaces, φ : L(P ) → L(Q) a
∑

-preserving map,
and φp 6∈ φX for any p ∈ P , p 6∈ X ∈ L(P ), then φ is a lattice homomorphism.

Proof. Given Y , we show φX ∩ φY = 0 for all X with X ∩ Y = 0. For Y of finite
dimension we proceed by induction: With Y = Z⊕p, by modularity (X+p)∩Z = 0
and

φX∩φY = φX∩φ(X +p)∩(φZ +φp) = φX∩(φ(X +p)∩φZ +φp) = φX∩φp = 0.

The general case follows since Y is the join of its finite dimensional subspaces Yi

and φY =
⋃

i φYi. For arbitrary X, Y choose Z with Y = Z ⊕ X ∩ Y and observe
that, by modularity and the preceeding case,

φX ∩ φY = φX ∩ (φ(X ∩ Y ) + φZ) = φ(X ∩ Y ) + φX ∩ φZ = φ(X ∩ Y )

�

Given a set P with a collinearity relation, the closure CP (X) is the smallest
subset Y of P such that r ∈ Y whenever p, q ∈ Y and p, q, r collinear. If P is a
projective geometry then CP (X) is the smallest subspace containing X .

A proper projective subgeometry (cf. [5, Def.3.3.11]) of a projective geometry P
is given by a subset Q of P endowed with the restriction of the collinearity relation
such that

(i) If p, q, r and s, t, r are collinear triplets in P , but p, q, s are not collinear,
and if p, q, s, t ∈ Q then r ∈ Q.

(ii) If X = CQ(X) then X = Q ∩ CP (X)
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Corollary 3.3. Any proper projective subgeometry Q of a projective geometry P
is a projective geometry and φX = CP (X) is a lattice embedding φ : L(Q) → L(P )
such that

dim φX = dim X and dim P/φY = dim Q/Y for dim X, dim Q/Y < ℵ0.

Proof. Q is a projective geometry by (i). Observe that φp = p for p ∈ P . φ perserves
sum, obviously, and meets by Lemma 3.2. φ is injective by (ii). Preservation of
finite dimension now follows from the fact that points are mapped to points. For
Y of finite codimension choose X with X ⊕ Y = Q and refer to modularity. �

4. Preliminaries: Orthogeometries

A projective geometry P together with a symmetric binary relation ⊥ between
points is an orthogeometry (cf. [5, Def.14.1.1]) if the following properties hold true
for all p, q, r, s ∈ P

(i) If p ⊥ q, p ⊥ r, and q, r, s collinear then p ⊥ s
(ii) If p 6= q and r 6⊥ p, q then there is t such that t ⊥ r and p, q, t collinear

(iii) There is t such that p 6⊥ t

Define X ⊥ Y iff p ⊥ q for all p ∈ X and q ∈ Y . Also, define X⊥ = {q ∈ P | X ⊥ q}.
Then X⊥ ∈ L(P ) and

X ⊆ Y ⊥ iff X ⊥ Y iff Y ⊆ X⊥

It follows X ⊆ X⊥⊥. The lattice L(P ) together with this unary operation is denoted
by Q(P,⊥). Joins in Q(P,⊥) are turned into meets and the closed subspaces Y =
X⊥ (equivalently, Y ⊥⊥ = Y ) form a complete meet-subsemilattice Lc(P,⊥) of
Q(P,⊥) with involution X 7→ X⊥.

Equivalently, one can define orthogeometries as given by a polarity, a map p 7→ p⊥

from P to the set of coatoms (i.e hyperplanes) of L(P ) such that for all p, q ∈ P

p ≤ q⊥ if and only if q ≤ p⊥

Each vector space with non-degenerate orthosymmetric sesquilinear form gives rise
to an orthogeometry on the associated projective geometry and each irreducible
orthogeometry with desarguean P and dim L(P ) ≥ 3 is isomorphic to such [5,
Thm.14.1.8].

Given an orthogeometry (P,⊥), a subset Q of P is non-degenerate, if Q∩Q⊥ =
∅. Orthogeometries are non-degenerate and non-degenerate subspaces of P are
orthogeometries under the induced orthogonality. (P,⊥) is irreducible if P is so.
(P,⊥) is the directed union of its non-degnerate subspaces (Pi,⊥i) (i ∈ I) if P =⋃

i∈I Pi and if for any i, j ∈ I there is k ∈ I such that Pi ∪ Pj ⊆ Pk.

Lemma 4.1. For any orthogeometry (P,⊥)

(i) If x ≤ y in L(P ) such that dim y/x < ℵ0 then dim x⊥/y⊥ ≤ dim y/x.
(ii) If u ∈ Lc(P,⊥) and u ≤ x in L(P ) with dim x/u < ℵ0 then x ∈ Lc(P,⊥)

and dim x/u = dim u⊥/x⊥.
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Proof. Concering (i) if dim y/x = n then y = x +
∑n

i=1 pi with pi ∈ P and

y⊥ = x⊥
∏n

i=1 p⊥i . From dim 1/p⊥i = 1 it follows dim x⊥/y⊥ ≤ n. In (ii), if
also x ∈ Lc(P,⊥) then by (i) dim u⊥/x⊥ ≤ dim x/u = dim x⊥⊥/u⊥⊥ ≤ dim u⊥/x⊥

whence dim u⊥/x⊥ = dim x/u. In general, it follows dim x/u ≥ dim u⊥/x⊥ ≥
dim x⊥⊥/u⊥⊥ = dim x⊥⊥/u ≥ dim x/u and x = x⊥⊥ ∈ Lc(P,⊥). See also Prop.
14.1.4 and 14.2.4 in [5]. �

For any IL, L, define G(L) = (PL,⊥) where p ⊥ q if and only if q ≤ p′.

Lemma 4.2. If L is an MIL then G(L) is an orthogeometry.

Proof. We have to show that p⊥ = {q ∈ PL | q ≤ p′} is a coatom i.e. p⊥ 6= P and
r+p⊥ = 1 in L(PL) for all r 6∈ p⊥. The first follows choosing a complement q of p′ -
q is an atom by modularity. Now, consider s 6= r with s 6∈ p⊥. Then by modularity
q = (s + r)p′ ∈ PL since p′ is a coatom. Now, q ∈ p⊥ and s ≤ q + r ≤ p⊥ + r. �

5. The atomic CMIL of an orthogeometry

Given an orthogeometry (P,⊥) define

L(P,⊥) = L(P )fin ∪ {u⊥ | u ∈ L(P )fin}.

Lemma 5.1. For any orthogeometry (P,⊥), L(P,⊥) is a complemented sublattice
of L(P ) and a subalgebra of Lc(P,⊥). In particular, L(P,⊥) is an atomic CMIL
with set P of atoms.

Proof. By Lemma 4.1, L(P,⊥) is a subset of Lc(P,⊥) and, obviously, closed under
⊥ and finitary meets - which are taken in L(P ). Hence, L(P,⊥) is a subalgebra of
the IL Lc(P,⊥) and closed under meets in L(P ).

On the other hand, {u⊥ | u ∈ L(P )fin} is a sublattice of L(P ) since for u, v ∈
L(P )fin one has u⊥v⊥ = (u + v)⊥ and (u⊥ + v⊥)⊥⊥ = (u⊥⊥v⊥⊥)⊥ = (uv)⊥ with
u + v, uv ∈ L(P )fin. Moreover, u⊥v ∈ L(P )fin, trivially, and u⊥ + v ∈ Lc(P,⊥)
by Lemma 4.1 whence u⊥ + v = (u⊥ + v)⊥⊥ = (u⊥⊥v⊥)⊥ = (uv⊥)⊥ with uv⊥ ∈
L(P )fin. Thus, L(P,⊥) is a sublattice of L(P ) whence modular.

Thus, L(P,⊥) is an MIL and it suffices to show that each u ∈ L(P )fin admits a
complement w⊥ with w ∈ L(P )fin. This is done by induction on dim u. Consider
u > 0. Since

⋂
p∈P p⊥ = 0, there is p ∈ P such that u 6≤ p⊥. Then up⊥ < u and, by

inductive hypothesis, there is v ∈ L(P )fin such that up⊥ ⊕ v⊥ = 1. In particular,
u(p⊥v⊥) = 0 and, by modularity, u+p⊥v⊥ = u+up⊥+p⊥v⊥ = u+p⊥(up⊥+v⊥) =
u + p⊥ = 1 whence u ⊕ p⊥v⊥ = 1. �

Proof. Thm.1.1. By Lemma 5.1, L = L(P,⊥) is a CMIL and Lcofin = {u⊥ | u ∈
Lfin}. Thus, L = Lf and (P,⊥) = G(L). Conversely, given L, by Lemma 4.2,
(P,⊥) = G(L) is an orthogeometry and we may identify L with a sublattice of
L(P ) such that Lfin = L(P )fin and L = L(P,⊥), �

Proof. Thm.1.2. Define I = {v ∈ L(P )fin | v ⊕ v⊥ = 1}. Then Lv = [0, v] ∪ [v⊥, 1]
is a subalgebra of L(P,⊥). As a lattice, Lv is the direct product of [0, v] and a 1-
or 2-element lattice, whence complemented. For x ≤ v and y ∈ {0, v⊥} one gets
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(x + y)⊥ = x⊥y⊥ = vx⊥ + v⊥y⊥, i.e. Lv is an MIL direct product. Also, the
subspace {p ∈ P | p ≤ v} is non-degenerate since vp⊥ ≺ v.

Consider u ∈ L(P )fin. Choose v as a complement of u+u⊥ in [u, 1], in particular
v ∈ L(P )fin. Then v⊥ ≤ u⊥ and vv⊥ = v(u + u⊥) = 0 whence v + v⊥ = 1. Thus,
v ∈ I.

Now, given any finite subset X of L(P,⊥) let Y = X∩L(P )fin and u =
∑

y∈Y y+∑
y∈X\Y y⊥ and choose v ∈ I as above. Then the subalgebra generated by X is

contained in Lv. Also Lv1
∪Lv2

⊆ Lv choosing v for u = v1+v2, suitably. Therefore,
L(P,⊥) is the directed union of its subalgebras Lv and P the directed union of the
non-degenerate subspaces {p ∈ P | p ≤ v}, v ∈ I. �

6. Subgeometries

An orthogeometry (Q,⊥Q) is a subgeometry of the orthogeometry (P,⊥) if Q is
a proper projective subgeometry of P and ⊥Q the induced orthogonality.

Lemma 6.1. A proper projective subgeometry Q of an orthogeometry (P,⊥) induces
a subgeometry if and only if

(iii) If p, q, r ∈ Q, q 6⊥ p, and r 6⊥ p then there is s ∈ Q such that s ⊥ p and
r, s, q are collinear.

In a particular, every non-degenerate subspace of (P,⊥) is a subgeometry.

Proof. For p, q ∈ Q we have p⊥Q = Q ∩ p⊥ a hyperplane of Q by (iii) and p ≤ q⊥Q

iff p ≤ q⊥ iff q ≤ p⊥ iff q ≤ p⊥Q . �

Proof. Thm.1.3. Consider a subgeometry Q such that CP (Q) = P . We claim that
φX = CP (X) is an embedding φ : L(Q,⊥Q) → L(P,⊥). In view of Cor.3.3 it
suffices to a show that φ(X⊥Q) = (φX)⊥ for X ∈ L(Q)fin. Now with Lemma 4.1

dim P/φ(X⊥Q) = dim Q/X⊥Q = dim X = dim φX = dim P/(φX)⊥ < ℵ0

and the claims follows since φ(X⊥Q) ⊆ (φX)⊥.
Now, let Q be a subspace of P . Consider X ∈ L(Q)fin such that X ⊕X⊥Q = Q

and observe that X⊥Q = Q ∩ X⊥ and

dim Q/(Q ∩ X⊥) = dim X = dim P/X⊥ < ℵ0.

It follows Q + X⊥ = P whence X + X⊥ = X + Q∩X⊥ + X⊥ = Q + X⊥ = P and
X ∩ X⊥ = 0. We claim that the subalgebras L′

X = [0, X ] ∪ [X⊥Q , Q] of L(Q,⊥Q)
and [0, X ] ∪ [X⊥, P ] of L(P,⊥) are isomorphic. Define

φ(Z) = Z, φ(Z⊥) = Z⊥ ∩ Q for Z ∈ [0, X ].

φ : [X⊥, P ] → [Q ∩ Y ⊥, Q]

is an isomorphism by modularity. Moreover, for Z ∈ [0, X ], W⊥ ∈ [X⊥, P ]

φ(Z⊥) = Z⊥ ∩ Q = φ(Z)⊥Q

φZ ∩ φW⊥ = Z ∩ W⊥ = φ(Z ∩ W⊥).
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Thus, φ is an isomorphism. By Theorem 1.2 we obtain L(Q,⊥Q) as a direct union
of complemented subalgebras of L(P,⊥).

Now, given any subgeometry Q, we have Q a subgeometry of the subspace R =
CP (Q) of P and may combine the two cases since R = CR(Q). �

Consider an orthogeometry (P,⊥) and subspaces U ⊆ V of P with a non-
degenerate difference set Q = V \ U such that U ⊆ V ⊥. Then one obtains the
subquotient V/U having point set {p + U | p ∈ Q}, orthogonality defined by
p+U ⊥′ q +U if and only if p+U ⊥ q +U , and pairwise distinct p+U, q +U, r+U
collinear if and only if p, q, r are collinear.

Lemma 6.2. Any subquotient of an orthogeometry is an orthogeometry and p+U ⊥′

q + U if and only if p ⊥ q. The lattice L(V/U) is canonically isomorphic to the
interval [U, V ] of L(P ). If V is irreducible then so is V/U . Moreover, (V/U,⊥′) is
isomorphic to the subspace (W,⊥W ) for any W ∈ L(P ) with V = U ⊕ W .

Proof. As far as projective geometries are concerned we refer to [5, sect.2.6]. From
U ⊆ V ⊥ we have p ⊥ q if and only if p + U ⊥′ q + U . By modularity, V ∩ (p + U)⊥

is a coatom of [U, V ] for any p ∈ Q and it follows that p + U 7→ V ∩ (p + U)⊥ is a
polarity. Thus, V/U is an orthogeometry. Also, if p + U 6= q + U then p, q cannot
be collinear with any point of U . Thus, V/U is irreducible if P is.

For the last claim observe that, due for any p ∈ Q there is unique p ∈ W such
that p + U = q + U , namely q = W ∩ (p + U). �

7. Orthogonal decomposition

Given orthogeometries (Pi,⊥i) (i ∈ I) with pairwise disjoint point sets Pi, the
union of the point sets endowed with the union of the collinearity relations is a
projective geometry P =

⋃
i∈I Pi, the disjoint union or coproduct (cf. [5, sect.6.4]).

Defining

p ⊥ q if and only if p ⊥i q for some i ∈ I or p ∈ Pi, q ∈ Pj with i 6= j

yields the orthogonal disjoint union (P,⊥) =
⋃⊥

i∈I(Pi,⊥i). In general, the point
sets Pi have to be replaced by pairwise disjoint copies.

Lemma 7.1. The orthogonal disjoint union (P,⊥) of orthogeometries (Pi,⊥i) is
an orthogeometry and one has an isomorphism

φ : Q(P,⊥) →
∏

i∈I

Q(Pi,⊥i) given by φ(X) = (X ∩ Pi | i ∈ I)

Proof. The axioms are easily verified. Also, φ is order preserving with inverse
φ−1(Xi | i ∈ I) =

⋃
i∈I Xi cf. [5, Prop.2.7.7]. Finally, for Xi ⊆ Pi one has

X⊥
i = X⊥i

i ∪
⋃

j 6=i Pj whence X⊥
i ∩ Pi = X⊥i

i . �

A dual pair (P,⊥) is given by a pair P1, P2 of projective geometries such that P
is the disjoint union of P1 and P2 and maps αi : Pi → Hj ({i,j}={1,2}), where Hi

is the set of coatoms of L(Pi), such that

for {i, j} = {1, 2} and p ∈ Pi, q ∈ Pj : q ≤ αip if and only if p ≤ αjq
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p ⊥ q if and only if p, q ∈ Pi or p ∈ Pi, q ∈ Pj , and q ≤ αip
for some i and {i, j} = {1, 2}

The dual pair is irreducible if P1 and P2 are irreducible.
For Pi associated with vector spaces Vi over division rings Ki. Any non-singular

sesquilinear form w.r.t. an anti-isomorphism from K2 to K1 induces a dual pair on
the disjoint union P1 ∪ P2. For dim V1 ≥ 3 all dual pairs on P1 ∪ P2 arise in this
way cf [5, Prop.11.5.6].

Given CMLs M1, M2 and a dual isomorphism α : M1 → M2 the lattice M =
M1 × M2 becomes an CMIL with the exchange involution

(a, b)′ = (α−1b, αa)

Observe that for points in PM one has x ⊥ y if and only if x, y ∈ M1 × {0} or
x, y ∈ {0} × M2 or {x, y} = {(p, 0), (0, q)} with p ∈ PM1

, q ∈ PM2
and αp ≥ q.

Lemma 7.2. For any CMIL M = M1 × M2 with exchange involution, PM is
a dual pair of P1 = PM1

× {0} and P2 = {0} × PM2
. Every dual pair is an

orthogeometry. An orthogeometry (P,⊥) is a dual pair if and only if P is a disjoint
union P = P1 ∪ P2 of subspaces P1 ⊆ P⊥

1 and P2 ⊆ P⊥
2 .

Proof. Considering the first claim, the projective geometry PM is the disjoint union
of its subspaces P1 and P2. Pi is isomorphic to PMi

. Define α1(p, 0) = {(0, q) ∈
P2 | q ≤ αp} for (p, 0) ∈ P1 and α2(0, q) = {(p, 0) ∈ P2 | p ≤ α−1q} for (0, q) ∈ P2.
Clearly, (0, q) ≤ α1(p, 0) if and only if (p, 0) ≤ α2(0, q). We claim that α1(p, 0) is a
coatom of L(P2). Consider r 6= s in PM2

with r, s 6≤ αp. Since c = αp is a coatom
of M2, one has q = c(r + s) ∈ PM2

whence s ≤ r + q ≤ r + αp in L(PM2
). By

symmetry (using α−1), α2(0, q) is a coatom of L(P1). Thus, P1, P2, α1, α2 define a
dual pair on PM with p ⊥ q if and only if p ⊥M q.

If (P,⊥) is given as a dual pair then p 7→ Pi ∪ αijp (p ∈ Pi) is a polarity.
Conversely, define αijp = p⊥ for p ∈ Pi. �

Proof. Prop.1.4. Let Qi (i ∈ I) denote the irreducible components of the projective
geometry P . We claim that q1 6= q2 in P are collinear if there are p1, p2 in some Qi

such that qj 6⊥ pj for j = 1, 2. More precisely, there is r ≤ p1 + p2 with r 6⊥ q1, q2

whence r⊥(q1 + q2) a third point on q1 + q2. Indeed, if p1 = p2 choose r = p1. If
p1 6= p2 choose a third point s ≤ p1 + p2. If s 6⊥ q1, q2 then put r = s. Otherwise,
e.g. s ⊥ q1 whence p2 6⊥ q1 and we may choose r = p2.

Thus, for each i ∈ I there is a unique component Qλi = {q | q 6⊥ Qi} of P and
Qi ⊥

⋃
j 6=i,λi Qj . Obviously, if λi 6= i then λ2i = i. Choose I0 ⊆ I such i ∈ I0 if

λi = i and, otherwise, i ∈ I0 if and only if λi 6∈ I0. Then P is an orthogonal disjoint
union of the Pi = Qi ∪ Qλi (i ∈ I0) with restriction ⊥i of ⊥ and the (Pi,⊥i) are
non-degenerate since so is (P,⊥). Thus, the (Pi,⊥i) (i ∈ I0) are orthogeometries,
irreducible for λi = i and irreducible dual pairs for λi 6= i. �

An orthogeometry is proper if and only if it is an orthogonal disjoint union of
irreducibles.

Corollary 7.3. An orthogeometry (P,⊥) is proper if and only if p 6⊥ q implies that
p = q or p, q perspective.
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8. Preliminaries: Congruence relations

Cf. [4, Ch.10]. A congruence relation on a lattice is an equivalence relation θ
(we write a θ b or, equivalently, (a, b) ∈ θ) such that

a1 θ b1 ∧ a2 θ b2 ⇒ (a1 + a2) θ (b1 + b2) ∧ (a1a2) θ (b1b2)

For a congruence relation on an IL one requires, in addition, that

a θ b ⇒ a′ θ b′

The congruences of L form a complete lattice under inclusion. For each quotient
a/b there is a smallest congruence θ(a/b) containing a/b. A congruence θ is minimal
if the identity relation is the only congruence properly contained in θ. A lattice
resp. an IL is subdirectly irreducible if it has a unique minimal congruence relation,
i.e. a smallest congruence relation distinct from the identity relation.

Proposition 8.1. Let L be a modular lattice.

(i) Any congruence relation θ on L is uniquely determined by the set Q(θ) of
quotients in θ: a θ b iff (a + b)/(ab) ∈ Q(θ).

(ii) If Q is a set of quotients of L then Q = Q(θ) for some congruence relation
θ if and only if the following hold: a/(ab) ∈ θ iff (a + b)/b ∈ θ; c/d ∈ θ if
a ≥ c ≥ d ≥ b and a/b ∈ θ; a/b ∈ θ if a/c ∈ θ and c/b ∈ θ.

(iii) If L is atomic then L is subdirectly irreducible iff L(PL) is irreducible.

Proof. If a θ b then ab θ aa = a = a + a θ a + b whence ab θ a + b. The converse is
obvious as is the necessity of the conditions in (ii). Conversely, 10.2 and 10.3 in [4]
combine to prove that the conditions are sufficient. (iii) is [4, 13.2]. �

Corollary 8.2. In an atomic CML resp. CMIL any proper congruence relation
contains a minimal one and any minimal congruence relation is generated by a
quotient p/0 where p is an atom.

Proof. Lemma 3.1. �

Corollary 8.3. In any modular lattice M

xµ y iff dim(x + y)/(xy) < ℵ0

defines a congruence relation and it holds

xµ y iff dim z/x < ℵ0 and dim z/y < ℵ0 for some z ≥ x, y
iff dim x/u < ℵ0 and dim y/u < ℵ0 for some u ≤ x, y

Proof. Prop.8.1(ii) applies to the set of quotients x/y with dim x/y < ℵ0. The
equivalent descriptions are immediate by modularity. �

9. Subdirect decomposition

Proposition 9.1. An orthogeometry (P,⊥) is irreducible if and only if the lattice
L(P,⊥) is subdirectly irreducible; it is an irreducible dual pair if and only L(P,⊥)
is subdirectly irreducible as a IL but subdirectly reducible as a lattice.
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Proof. If P is irreducible then the lattices L(P,⊥) and L(P ) are subdirectly irre-
ducible since any two points are perspective. If the lattice L(P,⊥) is subdirectly
irreducible then so is L(P ) by Corollary 8.2 and P is irreducible by Prop.8.1(iii).

If (P,⊥) is an irreducible dual pair, given points p 6= q, either p, q are perspective
or there is r such that r⊥ 6≥ q and r = p or r perspective to p. But then the pairs
p/0, r/0, 1/r⊥, and q/0 all generate the same congruence relation of the IL. Thus,
there is a unique minimal congruence relation and the IL L(P,⊥) is subdirectly
irreducible. In view of the first claim, L(P,⊥) is subdirectly reducible as a lattice.

Conversely, assume that the CMIL has unique minimal congruence µ and con-
sider the decomposition according to Prop.1.4 into (Pi,⊥i) (i ∈ I). If p ∈ Pi and
q ∈ Pj with i 6= j then µ = θ(p/0) = θ(q/0) by Lemma 8.2. On the other hand, by
Corollary 7.1 there is a surjective homomorphism πi : Q(P,⊥) → Q(Pi,⊥i) given
by πiX = X ∩ Pi and a θ b iff πia = πib defines a congruence relation θ on the
CMIL L(P,⊥) such that q/0 ∈ θ but p/0 6∈ θ. By uniqueness of µ it follows µ ⊆ θ,
a contradiction. Thus, |I| = 1. (P,⊥) must be a dual pair since the lattice L(P,⊥)
would be subdirectly irreducible, otherwise. �

10. Preliminaries: Representations

For the following compare [4, Thm.13.1]. The proof is an easy consequence of
modularity.

Lemma 10.1. Let M be a modular lattice with 0, 1 and a, b, c ∈ M such that b =
c⊕ ab. Then for any p ∈ PM such that p ≤ a + b, p 6≤ a, and p 6≤ b there are atoms
q ≤ a and r ≤ c such that p, q, r are collinear, namely q = a(p + c), r = c(p + a).
Moreover, a ⊕ d = 1 for every complement of a + b in [c, 1] and q = a(p + d) and
r = d(p + a).

A representation of a 0-1-lattice L consists of a projective geometry P and a
0-1-lattice embedding η : L → L(P ). Given a 0-lattice homomorphism φ : L → M
and a subset Q of PM we say that

Q is L-φ-closed if (φa)(p + φd) ∈ Q for all p ∈ Q and a, d ∈ L
such that p 6≤ φd, ad = 0, and a + d = 1
Q is L-φ-dense if for each c > 0 in L there is p ∈ Q with p ≤ φc.

Of course, PM is L-φ-closed for any 0-lattice homomorphism φ : L → M . If φ is
the identity map we speak just of L-closed and L-dense.

Lemma 10.2. Let L be a CML, M a modular lattice, φ : L → M a 0-lattice
homomorphism, and Q an L-φ-dense and L-φ-closed subspace of PM with q ≤ φ1
for all q ∈ Q. Then one obtains a representation

η : L → L(Q) with ηa = {p ∈ Q | p ≤ φa}.

Proof. We may assume φ1 = 1M . Clearly, η is a 0-1-preserving meet homomor-
phism. Consider p ≤ η(a + b). Nothing is to be done if p ≤ φa or p ≤ φb. Choose
c such that b = c ⊕ ab (whence ac = 0) and d ≥ c as a complement of a. Since
these relations are preserved under φ, by Lemma 10.1 there are collinear p, q, r in
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P with q = (φa)(p + φd), r ≤ φc ≤ φb, and r = (φd)(p + φa) whence q, r ∈ Q by
L-φ-closedness. Thus p ∈ ηa + ηb in all cases. Therefore, η is a homomorphism. If
a < b in L, choosing a complement c of a in [0, b] we have c > 0 and some p ≤ φc
in Q by L-φ-density. It follows p ≤ φb and p 6≤ φa whence ηa < ηb. �

Corollary 10.3. (Frink). Every CML, L, admits a representation.

Proof. Choose M as the lattice of all filters of L, ordered by dual inclusion, and
P = PM . Considering L embedded into M via φa = {x ∈ L | x ≥ a}, PM is
L-dense due to the Ultrafilter Theorem [12, Lemma 8.5.5]. �

A geometric representation of an MIL, L, is a 0-1-lattice representation η : L →
L(P ) where (P,⊥) is an orthogeometry such that

ηa′ = (ηa)⊥ for all a ∈ L,

i.e. η : L → Q(P,⊥) is an embedding. In particular, each ηa is closed and η : L →
Lc(P,⊥) is an embedding, too.

Lemma 10.4. Each atomic CMIL, L, has the geometric representation

ε : L → G(L), εa = {p ∈ P | p ≤ a}

Proof. ε is a lattice representation by Lemma 10.2. Clearly, εa′ ≤ (εa)⊥. Consider
p ⊥ εa, i.e. p ≤ q′ for all q ≤ a. Assume p 6≤ a′. Since L is also coatomic, there is
some coatom h such that h ≥ a′ and h 6≥ p. With q = h′ ∈ P it follows q ≤ a and
p 6≤ q′, a contradiction. �

Proof. Cor.1.5. In Lemma 10.4 one has ε(Lfin) = L(P,⊥)fin and this implies
ε(Lf) = L(P,⊥). The second claim follows directly from Prop.9.1 and Lemmas
10.4 and 8.2. �

Proposition 10.5. Every CMIL admits a geometric representation in some dual
pair.

Proof. By Cor.10.3 every CML, L admits an embedding φ : L → M1 into some
atomic and coatomic CML M1. Let M2 be the dual and α = id. Define εx =
(φx, φx′) and apply Lemmas 10.4 and 7.2. �

11. Atomic extension

Proof. Thm.2.1. Given any subset L of M = L(P ), C = Lc(P,⊥), and the congru-
ence µ of Cor.8.3 on M we define

L̃ = {x ∈ C | xµ u for some u ∈ L}

Consider the conditions

(a) ab ∈ L̃ for all a, b ∈ L

(b) a + b ∈ L̃, a⊥ + b⊥ ∈ C for all a, b ∈ L

(c) a⊥ ∈ L̃ for all a ∈ L

We claim that
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(a) implies that L̃ is meet-closed in M and C, simultaneously

(b) implies that L̃ is join-closed in M and C, simultaneously

(c) implies that L̃ is closed under x 7→ x⊥

This is basically Lemma 2 of [2]. For the proof observe that

L̃ = {x ∈ C | ∃a ∈ L. ∃y, z ∈ C. y ≤ z, a, x ∈ [y, z] and dim z/y < ℵ0}

In particular,

x, y, z ∈ C, a ∈ L̃, y ≤ z, a, x ∈ [y, z], and dim z/y < ℵ0 jointly imply x ∈ L̃

Indeed, for xµ a in C we have also y = xa and, by Lemma 4.1(ii), z = x + a in C
and y µ z. Assuming (c) and a ∈ L, with Lemma 4.1(i) we conclude y⊥ µ z⊥ whence

x⊥ µ a⊥ and so x⊥ ∈ L̃.
Now, consider y ≤ a ≤ z and v ≤ b ≤ w in C, dim z/y < ℵ0, and dim w/v < ℵ0.

Let x ∈ [y, z] and u ∈ [v, w]. By the congruence properties of µ one has xu µ ab

and x + u µ a + b. By Lemma 4.1(ii) x, u, xu ∈ C. Thus xu ∈ L̃ if a, b ∈ L and (a).
Moreover x + u ∈ C provided that x ≥ a, u ≥ b and a + b ∈ C.

Now suppose (b) and a, b ∈ L. We show y + v ∈ C by induction on dim a/y +
dim b/v. In doing so, by Lemma 4.1(ii) we may assume that we have y ≺ t ≤ a
with t and t+v in C. Considering the sublattice of M generated by y, t, v two cases
are possible: firstly, y + v = t + v with nothing left to do; secondly, y + v ≺ t + v.
If we had v⊥y⊥ ≤ t⊥ then by modularity v⊥ + t⊥ < v⊥ + y⊥. Now a⊥ ≤ t⊥ ≤ y⊥,
b⊥ ≤ v⊥ and a⊥ + b⊥ ∈ C by hypothesis. Thus, as shown above, we would have
v⊥ + t⊥ and v⊥ + y⊥ in C. It would follow vt = (v⊥ + t⊥)⊥ < (v⊥ + y⊥)⊥ = vy,
a contradiction. So we may choose p ∈ P such that p ≤ v⊥y⊥, p 6≤ t⊥. Then
p⊥ ≥ y + v, p⊥ 6≥ t + v. Consequently, y + v = (t + v)p⊥ ∈ C. With Lemma 4.1(ii)

it follows x + u ∈ C for all x ∈ [y, z], u ∈ [v, w] whence x + u ∈ L̃ since a + b ∈ L̃
by hypothesis.

Finally, we show by induction on dim[a, u]. that for any u ∈ L and u ≥ a µ u

there is b ∈ L̃ such that u = a⊕ b. Namely, assuming u = a⊕ b and c a lower cover
of a, choose an atom p such that p ≤ a, p 6≤ c. Then, by modularity u = c⊕ (b+p).
It follows that for u ⊕ v = 1 in L and a µ u there is v ≤ c µ v such that 1 = ua ⊕ c.
Indeed, choose u = ua ⊕ x in L̃ and put c = v + x. Dually, there is v µ d ≤ v such
that (a + u) ⊕ d = 1. Now, choose b as a complement of ac + d in [d, c]. Then
a + b = a + ac + d + b = a + c = 1. By modulartiy, ac + d = c(a + d) whence ab = 0

by duality. This shows that L̃ is complemented.
Given the geometric representation η : L → Q(P,⊥) = M , identify L with η(L).

Then (a), (b), and (c) are satisfied, obviously, so that L̃ is an CMIL. Clearly,

G(L̃) = (P,⊥). �

Corollary 11.1. A CMIL admits a proper geometric representation if and only if
it admits an atomic CMIL-extension which is a subdirect product of factors which
are subdirectly irreducible as lattices.

Proof. This follows from Thms.1.4, 1.5, and 2.1. �
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12. Preliminaries: Model Theory

Cf. [12, Ch.1,2,5,8]. Given an infinite set of variables for elements (with specified
sort), the atomic formulas are of the form t1 = t2 or R(t1, . . . , tn) where R is a
relation symbol and the ti are terms in the operation symbols. The formulas of the
first order language are then built using the propositional junctors ∧,∨,¬,→ and
quantifiers ∀x resp. ∃x. A sentence if a formula without free variables. Considering
a structure, A, with relations and operations corresponding to the given symbols one
defines, in the obviuos way, validity in A of a formula σ(a1, . . . , an) with elements
ai ∈ A substituted for the free variables. A set of sentences is valid in a class C if
each σ ∈ Σ is valid in all A ∈ C. A class C of structures is axiomatic if there is a set
Σ of sentences, a set of axioms for C, such that a structure A belongs to C if and
only if Σ is valid in A. C is then the model class of Σ.

Given structures A, B, a map φ : A → B is an elementary embedding if for any
formula σ(x1, . . . , xn) and any ai ∈ A one has σ(a1, . . . , an) valid in A if and only
if σ(φa1, . . . , φan) is valid in B.

We rely also on the following concept of saturation. Given a first order structure,
A, add all elements of A as constants (also called parameters) and consider sets
Σ = Σ(x1, . . . , xn) of first order formulas with free variables among x1, . . . xn. Σ is
said to be realized in A if there are a1, . . . , an in A such that σ(a1, . . . , an) holds in
A for all σ ∈ Σ. Call Σ finitely realized in A if each of its finite subsets is realized in
A. Finally, call A ω-saturated over a subset B if every Σ which is finitely realized
in A and contains only finitely many constants not in B is also realized in A.

Proposition 12.1. For every first order structure B there is an elementary exten-
sion A which is ω-saturated over B.

Proof. According to [12, Cor.10.2.2] one may choose A as an elementary extension
of B which is κ-saturated for some infinite cardinal κ > |B|. �

Observe that 2-sorted structures can be considered as 1-sorted, assuming the
sorts to be disjoint and introducing predicates for the sorts.

Proposition 12.2. Geometric representations ε : L → Q(P,⊥) of MILs may be
equivalently described as 2-sorted structures (L, P,⊥,≤) with underlying sets L and
P , carrying the structure of an MIL and an orthogeometry, respectively, and a
relation ≤ between points and lattice elements such that

εa = {p ∈ P | p ≤ a}.

If G is an axiomatic class of orthogeometries then the associated class of such
structures is axiomatic, too. If (L∗, P ∗,⊥∗,≤∗) is an elementary extension of
(L, P,⊥,≤) then (P ∗,⊥∗) is an elementary extension of (P,⊥).

Proof. E.g. the fact that εa ∈ L(P ) can be expressed by the axiom

∀p∀q∀r. κ(p, q, r) ∧ p ≤ a ∧ q ≤ r ⇒ r ≤ a

�
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13. Representation of homomorphic images

Theorem 13.1. If the CMIL, L, has a representation in the orthogeometry (P,⊥)
then every homomorphic image has a representation in a subquotient V/U of some
elementary extension of (P,⊥) where V is closed and U = V ∩ V ⊥.

Lemma 13.2. Let L, M be CMLs, L a 0-sublattice of M , θ a congruence on L,
and F = {x ∈ L | x θ 1}. Then F is a filter of L and for a ≥ b in L one has a θ b if
and only if b = ac for some c ∈ F . Also, the p in P with p ≤ x for all x ∈ F form
an L-closed subspace of PM .

Proof. Clearly, F is a filter and Q is a subspace. Given a ≥ b choose c as a
complement of a in [0, b]. Then a θ b iff 1 θ c iff c ∈ F . Now, consider p ∈ Q,
p ≤ a + d, p 6≤ d, ad = 0, and a + d = 1. Let q = a(p + d) and r = d(p + a). By
Lemma 10.1, p, q, r are collinear. Consider x ∈ F , so p ≤ x. Let

y = (a + xd)(d + x) ≥ q, z = (d + xa)(a + x) ≥ r

By modularity, x, y, z coincide or are the atoms of a sublattice of height 2. In
particular, all quotients of that sublattice are in θ whence z ∈ F . From p ∈ Q it
follows p ≤ z and thus q ≤ p + r ≤ z. Hence q ≤ yz ≤ x and q ≤ x. This holds for
all x ∈ F whence q ∈ Q. �

For the proof of Thm.13.1, consider a geometric representation (L, P0,⊥0,≤0)
in the sense of Prop.12.2. Let (L∗, P,⊥,≤) be an elementary extension which is ω-
saturated over (L, P0). Such exists by Prop.12.1. Let θ be a nontrivial congruence
on L with associated filter F = {a ∈ L | a θ 1} and ideal I = {a ∈ L | a θ 0} =
{a′ | a ∈ F}. Observe that F ∩ I = ∅. Consider L a sublattice of L(P ) such
a =

∑
{p ∈ P | p ≤ a} and a′ = a⊥. Define

εF = {p ∈ P | p ≤ a for all a ∈ F}, εI = {p ∈ P | p ≤ a for some a ∈ I}

U = εF ∩ εI, Q = εF \ U.

Claim 13.3. εF ∈ Lc(P,⊥), U = εF ∩ (εF )⊥, and εF is an L-closed subspace of
P .

Proof. εI ∈ L(P ), obviously and εF ∈ Lc(P,⊥) as the intersection of the closed
subspaces εa (a ∈ F ). εF is L-closed by Lemma 13.2. Consider p ∈ εI and q ∈ εF .
Then p ≤ a for some a ∈ I and q ≤ a′ since a′ ∈ F . Thus, q ≤ p⊥ and it follows
εF ⊥ εI.

We will show U = εF ∩ (εF )⊥. Consider p ∈ εF , p 6∈ εI. Then, given a ∈ F we
have p 6≤ a′, i.e. a 6≤ p⊥ and there is q ∈ P with q ≤ a and q 6≤ p⊥. Consider the
following set of first order formulas (where x is a variable for elements of sort P )

Σp(x) = {x 6⊥ p} ∪ {x ≤ a | a ∈ F}

For a finite subset Φ(x) of Σp(x) there is finite C ⊆ F such that C contains all
constants occuring in Φ(x). Then, as observed, we may choose q ≤ a =

∏
C ∈ F ,

q 6⊥ p so that q realizes Φ(x). By saturation, there is q realizing Σp(x), i.e q ∈ εF
and q 6⊥ p. �
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Claim 13.4. η : L/θ → L(εF ) with η(a/θ) = {p ∈ εF | p ≤ a} is a well defined
0-1-lattice homomorphism.

Proof. If a ≥ b and a θ b then by Lemma 13.2 b = ac for some c ∈ F whence
a ≥ p ∈ εF implies p ≤ b. Thus, η is well defined. Perservation of meets and 0-1
is obvious. The proof that η preserves joins follows that of Lemma 10.2. Given
a, b ∈ L choose c, d as in Lemma 10.1. Consider p ∈ η((a + b)/θ), p 6∈ η(a/θ) and
p 6∈ η(b/θ). Then p, a(p + d), and d(p + a) ≤ c are collinear points in P . εF being
L-closed, these points are in εF , whence p ∈ η(a/θ)+η(c/θ) ⊆ η(a/θ)+η(b/θ). �

Claim 13.5. For any a 6∈ I there is p ∈ Q with p ∈ η(a/θ).

Proof. Given c ∈ F we have aθac and so ac 6∈ I. In particular, 0 < ac 6≤ d for all
d ∈ I and there is p ∈ P0 with p ≤ ac. Thus, since F is closed under finite meets,
for any finite C ⊆ F and D ⊆ I we have p ∈ P0 such that p ≤ ac for all c ∈ C and
p 6≤ d for all d ∈ D. In other words, for a variable x of sort P , the set

Φa(x) = {x ≤ ac | c ∈ F} ∪ {x 6≤ d | d ∈ I}

of formulas is finitely realized in (L, P,≤). By saturation, it is realized, i.e. we get
p ∈ Q with p ≤ a. Thus p ∈ η(a/θ). �

Define
γ(a/θ) = U + η(a/θ)

and consider the subquotient geometry εF/U .

Claim 13.6. γ : L/θ → L(εF/U) is a 0-1-lattice representation.

Proof. Preservation of joins and 0-1 follows from Claim 13.4, immediately. Consid-
ering meets let X ∈ γ(a/θ) ∩ γ(b/θ). By definition we have

X = p + U = q + U with some p, q ∈ Q, p ≤ a, q ≤ b

In particular, p ≤ q + r for some r ∈ U , i.e r ≤ c for some c θ 0. It follows b θ b + c.
Now p ≤ b + c, whence p ∈ η((b + c)/θ) = η(b/θ), i.e. p ≤ b. Thus p ≤ ab and
X ∈ γ((ab)/θ) = γ(a/θ · b/θ). This shows that γ is a 0-1-lattice homomorphism
which is injective by Claim 13.5 and Lemma 10.2. �

.

Claim 13.7. εF/U is an orthogeometry according to Lemma 6.2.

Proof. If p ∈ U then p ≤ a′ for some a ∈ F since p ∈ εI. If q ∈ εF then q ≤ a,
hence q ≤ a = a′′ = (a′)⊥ ≤ p⊥ and q ⊥ p. This proves U ⊆ (εF )⊥. We will be
done if we show that Q is non-degenerate. So, let p ∈ Q and p ≤ p⊥. Consider
a ∈ F . Then p ≤ a and p 6≤ a′ ∈ I, whence a = a⊥⊥ 6≤ p⊥ and ap⊥ ≺ a. Hence
there is va ≻ p in L(P ) with a = va + ap⊥ and p = vap⊥. Choose qa ∈ P with
qa + p = va. Then

qa 6⊥ p, qa ≤ a, qa 6≤ a′

since qaa′ ≤ qap⊥ ≤ qaap⊥ ≤ qap = 0. Now, for fixed p and variable x of sort P
consider the following set of first order formulas

Σp(x) = {x 6⊥ p} ∪ {x ≤ a | a ∈ F} ∪ {x 6≤ b | b ∈ I}
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For a finite subset Φ(x) of Σp(x) we have finite C ⊆ F and D ⊆ I such that C ∪D
contains all constants from L occuring in Φ(x). Then with

a =
∏

C(
∑

D)′

the above qa realizees Φ(x). In other words, Σp(x) is finitely realized in the structure
(L, P,≤). By saturation, Σp(x) is realized by some q ∈ P . But then q 6≤ p⊥ and
q ∈ Q. �

Claim 13.8. γ : L/θ → L(εF/U) is a geometric MIL-representation.

Proof. In view of Claims 13.6 and 13.7 we are left to show that

U + η(a′/θ) = γ(a′/θ) = γ(a/θ)⊥ = U + η(a/θ)⊥

Recall that a′ = a⊥. Thus, for any p ∈ Q, if p ∈ η(a′/θ) then p ⊥ q for all q ∈ η(a)
proving ‘⊆’ and we are left to prove ‘⊇’. Consider fixed a ∈ L and p ∈ Q with
p ⊥ η(a/θ). Now, for given b ∈ F assume p 6≤ a′ + b′. Then ab = (a′ + b′)′ > 0
and there is some q ∈ P with q ≤ ab and q 6⊥ p. Namely, otherwise we had
p ≤ (ab)⊥ = (ab)′ = a′ + b′. Thus, with variable x of sort P ,

Ψa,p(x) = {p 6≤ a′ + b′ → (x ≤ ab ∧ x 6⊥ p) | b ∈ F}

is finitely realized. By saturation we have q ∈ P such that

p 6≤ a′ + b′ implies q ≤ ab and q 6⊥ p for all b ∈ F

Now, assume p 6≤ a′ + b′ for all b ∈ F . It follows that q ≤ ab for all b ∈ F and
q 6⊥ p. But also q ∈ εF and q ≤ a so q ∈ η(a/θ) whence p ⊥ q, a contradiction.

Hence p ≤ a′ + b′ for some b ∈ F , i.e. p ≤ a′ + c for some c ∈ I. We have p 6≤ c
by definition of Q and are done if p ≤ a′. So assume p 6≤ a′. By Lemma 10.1 there
are collinear points p, q, r in P with q ≤ a′ and r ≤ c. Since εF is L-closed (Claim
13.3), q and r have to belong to εF , Thus, q ∈ η(a′/θ), r ∈ U , and p ∈ γ(a′/θ). �

14. Preliminaries: Universal Algebra

Cf.[8, Ch.1,2] and [12, Ch.1,2,4,8]. Assume that a first order language is given
and consider appropriate structures, only. Observe that any formula σ(x1, . . . , xn)
defines an n-ary relation on A: the set of all (a1, . . . , an) such that σ(a1, . . . , an) is
valid in A.

Given structures A, B, a map φ : A → B is an homomorphism (embedding) if for
any atomic formula σ(x1, . . . , xn) and any ai ∈ A one has σ(φa1, . . . , φan) valid in
B if (if and only if) σ(a1, . . . , an) is valid in A. If the identity map φ : A → B is an
embedding and if fB(a1, . . . , an) ∈ A for all fundamental operations fB of B and
ai ∈ A, then A is a substructure of B. A is a directed union of substructures Ai

(i ∈ I) if A =
⋃

i∈I Ai and if for all i, j ∈ I there is k ∈ I such that Ai ∪ Aj ⊆ Ak.
Given structures Ai (i ∈ I) and an filter U on I there is a unique equivalence

relation on
∏

i∈I Ai with classes (ai | i ∈ I)/U forming a well defined structure A
such that for any atomic formula σ(x1, . . . , xn) and ak = (ak(i) | i ∈ I)/U ∈ A,
σ(a1, . . . , an) is valid in A if and only if {i ∈ I | σ(a1(i), . . . , an(i)) valid in Ai} ∈ U .
This is called the U-reduced product A =

∏
U Ai cf. [12, Ch.8.5] or [8, Ch.1.2.2].
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If U is the set of all subsets of I then A is the direct product
∏

i∈I Ai. If U is an
ultrafilter then A is an ultraproduct.

Given a class C of structures, we denote by H C, P C, Pu C, S C, Se C, and L C the
classes of all homomorphic images, direct products, ultraproducts, substructures,
elementary substructures, and directed unions of members of C.

Proposition 14.1. For any ultrafilter U the following hold

(i) Given ak = (ak(i) | i ∈ I)/U ∈
∏

U Ai, σ(a1, . . . , an) is valid if and only if
{i ∈ I | σ(a1(i), . . . , an(i)) valid in Ai} ∈ U .

(ii) If Φ(x) is a set of formulas in free variable x, then {a ∈
∏

U Ai | Φ(a)} ∼=∏
U{ai ∈ Ai | Φ(ai)} w.r.t. all definable relations.

(iii) C is axiomatic if and only if Pu C ⊆ C and Se C ⊆ C.
(iv) If B ∈ Se A then A ∈ Se Pu B.
(v) Pu Pu C ⊆ Pu C ⊆ H PC and L C ⊆ S Pu C.
(vi) Consider axiomatic classes L, G, and C are where C consists of 2-sorted

structures (L, P ) with L ∈ L and P ∈ G. If (L, P ) =
∏

U (Li, Pi) then
L ∼=

∏
U Li and P ∼=

∏
U Pi.

Proof. Ad (i): This is  Loś’ Theorem [12, Thm.8.5.3]. (ii) follows, immediately. Ad
(iii): See Cor.8.5.4 and 8.5.13 [12]. Ad (iv): A and B are elementarily equivalent
hence they have isomorphic ultrapowers A∗ and B∗ (cf. [12, Thm.8.5.10]; also,
A has a canonical elementary embedding into A∗ [12, Cor.8.5.4]. Ad (v): See [8,
Thm.1.2.12] an observe that (a(i) | i ∈ I) 7→ (a(i) | i ∈ I)/U is a homomorphism.
Ad (vi): This follows from (ii), considering L and P as predicates. �

15. U-quasivarieties of orthogeometries

Given a class G of orthogeometries, denote by UG and Sg G the class of all
orthogonal disjoint unions and subgeometries, resp., of members of G. Call G a
U-quasivariety if it is closed under these operators.

Lemma 15.1. The class of all projective geometries P resp. orthogeometries (P,⊥)
with designated subset Q, where Q is a proper projective subgeometry of P resp.
subgeometry of (P,⊥), is an axiomatic class. In particular, Se G ⊆ Sg G for any
class G of orthogeometies.

Proof. Conditions (i) and (iii) of the definition are first order, obviuosly. Concerning

(ii), define the formula αQ
0 (x) as x = x and, recurively, αQ

n (x, x1, . . . , xn) as

αQ
n−1(x, x1, . . . , xn−1) ∨ ∃y. Q(y) ∧ αQ

n−1(y/x, x1, . . . , xn−1) ∧ κ(x, y, xn)

where Q is a new unary predicate symbol interpreted as the subset Q. Then
αQ

n (x, x1, . . . xn) holds for x, x1, . . . , xn in Q if and only if x ∈ CQ{x1, . . . , xn}.
Similarly, we have αP

n (x, x1, . . . , xn). Then (ii) is eqivalent to the following set of
axioms (n = 1, 2 . . .)

∀x∀x1 . . . ∀xn. Q(x) ∧
n∧

i=1

Q(xi) ∧ αP (x, x1, . . . , xn) ⇒ αQ(x, x1, . . . , xn)
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Se G ⊆ Sg G follows with Prop.14.1(iii). �

Theorem 15.2. Every U-quasivariety of orthogeometries is an axiomatic class.
VG = U Sg Pu G = Sg U Pu G is the smallest U-quasivariety containing G.

Proof. By Lemma 7.1

(1) G(
∏

i∈I

L(Pi,⊥i)) ∼=
⋃

i∈I

⊥
(Pi,⊥i)

Similary, by Prop.14.1(ii), for ultraproducts

(2) G(
∏

U
L(Pi,⊥i)) ∼=

∏
U

(Pi,⊥i).

Obviously, any subgeometry Q of an orthogonal disjoint union
⋃⊥

i (Pi,⊥i) is an

orthogonal disjoint union of subgeometries and vice versa, namely Q ∼=
⋃⊥

i (Q∩Pi).
In view of Lemma 15.1 and Prop.14.1(i),(ii), any ultraproduct of subgeometries is
isomorphic to a subgeometry of an ultraproduct.

Observe that an orthogonal disjoint union
⋃

j

⊥
(Qj ,⊥j) can be viewed as given by

an equivalence relation θ on P the classes p[θ] of which are the Qj . Thus, a member
of Pu UG may be understood as an ultraproduct

∏
U(Pi,⊥i, θi) which is again such

structure (P,⊥, θ). Given p = (p(i) | i ∈ I)/U ∈ P , again by Prop.14.1(ii), the
θ-class p[θ] of p consists of the q ∈ P such {i ∈ I | q(i) θi p(i)} ∈ U and one obtains

p[θ] ∼=
∏

U
pi[θi]

which proves Pu UG ⊆ S Pu G. Finally, U UG = UG, Sg Sg G = Sg G, obvioulsy, and
Pu Pu G = Pu G by Prop.14.1(v). It follows that U Sg Pu G = Sg U Pu G and that this
is a U-quasivariety. By Lemma 15.1, and Prop.14.1(iii), any U-quasivariety is an
aximomatic class. �

16. ∃-varieties of CMILs

Cf. [11]. Consider a first order language with operations symbols + and · for
joins and meets, constants 0 and 1, and additional operation symbols. Let C0 denote
the class of all such structures which are modular lattices w.r.t. + and ·, with 0, 1
and, moreover, complemented - but complementation ist not necessarily considered
as an operation.

Given a class L ⊆ C0, we denote by S∃ L the class of all complemented members
of SL. If HL, PL, and S∃ L are subclasses of L then L is called an ∃-variety (a
similar approach is possible in the sectionally complemented case). Define

V∃ L = H S∃ PL

Proposition 16.1. Given any class L ⊆ C0

(i) V∃ is the smallest ∃-variety containing L.
(ii) L ∈ H S∃ Pu L for any subdirectly irreducible L ∈ V∃ L.

(iii) Any ∃-variety V ⊆ C0 is an axiomatic class.

Proof. (i) and (ii) are [11, Prop.10(i),(iii)]. (iii) follows with Prop.14.1(iii). �
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Given any class V of CMILs, let G(V) consist of all orthogeometries (P,⊥) with
L(P,⊥) ∈ V . Given a class G of orthogeometries, let L(G) denote the class of CMILs,
L, for which there is (P,⊥) ∈ G and a geometric representation η : L → Q(P,⊥).

Theorem 16.2. If V is an ∃-variety of CMILs then G(V) is a U-quasivariety of
orthogeometries.

Proof. By Thm.1.3 and Prop.14.1(v)

L(S G(V)) ⊆ S∃ Pu V .

From (1) and (2) in the proof of Thm.15.2 and Cor.1.5 it follows L(U G(V)) ⊆ V
and L(Pu G(V)) ⊆ V . �

Theorem 16.3. L ∈ V∃ Lf for any atomic CMIL, L.

Proof. For a similar construction see [1]. By Prop.12.1 there is an elementary
extension L∗ of Lf which is ω-saturated over Lf . In particular, L∗ is a CMIL, too,
having Lf as a subalgebra. For x ∈ L∗ and a ∈ L define

x ∼ a ⇔ ∀p ∈ PL ∀h ∈ HL ((p ≤ a ⇔ p ≤ x) ∧ (h ≥ a ⇔ h ≥ x))

and observe that

x ∼ a ⇔ ∀p ∈ PL ∀h ∈ HL ((p ≤ a ⇒ p ≤ x) ∧ (h ≥ a ⇒ h ≥ x))

Indeed, if x ≤ h for all h ∈ HL with h ≥ a then also p ≤ x implies p ≤ h for all
these h whence p ≤ a by the dual of Lemma 3.1. Define

S = {x ∈ L∗ | ∃a ∈ L. x ∼ a}

We claim that S ∈ S∃ L∗ and L ∈ H S. Consider x ∼ a and y ∼ b. If p ∈ PL and
p ≤ a + b then by Lemma 10.1 there are q, r ∈ PL such that p ≤ q + r and q ≤ a,
r ≤ b. If follows q ≤ x, r ≤ y, and p ≤ x + y. If h ∈ HL and h ≥ a + b then h ≥ a
and h ≥ b whence h ≥ x and h ≥ y which yields h ≥ x + y. Thus, x + y ∼ a + b
and, by duality, xy ∼ ab. Also, x′ ∼ a′ since p ∈ PL iff p′ ∈ HL and p ≤ a′ iff
a ≤ p′ iff x ≤ p′ iff p ≤ x′.

Given x ∼ a we have to find y ∈ S with x⊕ y = 1. Choose b ∈ L with a⊕ b = 1.
Given u ∈ Lfin and v ∈ Lcofin with u ≤ b ≤ v there is y in the CML L∗ such that
u ≤ y ≤ v and x ⊕ y = 1. Indeed, choose y as a complement of v(x + u) = u + xv
in [u, v]. This implies that the following set Φ(y) of formulas in parameters x ∈ L∗

and p ∈ PL, h ∈ HL

{x ⊕ y = 1} ∪ {p ≤ y | b ≥ p ∈ PL} ∪ {h ≥ y | b ≤ h ∈ HL}

is finitely realized in L∗, whence realized in L∗ by some y. If follows y ∼ b, i.e. y
is a complement of x in S.

Again by Lemma 3.1, φx = a iff x ∼ a is a well defined map φ : S → L and a
homomorphism according to the above observations. To show that φ is surjective,
given a ∈ L consider the set Ψ(x) of formulas given as

{p ≤ x | a ≥ p ∈ PL} ∪ {h ≥ x | a ≤ h ∈ HL}
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Each finite subset ∆(x) of Ψ(x) is realized by the join u of all p ∈ PL occuring in
∆. Thus, Ψ(x) is realized by some x ∈ L∗. By construction, x ∼ a whence x ∈ S
and φx = a. �

Proof. Thm.2.2. Ad (i). Clearly, S∃ L(G) ⊆ L(G) and, by Lemma 7.1, P L(G) ⊆
L(UG). By Thm.13.1 and Lemma 15.1 one has H L(G) ⊆ L(Se Pu G) ⊆ L(Sg Pu G).

Ad (ii). This is immediate by Thm.2.1. Ad (iii). Consider L0 ∈ L(G). By
Thm.2.2(iii) L0 admits an atomic extension L ∈ L(G). By Thm.16.3 L ∈ V∃ Lf .
In view Thm.1.1 and Prop.1.2, Lf is a directed union of finite dimensional comple-
mented subalgebras Li (i ∈ I) whence Lf ∈ S Pu{Li | i ∈ I} by Prop.14.1(v). Since
Lf is complemented, it follows Lf ∈ S∃ Pu{Li | i ∈ I} and L0 ∈ V∃{Li | i ∈ I}. On
the other hand, Li ∈ L(G) by (i) and so Li = L(G(Li) with G(Li) ∈ G<ω. �

Proof. Cor.2.3. Assume that V = V∃ V<ω and put G = G(V) which is a U-
quasivariety by Thm.16.2. Then V<ω = L(G<ω) and it follows V ⊆ L(G) since this
is an ∃-variety by Thm.2.2(i). The converse inclusion follows from Thm.2.2(iii). �

Corollary 16.4. (i) V∃ L(G) ⊆ L(U Sg Pu G) for any class G of orthogeome-
tries and L ∈ L(Sg Pu G) for any subdirectly irreducible L ∈ V∃ L(G).

(ii) Let L consist of CMILs which have proper representations, e.g. atomic
CMILs which are subdirecty irreducible as lattices. Then every member of
V∃ L admits a proper geometric representation.

Proof. The first claim follows from Thms.15.2 and 2.2(i). If L ∈ V∃ L(G) is subdi-
rectly irreducible, then by Prop.16.1(ii), Prop.14.1(vii) applied to structures as in
Prop.12.2, Thm.2.1, and Prop.14.1(v)

L ∈ H S∃ Pu L(G) ⊆ H S∃ L(Pu G) ⊆ H L(Pu G) ⊆ L(Se Pu Pu G) ⊆ L(Sg Pu G)

(ii) follows with Cor.7.3 Prop.11.1. �

17. Preliminaries: Logic

For the following we refer to [19, Ch.1,5] and [21, Ch.6]. A function f : N → N,
N the natural numbers, is recursive if and only if it can be computed by a Turing
machine. A set M ⊆ N is recursively enumerable if it is empty or the image of a
recursive function. M ⊆ N is recursive if its characteristic function is recursive.

Now, consider a first order language Λ with only finitely many operation and
relation symbols. One can effectively associate with each formula σ a natural
number ⌈σ⌉, its Gödel number, such σ 7→ ⌈σ⌉ is a bijection of the set Λ of all
sentences onto a recursive subset of N cf. [21, Ch.6.6]. We say that a set Γ of
sentences is recursive resp. recursively enumerable if its image is. Recursive sets of
sentences are also called decidable. According to Church’ Thesis, these are believed
to be exactly the sets admitting a ‘decision procedure’ for membership. A family
Γn (n ∈ N) is uniformly decidable if {τ(n, m) | m = ⌈σ⌉ for some σ ∈ Γn} is
recursive where τ is the ‘pair coding function’ τ(x, y) = 1

2
(x2 + 2xy + y2 + 3x + y).
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Λu consists of all universal sentences of the form ∀x1 . . .∀xn.σ where σ is a
quantifier free formula. Λeq ⊆ Λu consists of all equations or identities, i.e. where
σ is of the form t1(x1, . . . , xn) = t2(x1, . . . , xn) with terms ti(x1, . . . , xn).

A sentence α is a consequence of a set Γ of sentences if it is valid in all models
of Γ. Let C(Γ) denote the set of all consequences of Γ. The theory resp. the
equational theory of a class C of structures is decidable if the set of all sentences
resp. equations valid in C is decidable. A model class of a recursive axiom set is
recursively axiomatizable.

Proposition 17.1. (i) A subset Γ of a recursive set Σ is recursive if and only
if Γ and Σ \ Γ are both recursively enumerable.

(ii) If Γ is recursively enumerable and Σ recursive then Γ ∩ Σ is recursively
enumerable. If the family Γn (n ∈ N) is uniformly decidable then

⋃
n∈N

Γn

is recursively enumerable.
(iii) Any class with a recursively enumerable axiom set is recursively axiomati-

zable.
(iv) If Γ is recursively enumerable and Σ recursive, then C(Γ)∩Σ is recursively

enumerable.
(v) Λu and Λeq are recursive.

(vi) Consider axiomatic classes L = SL, G, and C are where C consists of 2-
sorted structures (L, P ) with L ∈ L and P ∈ G. Then the M ∈ L with
M ∈ S L for some (P, L) ∈ C form an axiomatic class PL(C). This class
is recursively axiomatizable if so are L and C.

Proof. Ad (i): Λ \ Σ is recursively enumerable by [19, Thm.5.II] whence also Λ \ Γ
by [19, Thm.5.XIII]. It follows that Γ is recursive, again with [19, Thm.5.II]. Ad
(ii): These are Thm.5.XIII and Cor.5.XI in [19]. Ad (iii): This is Craig’s trick cf.
[12, Exerc.5.1.3]. Ad (iv): By Gödel’s Completeness Theorem, C(Γ) is recursively
enumerable (cf. [21, 6.6] and (iii)). Now appyly (ii). Ad (v): This follows by
inspection of the definition of Gödel numbers cf. [21, 6.6]. Ad (vi): Given axiom
sets Γ for C and Θ for L define Σ = Λu ∩ C(Γ ∪ Θ). Now, PL(C) is closed under
substructures, obviously, and a PC′

∆-class in the sense of [12, Thm.5.5.5]. By the
proof given there, it is axiomiatized by Σ. If Γ and Θ are recursive then Σ is
recursively enumerable by (ii) and (iv) and PL(C) is recursively axiomatizable by
(iii). �

Consider a language with equality but no relation symbols. The appropriate
structures are then algebraic structures. A class V of such is a variety if it is closed
under H, S, and P. Define V C = HS P C.

Proposition 17.2. (i) A class V of algebraic structures is a variety if and
only it it is the model class of a set of equations.

(ii) V C is the smallest variety containing C. In particular, an equation is valid
in V C if and only if it is valid in C.

(iii) If a variety V is recursively axiomatizable then V is the model class of a
recursively enumerable set of equations.
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Proof. Ad (i) cf. [3, Thm.11.9]. (ii) follows with [3, Thm.9.5]. Ad (iii): This follows
with Prop.17.1(iv),(v). �

18. Equational theory of CMILs

Proof. Prop.2.4. Viewing representations as 2-sorted structures as in Prop.12.2 and
apply Prop.17.1(vi) one obtains axioms for the class of MILs having a representation
within G. Addition of ∀x∃y. x ⊕ y = 1 yields an axiom set for L(G). Conversely,
axioms for L(G) apply to the L(P,⊥) with (P,⊥) ∈ G and translate into axioms
for G. �

Proof. Cor.2.5. Prop.2.4 and Prop.17.2(iii) imply that the set Σ of identities valid
in Vα is recursively enumerable. By hypothesis and Prop.17.1(i), the set ∆n of
identities failing in Vα

n is decidable. Hence, ∆ =
⋃

n∈N
∆n is recursively enumerable

by Prop.17.1(ii). But, in view of Cor.2.3 Vα = V
⋃

n∈N
Vα

n and by Prop.17.2(ii) it
follows that ∆ is the complement of Σ. Thus, Σ is decidable by Prop.17.1(i). �
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