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ABSTRACT. We prove that every atoobe modular ortholatioe i o the varety genecated by s
finite dimensional membors,

1 Introduction

An orthelattice, abbreviated OL, is an algebra (L; +,-',0,1) where (L;+4,..0,1) is
a bounded lattice and ' : L — L is an orthocomplementation, e, = + 1 = 1,
-2 =0" and r < y implies ' < ', for all x.y € L. Since the last condition,
in the presence of the other two, is equivalent to DeMorgan's laws [z + )" = ="y
and (xy) = ="+ ¢), the class of ortholattices forms a variety. An OL, L, is an
orthomodular [attice, abbreviaved OML, iff it satisfies the identity y{zy + p") = xw.
This is a weak, or ‘orthogonal’, version of the modular law. An OML is a modulor
ortholattice, abbreviated MOL, iff it is modular. For background on these classes of

alpebras the reader is referred to [4], and for background on modular lattices to [2),
for example.

The height of a modular lattice is the length of any maximal chain in the lattice.
For our purposes this height i3 a non negative integer or oo, with n < oo for all

non negative integers n. In, [1], Bruns made the following conjecture [stated slightly
differently),

Eﬂﬂjﬂ-ﬂturﬂ 1 {Hfure.u' furejr_'r_'iurEJ. Fuery variety uf Mg which contoins a subdi-
rectly drreducible algebra of height greater than twe, contains o subdirectly irreducible
algebra of height 3.

A partial confirmation of Brunsg’ Conjecture is given in [3]. In this note we prove,
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Proposition 2 Every variety of MOLs which is generated by its atomistic members

i afready generated by ils fmitr! dirnensional members, raln

We present this result as motivation for the following strengthening of Bruns' Con-
jecture,

Conjecture 3 Every variety of MOLs is generaled by its finite dimensional mem-
biers. hreonj

2 A Lemma

We begin with a lemma, the proof of which is essentially in the proof of Frink's
Embedding Theorem, [3].

Lemima 4 Lel L be an alomic complemented modular latlice. Then, f:.lr any lattice
polynomial p = plyr, ooy tm) and by € Loi =1, o0, if 0 < plby, . by, then there exist
o € Loi=1, ... n, of finite height, so that oy < b, i=1,....n, and 0 < pleg, ..., 0p).  flemma

Proof. We actually prove the [ollowing stronger statement by induction on the
length of the polynomial p.

If @ 8 an atom of L and a < p(by, ..., by ), then there exist ¢; < Iy of finite
height so that a < pler, ..., en).

If p i3 one of the constants then the claim is vacuously true. I p is a single variable
then setting ¢ = a does the trick.

If p = e then a < plby, By)® mplies a < by, . By), B = 120 By inductive
hypothesis, there exist cw < &, & = 1,2, of finite height, with a < pe(cer, .., i),
k=12 Setting ¢y = e+ ewg. 2 = 1, com, gives a < plegg, oo Cin) » Pelen, e o) =
ey, cen) rpaler, n i) = pleg, o).

If p = gy + py then, for convenience, we set dp = gy, . by ), k= 12, Choose ¢ as
a relative complement of dids in [0, di]. Set ez = dz and, for & = 1.2, ae = exla+ ),
where {k, [} = {1,2}. One easily computes using modularity that {0, a, a;, @3, a; +az}
form an My in [0, @ +az] and, consequently, the ag, & = 1,2, are atoms of L. Now, for
k=12 a, <ep < dy = by, ... by). 80 by inductive hypothesis, there exist ¢y < by,
i =1,...,n of inite height, with ap < pelep, .o Cen). Again, set o = e + oy < by,
i=1,...,mn Thisgives a < a; +az < prleir, o Cin) + PolCan, e Can) < Piler, oo o)
pelery ctn) = pleg, o ga)e

Formally every polynomial is a polymomial oo the whole countable set of varlables, with all bt
fnitely many set bo 0. COur notation 1s a matter of convenienee then, and not part of the Indwetion.




3 Orthoimplications

Let L be an ortholattice. Elements x,y € L are erthogonal, written = 1 g, il = < ",
More generally, two sequences (21, ..., En), (#1, .., ¥n ) of elements of L are orthogonal,
written [z, ... 2n) L (W, ey tin)y 2y Loy, i = 1,.0n. An orthoimplication is a
sentence formed by the universal quantification of a formula of the form,

(F1y ey ) L {10y oo i) implies vz, 0, 0 2n. 00} =0,
where v 18 a bounded lattice term.

Lemma 5 For any twe ortholottice terms plry, . xa) and gz, .., 2a), there is a
bounded laltice Lerm v, 41, oo Tns U} such that for ol orthomodulor lallices the
erriration

D1, ) = (&1, -0e Zn)

holds ire L iff the orthoimplication

(10w Tn) L {1, oontin) implies r{, 40, 00 Enalin) = 0
fiolds ine L.

Proof. By orthomodulararity the ortholattice identity p = ¢ holds in an OML
L iff the identity p(p' + ¢'} + glp" + ¢') = 0 holds in L. Repeated application of De
Morgan’s laws (which hold in any OL) allow one to bring all oocurences of ' inside all
brackets, so that any ortholattice term £, ..., £,) is equivalent to a bounded lattice
term v{xy, 3, ., g, 20 ). These two observations are easily combined to prove the
lemma,

4 Proof of the Proposition

If ¢y, ..., are elements of finite height in an MOL L, then uw = 31, ¢ is of finite
height, [0, uw] = [/, 1] is a subalgebra of L, containing ¢, ..., ¢, and [0 u] i a homo-
morphic image of this subalgebra. These elementary facts will be used in our proof
of Proposition 2 which we are now in a position to give.

Proof of Proposilion 2.

Let w € L of finite height. From the above comments, [0,u] is in the variety
penerated by L. Let p = g be an ortholattice identity which does not hold in
Loand let [y, .. 20) L (g, i) implies v(2, 40,0 Ty i) = 0 be its associated
orthoimplication. By Lemma 5, there exist (), ...55) L (31, oy tn) in L s0 that
e Wy Ty ) > 0. By Lemma 4, there exist o, € L, i = 1,...,n, of i
nite helght, so that o < xy, df < g for each 4, and re, dy, . eq,dy) > 0. Let
u =30 (e +d;) and note that ¢; L d; in [0, %], so the orthoimplication [z, ..., z,) 1
(s eees i) miplies vy, 4y, oo s U} = 0 fails in [0, u]. By Lemma 5, the identity
p = g, does not hold in [0, ).
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