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Abstract. We prove that the following three conditions on a modular ortholattice, L,
with respect to a given variety of modular ortholattices, V, are equivalent: L is in the

variety of modular ortholattices generated by the finite-dimensional members of V; L can
be embedded in an atomistic member of V; L has an orthogeometric representation in an

anisotropic orthogeometry (Q,⊥), where [0, u] ∈ V, for all u ∈ Lfin(Q).

1. Introduction

As far as we know modular orthocomplemented lattices, MOLs, first explicitly
appear in the Birkoff and von Neumann paper, [2], which was an initial attempt
at a setting for a Propositional (Quantum) Logic, one whose lattice reducts are
not necessarily distributive. In a loosely connected manner they also arise as the
projection ortholattices of some important rings of operators, cf. [13]. However,
from a purely algebraic viewpoint, the structure of the lattice of varieties of MOLs
has been a matter of interest to the present authors for some decades. This interest
was stimulated by the work of G. Bruns, [3], the Doctoral supervisor of the second
author of this paper.

Recall, that an MOL is an algebra (L; +, ·, 0, 1), where (L; +, 0, 1) is a 0,1-
modular lattice (we generally just use juxtaposition for the meet operation) and
′ : L→ L is an orthocomplementation; x+ x′ = 1, xx′ = 0, (x+ y)′ = x′y′, (xy)′ =
x′ + y′ and x′′ = x. The useful property, x ≤ y iff y′ ≤ x′ follows directly.

We mention here two classes of MOLs that play a central role in this paper.
The first is the class of simple, non-Boolean, 2-distributive MOLs, the MOn, n
a cardinal greater than one. For a given n, MOn consists of the bounds and a
pair of disjoint sets of n atoms; a suitable orthocomplementation on the atoms
just resulting from a bijection between these two sets. The second is the class of
simple modular otholattices of finite dimension1 greater than two; each of which,
except for those arising from non-Arguesian projective planes, comes from a finite-
dimensional projective geometry over a (perhaps noncommutative) field equipped
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1Since complemented modular lattices are often associated with lattices of subspaces of vector

spaces there is some temptation to use the term dimension in place of height in this setting. Height

is more usual, and certainly more reasonable, for general lattices. In [12] we used dimension and,
partly in the interest of continuity, we continue to do so in this paper.
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with an anisotropic Hermitian form. The MOLs we have listed above, the two-
element Boolean Algebra and the simple non-Arguesian MOLs of dimension 3 are
all the subdirectly irreducible MOLs of finite-dimension.

One of the first interesting observations2 about MOLs was that the unique cover
of the variety of Boolean Algebras is the variety generated by M02. In [3], Bruns
showed that the unique cover of the variety generated by MO2 in the lattice of
varieties of MOLs is the variety generated by MO3. Baer’s classical result, [1],
that there is no finite projective plane whose lattice of subspaces admits an ortho-
complementation, was perhaps partly behind a Conjecture of Bruns in [3]: Every
variety of MOLs which is different from the Boolean Algebras and each of the va-
rieties generated by an MOn, 2 ≤ n ≤ ω, must contain an MOL whose lattice
reduct is the lattice of subspaces of a projective plane. This interesting question
remains open. However, in her review of [3], [15], Kalmbach asked the question of
whether every variety of MOLs different from each of the varieties generated by the
MOn’s and the Boolean Algebras must contain MOω. This question was answered
affirmatively in [17]. From the Theorem of Baer mentioned above this would also
be implied by an affirmation of Bruns’ Conjecture.

We note that sitting above the variety generated by MOω is the variety generated
by all the simple MOLs of dimension 3, PG2 (geometric dimension is complemented
modular lattice dimension minus one). And above this, the variety generated by
all the simple MOLs of dimension 4, PG3, and so on for each n ∈ N. We call
the union of this chain of varieties PGω. We do not know of an MOL which is
not in PGω, and this begs, in particular, the question of whether every variety of
MOLs is generated by its finite-dimensional members - but we do not know any
nontrivial example of a variety such that any of its subvarieties is generated by its
finite-dimensional members.

A more modest and probably more realistic project is to look for conditions
under which a variety of MOLs is generated by its finite-dimensional members. In
[10], we proved that this is the case for varieties generated by atomistic MOLs. It
is also true for the Continuous Geometries arising from the classical von Neumann
construction, [16] (this was observed independently in [6] and [11]), and for the
projection ortholattices arising from finite von Neumann factors, [8].

Roughly speaking, an anisotropic orthogeometry is a projective geometry whose
points are endowed with an orthogonality relation which is strong enough to produce
an orthocomplementation on the lattice of closed subspaces with the property that
the orthocomplement of every point is a hyperplane.

Now back to the atomistic situation. If M is an atomistic MOL then the set of
atoms of M , PM , and the set of elements of M of dimension 2 form the points and
lines, respectively, of an anisotropic orthogeometry (PM ,⊥). If L is a subalgebra
of M then there is a natural embedding from L into the lattice of subspaces of PM

which ‘preserves’ orthogonality. This is a special case of a representation of L in an

2This special initial step is also true of the larger variety of Orthomodular lattices, cf. [14],
page 123.
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anisotropic orthogeometry, in this case (PM ,⊥). These concepts were tied together
by the following Theorem, stated in [9].

Theorem 1.1. Let L be an MOL. The following are equivalent:

(1) L ∈ PGω.
(2) L can be embedded in an atomistic MOL.
(3) L has a repesentation in an anisotropic orthogeometry.

Here we relativize Thm 1.1 to an arbitrary variety of MOLs to get,

Theorem 1.2. Let L be an MOL and let V be a variety of MOLs. The following
are equivalent:

(1) L is in the variety of MOLs generated by the finite-dimensional members
of V.

(2) L can be embedded in an atomistic MOL in V.
(3) L has a repesentation in an anisotropic orthogeometry, (Q,⊥), where [0, u] ∈
V for all u ∈ Lfin(Q).

To some extent, the above results are contained in [7] in a much more general
setting, and with substantially more complicated proofs than we provide here. On
the other hand, [9] appeared as an unpublished conference proceeding, is not very
polished, and is hardly available. In the present paper we rely only on the references
[10], [11] and [12] and give self-contained proofs otherwise for this range of material.

2. More preliminaries

First we provide slightly more detailed information about modular lattices and
MOLs. The dimension of a modular lattice L is the cardinality of a maximal chain
in L minus one. For our purposes this is either finite or ∞. We will explicitly use
the following elementary fact about modular lattices.

Lemma 2.1. Let L be a complemented modular lattice, let M be a modular 0-
lattice and let ϕ : L → M be a map with ϕ(0) = 0, which preserves meets, and so
that ϕ(a + b) = ϕ(a) + ϕ(b), for all a, b ∈ L with ab = 0. Then ϕ is a 0-lattice
homomorphism.

Proof. Since ϕ preserves meets it is order-preserving. We have to show ϕ preserves
arbitrary binary joins. Let x, y ∈ L. Let s be a complement of xy in [0, x]. Then,
sy = 0 because s ≤ x and so ϕ(s) + ϕ(y) = ϕ(s + y) = ϕ(s + xy + y) = ϕ(x + y).
Now, ϕ(x + y) = ϕ(s) + ϕ(y) ≤ ϕ(x) + ϕ(y), because ϕ is order-preserving. The
reverse inequality holds because ϕ is order-preserving. �

A lattice is atomistic iff every non-zero element is a join of atoms. For MOLs
this is equivalent to being atomic; every non-zero element is above an atom. Other
(ortho)lattice-theoretic terminology and elementary, or well-known, facts are given
in [12].

If L is an MOL and [a, b] is an interval in L then [a, b] inherits a natural MOL
structure from L where the orthocomplementation, x 7→ x#, for x ∈ [a, b], is given
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by x# = a+ x′b. It is well-known that, thus equipped, [a, b] is in the MOL-variety
generated by M (in fact it is a homomorphic image of a subalgebra of M). In
particular, if the interval is a section, ie. a = 0, then x# = x′b. A slightly modified
form of the main result, Proposition 1.2, of [10] is,

Theorem 2.2. Let L be an MOL and let V be a variety of MOLs. If L can be
embedded in an atomistic MOL, M , where M ∈ V then L is in the variety generated
by the finite-dimensional members of V.

For the remainder of this section we briefly recall the geometric framework pre-
sented in detail in [12]. For further information on projective geometries we refer
the reader to, for example, [4] or [5].

Let P be a projective geometry. Then L(P ) is the geomodular lattice of all
subspaces of P . Notationally we identify the elements of P with the (one-element)
subspaces they determine, and we do the same for lines. That is, if p, q ∈ P are
distinct we denote the line they determine by p + q. A Baer subgeometry of a
projective geometry is a subset, Q of P , which is itself a projective geometry under
the restriction of the collinearity relation on P and, moreover, the natural map
from L(Q) to L(P ) given by a 7→ ΣL(P )a, for all a ∈ L(Q), is a lattice embedding.

An anisotropic pre-orthogonality on P is an antireflexive, symmetric, binary
relation, ⊥, on P satisfying the following:

p ⊥ q and p ⊥ r =⇒ p ⊥ s for all s ≤ q + r

If u ∈ L(P ) then u⊥ = {p ∈ P | p ⊥ q for all q ∈ u} ∈ L(P ) and the map u 7→ u⊥

is a Galois operator on L(P ). The subspaces, u⊥, u ∈ L(P ), equivalently u = u⊥⊥,
are called closed. The closed subspaces, Lc(P ), form a complete lattice. However,
this is not in general a sublattice of L(P ); the meet operation is still intersection
but the join operation is the usual one associated with a closure operator, in this
case ⊥⊥. An anisotropic pre-orthogonality is an anisotropic orthogonality if p +
p⊥ = 1 in L(P ), or equivalently, p⊥ ≺ 1 in L(P ), for all p ∈ P . In this case,
we call (P,⊥) an anisotropic orthogeometry. We recall some basic facts: L(P )
is a geomodular lattice. Lc(P ) is an ortholattice but generally not modular (nor
even orthomodular). Lfin(P ) is a sub-0-lattice of Lc(P ) and Lfin(P ) ∪ {u⊥ | u ∈
Lfin(P )} is an MOL. In particular, the sections [0, u], u ∈ Lfin(P ) are MOLs with
the orthocomplementation, as above, given by x 7→ x⊥u, for all x ∈ [0, u]. The
following calculating rules are useful. For all u, v ∈ L(P ),

u ≤ v⊥ iff v ≤ u⊥, u ≤ v implies v⊥ ≤ u⊥, u ≤ u⊥⊥
(u+ v)⊥ = u⊥v⊥ (de Morgan), (uv)⊥ ≥ u⊥ + v⊥ (weak de Morgan).

A faithful representation of an MOL, L, in an anisotropic orthogeometry (P,⊥)
is a 0, 1-lattice embedding ψ : L→ L(P ) which preserves orthogonality in the sense
that ψ(a) ⊥ ψ(a′), for all a ∈ L. In this situation ψ(L) ≤ Lc(P ) as an ortholattice
as well (see the remark below Lemma 6.2 of [12]).

In particular, returning to the atomistic case, if an MOL L is embedded, via ϕ,
in an atomistic MOL, M , then η : L→ L(PM ) given by η(a) = {p ∈ PM | p ≤ ϕ(a)}
is a faithful representation of L in (PM ,⊥). And referring to the relevant case of
Lemma 2.4 of [12], where M is atomistic, Lfin(P ) 'Mfin.
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We recall some technical results needed for the proof of the Main Theorem; the
first three are well-known.

Proposition 2.3. Let (P,⊥) be an anisotropic orthogeometry, let a ≤ b and, for
i ∈ {1, 2}, ai ≤ bi in L(P ) such that dim([a, b]) <∞ and dim([ai, bi]) <∞. Then,

(1) dim([a1a2, b1b2]) <∞ and dim([a1 + a2, b1 + b2]) <∞.
(2) dim([b⊥, a⊥]) ≤ dim([a, b]).
(3) If, in addition a ∈ Lc(P ), then dim([b⊥, a⊥]) = dim([a, b]) and b ∈ Lc(P ).
(4) If, for i ∈ {1, 2}, ai, bi ∈ Lc(P ) and a1 + a2, a

⊥
1 + a⊥2 ∈ Lc(P ), then

b1 + b2, b
⊥
1 + b⊥2 ∈ Lc(P ).

Proof. In any modular lattice defining a related to b iff dim([ab, a + b]) < ∞ is a
congruence relation, and thus (1) holds.

For both (2) and (3) it suffices to deal with a ≺ b and then appeal to a simple
induction argument, which we do not include.

If a ≺ b then b = a + p for some p ∈ P , whence, b⊥ = a⊥p⊥, by de Morgan’s
Law. Since p⊥ ≺ 1 we have b⊥ = a⊥p⊥ = a⊥ or b⊥ = a⊥p⊥ ≺ a⊥. Thus (2) holds
for covers.

Now assume a ∈ Lc(P ). Then, as above, we get b⊥ = a⊥p⊥ = a⊥ or b⊥ =
a⊥p⊥ ≺ a⊥. But, the first of these gives a⊥ ≤ p⊥ and p = p⊥⊥ ≤ a⊥⊥ = a,
contradicting b = a + p. Hence, b⊥ ≺ a⊥. This proves the first part of (3) for
covers.

Now, since b⊥, a⊥ ∈ Lc(P ) and we have proved the first part of (3) for covers,
a = a⊥⊥ ≺ b⊥⊥. But a ≺ b ≤ b⊥⊥ now gives b = b⊥⊥. This proves (3) for covers.

The proof of (4) requires a little more work. First we assume a1 ≺ b1 and
a2 = b2 (we’ll refer to this element for this case as a2) and will prove b1 + a2 and
b⊥1 + a⊥2 are in Lc(P ). The first of these follows directly from (3); a1 ≺ b1 gives
dim([a1 + a2, b1 + a2]) ≤ 1 and, either b1 + a2 = a1 + a2 ∈ Lc(P ) or, by (3),
a1 + a2 ∈ Lc(P ) gives b1 + a2 ∈ Lc(P ).

We now show that b⊥1 + a⊥2 ∈ Lc(P ). If b⊥1 + a⊥2 = a⊥1 + a⊥2 then we are done
trivially. So we may assume b⊥1 + a⊥2 ≺ a⊥1 + a⊥2 .

We first show that if there exists p ∈ P with p ≤ b1a2 and p � a1, then

b⊥1 +a⊥2 ∈ Lc(P ). Observe that p ≤ b1a2 gives b⊥1 +a⊥2 ≤ p⊥ and, since a1 ∈ Lc(P ),
a⊥1 � p⊥, so a⊥1 + a⊥2 � p⊥. This gives, b⊥1 + a⊥2 ≤ (a⊥1 + a⊥2 )p⊥ < a⊥1 + a⊥2 . But

dim([b⊥1 + a⊥2 , a
⊥
1 + a⊥2 ]) = 1, hence b⊥1 + a⊥2 = (a⊥1 + a⊥2 )p⊥, and as the meet of

closed elements, b⊥1 + a⊥2 is closed.
It remains to show that there exists such a p ∈ P (p ≤ b1a2 and p � a1). Assume

there does not. Since L(P ) is atomistic we would have b1a2 ≤ a1 < b1. Modularity
now gives a1 +a2 < b1 +a2 and, by assumption and from the first part of the proof
for this case of (4), we have both these elements in Lc(P ). Hence b⊥1 a

⊥
2 < a⊥1 a

⊥
2 ;

we will obtain a contradiction to this.
Since b⊥1 + a⊥2 ≺ a⊥1 + a⊥2 , we have a⊥1 � b⊥1 + a⊥2 and b⊥1 ≤ a⊥1 (b⊥1 + a⊥2 ) < a⊥1 .

But now, since a1, b1 ∈ Lc(P ), b⊥1 ≺ a⊥1 and so b⊥1 = a⊥1 (b⊥1 + a⊥2 ). This gives,
b⊥1 a

⊥
2 = a⊥1 (b⊥1 + a⊥2 )a⊥2 = a⊥1 a

⊥
2 which is the desired contradiction.



6 C. HERRMANN AND M.S. RODDY

This completes the proof for the case a1 ≺ b1 and a2 = b2. If a1 = b1 and a2 ≺ b2
then a symmetric argument works. Thus (4) holds by induction on dim([a1, b1]) +
dim([a2, b2]). �

3. Proof of the main Theorem

For convenience we repeat the statement of the main Theorem.
Let L be an MOL and let V be a variety of MOLs. The following are equivalent:

(1) L is in the variety of MOLs generated by the finite-dimensional members
of V.

(2) L can be embedded in an atomistic MOL in V.
(3) L has a repesentation in an anisotropic orthogeometry, (Q,⊥), where [0, u] ∈
V for all u ∈ Lfin(Q).

(2) ⇒ (1) follows directly from Theorem 2.2. We first show that (2) and (3) are
equivalent and, based on these, that (1) and (3) are equivalent.

Proof of (2) ⇒ (3). We refer the reader to the comment on page 4 immediately
above the preamble to Proposition 2.3. If M is an atomistic extension of L in V
then η : L → L(PM ) given by η(a) = {p ∈ PM | p ≤ a}, for all a ∈ L, is a faithful
representation of L in the anisotropic orthogeometry (PM ,⊥). Because M is in V,
and Lfin(PM ) 'Mfin, the sections [0, u], u ∈ Lfin(PM ), are in the variety generated
by M , and since M ∈ V we have [0, u] ∈ V for all u ∈ Lfin(PM ). This completes
the proof of (2) ⇒ (3). �

Proof of (3) ⇒ (2). For simplicity we assume that L is simultaneously a 0, 1-sub-
lattice of L(P) and a subalgebra of Lc(P ), that is, idL is representation of L in
(P,⊥). Let M consist of all x ∈ Lc(P ) such that there are c ∈ L, y, z ∈ Lc(P ) such
that y ≤ x ≤ z, y ≤ c ≤ z, and dim([y, z]) <∞.

By Proposition 2.3 part (2), one has M is closed under ⊥ and the first statement
in part (1) shows that M is closed under meets. Thus, M is a sub-ortholattice
of the ortholattice Lc(P,⊥). Closure under joins in L(P ) follows from the second
statement of part (1) and from part (4) of Proposition 2.3 as follows.

Let, for i ∈ {1, 2}, xi ∈ M with associated ci ∈ L and yi, zi ∈ Lc(P ) as in
the definition of M . Then, for i ∈ {1, 2}, ci ≤ zi, and ci, zi, c1 + c2, c

⊥
1 + c⊥2 are

all in Lc(P ). If follows from part (4) that z1 + z2 ∈ Lc(P ). For the other join,
y1 + y2, for i ∈ {1, 2}, c⊥i ≤ y⊥i , and c⊥i , y

⊥
i , c
⊥
1 + c⊥2 and c1 + c2 = c⊥⊥1 + c⊥⊥2

are all in Lc(P ). Now part (4) gives y1 + y2 = y⊥⊥1 + y⊥⊥2 ∈ Lc(P ). Obviously,
y1 + y2 ≤ x1 + x2 ≤ z1 + z2 and y1 + y2 ≤ c1 + c2 ≤ z1 + z2, and by part (1),
dim([y1 + y2, z1 + z2]) <∞.

This shows that M is then also a sublattice of L(P ) and hence an MOL. Applying
part (2) of Proposition 2.3 with a = 0 gives Lfin(P ) ' Mfin and since M is in the
variety generated by its finite-dimensional members, M ∈ V. This completes the
proof of (3)⇒ (2). �
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In the following, Lemmas 3.1 and 3.2, we will be dealing with a set F as a subset
of different MOLs. The notation x ≤ F , where x is an element of the relevant
MOL, means x ≤ f , for all f ∈ F .

Lemma 3.1. Let L,M be MOLs with L ≤ M and let F be a neutral filter of L
(with corresponding congruence θ). Let a, b ∈ L with ab = 0 and let p ∈ PM with
p ≤ a+ b and p ≤ F . Then a(p+ b), b(p+ a) ≤ F .

Proof of the Lemma 3.1. If p ≤ a then a(b+p) = p and b(a+p) = 0 and we are done
trivially and, symmetrically if p ≤ b. Otherwise let q = a(p+ b) and r = b(p+ a).
By modularity, p, q, r form a collinear triple in PM , ie. they are distinct elements
of PM and p+ q = p+ r = q + r.

Let c be a complement of a + b in L and set ã = a + c. The hypotheses are
satisfied if a is replaced by ã and the conclusions are formally stronger (although
by modularity they are actually the same). So we may assume a+ b = 1.

Let x ∈ F , ie. x θ 1. By assumption, p ≤ x. Let

y = (a+ xb)(b+ x) ≥ a(b+ p) = q

and

z = (b+ xa)(a+ x) ≥ b(a+ p) = r.

Modularity and ab = 0 give

xy = xz = yz = xa+ xb.

Similarly, using a+ b = 1,

x+ y = x+ z = y + z = (a+ x)(b+ x).

Hence, either x = y = z or x, y, z are the atoms of an M3 as a sublattice of L.
In either case, since x θ 1, we have x, y, z ∈ F . Since p ≤ F , p ≤ y. And q ≤ y
from above. Hence r ≤ p + q ≤ y. From above, r ≤ z and now r ≤ yz ≤ x.
Symmetrically, q ≤ x. �

Lemma 3.2. Let K be an atomistic extension of L in V and let θ be a congruence of
L. Then L/θ has a faithful representation in an anisotropic orthogeometry, (Q,⊥)
with [0, u] ∈ V for all u ∈ Lfin(P ).

Proof of Lemma 3.2. Extend the language of MOLs to include the elements of L
as constants. Let F be the neutral filter of L, 1/θ. For each a ∈ L, with a 6 θ 0, and
each c ∈ F , let ϕa,c be the formula

0 < xa ≤ ac

with a distinguished variable xa. For a fixed a, let Φa = {φa,c | c ∈ F}. Consider
any finite subset Φ0 of Φa. Since Φ0 is finite the set C = {c ∈ F | φa,c ∈ Φ0} is
too. Since F is a filter c0 = ΠC ∈ F . Set the value of xa to ac0. Since a 6 θ 0 and
c0 θ 1 we have ac0 6 θ 0. In particular, 0 < ac0 ≤ ac for all c ∈ C. Thus Φa is
finitely satisfiable in K. This holds for all a 6 θ 0. By the Compactness Theorem
of First Order Logic there is an elementary extension M of K so that for each Φa

there exists an a∗ ∈M so that φ(a∗) holds for all φ ∈ Φa. In particular, 0 < a∗ < a
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and a∗ ≤ F . M is atomistic so choose an atom p below a∗. Then p ∈ PM with
0 < p ≤ a and p ≤ F .

Let Q = {p ∈ PM | p ≤ F}. Since Q is a subspace of PM and since ⊥ is
anisotropic, Q with the restriction⊥Q of⊥ is an anisotropic orthogeometry: observe
that p⊥Q = p⊥∩Q ≺ Q by modularity. We will show that L/θ has a representation
in (Q,⊥Q).

Let a, b ∈ L with aθb we claim that, in M , for all q ∈ Q, q ≤ a iff q ≤ b. Since
θ is a congruence is suffices to show this for a ≤ b and, in this case that q ≤ b
implies q ≤ a. Since a ≤ b and aθb we have (a + b′)θ(b + b′) = 1, so a + b′ ∈ F .
Since q ≤ F , q ≤ a + b′ and q ≤ b gives q ≤ b(a + b′) = a, by modularity. Now
we can unambiguously define η : L/θ → L(Q) by η(a/θ) = {q ∈ Q | q ≤ a}. It is
clear that η preserves meets and η(0) = 0. Suppose a/θ and b/θ meet to 0 in L/θ.
Then, since (a′+ b′)θ1 we may replace a with a(a′+ b′), ie. we may assume ab = 0.
Let r ≤ a + b. If r ≤ a or r ≤ b then trivially r ∈ η(a/θ) + η(b/). Otherwise,
p = a(r + b) ∈ PM and q = b(r + a) ∈ PM and r ≤ p+ q. By Lemma 3.1, p, q ∈ Q
and thus r ≤ η(a) + η(b) in L(Q). It follows from Lemma 2.1 that η is a 0-lattice
homomorphism. If p, q ∈ Q with p ≤ a and q ≤ a′ then p ⊥Q q by definition. Hence
η(a/θ) ⊥Q η((a/θ)′), for all a/θ ∈ L/θ

Above we showed that for every a/θ different from 0/θ, η(a/θ) 6= ∅ and clearly
η(1) = 1. Hence η is a faithful representation of L/θ in the orthogeometry (Q,⊥Q).

Finally, we need to show that [0, u] ∈ V for all u ∈ Lfin(Q). For any u ∈ Lfin(Q),
[0, u] ' [0, u]M , again since Q is a subspace of PM , and this small claim follows
from M ∈ V. �

Corollary 3.3. The class of MOLs with an atomistic extension within V forms a
variety.

Proof of Corollary 3.3. Clearly this class is closed under products and subalgebras.
Lemma 3.2 shows any homomorphic image, L/θ, of L has a faithful representation
in an anisotropic orthogeometry (Q,⊥Q) with [0, u] ∈ V, for all u ∈ Lfin(Q). Since
we have already shown (3) ⇒ (2), L/θ has an atomistic extension within V. This
gives closure under homorphic images. �

Proof of (1) ⇔ (3). For i ∈ {1, 2, 3} let Ki be the class of MOLs satisfying (i).
Then, since (2) and (3) are equivalent K2 = K3. But, from (2) ⇒ (1), and since
every finite-dimensional member of V is a member of K2, we have K1 is the variety
of MOLs generated by K2. But K2 = K3 and K3 is already a variety by Corollary
3.3, so K1 = K3.

This completes the proof of (1) ⇔ (3) and hence of Theorem 1.2. �

We close with with a point of clarification. The introduction implicitly (and
intentionally) omits something of importance. The statement of Theorem 1.1 is
relative to the full variety of MOLs, whereas the statement of Theorem 1.2 refers
to an arbitrary variety of MOLs containing the given algebra L. In the preceding
discussion, aimed at providing a concise summary of known results, and to provide
motivation for the material in this paper, we moved immediately from the full
variety of MOLs to, given L, the variety generated by L. This latter is the strongest



VARIETIES OF MODULAR ORTHOLATTICES 9

condition an MOL can satisfy in this regard. And for the results we know of the
form ‘L is in the variety generated by the finite-dimensional MOLs of some variety’.
in principle there are many possibilities; but only a few very special L are known
where this variety can be choosen the one generated by L.
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