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Abstract. A pre-orthogonality on a projective geometry is a symmetric binary relation,

⊥, such that for each point p, p⊥ = {q | p ⊥ q} is a subspace. An orthogonality is a

pre-orthogonality such that each p⊥ is a hyperplane. Such ⊥ is called anisotropic iff it is
irreflexive. For projective geometries with an anisotropic pre-orthogonality, we show how to

find a (large) projective subgeometry with a natural embedding for the lattices of subspaces
and with an orthogonality induced by the given pre-orthogonality. We also discuss (faithful)

representations of modular ortholattices within this context and derive a condition which

allows one to transform a representation by means of an anisotropic pre-orthogonality into
one by means of an anisotropic orthogonality.

1. Introduction

Classical examples of modular ortholattices range from the Boolean Algebras
to the continuous geometries of J. von Neumann, [17]. Between these are the
modular ortholattices which occur as the ortholattices of projections of type II1

von Neumann Algebra factors, classified by F. J. Murray and J. von Neumann in
[16]. For a recent development related to the ideas in this paper see [10]. Further
examples are derived from inner product spaces: they consist of all subspaces of
finite dimension and their orthogonals.

Generalizing the last example, in the (informal) conference proceedings [11], we
had studied (faithful) representations of modular ortholattices in subspace lattices
of projective geometries P endowed with a self-adjoint Galois connection X 7→ X⊥

(cf. [15]) resp. the induced relation ⊥ on points; the latter will be called a pre-
orthogonality in the present note, an orthogonality (and (P,⊥) an orthogeometry)
if, in addition, p⊥ is a hyperplane for any point. In the context of ortholattices,
anisotropicity (p 6∈ p⊥) matters and allows one to use representations to derive
results in the equational theory of modular ortholattices. (cf. [11, 10]).

In this paper we provide a framework for the possible representation of a gen-
eral modular ortholattice in an anisotropic orthogeometry. Our main result is a
condition under which a representation in a geometry, with an anisotropic pre-
orthogonality, can be transformed into a representation in an anisotropic ortho-
geometry, cf. Theorem 6.6. This is based on a lattice theoretic view on projec-
tive subgeometries (cf. Lemma 3.2) and on identifying an (apparently large) sub-
orthogeometry within any projective geometry with an anisotropic pre-orthogonality,
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cf. Theorem 5.1. It is our hope that these results and the accompanying frame-
work will pave the way for future work on geometric representations of modular
ortholattices.

The accompanying framework has been presented in [11] and in [9], the latter for
the more involved case dealing with complemented modular lattices with involution.
For convenience, we have restated what is needed, here, and have provided (usually
easy) proofs to keep this paper as self-contained as is reasonable. In the same
spirit we have made the paper technically complete in order for readers with less
experience in the area to check the details fairly easily. The proofs of some results
which may seem natural or ‘obvious’ to the more advanced reader could be skipped
on, at least, a first reading.

We are indebted to anonymous referees for several very useful suggestions on
earlier versions of the paper which have led to this extensive revision.

2. Lattices and Geometries

This section contains introductory material on modular lattices, projective ge-
ometries, and the well-known links between the two. For lattice theory we refer the
reader to [1], [3] or [7]. There are many classical references on projective geometry,
but the relatively recent [5] is the one we have been using and which we follow for
the most part here.

For lattices pairwise joins will be denoted by + and meets by ·. We shall often
save time and brackets by using juxtaposition for meets and following the convention
that meet takes priority over join. When we have occasion to use joins or meets over
larger (sometimes infinite) sets we will use the corresponding capitalized symbols.
If a lattice L has a smallest element we denote it by 0 = 0L and if it has a largest
element we denote it by 1 = 1L. We sometimes treat the bounds 0 and 1 as
constants and then we speak of a 0, 1-lattice, and occasionally we just consider the
0 as a constant and speak of a 0-lattice.

If a, b ∈ L, and a < b with no z ∈ L with a < z < b we say that b covers a and
write a ≺ b. The dimension of L (also called length or height) is the supremum
of the non-negative integers |C| − 1 where C is a finite chain in L, and we write
dim(L) for this number if it is finite. If [a, b] is an interval in L, then dim([a, b]) is
the dimension of [a, b] when treated as a lattice, and if u ∈ L the dimension of u is
dim(u) = dim[0, u] (this number existing implies that L has a 0). In a 0, 1-lattice
the dimension of [u, 1] is called the codimension of u, written codim(u) - this is our
excuse for using the old fashioned ‘dimension’.

The above serves to establish our notation. Apart from this we expect that
the reader is familiar with the rudiments of modular lattice theory. In a modular
lattice, L, the elements of finite dimension form a sublattice of L which we will
denote by Lfin. Dually the elements of finite codimension form a sublattice Lcof . If
L is a complemented modular lattice then Lfin is atomistic, and the complements
of an element of Lfin are in Lcof , and vice-versa. Consequently, Lfin ∪ Lcof is a
complemented sublattice of L.
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We will be particularly interested in certain complemented modular lattices. A
geomodular lattice is a complete, atomistic, complemented modular lattice where
the atoms are compact (that is, if an atom is below a join of elements then it is
already below the join of a finite subset of these elements). To put it another way,
the geomodular lattices are precisely the algebraic complemented modular lattices.

The atoms (covers of 0) of a 0-lattice L will be of particular importance to us and
we will denote the set of these by PL; the atoms are the points of the corresponding
projective geometry. Similarly elements of height two in a complemented modular
lattice correspond to the lines of the associated projective geometry. If k is a ‘line’
and p, q, r ∈ P are distinct with k = p+ q = q + r = q + r we call p, q, r collinear.
We will return to this topic shortly.

We conclude this part of the section by recalling two well-known results from
modular lattice theory which will be used later.

Lemma 2.1. (cf. page 41 of [1]). Let L be a modularlattice and let u ∈ L with
dim(u) = n. Then any maximal chain in [0, u] is of length n. That is, any maximal
chain in [0, u] is of the form 0 ≺ c1 ≺ ... ≺ cn = u. Also, if a, b ∈ L are of finite
dimension then dim(a+ b) = dim(a) + dim(b)− dim(ab).

Lemma 2.2. (Folklore). Let L and M be modular lattices where every element has
finite height, and let ϕ : L → M be a dimension-preserving join embedding. Then
ϕ is a lattice embedding.

Proof. Let a, b ∈ L with dim(a) = m, dim(b) = n, dim(ab) = k and, hence dim(a+
b) = m + n − k. Then dim(ϕ(a)) = m, dim(ϕ(b)) = n, dim(ϕ(a) + ϕ(b)) =
dim(ϕ(a+ b)) = m+n−k, and hence dim(ϕ(a)ϕ(b)) = k. But also dim(ϕ(ab)) = k
and, since ϕ(ab) ≤ ϕ(a)ϕ(b), ϕ(ab) = ϕ(a)ϕ(b). �

We now turn to the geometric point of view. We will consider a projective geom-
etry to be a set of points P together with a totally symmetric ternary collinearity
relation, C, on P which satisfies (cf. page 26, [5]): For all a, b, c, d, p, q ∈ P ,

C(a, b, a) for all a, b ∈ P (any two points are contained in some line),
C(a, b, c) and C(q, b, c) and b 6= c imply C(a, q, b) (every line is determined
by any two distinct points on it),
C(p, a, b) and C(p, c, d) imply C(q, a, c) and C(q, b, d) for some q ∈ P (we
call this the projective property).

Most readers will be familiar with projective planes. In a projective plane every
pair of distinct lines must intersect in a single point. The projective property is the
higher dimensional analogue of this and is the key to the lattice of subspaces of a
projective geometry being modular.

A subspace of a projective geometry P is a subset Q of P which is closed under
the collinearity relation; that is, r ∈ Q if C(p, q, r) for some p 6= q in Q. One easily
sees that the subspaces of a projective geometry ordered by containment form a
complete 0, 1-lattice where meet is intersection and join is closure of the union
under the collinearity relation. Hence, if p, q ∈ P are distinct then p + q is the
set of all r ∈ P with C(p, q, r), ie. the line determined by p and q. We will abuse
notation slightly by identifying points with the one-element subspaces they define
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and usually stating r ≤ p + q instead of r ∈ p + q. We call this lattice L(P ). The
following well-known result sums up the elementary relationship between projective
geometries and geomodular lattices

Theorem 2.3. If P is a projective geometry then L(P ) is a geomodular lattice.
Conversely, if L is a geomodular lattice then PL together with the collinearity re-
lation defined earlier in the section is a projective geometry. This establishes a
category equivalence between both classes w.r.t. isomorphisms; which can be ex-
tended with a suitable concept of morphism for projective geometries on one side,
sup-preserving maps on the other, cf. [4].

Observe that the dimension of a subspace Q, considered as a projective geometry,
is dim(

∑
Q) − 1. Also, recall that for pi ∈ P one always has dim(

∑n
i=1 pi) ≤ n

and that equality holds iff pj
∑

i 6=j pj = 0 for some/any renumbering of the pi. We
will find one more very easy folklore result useful. Let M be a modular 0-lattice,
let PM be the set of atoms of M and set

B = {x ∈M | x =
∑
M

P0 for some P0 ⊆ PM with P0 finite}.

Lemma 2.4. With M , B, and PM as above: B is an ideal of M , PM is a projective
geometry, and Lfin(P ) is isomorphic to B via the map a 7→

∑
M a, for all a ∈

Lfin(P ).

Many of the definitions and much of the notation in this paper have been devel-
oped semi-independently by different authors in different settings. We have strived
to strike a balance between what is already in the literature and what seems appro-
priate in our particular situation. We have not always found it desirable, or even
possible, to follow any one reference exactly, and the reader should consider this
when checking other sources.

3. SubGeometries

Let P be a projective geometry and let Q ⊆ P . Q is a projective subgeometry of P
iff Q is itself a projective geometry under the restriction of the collinearity relation
on P . Let P be a projective geometry and let Q be a projective subgeometry of P ,
hence both L(Q) and L(P ) are geomodular lattices. Define, ϕ : L(Q) → L(P ) by,
for all a ∈ L(Q),

ϕ(a) =
∑
L(P )

a.

Observation 3.1. ϕ preserves arbitrary joins. In particular, ϕ is order-preserving.

By definition, Q is a Baer subgeometry of P iff ϕ is a lattice embedding of
L(Q) into L(P ) (Baer subspaces are examples of such). Example 7.2.11 of [5]
illustrates that not all projective subgeometries of a projective geometry are Baer
subgeometries (these are called proper in [5]). A second condition that is formally
weaker than being a Baer subgeometry is the following: Q geometrically embeds in
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P iff for all q ∈ Q and finite dimensional a ∈ L(Q), q ≤ ϕ(a) in L(P ) implies q ≤ a
in L(Q).

The following Lemma is no doubt known by many people but it does not appear
to be in the literature in this form. A full proof of the Lemma is tedious but
elementary; only relying on elementary compactness arguments, and elementary
facts about modular lattices and closure operators. We only use (i) ⇒ (iii) and
we prove this fully by proving (i) ⇒ (ii) and (ii) ⇒ (iii). We leave the rest as an
exercise for the reader.

Lemma 3.2. Let Q be a projective subgeometry of P . The following statements
are equivalent:

(i) Q geometrically embeds in P .
(ii) ϕ|Lfin(Q) : Lfin(Q)→ Lfin(P ) is a dimension preserving 0-lattice embedding.
(iii) (iii) ϕ : L(Q) → L(P ) is a 0-lattice embedding (ie. by definition Q is a

Baer subgeometry of P ).
(iv) (iv) ϕ : L(Q) → L(P ) is a 0-lattice embedding preserving arbitrary joins

and non-empty, but otherwise arbitrary, meets

.

Proof. (partial). (i) ⇒ (ii): Let a ∈ Lfin(Q) with dim(a) = n. Then there exist
q1, ..., qn ∈ Q with a =

∑n
L(P ) qi. Then ϕ(a) =

∑
L(P ) qi and so dim(ϕ(a)) ≤

n. Suppose dim(ϕ(a)) < n, say qn ≤
∑n−1

L(P ) qi. Then, by (i), qn ≤
∑n−1

L(Q) qi,

contradicting dim(a) = n. Thus ϕ|Lfin(Q)
is dimension preserving. By Observation

3.1 and Lemma 2.2, ϕ is a 0-lattice embedding.
(ii) ⇒ (iii): From Observation 3.1 it suffices to show that ϕ preserves binary

meets. Let a, b ∈ L(Q) and suppose p ∈ P with p ≤ ϕ(a)ϕ(b). Since p is compact
in L(P ), there exist m,n ∈ N, q1, ...., qm ∈ a, r1, ...., rn ∈ b with p ≤

∑m
L(P ) qi and

p ≤
∑n

L(P ) ri. Let a0 =
∑m

L(Q) qi and b0 =
∑n

L(Q) ri. Then p ≤ ϕ(a0) · ϕ(b0) =

ϕ(a0b0), by (ii). But now p ≤ ϕ(a0b0) ≤ ϕ(ab), since ϕ is order-preserving. �

4. Representations without orthogonality

In this short section we deal with the ‘non-ortho’ part of the representation
process. Let M be a modular 0, 1-lattice, let L be a complemented modular lattice,
let ϕ : L→M be a 0-lattice embedding, and let Q be a projective subgeometry of
PM .

Q is (L,ϕ)-closed iff ϕ(a)(p+ϕ(d)) ∈ Q for all p ∈ Q and a, d ∈ L
such that p � ϕ(d), ad = 0 and a+ d = 1.

Q is (L,ϕ)-dense iff for each 0 < c ∈ L there is some p ∈ Q with
p ≤ ϕ(c).

Define η : L→ L(Q) by, for all a ∈ L,

η(a) = { q ∈ Q | q ≤ ϕ(a)}.

Lemma 4.1. (( Cf. Lemma 10.2, [9]) If Q is (L,ϕ)-closed then η is a 0-homomorphism.
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Proof. The only part that requires work is closure under joins. Since ϕ is order
preserving one inclusion is trivial. We first establish the reverse when the joinands
meet to 0.

Let a, b ∈ L with ab = 0 and let q ∈ Q with q ≤ η(a+ b). If q ≤ ϕ(a) or q ≤ ϕ(b)
then we are done trivially. So we may assume qϕ(a) = 0 = qϕ(b).

Let c be a complement of a + b in L. Set p = ϕ(a)(q + ϕ(b + c)) and r =
ϕ(b)(q + ϕ(a + c)). Easy modularity arguments give that q, a and b + c meet the
requirements of the definition of (L,ϕ)-closed, and hence p ∈ Q. Symmetrically
r ∈ Q. By modularity, p, q, r are collinear. Since p ≤ η(a) and r ≤ η(b) we have
q ≤ η(a) + η(b). It follows η(a+ b) = η(a) + η(b) in this case.

If ab 6= 0 then let b̃ be a complement of ab in [0, b] and apply the special case to

a, b̃ to obtain η(a+ b) = η(a+ b̃) = η(a) + η(b̃) ≤ η(a) + η(b). �

Corollary 4.2. If Q = PM and ϕ(1) = 1 then η is a 0, 1-lattice homomorphism.

We call η : L→ L(PM ) the canonical homomorphism in this setting.

Corollary 4.3. If Q is both (L,ϕ)-closed and (L,ϕ)-dense then η is a 0-lattice
embedding.

Proof. Let a < b in L and let c be a complement of a in [0, b]. Then there is some
q ∈ Q with q ≤ ϕ(c). Now q ≤ η(b) and q � η(a). �

5. Orthogonality

Let P be a projective geometry. A pre-orthogonality on P is a symmetric binary
relation, ⊥, on P such that, for all p, q, r, s ∈ P ,

p ⊥ q and p ⊥ r implies p ⊥ s for all s ≤ q + r.

A pre-orthogonality which has the property that p 6⊥ p, for all p ∈ P is called
anisotropic. A projective geometry with pre-orthogonality ⊥ is formally written
(P,⊥), although when it is unlikely to cause confusion we just write P . We call
(P,⊥) anisotropic whenever ⊥ is.

It is clear that, if Q ⊆ P then Q⊥ = {p ∈ P | p ⊥ q for all q ∈ Q} is a subspace
of P . The map Q 7→ Q⊥ is a self-adjoint Galois connection. The closed subspaces
of P are those of the form Q = X⊥ for some X ⊆ P (or, equivalently, Q = Q⊥⊥).
The closed subspaces of P form a sub-ordered set, Lc(P ), of L(P ) which is closed
under arbitrary intersections and hence forms a sub-meet semilattice of L(P ). It is
thus a complete lattice but, of course, the join operations in L(P ) and Lc(P ) differ
in general.

Thinking of L(P ) as as more or less abstract object, we write u, v, . . . for elements
of L(P ). Recall the following basic rules of calculation.

u ≤ v⊥ iff v ≤ u⊥, u ≤ v implies v⊥ ≤ u⊥, u ≤ u⊥⊥:
(u+ v)⊥ = u⊥v⊥ (de Morgan), (uv)⊥ ≥ u⊥ + v⊥ (weak de Morgan).

Let (P,⊥) be a pre-orthogeometry, i.e. a projective geometry with pre-orthogonality.
⊥ is called an orthogonality and (P,⊥) an orthogeometry iff p+p⊥ = 1, for all p ∈ P .
We now come to the main result of this section.
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Theorem 5.1. Let (P,⊥) be an anisotropic pre-orthogeometry. Then,

Q = {p ∈ P | p+ p⊥ = 1}

is a Baer subgeometry of P , and an anisotropic orthogeometry under the induced
pre-orthogonality.

Proof. Let M be the set of all finite joins of elements from Q in L(P ). If u ∈ M
then u =

∑n
i=1 qi for some minimal n ∈ N and some qi, ..., qn ∈ Q. It follows that

the chain q1 ≤ q1 + q2 ≤ .... ≤ u, is of length n and hence dimL(P )(u) = n.

Since u⊥ = Πn
i=1q

⊥
i and each q⊥i ≺ 1, codim(u) ≤ n. Since ⊥ is anisotropic,

uu⊥ = 0 and, by modularity, codim(u) = n. Also, u⊥u⊥⊥ = 0 and u ≤ u⊥⊥, so
again by modularity, u = u⊥⊥, and u ∈ Lc(P ). It follows that if u, v ∈ M and
v⊥ ≤ u⊥ then u ≤ v and, hence u ≤ v iff v⊥ ≤ u⊥. We shall use both these
‘opening observations’ below.

We next show that Q is a projective subgeometry of P . To do this we show
that Q satisfies the projective property, cf. pg 3. Let p, a, b and p, c, d be collinear
elements of Q. We need to show that there is some x ∈ Q with x, a, c and x, b, d
both collinear triples. If there are any non-trivial collinearities between the five
points p, a, b, c, d other than the two assumed then all five are collinear and x can
be chosen to be any one of them. In particular we may assume a+ c � b+ d.

Since P is a projective geometry, x = (a + c)(b + d) ∈ L(P ) − {0} and, since
a+c � b+d, x ∈ P . The weak version of de Morgan’s law gives x⊥ ≥ (a+c)⊥+(b+

d)⊥ ≥ (a + c)⊥. From the first of our opening observations, codim((a + c)⊥) = 2.
If (a+ c)⊥ = (a+ c)⊥ + (b+ d)⊥ then (b+ d)⊥ ≤ (a+ c)⊥. From the second of our
opening observations (a+ c) ≤ (b+ d), contrary to our assumption. Also, because
⊥ is anisotropic x⊥ 6= 1. But now, 1 > x⊥ ≥ (a + c)⊥ + (b + d)⊥ > (a + c)⊥

and codim((a + c)⊥) = 2 and hence x⊥ ≺ 1, ie. x ∈ Q. Hence Q is a projective
geometry, and L(Q) is a geomodular lattice.

Now we show by induction on n that, if q ≤
∑n

L(P ) qi, with q, q1, ..., qn ∈ Q, then

q ≤
∑n

L(Q) qi. This is trivially true for n = 1. Let v =
∑n−1

L(P ) qi and u = v + qn.

If q ≤ v then we are done by inductive hypothesis and if q = qn then we are done
trivially; so we assume neither of these occur. Set r = v(q + qn) which is in P my
modularity and since v ≺ u. Since q � v, v⊥ � q⊥, again by the second of our

opening observations. Since codim(q⊥q⊥n ) ≤ 2 and v⊥ � q⊥, codim(v⊥+q⊥q⊥n ) ≤ 1.

On the other hand, 1 ≥ r⊥ ≥ v⊥ + q⊥q⊥n and, since ⊥ is anisotropic, r⊥ ≺ 1 and

r ∈ Q. By inductive hypothesis, r ≤
∑n−1

L(Q) qi and q ≤
∑n

L(Q) qi since q ≤ r + qn.

By Lemma 3.2, Q is a Baer subgeometry of P .
Finally, we need to show that Q is itself an orthogeometry. Let q ∈ Q. To show

that q + q⊥ = 1 in L(Q) it suffices to show, that for an arbitrary r ∈ Q we have
r = q, r ⊥ q, or p, q, r collinear for some p ∈ Q, p ⊥ q.

As collinearity and ⊥ on Q are inherited from P , for the final short section of
this proof the ordering, the lattice operations, and ⊥ are taken in L(P ). Assume
neither of the first two of the above cases occurs. Put p = q⊥(r+ q). From q⊥ ≺ 1
it follows p ∈ P by modularity. Since also r ∈ Q, we have codim(q⊥r⊥) ≤ 2.
From p ≤ r + q it follows q⊥r⊥ ≤ p⊥ < 1, the latter by anisotropicity of (P,⊥).
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Assuming that p⊥ ≺ 1 fails, one had p⊥ = q⊥r⊥, in particular p⊥ ≤ q⊥, whence
p = p⊥⊥ ≤ q⊥⊥ = q (by the ‘opening observations’) and p = q. �

Remark 5.2. Given P and pre-orthogonality ⊥, call a subset Q of P is a strong
subgeometry of (P,⊥) iff (i)

∑
X = (

∑
X)⊥⊥ for any finite X ⊆ Q and (ii) p, q ∈ Q

and r = r⊥⊥ ≤ p + q imply r ∈ Q. Using ideas from the proof of Theorem 5.1 it
follows (in a more concise way) that any strong subgeometry of (P,⊥) is a Baer
subgeometry of P and that, under the hypotheses of Theorem 5.1, Q is a strong
subgeometry of (P,⊥). Moreover, if Q is a Baer subgeometry of P and P its
only subspace which contains Q and if, moreover, ⊥ turns Q into an anisotropic
orthogeometry then ⊥ can be extended to an anisotropic pre-orthogonality so that
the situation of Theorem 5.1 takes place. In this sense, the theorem has content.

For an illustration of Theorem 5.1, let V be a unitary space with inner product
〈 | 〉 and consider self-adjoint endomorpisms φi, i ∈ I. Let P be the projective space
associated with V and endowed with

p ⊥ q iff p = Cv, q = Cw, 〈v | w〉 = 0, and 〈φiv | w〉 = 0 for all i ∈ I.
Obviously, ⊥ is an anisotropic pre-orthogonality. Then Q as in Theorem 5.1 consists
of all Cv where v is a common eigenvector of all φi. Here, Q is a disjoint union of
subspaces, arising as intersections of eigenspaces.

6. Ortholattices and representations

We now move to the lattice-theoretic point of view. Let L be a 0-lattice. A
pre-orthogonality on L is a symmetric binary relation, ⊥, on L with the property
that, for all a, b, c ∈ L,

a ⊥ b and a ⊥ c imply a ⊥ (b+ c),

and,
a ⊥ c and b ≤ c imply a ⊥ b.

We call ⊥ anisotropic if, in L, u ⊥ u iff u = 0. We formally denote a 0-lattice
with pre-orthogonality ⊥ by (L,⊥). If (P,⊥) is a projective geometry with pre-
orthogonality, then there is a canonical pre-orthogonality on L(P ) defined byX ⊥ Y
iff p ⊥ q for all p ∈ X and q ∈ Y . (For simplicity of notation, given one pre-
orthogonality ⊥, we denote all canonically induced pre-orthogonalities by ⊥, too.)

Recall from [12] that an orthoimplication in a 0-lattice with pre-orthogonality is
an implication of the form

(

n∧
i=1

(xi ⊥ yi))⇒ f(x1, ..., xn, y1, ..., yn) = 0,

where f is a lattice term and
∧

refers to logical conjunction.

Lemma 6.1. Let L be a lattice with an anisotropic pre-orthogonality. If K is a
0-sublattice of L then, with the restricted pre-orthogonality, K satisfies the orthoim-
plications that hold in L. If (P,⊥) is a pre-orthogeometry then L(P ) and Lfin(P )
satisfy the same orthoimplications.
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Proof. The first claim is obvious and that Lfin(P ) satisfies the orthoimplications of
L(P ) follows. In the other direction one can readily adapt the proof of Lemma 2.1
of [12] to show that, if an orthoimplication fails to hold in L(P ) then it fails to hold
in Lfin(P ). �

Let L be a 0, 1 - lattice. An orthocomplementation on L is a dual automorphism,
′ : L→ L, of period two which is also a complementation, ie. for all x, y ∈ L,

(x+ y)′ = x′y′, (xy)′ = x′ + y′, 1′ = 0, 0′ = 1, x′′ = x, x+ x′ = 1, and x · x′ = 0.

If we consider the orthocomplementation as an extra unary operation we have an or-
tholattice, abbreviated OL. If an OL, L, is also modular we have a modular ortholat-
tice, MOL. If (P,⊥) is a projective geometry with an anisotropic pre-orthogonality
then Lc(P ) is an OL (but in general not an MOL) where the orthocomplementation
is given by X 7→ X⊥, for all X ∈ Lc(P ). Any OL carries a canonical anisotropic
pre-orthogonality given by a ⊥ b iff b ≤ a′.

Lemma 6.2. (Lemma 3.1, [12]) For each MOL identity α there is an orthoim-
plication α+ such that, for any MOL L, α holds in L iff α+ holds in L with its
canonical orthogonality.

Let L be an MOL and let (P,⊥) be a projective geometry with pre-orthogonality..
Then a 0, 1-lattice homomorphism ψ : L → L(P ) is called a representation of the
MOL L in (P,⊥) if

ψ(a′) = ψ(a)⊥ for all a ∈ L.
We observe that, in this situation ψ(L) is simultaneously a sub-0, 1-lattice of L(P )
and, in the context of anisotropic ⊥ and OL’s, a subalgebra of Lc(P ). A rep-
resentation ψ is faithful if it is a one-to-one map (in [11, 9] we considered only
such.)

Lemma 6.3. If (P,⊥) is an anisotropic pre-orthogeometry, then a 0, 1-lattice ho-
momorphism ψ : L→ L(P ) is a representation of L in (P,⊥) iff

ψ(a) ⊥ ψ(a′) for all a ∈ L.

Proof. Let a ∈ L. Since ϕ(a) ⊥ ϕ(a′), ψ(a′) ≤ ψ(a)⊥. But ψ(a)ψ(a′) = ψ(aa′) = 0
and ψ(a) + ψ(a′) = ψ(a + a′) = 1. Since ⊥ is anisotropic ψ(a)ψ(a)⊥ = 0, and by
modularity, ψ(a′) = ψ(a)⊥. �

We now return to the setting of Section 4, but now in the presence of ‘orthogo-
nality’. That is: let L be an MOL, let M be a modular 0, 1-lattice M equipped with
an anisotropic pre-orthogonality, ⊥, and let ϕ : L→M be a 0, 1-lattice embedding
preserving ‘orthogonality’ in the sense that ϕ(a) ⊥ ϕ(a′) for all a ∈ L. PM , the set
of atoms of M , inherits an anisotropic pre-orthogonality, ⊥, from M by restriction.

Set P = PM and let ψ : L → L(P ) be the canonical lattice homomorphism, ie.
for a ∈ L, ψ(a) = {p ∈ P | p ≤ ϕ(a) in M}. By Corollary 4.2 and Lemma 6.3, ψ is
a representation of the MOL L in (P,⊥).

Set Q = {q ∈ P | q + q⊥ = 1 in L(P) }
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Lemma 6.4. Q is (L,ϕ)-closed and is an anisotropic orthogeometry under the
induced pre-orthogonality.

Proof. (Q,⊥) is an anisotropic orthogeometry from Theorem 5.1. We need to show
that Q is (L,ϕ)-closed.

Let q ∈ Q and a, d ∈ L satisfy the premise of the definition of (L,ϕ)-closed, ie.
q � ϕ(d), ad = 0 and a + d = 1. We need to show that p = ϕ(a)(q + ϕ(d)) ∈ Q.
By modularity p ∈ P whence p ≤ ψ(a). Similarly, r = ϕ(d)(q + ϕ(a)) ∈ P and
r ≤ ψ(d). Recall that ψ is a representation of L in (P,⊥) and ψ(1) = 1P (L).

This is the context of the rest of the proof. Note that q⊥ ≺ 1 in L(P ). It follows
(ψ(d) + q)⊥ = ψ(d)⊥q⊥ ≺ ψ(d)⊥. But, ψ(a)⊥ = ψ(a′) and ψ(d)⊥ = ψ(d′) are
complements of each other in L(P ) whence by modularity

ψ(a)⊥ + q⊥ψ(d)⊥ ≺ ψ(a)⊥ + ψ(d)⊥ = 1.

Now, p ≤ ψ(a) and p ≤ q + ψ(d) imply p⊥ ≥ ψ(a)⊥ + q⊥ψ(d)⊥. Since p⊥ 6= 1, it
follows p⊥ = ψ(a)⊥ + q⊥ψ(d)⊥ ≺ 1. �

Corollary 6.5. In this setting, the natural map η : L → L(Q) given by η(a) =
{ p ∈ Q | q ≤ ϕ(a)} is a representation of the MOL L in (Q,⊥).

Proof. From the fact that Q is (L,ϕ)-closed η is a 0-lattice homomorphism by
Lemma 4.1. Clearly, η(1) = 1L(Q). It follows from Lemma 6.3 that η is a represen-
tation. �

For the final results of the paper we fix L, M , ϕ, P = PM , and Q as above the
statement of Lemma 6.4 and η from the statement of Corollary 6.5. Furthermore,
we set Q0 = {q ∈ P |q ⊥ h for some h ≺ 1 in M}. In the next few paragraphs we
collect earlier material and establish some elementary facts which constitute the
proof of our final main result, Theorem 6.6.

From Lemma 2.4 and 6.1, Lfin(P ) satisfies the orthoimplications of M . And,
from Lemma 6.1, (Lfin(P ),⊥) and (L(P ),⊥) satisfy the same orthoimplications as
do (Lfin(Q),⊥) and (L(Q),⊥), and, using Lemma 6.1 again, all four satisfy the
orthoimplications of M .

If Q is (L,ϕ)-dense then η is a 0-lattice embedding by Corollaries 4.3 and 6.5.
Let u ∈ Lfin(Q). Since Q is an anisotropic orthogeometry, cf. Lemma 6.4, the
interval [0, u] becomes an MOL with the orthocomplementation x 7→ x⊥u. Let
V(Q,⊥) be the variety generated by these MOLs. Then, using Lemma 6.2 to pass
from MOL identities to orthoimplications and back again, we get L ∈ V(Q,⊥).

If L is simple and Q 6= ∅ then η(1) 6= 0. Hence, since η is not the trivial
homomorphism it must be a lattice embedding.

Finally, let q ∈ Q0, and let h ≺ 1 in M with q ⊥ h. As in the final step of the
proof of Theorem 5.1 it follows q ∈ Q, and we have shown Q0 ⊆ Q.

Theorem 6.6. Let L be an MOL, let M be amodular 0, 1-lattice equipped with an
anisotropic pre-orthogonality, ⊥, and let ϕ : L → M be a 0, 1-lattice embedding
such that ϕ(a) ⊥ ϕ(a′), for all a ∈ L. With Q = {p ∈ PM | p+ p⊥ = 1 in L(PM )}
w.r.t.the induced pre-orthogonality on PM , η : L → L(Q) given by η(a) = { p ∈
Q | q ≤ ϕ(a)}, and Q0 = {q ∈ P |q ⊥ h for some h ≺ 1 in M}. If Q 6= ∅ then:
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(a) η : L → L(Q) is a representation of the MOL L in the anisotropic or-
thogeometry (Q,⊥). Furthermore, (L(Q),⊥) and (Lfin(Q),⊥) satisfy the
orthoimplications of (M. ⊥).

(b) If Q is (L,ϕ)-dense then η : L → L(Q) is in addition a faithful represen-
tation of L in (Q,⊥). Furthermore, L ∈ V(Q,⊥).

(c) If L is simple and Q 6= ∅ then the conclusions of part (b) hold. In partic-
ular, they hold if Q0 6= ∅.

A special case of part (c) is perhaps worth mentioning separately.

Corollary 6.7. If L is simple and M is an MOL with at least one atom then L is
in the variety generated by all finite-dimensional MOLs.

7. Discussion

Until our Theorem 6.6 has important new applications perhaps the most relevant
part of this paper is the framework we have provided for the representation of MOLs.
When developing the ideas in this paper we were guilty of focussing our efforts on
finding an approach that would give such a representation for an arbitrary MOL.
We worked with several different ideas; various ideal/filter and model-theoretic
constructions for example. Perhaps the most obvious and natural approach is
via the Frink embedding, [6]. We outline this (unsuccessful in general, cf. [14])
approach here because it illustrates many of our ideas well.

Let L be a complemented modular lattice. Then the M of our approach is the
0, 1-lattice of filters of L ordered by reverse inclusion. The map a 7→ {x ∈ L |a ≤ x}
is our 0, 1-lattice embedding ϕ : L → M . P is the set of all ultrafilters (maximal
proper filters) of L, and ψ : L → L(P ) is the map a 7→ {U ⊆ P | a ∈ U}. ψ is the
classical Frink embedding. Because L and M in this case satisfy the same lattice
identities it follows that L has a 0, 1-embedding in an L(P ) which satisfies the same
lattice identities as L does.

Now if L is an MOL, the orthocomplementation ′ : L→ L induces an anisotropic
pre-orthogonality on M given by F ⊥ G iff there exists x ∈ L with x ∈ F and
x′ ∈ G. According to the material we have developed here, the map ψ : L →
L(P ) is a faithful representation of L in the anisotropic pre-orthogeometry L(P,⊥).
Furthermore, it is easy to see that, in this case, L and L(P,⊥) satisfy exactly the
same orthoimplications.

However, in [14], we gave an elementary example of an L where (P,⊥) is not
an orthogeometry. Furthermore we suspect that Q = ∅ in this example also. On
the other hand, it is shown that the L of this example generates a variety which is
generated by its finite-dimensional members ([8], [14]) and from this it follows that it
does admit a faithful representation with respect to some anisotropic orthogeometry
(this will be proved in a sequel to this paper).

We are hopeful that Theorem 6.6 might provide representations in situations
which we are not as yet aware of.
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