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On geometric representations of modular ortholattices

Christian Herrmann and Susan M. Roddy

Abstract. We review results on modular ortholattices related to representations in anisotropic

orthogonal geometries. In particular, we establish a 1-1-correspondence between varieties

generated by their finite height members and certain classes of geometries.

1. Introduction

We give some historical background and motivation - to be skipped by the non-
expert in the first reading. The main body of the paper requires only some basic
knowledge of Lattice Theory and Universal Algebra. MOL is a shorthand for ‘mod-
ular ortholattice’.

Finite height MOLs have been analyzed by Birkhoff and von Neumann [3] in
their famous paper marking the beginning of quantum logic: They are isomorphic
to finite direct products of irreducibles, and the latter are given by finite dimensional
inner product spaces or of height ≤ 3 (this can be reduced to height ≤ 2 is one
considers Arguesian MOLs). Projection MOLs of finite von Neumann algebras of
operators on Hilbert space were studied by F. J. Murray and J. von Neumann [24]
and served as a tool in the classification of these algebras. From there, von Neumann
[25] abstracted the concept of continuous geometries, which are just the irreducible
complete modular ortholattices, due to the beautiful result of I. Kaplansky [22]. A
detailed understanding even of this very special kind of modular ortholattices is still
a challenge. Only supposing strong additional structure and axioms, von Neumann
[27] was able to relate these back to concrete examples derived from algebras. The
motivation behind this note is that it might be easier to study modular ortholattices
just in the restricted framework of equational theory and representations within
anisotropic orthogonal geometries. There has been some success in this direction
cf [4, 28, 14, 15, 16, 13].

In much of the work following von Neumann, the non-modular ortholattice of
all closed subspaces of Hilbert space was the primary example which lead to the
development of a rich theory of orthomodular lattices [21]. Though, capturing the
special features of modularity needs a different approach, having as guideline the
Murray-von-Neumann [24] construction of a ∗-regular ring of unbounded operators
associated with any finite von Neumann algebra factor. From this one can derive
an inner product space, which is an elementary extension of the given Hilbert
space, and an embedding of the ortholattice of projections into the ortholattice of
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closed subspaces which is at the same time a lattice embedding into the lattice of
all subspaces [13]. In a general approach, inner product spaces are replaced by
anisotropic pre-orthogeometries, projective spaces P endowed with an irreflexive
symmetric relation ⊥ between points which is compatible with collinearity. Though,
to make use of such, one needs more, namely that mapping p to p⊥, the greatest
subspace orthogonal to p, is a polarity from points to hyperplanes, i.e. that (P,⊥) is
an orthogeometry. The latter are well known to be closely related to inner product
spaces cf. [8].

In the present note, we recall results form the preliminary presentation in [14]
and, in simplfied form, from [12] where the more general case of orthogonal geome-
tries and complemented modular lattices with involution has been dealt with. The
presentation is intended to be rather elementary and self-containded.

Following the above mentioned example, a representation of a modular ortholat-
tice L in an anisotropic pre-orthogeometry (P,⊥) is a 0-1-lattice embedding into the
subspace lattice L(P ) which preserves orthogonality, i.e. maps orthogonal elements
of L onto orthogonal subspaces of (P,⊥) or, equivalently, yields a simultaneous
embedding.

We discuss how representations relate to equational theory. In particular, we
show that a variety V of modular ortholattices is generated by its finite height
members if and only if any member of V has an atomic extension within V if and
only if V has all members representable within some anisotropic orthogeometry
the finite dimensional subspaces of which have ortholattices belonging to V. This
can be derived from [12, Thm.2.2]; here we present a simplified proof. The latter
classes of geometries are closed under ultraproducts, subgeometries, and orthogonal
disjoint unions.

A final result shows that a representation of L within (P,⊥) induces a represen-
tation within some (proper projective) subgeometry which is also an (anisotropic)
orthogeometry under the restriction of ⊥, provided that sufficiently many points
have p⊥ a hyperplane (for simple L a single p suffices). Though, we cannot provide
any serious application.

2. Lattices and Geometries

This section contains introductory material on modular lattices, projective ge-
ometries, and the well-known links between the two.

We start with the geometric point of view (cf. [10, Ch.V.5] of [8]). The most
elementary Elementary Geometry deals with points, lines (sometimes also planes)
and incidence between them.

In an axiomatic approach, there are two disjoint sets P (for points) and G (for
lines) and an relation I ⊆ P ×G between them: if p ∈ P and l ∈ G with p I l then
we say that p and l are incident with each other. If three distinct points p, q, r are
incident with the same line then we say that p, q, r are collinear or that they form
a collinear triplet. For a projective space one requires the following.
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Figure 1. Projective property and plane of order 2

(1) Given any two distinct points p, q ∈ P there is a unique line l ∈ G incident
with them. We write l = p+ q.

(2) For any line l ∈ G there are at least two distinct points p, q ∈ P incident
with.

(3) Projective property: If p, a, b and p, c, d are both collinear triplets but p, b, c
are not collinear, then there is a point q such that a, q, c and b, q, d are
collinear triplets, see Figure 1.

In view of (1) and (2) we may identify any line with the set of points incident with
it. Most readers will be familiar with projective planes, e.g. the projective plane of
order 2 in Figure 1. In a projective plane every pair of distinct lines must intersect
in a single point. The projective property is the higher dimensional analogue of
this.

Projective Geometry originated from an analysis of perspective drawing: add a
point at infinity to each parallel pencil of lines in the familiar (affine) plane or space.
In this setting, points are described by 3 respectively. 4 homogeneous coordinates,
unique up to a non-zero scalar multiple. More generally, given any vector space V ,
one obtains a projective space the points and lines of which are the 1- respectively
2-dimensional linear subspaces and where incidence is given by ⊆. Conversely, any
projective space can be obtained as a disjoint union of such together with projective
lines and planes - where points p, q come from disjoint parts if and only if they are
incident with the 2-point line {p, q}.

A subspace of a projective space P is a subset X of P such that the following holds.

If p, q are distinct points in X then p + q ⊆ X, i.e. r ∈ X for any
r such that p, q, r is a collinear triplet.
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Figure 2. Join with a singleton
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Figure 3. Join of disjoint subspaces

Given a subset U of P , its closure X under the collinearity relation, yielding the
smallest subspace containing U , can be described iteratively, which is sometimes
useful. Let L(P ) denote the set of all subspaces of P . L(P ) is partially ordered by
set inclusion. Moreover, the intersection or meet of subspaces is easily seen to be a
subspace. Thus, the closure X of U is the intersection of all Z ∈ L(P ) containing
given U , i.e. the smallest subspace containing U In particular, this applies to
U = X ∪ Y with X,Y ∈ L(P ). The closure of X ∪ Y is join X + Y of X and Y . It
is mainly due to the projective property, that the join has a nice description as in
Figures 2 and 3. Maximal proper subspaces H of P , will be called hyperplanes and
are characterized by p+H = P for any point p 6∈ H.

The systems L(P ) of subspaces of a projective space with partial order ⊆ and
the binary operations of meet and joins are between the fundamental examples
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which gave rise to the concept of a lattice: a partially ordered set in which infimum
(meet) and supremum (join) exist for any pair of elements. We refer the reader to
[2], [7], or [10], in particular in regards of the algebraic point of view. We just recall
some basic terminology and notation. For lattices pairwise joins will be denoted
by + and meets by ·. We shall often save time and brackets by using juxtaposition
for meets and following the convention that meet takes priority over join. When
we have occasion to use joins or meets over larger (sometimes infinite) sets we will
use the corresponding capitalized symbols. If a lattice L has a smallest element we
denote it by 0 and if it has a largest element we denote it by 1. We often treat the
bounds 0 and 1 as constants and then we speak of a 0, 1-lattice, and occasionally
we just consider the 0 as a constant and speak of a 0-lattice.

If a, b ∈ L, and a < b with no z ∈ L with a < z < b we say that b covers a and
write a ≺ b. For a ≤ b in L the interval [a, b] = {x ∈ L | a ≤ x ≤ b} is a sublattice
of L. A lattice is modular if

a ≥ c implies a(b+ c) = ab+ c.

A useful equivalent characterization is that intervals [ab, a] and b, a+b] are isomor-
phic via the mutually inverse isomorphisms x 7→ b+ x and y 7→ ay. For an element
a of modular lattice L with 0, if there is a finite maximal chain C in [0, a] then
all maximal chains in [0, a] have cardinality |C| and dim a = |C| − 1 is the height
or dimension of a. In particular, dimL = dim 1L and codim a = dim[a, 1L] is the
codimension of a, if these exist. If dimensions exist, the dimension formula is valid

dim(a+ b) + dim(ab) = dim a+ dim b.

This applies in the proof of the following well known result.

Lemma 2.1. (Folklore). Let L and M be modular lattices with 0 and all elements
of finite height and let ϕ : L→M be a cover preserving join embedding. Then ϕ is
a lattice embedding.

Proof. Let a, b ∈ L with dim(a) = m, dim(b) = n, dim(ab) = k and, hence
dim(a+ b) = m+n−k. Then dim(ϕ(a)) = m, dim(ϕ(b)) = n, dim(ϕ(a) +ϕ(b)) =
dim(ϕ(a+b)) = m+n−k, and hence dim(ϕ(a)ϕ(b)) = k. But also dim(ϕ(ab)) = k
and, since ϕ(ab) ≤ ϕ(a)ϕ(b), ϕ(ab) = ϕ(a)ϕ(b).

�
In a modular lattice, L, the elements of finite dimension form an ideal of L which

we will denote by Lfin. Dually the elements of finite codimension form a filter Lcof .
The atoms (covers of 0) of a 0-lattice L will be of particular importance to us and
we will denote this set by PL. The elements h ≺ 1 are coatoms, in L(P ) these are
the hyperplanes.

For any modular lattice, L, the points p ∈ PL together with the height 2 elements
p + q, where p 6= q in PL, as lines, and the incidence relation ≤ form a projective
space. In particular, p, q, r is a collinear triplet determining the line l if and only if

l = p+ q = p+ r = q + r where p, q, r ∈ PL and dim(l) = 2.

Only the projective property requires a closer look: We have p + a = p + b and
p + c = p + d of height 2 and distinct, whence coatoms of the height 3 interval
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[0, p+ b+ c]. By the dimension formula we get

q = (a+ d)(b+ c) ∈ PL.
Conversely, let us recall some lattice properties relevant in the context of lattices

L(P ). Firstly, a lattice L is complemented if it has 0 and 1 and if for all a there is b
with ab = 0 and a+ b = 1. If L is complemented and modular, then it is relatively
complemented, i.e. any of its intervals [v, u] is complemented. A lattice, L, is atomic
if for any a > 0 there is p ∈ PL with p ≤ a; any atomic relatively complemented
L is atomistic, i.e. any element is, in the partial order of L, a supremum of some
X ⊆ PL.

A geomodular lattice is an atomic complemented modular complete lattice where
the atoms are compact (that is, if an atom is below a join of elements then it is
already below the join of a finite subset of these elements). It can been shown
that the geomodular lattices are precisely the algebraic complemented modular lat-
tices. The following well-known result sums up the elementary relationship between
projective geometries and (geo-)modular lattices.

Theorem 2.2. If P is a projective space then L(P ) is a geomodular lattice. Con-
versely, if L is a modular lattice then PL together with the lines p + q, p 6= q in
PL, is a projective space. Considering geomodular L, only, these processes define
inverse bijections between the two classes.

If L is geomodular, the isomorphism from L onto L(PL) is given by

a 7→ {p ∈ PL | p ≤ a}.
In the case of the projective space P associated with a vector space VF , this map
identifies the lattice L(VF ) of linear subspaces of VF with the lattice L(P ). In the
sequel, this map and the above figures will show up in various adaptions. Mostly,
we will consider L(P ) an abstract geomodular lattice, identify the point p with the
singleton subspace p, denote subspaces by lower case letters, and write v ≤ u for
v ⊆ u and p ≤ u for p ∈ u. The above mentioned description of joins in L(P ) then
reads as follows.

Observation 2.3. For any atom p of a complemented modular lattice, L, and
a, b ∈ L one has p ≤ a + b if and only there are atoms q ≤ a and r ≤ b such that
p ≤ q + r. If p 6≤ a and p 6≤ b then one can choose q = a(p + d) and r = d(p + a)
with a suitable complement d of a. Moreover, in this case p, q, r are collinear.

In particular, in L(P ) one has

a+ b = {p ∈ P | p ≤ q + r for some q ≤ a, r ≤ b}.
Proof. This is trivial if p ≤ a or p ≤ b. Otherwise, let c be a complement of ab
in the interval [0, b] of L and d a complement of a+ b in the interval [c, 1] of L cf.
Figure 4. Then a and d are complements in L. Put q = a(p+ d) and r = d(p+ a).
Then, by modularity, q and r are atoms and q + r = (p + d)(a + d(p + a)) =
(p+ d)(p+ a)(a+ d) ≥ p.

�
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Figure 4. Join and atoms

For axiomatic purposes and for the study of subgeometries, projective spaces
are more conveniently described in terms of the collinearity relation - which is
extended to include trivial cases. (cf. [8]). In this approach we will consider a
projective geometry or projective space to be a set of points P together with a
totally symmetric ternary collinearity relation, C, on P which satisfies: For all
a, b, c, d, p, q ∈ P ,

C(a, b, a) for all a, b ∈ P (any two points are on some a line),

C(a, b, c) and C(q, b, c) and b 6= c imply C(a, q, b) (every line is determined by
any two distinct points on it),

and,

C(p, a, b) and C(p, c, d) imply C(q, a, c) and C(q, b, d) for some q ∈ P (we call
this the projective property).

The equivalence to the earlier definition is given by

• C(p, q, r) if p, q, r is a collinear triplet or |{p, q, r}| ≤ 2.
• G consists of all at least 2-element subsets l of P such that p, q ∈ l and
C(p, q, r) implies r ∈ l. The incidence relation is ⊆.

Many of the definitions and much of the notation in this paper have been devel-
oped semi-independently by different authors in different settings. We have strived
to strike a balance between what is already in the literature and what seems appro-
priate in our particular situation. We have not always found it desirable, or even
possible, to follow any one reference exactly, and the reader should consider this
when checking other sources.
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3. SubGeometries

In this section we discuss the notion of a ‘subgeometry’ and want the lattice
structure of the subspaces of the ‘subgeometry’ to be reflected accurately in that
of the subspaces of the given projective space. There are three basic types of
examples which arise as follows where VF is an F -vector space and K a subfield
of F . Firstly, for any F -linear subspace U we have L(UF ) an interval sublattice
of L(VF ), Secondly, consider L(Kn

K) (cover preserving embedded in L(FnF ) via
X 7→ FX; the points of L(Kn

K) form a ‘Baer subspace’ of L(FnF ) in case F is of
degree 2 over K cf. [1, 6]. Finally, Then L(VF ) is a sublattice of L(VK). It is
the combination of the first two whih is behind the concept of ‘proper projective
subgeometry’. The third will be relevant only later.

Let (P,C) be a projective geometry and let Q ⊆ P . In algebraic terms, we may
consider Q endowed with a partial binary operation fQ such that

fQ(p, q) = r iff p, q, r are collinear points in Q.

Thus, (Q, fQ) is the induced or relative subalgebra of the partial algebra (P, fP )
corresponding to the (induced) subgeometry (Q,Q3 ∩ C) of (P,C). This is the
terminology common in incidence geometry. In [8] this term occurs in the context
of matroids which does not apply if one considers collinearity as the fundamental
notion.

We recall some basic facts about closure systems arising in this and similar
settings. For any subset X of Q, the smallest subset containing X and closed under
fQ (i.e. the subalgebra generated by X), is the closure of X given as

CQX =
⋃
n<ω

Xn

where the Xn are recursively defined by

X0 = X, Xn+1 = Xn ∪ {r ∈ Q | r = fQ(p, q) for some p, q ∈ Xn}.
See Figure 5 showing the projective plane P of order 2 and Q = P \{p0}. It follows

(∗) p ∈ CQX iff p ∈ CQY for some finite Y ⊆ X
The map X 7→ CQX is the closure operator associated with the partial algebra
(Q, fQ) and the closed subsets U = CQU form a complete lattice L(Q) ordered

by inclusion with meet
⋂
i Ui and join

∨Q
i Ui = CQ

⋃
i Ui. U ∈ L(Q) is finitely

generated if U = CQX for some finite X. Of course, the above and the following
well known observation generalize to any partial algebra with finitary operations.
Actually, it only requires fQ ⊆ fP . i.e. a ‘weak subalgebra’ Q of P .

Observation 3.1. Let P and Q as above. Define

φ : L(Q)→ L(P ), φ(X) = CPX

(1) CPX = CPCQX for any X ⊆ Q.
(2) φ preserves any joins.
(4) φ is injective iff p ∈ CPX implies p ∈ CQX for any finite X ⊆ Q and

p ∈ Q.
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Figure 5. Generation process and join in a subgeometry

(4) φ(
⋂
i Ui) =

⋂
i φ(Ui) holds for all nonempty families Ui ∈ L(Q) if it does

so for finitely generated Ui ∈ L(Q).
(5) If Q is a projective space and U ∈ L(Q), then U ∈ L(Q)fin if and only if U

is finitely generated.

Proof. (1) From fQ ⊆ fP one gets CQX ⊆ CPX whence CPX ⊆ CPCQX ⊆
CPCPX = CPX.

(2) For Ui ∈ L(Q)

φ
∨
i

Q
Ui = φCQ

⋃
i

Ui = CPCQ
⋃
i

Ui = CP
⋃
i

Ui =
∨
i

P
CPUi =

∨
i

P
φUi.

(3) If φ is injective, X ⊆ Q and p ∈ Q then p ∈ CPX = φCQX implies
φCQ{p} ⊆ φCQX whence p ∈ CQ{p} ⊆ CQX. Conversely, let U ⊂ V in L(Q),
U 6= V . Then there is p ∈ V \ U ⊆ φV . Due to (*), assuming p ∈ φU would
yield p ∈ CPX for some finite X ⊆ U whence p ∈ CQX ⊆ U , by hypothesis, a
contradiction. Thus φU 6= φV .

(4) Let Ui ∈ L(Q) and p ∈ P , p ∈
⋂
i φUi. By (*) there are finite Xi ≤ Ui such

that

p ∈ CPXi = CPCQXi = φCQXi for all i

in view of (1). Thus by hypothesis

p ∈
⋂
i

CPXi = φ
⋂
i

CQXi ⊆ φ
⋂
i

Ui

(5) Indeed, by modularity X ≺ Y in L(Q) if and only if Y = p + X for some
p ∈ Y \X.

�
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A subgeometry Q of a projective geometry P is a projective subgeometry if it is
a projective geometry (under the induced collinearity); then, in a particular, L(Q)
is a geomodular lattice. Our main result of this section is the following:

Lemma 3.2. Let P be a projective space with projective subgeometry Q. Define

φ : L(Q)→ L(P ), φU =
∑

P
U the subspace generated by U in P .

Then φ is a complete join homomorphism mapping atoms to atoms. Moreover, the
following are equivalent.

(i) For any finite X ⊆ Q and p ∈ Q one has p ∈
∑
QX, the subspace generated

by X in the geometry Q, whenever p ∈ φ(
∑
QX);

(ii) ϕ : L(Q)fin → LP )fin is a cover preserving join embedding;
(iii) ϕ : L(Q)fin → L(P )fin is a 0-lattice embedding;
(iv) ϕ : L(Q) → L(P ) is a lattice embedding preserving arbitrary joins and

non-empty, but otherwise arbitrary, meets.

Proof. Singletons in Q are subspaces of Q and P as well; thus φ maps atoms to
atoms. By observation 3.1 (2), φ preserves joins.

Assume (i). Then φ is a join embedding by 3.1 (3). If U is a cover of V in
L(Q)fin then there is an atom p 6∈ V of L(Q) with join U = V + p formed in L(Q).
Then φ(p) 6∈ φ(V ) by 3.1 (5) and hypothesis (i). Since φ(p) is an atom of L(P ), we
conclude by modularity that φU = φ(V ) + φ(p) is a cover of φ(V ) in L(P ). Thus
(i) implies (ii) and this in turn (iii) by Lemma 2.1.

We assume (iii) and show (i). Identify L(Q)fin with its image in L(P )fin. Then
any computation with joins, meets, and ≤ in L(Q) is an instance of the same
computation in the geomodular lattice L(P ). Given finite X ⊆ Q and p ≤ a =∑
P X with p ∈ Q we show that p is in the subspace of Q generated by X. We do

so by induction on |X| see Figure 6. So let X = Y ∪ {q} and b =
∑
P Y . If p ≤ b

we are done by induction. Otherwise, r = b(p+q) is a third point on p+q and in Q
since both b and p+ q belong to the sublattice L(Q)fin. By inductive hypothesis, r
is in the subspace of Q generated by Y , whence p is in the subspace of Q generated
by X. This proves (i).

Finally, (iii) is contained in (iv). Conversely, (i) and (iii) together imply (iv) in
view of 3.1 (4) and (5).

�
Substantial parts of this are known cf. Faure and Frölicher [8]. We follow them

calling Q as in the Lemma a proper projective subgeometry of P . An example of a
projective subgeometry which is not proper is given on page 168 of [8].

If one wants the condition, that Q is a projective subgeometry, to be included
only in (i) and still have the equivalences, then one has to replace L(Q)fin by the
union of intervals [0, U ], where U ranges over all finitely generated subspaces of the
subgeometry Q of P . This might be seen as a lattice theoretic characterization of
proper projective subgeometries. The nontrivial step is from (iii) to (i). Consider
collinear triplets p, a, b and p, c, d in Q with p, b, c not collinear cf. Figure 1. Then,
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Figure 6. Q is proper

by modularity, q = (a + c)(b + d) is an atom in L(P ), whence in L(Q), too, i.e. a
point of Q. Thus, Q is a projective space.

4. Orthogonality

In Elementary Geometry, orthogonality is defined for lines. Passing to the pro-
jective point of view, this means to introduce orthogonality via a scalar product
for vectors as done in Linear Algebra. In particular, in an inner product space V
over the (skew) field F one has F~v ⊥ F ~w if and only 〈~v | ~w〉 = 0. This defines an
anisotropic orthogonality on the projective space associated with V and from this
orthogonality of subspaces is derived. More generally, one may consider orthogo-
nalities induced by ∗-hermitean forms, which may have isotropic points, a classical
subject in finite dimensions and also intensively studied in infinite dimensions cf.
[11]. As motivated by these examples, in our abstract approach to Orthogonal Ge-
ometry we consider “orthogonality” as a binary relation on points of a projective
space. We start with a very general such concept. Though, we will deal always
with the anisotropic case.

Let P be a projective space. A pre-orthogonality on P is a symmetric binary
relation ⊥ so that, for p, q, r, s ∈ P ,

p ⊥ q and p ⊥ r implies p ⊥ s for all s ≤ p+ q.

Observe that, if the ⊥i, i ∈ I, are pre-orthogonalities on P then so is ⊥ defined by

p ⊥ q iff p ⊥i q for all i ∈ I.

⊥ is an orthogonality if, in addition, for any p 6= q there is r ⊥ p collinear with p, q.
A pre-orthogonality which has the property that p 6⊥ p, for all p ∈ P is called

anisotropic. A projective geometry, P , with pre-orthogonality, ⊥, is formally writ-
ten (P,⊥). We call such a pre-orthogeometry and refer to it as anisotropic whenever
⊥ is. (P,⊥) is an orthogeometry if ⊥ is an orthogonality. For a subgeometry Q of
P the induced pre-orthogonality is ⊥Q is given by p ⊥Q q if and only if p, q ∈ Q and



12 CHRISTIAN HERRMANN AND SUSAN M. RODDY

p ⊥ q. An anisotropic pre-orthogonality which is not an orthogonality is discussed
in Section 7. We remark, that any anisotropic orthogeometry may be obtained as
an orthogonal disjoint union of geometries associated with inner product spaces
and such of dimension ≤ 3 cf. [8, Ch.14] and [12, Prop.1.4].

From the definition it is clear that if X ⊆ P then

X⊥ = {p ∈ P | p ⊥ q for all q ∈ X}
is a subspace of P , the orthogonal of X. The map X 7→ X⊥ is a polarity on the set
P and a self-adjoint Galois connection on the ordered set L(P ) cf. [2, V.7-8]. In
particular, X 7→ X⊥⊥ is a closure operator on L(P ) with closed sets or subspaces
of the form Y = X⊥ for some X ⊆ P (or equivalently Y = Y ⊥⊥). Moreover,
intersections of closed sets are closed and the map X 7→ X⊥ is order reverting. A
useful rule to be applied in the sequel is

(X1 +X2)⊥ = X⊥1 ∩X⊥2 .
To see this, let Z = X⊥1 ∩X⊥2 and conclude (X1 +X2)⊥ ⊆ Z from Xi ⊆ X1 +X2.
On the other hand, from Z ⊆ X⊥i we get Z⊥ ⊇ X⊥⊥i ⊇ Xi whence Z⊥ ⊇ X1 +X2

and Z = Z⊥⊥ ⊆ (X1 + X2)⊥. L(P ) with the map X 7→ X⊥ is the structure we
have to deal with, primarily. Again, we consider L(P ) a geomodular lattice L with
pre-orthogonality ⊥ defined on P = PL and write x⊥ in place of X⊥.

In order to address the properties of the system of closed subsets, we have to recall
some definitions from Lattice Theory cf. [2]. Let L be a 0, 1 - lattice. An involution
on L is a dual automorphism, ′ : L→ L, of period two, i.e.. for all x, y ∈ L,

(x+ y)′ = x′y′, (xy)′ = x′ + y′, 1′ = 0, 0′ = 1, and x′′ = x.

Considering x 7→ x′ as an additional unary operation, L is ortholattice, OL, iff the
involution is an orthocomplementation, i.e.. for all x ∈ L,

x+ x′ = 1, x · x′ = 0.

Then elements a, b of L are orthogonal to each other, denoted by a ⊥ b if a ≤ b′,
equivalently b ≤ a′. ⊥ is the canonical orthogonality on L. If L is also modular we
have a modular ortholattice, MOL.

As already observed, the closed subspaces form a complete sub-meet semilattice
Lc(P,⊥) of L(P ). Thus, Lc(P,⊥) is also a lattice with involution X 7→ X⊥, but
of course in general the join operations in the two lattices, L(P ) and Lc(P,⊥) are
different. Indeed, denoting the join in Lc(P,⊥) by ∨, one has

a ∨ b = (a⊥b⊥)⊥.

Indeed, c = a⊥b⊥ ∈ Lc(P,⊥) and c⊥ ≥ a, b. Now, if x ∈ Lc(P,⊥) and x ≥ a, b then
x⊥ ≤ c and x = x⊥⊥ ≥ c⊥. If ⊥ is anisotropic, then p 6∈ p⊥ = {q ∈ P | q ⊥ p}
for all p ∈ P and Lc(P,⊥) is an ortholattice. This is all well known and the details
can be found in [8], [12], [2], for example. Also the following are well known.

Proposition 4.1. Let ⊥ be an anisotropic pre-orthogonality on the projective space
P . Then the following are equivalent.

(1) ⊥ is an orthogonality on P .
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Figure 7. p⊥ a hyperplane

(2) The orthogonal p⊥ of any point is a hyperplane of P .
(3) p+ p⊥ = 1L(P ) for all p ∈ P .

Proof. Assume ⊥ to be an orthogonality. Given p 6= q, by modularity r = (p +
q)p⊥ is a point as required. Thus (1) implies (3). Since p ·p⊥ = 0 by anisotropicity,
(3) implies (2) by modularity. Supposing (2) and given p we have to show q ≤ p+p⊥

for any q. This is trivial if q = p. Otherwise, by hypothesis there is r ∈ p⊥ collinear
with p, q and it follows q ≤ p+ r ≤ p+ p⊥. See Figure 7. Thus (2) implies (1).

�
Only (1), (2), and (3) of the following will be used in the sequel, (2) and (3) not

before Sect.6. Otherwise these observations serve for clarification of concepts and
as a guideline for the proof of Theorem 11.2.

Proposition 4.2. (1) If L is an MOL with set P of atoms, then (P,⊥) is
an anisotropic orthogeometry with collinearity as in Theorem 2.2 and with
p ⊥ q if and only if p ≤ q′.

(2) In an anisotropic orthogeometry (P,⊥), if a ∈ Lc(P,⊥) and a ≺ b in L(P )
then b⊥ ≺ a⊥ in L(P ) and b ∈ Lc(P,⊥). Moreover

a ∈ Lc(P,⊥), codim a⊥ = dim a, and a+ a⊥ = 1 if dim a < ω.

(3) If (P,⊥) is an anisotropic orthogeometry and the lattice (L(P ) finite di-
mensional, then any subspace of P is closed and Lc(P,⊥) is an MOL.

(4) Any subspace Q of an anisotropic orthogeometry (P,⊥) is an anisotropic
orthogeometry under the induced orthogonality.

(5) If (P,⊥) is an anisotropic orthogeometry then L(P )fin = Lc(P,⊥)fin and
{X⊥ | X ∈ L(P )fin} = Lc(P,⊥)cofin are ideal respectively. filter in both
L(P ) and L(P,⊥) and their union is a sublattice of L(P ) and a sub-OL
of Lc(P,⊥). Moreover, L(P )cofin ⊆ Lc(P,⊥) if and only if (P,⊥) is the
orthogonal disjoint union of finite dimensional subspaces.



14 CHRISTIAN HERRMANN AND SUSAN M. RODDY

Proof. (1) Since x 7→ x′ is an involution, we have p′ ≺ 1L for each p ∈ P an, by
modularity r = p′(p + q) ≺ p + q for q ∈ P , q 6= p. Thus r ∈ P , r ⊥ p, and p, q, r
are collinear. Now, Proposition 4.1 applies.

(2) We start with an observation. If a ≺ b in L(P ) then b = a+q for some q ∈ P
and b⊥ = a⊥q⊥. Now q 6≤ a whence a⊥ 6≤ q⊥ since otherwise q ≤ q⊥⊥ ≤ a⊥⊥ = a.
From q⊥ ≺ 1 it follows b⊥ ≺ a⊥ proving the first claim. Applying this to b⊥ ≺ a⊥

it follows a = a⊥⊥ ≺ b⊥⊥ and a ≺ b ≤ b⊥⊥ gives b = b⊥⊥ ∈ Lc(P,⊥).
If dim a = n < ω, then codima⊥ = n and a ∈ Lc(P,⊥) by n applications of the

first claims. From aa⊥ = 0 and modularity it follows dim[a⊥, a + a⊥] = n whence
a+ a⊥ = 1.

In (3) observe thatQ 6≤ p⊥ for p ∈ Q by anisotropicity, whence p⊥Q = Q∩p⊥ ≺ Q
by p ⊥ P and modularity.

(4) follows from (2), immediately. We omit the proof of (5) - a more general
positive result can be found in [12, Thm.1.2]. That in an irreducible orthogeome-
try there are non-closed hyperplanes follows from the fact that in any irreducible
projective space the cardinality of the set of hyperplanes exceeds that of the set of
points.

�

5. Orthogeometries within anistropic pre-orthogeometries

Let (P,⊥) be a projective space with a not necessarily anisotropic pre-orthogonality.
A subset Q of P is a strong subgeometry iff

(i)
∑
X = (

∑
X)⊥⊥ for any finite X ⊆ Q

(ii) p, q ∈ Q and r = r⊥⊥ ≤ p+ q imply r ∈ Q

Lemma 5.1. If Q is a strong subgeometry of (P,⊥) then Q (with the induced
collinearity) is a proper projective subgeometry of P .

Proof. Consider p, q, r, s ∈ Q such that x = (p + q)(r + s) ∈ P . Then x⊥⊥ ≤
(p + q)⊥⊥ = p + q and x⊥⊥ ≤ (r + s)⊥⊥ = r + s whence x = x⊥⊥ and x ∈ Q by
(ii). Thus Q is a projective subgeometry. Now, we show, by induction on |X|, for
any finite X ⊆ Q

p ≤
∑
X and p ∈ Q imply that p is in the subspace of Q generated

by X

Assume p ≤
∑
X, X ⊆ Q, p ∈ Q. Then there is q ∈ X such that p ≤

q + u where u =
∑
Y with Y = X \ q. If p ≤ u then we are done by in-

duction. Otherwise, r = u(p + q) ∈ P and p ≤ r + q by modularity. By
(i), p + q = (p + q)⊥⊥ and u = u⊥⊥ whence r⊥⊥ ≤ u⊥⊥(p + q)⊥⊥ = u(p +
q) = r and r ∈ Q by (ii). Now, again by induction, r is in the subspace of
Q generated by Y , thus p is in the subspace of Q generated by X = Y ∪ q.

�
Observe that a subgeometry of an anisotropic orthogeometry may fail to be an

orthogeometry under the induced pre-orthogonality. Examples can be obtained
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from inner product spaces F 3 where F is a suitable field with involution and finite
prime subfield Fp: Let P and Q be the projective spaces associated with F 3

F and
F 3
p Fp

.

Theorem 5.2. Let (P,⊥) be an anisotropic pre-orthogeometry. Then

Q = {p ∈ P | p⊥ ≺ 1}
is a strong subgeometry of (P,⊥) and an anisotropic orthogeometry under the in-
duced orthogonality relation

Proof. To prove (i) consider finite X ⊆ Q and let u =
∑
X. We may assume that

|X| = dimu =: n. Then u⊥ =
∏
p∈X x

⊥ whence codimu⊥ ≤ n by modularity. On

the other hand, u⊥⊥u⊥ = 0 by anisotropicity. By modularity, [0, u⊥⊥] is isomorphic
to [u⊥, u⊥⊥ + u⊥] whence dimu⊥⊥ ≤ n. From u ≤ u⊥⊥ it follows that u = u⊥⊥.

Now, to prove (ii) consider p 6= q in Q and r = r⊥⊥ ≤ p + q =: u in P , in
particular r < u. Then r⊥ ≥ u⊥ = p⊥q⊥ and codimu⊥ ≤ 2. Now, 1 > r⊥ by
anisotropicity; on the other hand, r⊥ = u⊥ would imply r = r⊥⊥ = u⊥⊥ = u,
contradiction. Thus, r⊥ ≺ 1 and r ∈ Q.

Now, to prove that Q is an orthogeometry under the induced orthogonality
relation, by Prop.4.1 for any p 6= q in Q we have to provide r ∈ Q such that
r ⊥ q and r ≤ p + q. Let r = q⊥(p + q). Then r = r⊥⊥ by (i) and r ∈ P by
modularity (since r 6≥ q). Thus, r ∈ Q by property (ii) of a strong subgeometry.

�
That the situtation of the Theorem can occur in a non-trivial way (e.g. with P

the real and Q the rational plane, the latter with the canonical orthogonality) is
witnessed by the following.

Proposition 5.3. Let Q be a proper projective subgeometry of of the projective
space P such that P is generated by its subset Q. Let (Q,⊥Q) be a pre-orthogeometry
such that

∑
X is closed for any finite X ⊆ Q. Then there is ⊥ on P such that

(1) (P,⊥) is a pre-orthogeometry inducing ⊥Q on Q
(2) Q is a strong subgeometry of (P,⊥) and p ∈ Q iff p = p⊥⊥.
(3) (P,⊥) is anisotropic if (Q,⊥Q) is so
(4) (P,⊥) is anisotropic and Q = {q ∈ P | q +L(P ) q

⊥ = 1P } if (Q,⊥Q) is an
anisotropic orthogeometry

Proof. Consider L(Q)fin embedded into L(P ). For p ∈ P let C(p) the smallest
closed subspace of (Q,⊥Q) containing p and define

p ⊥ q iff C(p) ⊥Q C(q).

Equivalently: p ⊥ q iff q ⊥Q C(p)⊥Q . Thus, ⊥ is symmetric; moreover s ⊥ p, q and
r ≤ p+ q imply C(s)⊥Q ≥ p+ q ≥ r, i.e. s ⊥ r. This proves (i).

If u ∈ L(Q)fin is closed in (Q,⊥Q) then it is a fortiori closed in (P,⊥). Con-
versely, let p = p⊥⊥ and consider q ∈ P , q ≤ C(p). Then for all r with r ⊥ p one
has C(r) ⊥Q C(p) whence r ⊥ q and it follows q ≤ p⊥⊥ = p. Thus, p = C(p) ∈ Q.
This proves (ii).
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If (Q,⊥Q) is anisotropic, then C(p) ⊥Q C(q) implies C(p)∩C(q) = 0 and p 6= q.
If, in addition, (Q,⊥Q) is an orthogeometry, then the join of q and q⊥Q in Q is Q and
generates P by hypothesis. Conversely, if p+p⊥ = 1 in (P,⊥) then p = p⊥⊥ whence
p ∈ Q. �

We conclude this section with an example illustrating Theorem 11.2. Let V be
a unitary space with inner product 〈 | 〉 and consider self-adjoint endomorpisms φi,
i ∈ I. Let P be the projective space associated with V

p ⊥ q iff p = Cv, q = Cw, 〈v | w〉 = 0, and 〈φiv | w〉 = 0 for all i ∈ I.

Then Q as in Theorem 11.2 consists of all Cv where v is a common eigenvector of all
φi. Here, Q is a disjoint union of subspaces, arising a intersections of eigenspaces.

6. Representations

The following is the basic tool for establishing join preserving maps into lattices
L(P ), first used by Frink [9]. It follows form Observation 2.3, immediately.

Observation 6.1. Let P be a projective space and φ a map from the lattice L into
L(P ). Then φ preserves finite joins if and only if for any a, b ∈ L and p ≤ φ(a+ b)
there are q, r ∈ P such that q ≤ φ(a), r ≤ φ(b), and p ≤ q + r.

Let L be a 0, 1-modular lattice, L. A 0, 1-lattice embedding ϕ : L → L(P ) where
P is a projective geometry, is called a representation of the lattice L in P .

Let L be a complemented 0, 1-sublattice of the modular 0, 1-lattice M , and let
Q be a proper projective subgeometry of PM . Consider a complementary pair c, d
in L and q ∈ PM . Then p = c(q + d) ∈ PM by modularity. We will need that from
q ∈ Q we may derive p ∈ Q.

Q is L-closed in M iff for each p ∈ Q and complementary pairs a, d ∈ L: if
p 6≤ d = 0 then q = a(p+ d) ∈ Q.

Define

η(a) = {p ∈ Q | p ≤ a} for a ∈ L.

Lemma 6.2. Under the above hypotheses, if Q is L-closed in M then η : L→ L(Q)
is a homomorphism.

Proof. This follows immediately from Observation 6.1 and the proof of Obser-
vation 2.3.

�

It is well known, that a 0-lattice homomorphism φ : L → M , where L is comple-
mented modular, is an embedding if and only if φ(a) > 0 for any a > 0 in L. Indeed,
if c < d in L choose a as a complement of c in [0, d] to conclude φ(c) < φ(d). Thus,
η from above is an embedding if and only if Q is L-dense in the following sense.
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Q is L-dense in M if and only if for every a ∈ L \ {0} there exists q ∈ Q with
q ≤ a.

�
Let us now expand the definition of closed and dense to the case where L is

mapped homomorphically into M . Let L and M be 0-modular lattices, let φ : L→
M be a 0-1-lattice homomorphism, and let Q be a proper projective subgeometry
of PM . Then,

Q is (L, φ)-closed if and only if Q is φ(L)-closed;

Q is (L, φ)-dense if and only if for any a > 0 in L there is q ∈ Q such that
q ≤ φ(a).

Now, η ◦ φ is an embedding if and only if Q is (L, φ) dense. Since η is a homomor-
phism by Lemma 6.2, we have the following.

Lemma 6.3. Let L be a complemented modular lattice, M a 0, 1-modular lattice,
φ : L→ M a 0, 1-lattice homomorphism, and Q an (L, φ)-closed and dense proper
projective subgeometry of PM . Then the map η : L → L(Q) given by η(a) = {q ∈
Q | q ≤ φ(a)}, for all a ∈ L, is a representation of the lattice L in the projective
space Q.

Before we turn to representations of MOLs, our main interest, we observe that
this change of point of view has no effect on congruences.

Lemma 6.4. Any lattice congruence on an MOL is also an OL congruence (and,
of course, vice versa).

Proof.1 Let θ be a lattice congruence on the MOL, L. Suppose aθb. Then,
abθa+ b and conversely. Hence we may assume a ≤ b, so b′ ≤ a′. Now, a′ = a′ · 1 =
a′(b+ b′)θa′(a+ b′) = a′a+ b′ = b′. The third step because aθb and the fourth one
by modularity and b′ ≤ a′. Hence, a′θb′.

�

Corollary 6.5. If L is a simple MOL, M a modular 0-1-lattice, φ : L → M a
0-1-lattice homomorphism, and if ∅ 6= Q ⊆ PM is (L, φ)-closed in M , then Q is
(L, φ)-dense in M .

Proof. Q 6= ∅ means η(φ(1)) > 0; thus η ◦ φ is injective since L is simple. And
this means that Q is (L, φ) dense.

�

Let (P,⊥) be a pre-orthogeometry and L an MOL. Let η be a representation of L
considered as 0-1-lattice L in the projective space P . η is a representation of the

1This result is well known and is actually true for the larger class of OL’s called Orthomodular

Lattices. These have been studied extensively, see [21] for example, and while we won’t discuss

them further in this paper, our proof only uses the orthomodular law.
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MOL L in the pre-orthogeometry (P,⊥) if in addition

η(a′) ⊥ η(a),

for all a ∈ L.

Lemma 6.6. Let η be a representation of the MOL L in the anisotropic pre-
orthogeometry (P,⊥). Then

η(a′) = η(a)⊥,

for all a ∈ L.

Proof. One direction is trivial. For the other assume η(a′) ⊥ η(a). Then η(a′) ≤
η(a)⊥. Also, 1 = η(1) = η(a) + η(a′) and 0 = η(a)η(a)⊥. Hence, η(a′) = η(a)⊥ by
modularity.

�
Examples of representations of L are obtained from MOL-extensions of L con-

taining sufficiently many atoms.

Proposition 6.7. Let L be a sub-OL of the MOL, M , and assume PM to be L
dense. Then η(a) = {p ∈ PM | p ≤ a} is a representation of the MOL L in
the anisotropic orthogeometry (PM ,⊥) of Proposition 4.2 (1). In particular, this
applies if M is atomic or if PM 6= ∅ and L is a simple MOL.

Proof. By Proposition 4.2 (1) the canonical orthogonality on M induces an
anisotropic orthogonality ⊥P on P = PM . Clearly, PM is L closed in M . Thus φ
is a representation of L in the projective space PM by Lemma 6.3. By definition
of ⊥P , η(a) = {p ∈ P | p ≤ φ(a)} is also a representation of the MOL L in the
orthogeometry (P,⊥P ). Finally, by Corollary 6.5 and Lemma 6.4, PM is L-dense
if L is simple and PM 6= ∅.

�

7. Orthoimplications

We now move to the lattice-theoretic point of view. Let L be a 0-lattice. A
pre-orthogonality on L is a symmetric binary relation, ⊥, on L with the property
that, for all a, b, c ∈ L,

a ⊥ b and a ⊥ c imply a ⊥ b+ c,

and,

a ⊥ c and b ≤ c imply a ⊥ b.

Analogously, we call ⊥ anisotropic if for all u ∈ L, u ⊥ u implies that u = 0 . In
particular this occurs if L is an ortholattice with canonical ⊥. We denote a 0-lattice
L with pre-orthogonality ⊥ by (L,⊥). For any pre-orthogeometry (P,⊥) there is a
canonical pre-orthogonality on L(P ) given by X ⊥ Y if and only if X ⊆ Y ⊥.



ON GEOMETRIC REPRESENTATIONS OF MODULAR ORTHOLATTICES 19

Recall from [15] that an orthoimplication in a lattice with with pre-orthogonality
is an implication of the form2

n∧
i=1

(xi ⊥ yi)→ f(x1, ..., xn, y1, ..., yn) = 0,

where f is a lattice term. If (P,⊥) is a pre-orthogeometry, then we say that the
orthoimplication holds in (P,⊥) if it holds in (L(P ),⊥). The first claim in the
following Lemma is obvious. The second part is taken directly from the proof of
Lemma 2.1 of [15].

Lemma 7.1. Let L be a lattice with an anisotropic pre-orthogonality. If K is
a 0-sublattice of L with the restricted orthogonality then K satisfies the orthoim-
plications of L. If (P,⊥) is an anisotropic pre-orthogeometry, then (P,⊥) and
(L(P )fin,⊥) satisfy exactly the same orthoimplications. In particular, an orthoim-
plcation is valid in (P,⊥) if and only if it is in all (Q,⊥Q) where Q is a finite
dimensional subspace of P .

Lemma 7.2. For any orthoimplication γ there is a set Σγ of first order sentences
in the language of pre-orthogeometries such that γ is valid in (P,⊥) is and only if
Σ is valid in (P,⊥).

Proof.
Given finite lists p̄i of point variables (i = 1, . . . , n), for any lattice term f there

is a formula φf such that

p ∈ f(
∑

p̄1, . . . ,
∑

p̄n) ⇔ φf (p; p̄1, . . . , p̄n)

holds in any pre-orthogeometry. This is shown by induction: If f is a variable q in
p̄i let φf the formula p = q.

φf1f2 is φf1 ∧ φf2
φf1+f2 is ∃r1∃r2. C(p, r1, r2) ∧ φf1(r1/p) ∧ φf2(r2/p).

Now, define

(p1, . . . , pk) ⊥ (q1, . . . q`) ⇔
k∧
i=1

∧̀
j=1

pi ⊥ qi.

Then Σγ for the above orthoimplcation consist of all
n∧
i=1

p̄i ⊥ q̄i → ∀p.¬φf (p; p̄1, . . . , p̄n, q̄1, . . . , q̄n)

where the p̄i and q̄i range over all finite lists form a given countable set of variables.
�

The relevance of orthoimplications for equational theory is due to the following.

Lemma 7.3. (Lemma 3.1, [15]) For each MOL identity α there is an orthoimpli-
cation α+ such that, for any MOL L, α holds in L if and only if α+ holds in L
with its canonical orthogonality.

2∧ refers to logical conjunction here.
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Figure 8. Lemma 8.3, part 1

8. Atomic extensions

Corollary 8.1. Any sub-OL of an atomic MOL, M , has a representation in an
anisotropic orthogeometry satisfying the orthoimplications of M , namely (PM ,⊥).

This follows from Proposition 6.7. Now, we derive the converse, building on ideas
in [5]. A more general version has been shown in [12]. Here, we give a simplified
proof which is based on Lemma 8.3, below.

Theorem 8.2. If η is a representation of the MOL L in the anisotropic ortho-
geometry (P,⊥) then there is an atomic sub-ortholattice M of Lc(P,⊥) which is
also a sublattice of L(P ) containing all atoms of L(P ) such that η is an ortholattice
embedding of L into M . In particular, M satisfies the orthoimplications of (P,⊥).

In the sense of Cor.8.1 and Thm.8.2, representation of an MOL L in an anisotropic
orthogeometry and atomic MOL-extension of L are equivalent concepts.

Lemma 8.3. Let (P,⊥) be an anisotropic orthogeometry and a, b, c ∈ Lc(P,⊥)
such that a+ b = a∨ b, a⊥ + b⊥ = a⊥ ∨ b⊥ and a ≺ c or c ≺ a. Then c+ b = c∨ b.

Proof. If c + b = a + b then b + c ∈ Lc(P,⊥) whence c + b = c ∨ b. Assume
c + b 6= a + c. Let a ≺ c. Then a + b ≺ c + a + b = c + b by modularity
whence c + b ∈ Lc(P,⊥) by Proposition 4.2 (2), i.e. c + b = c ∨ b see Figure 8,
Now, let c ≺ a. Then c ≥ ab (since otherwise c + b = c + ab + b = a + b cf.
Figure 8) and c + b ≺ a + b by modularity, see Figure 9. By Proposition 4.2 (2),
again, a⊥ ≺ c⊥ ≤ (ab)⊥. Calculating in the ortholattice Lc(P,⊥) and applying the
hypothesis, (ab)⊥ = a⊥ ∨ b⊥ = a⊥ + b⊥ whence a⊥b⊥ ≺ c⊥b⊥ by modularity. It
follows c ∨ b = (c⊥b⊥)⊥ < (ab)⊥⊥ = a ∨ b = a+ b. Thus c+ b ≤ c ∨ b < a+ b and
c ∨ b = c+ b from c+ b ≺ a+ b.

�
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Figure 9. Lemma 8.3, part 2

Proof of Theorem 8.2. Identify L with its image under η and observe that L is
a sub-ortholattice of Lc(P,⊥) and a sublattice of L(P ). In particular, all x, y ∈ L
satisfy

(∗) x+ y = x ∨ y and x⊥ + y⊥ = x⊥ ∨ y⊥.
For x, y ∈ L(P ) define

xθy iff dim[x, x+ y] + dim[y, x+ y] < ω.

This is a well known congruence relation on L(P ). Since L is a sublattice of L(P ),
the union of the congruence classes of members a ∈ L

C =
⋃
a∈L

a[θ]

is a sublattice of L(P ), too. Now, let M = C ∩ Lc(P,⊥). Since Lc(P,⊥) is closed
under meets in L(P ), so is M . By Propositon 4.2 (2) , xθy implies dim[x⊥y⊥, x⊥]+
dim[x⊥y⊥, y⊥] < ω and this in turn, by modularity x⊥θy⊥, Thus, M is closed
under ⊥. Finally, any x ∈ M is connected to some a ∈ L within M via coverings,
e.g. first ascending in [a, a + x], then descending in [x, a + x]. Let d(x) denote
the minimum distance of x ∈ M from some a ∈ L within M and observe that
d(x⊥) = d(x) by Proposition 4.2 (2). By induction on d(x) + d(y) and Lemma
8.3 it follows that all pairs x, y of elements of M satisfy condition (*) and have
x+ y = x ∨ y = (x⊥y⊥)⊥ ∈M .

�

Corollary 8.4. If a simple MOL, L admits an MOL-extension, M , containing at
least one atom, then L admits an atomic extension within the variety of M .

Proof. This rather serves to illustrate the method. There is also a simple purely
algebraic proof. By Proposition 6.7 we have a representation of the MOL L in the
anisotropic orthogeometry (PM ,⊥) which satisfies the orthoimplications of M due
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to Lemma 7.1. Now apply Theorem 8.2 to obtain an atomic MOL L̂ which extends
L and such that L̂fin = L(PM )fin. By Lemma 7.1 this MOL satisfies the orthoimpli-
cations of M and then so do its intervals [0, u] with induced orthocomplementation

x 7→ ux′. By Lemma 7.3, these are in the variety of M whence so is L̂ by [15].

�

9. Varieties generated by their finite height members

The following is partially in [14] and can be derived from [12, Thm.2.2]. We give
a stronger statement and a simplified proof.

Theorem 9.1. The following are equivalent for a variety V of MOLs.

(1) V is generated by its finite height members.
(2) V is generated by its atomic members.
(3) Any member of V has an atomic extension in V.
(4) Every member of V has a representation in an anisotropic orthogeometry

satisfying the orthoimplications valid in V.

Proof. The equivalence of (1) and (2) is [16]. The equivalence of (3) and (4) is
Prop.8.2. (3) implies (2), obviously. Now, assume (2) and let C denote the class of
all MOLs having an atomic extension in V. Clearly, C contains all atomic members
of V. Thus, to prove that (2) implies (3) we have to show that C is closed under
subalgebras, direct products, and homomorphic images. The first is trivial, in the
second, given Li embedded into atomic Mi ∈ V embed the direct product of the Li
into the direct product M of the Mi, canonically. Of course, M is atomic and in
V. Finally, closure under homomorphic images follows from Proposition 9.2, below,
and the fact that (4) implies (3).

Proposition 9.2. Let L be an MOL embedded into an atomic MOL M and K
a homomorphic image of L. Then the MOL K admits a representation in some
anisotropic orthogeometry satisfying the orthoimplications of M .

The proof of Proposition 9.2 relies on the existence of an extension with some
‘saturation property’.

Lemma 9.3. For any atomic MOL, M0, there is an ultrapower M such that for
any subOL L of M0. any proper filter of F of L. and any a ∈ L such that aF 6= 0
there is an atom p of M with p ≤ εa and p ≤ εx for all x ∈ F - where ε is the
canonical embedding of M0 into M .

Proof. Recall the model theoretic proof of the Compactness Theorem. Let I be
the set of all finite subsets X of F . For X ∈ I let

X∗ = {Y ∈ I | Y ⊇ X}.

Observe that X∗1 ∩X∗2 = (X1∪X2)∗. Thus, there is an ultrafilter U on I containing
all X∗. Let M the ultrapower M = M I

0 /U . Consider a ∈ L such that aF 6= 0.



ON GEOMETRIC REPRESENTATIONS OF MODULAR ORTHOLATTICES 23

Then, for all X ∈ I, a
∏
X > 0 and by atomicity of M0 there is an atom pa,X ≤

a
∏
X of M0. Observe that for any X ∈ I

pa,Y ≤ a
∏

X for all Y ∈ X∗

Define

pa = (pa,X | X ∈ I)/U
By  Los’ Theorem, pa is an atom of M and

pa ≤ ε(a
∏

X) for any fixed X ∈ I.

(Here, it suffices to consider singleton X.)
For the proof of Proposition 9.2 we also need the following Lemma about the “

neutral filter” associated with a congruence relation cf. [16]. We write p ≤ F if
p ≤ x for all x ∈ F .

Lemma 9.4. Let L,M be MOLs, L a subalgebra of M , and θ a congruence of L.
Then F1 = {x ∈ L | x θ 1} is a filter of L. Moreover, Q = {p ∈ P | p ≤ F1} is a
subspace of PM and for any a, b ∈ L and p ∈ Q with p ≤ a + b one has q, r ∈ Q
such that q ≤ a, r ≤ b, and p ≤ q + r.

Proof. The first claim is well known and checked, straightforwardly. The second
is obvious. The last is trivial if p ≤ a or p ≤ q. Referring to the proof of Observation
2.3 we may assume a + b = 1. Let q = a(p + b) and r = b(p + a). That q, r are
atoms of M and p, q, r collinear is the same elementary calculation as in Lemma
6.2.

Consider x ∈ F1, i.e. x θ 1 and p ≤ x. Let

y = (a+ xb)(b+ x) ≥ q, z = (b+ xa)(a+ x) ≥ r

By modularity, x, y, z coincide or are the atoms of a sublattice of height 2 cf. Figure
10. In particular, all its quotients are in θ whence 1/y ∈ θ and y ∈ F1. From p ≤ F1

it follows p ≤ y and thus r ≤ p+q ≤ y. Hence r ≤ yz ≤ x and q ≤ x, symmetrically.

�
Proof of Proposition 9.2. Consider L a subalgebra of the atomic MOL M .

W.l.o.g. we may assume M is as in Proposition 9.3. Let θ be a congruence on
L with K ∼= L/θ and filter F1 as in Lemma 9.4. Let a/θ denote the image of a
under the canonical projection. Define

Q = {p ∈ PM | p ≤ F1}, η : L/θ → L(Q), η(a/θ) = {p ∈ Q | p ≤ a}.

By Proposition 4.2 (1) and (4), (PM ,⊥) is an anisotropic orthogeometry with sub-
space (Q,⊥Q) also an anisotropic orthogeometry, satisfying the orthoimplications
of M in view of Lemma 7.1. Obviously, η is meet preserving and η(a/θ) ⊥Q η(a′/θ).
If a/b ∈ θ then b = ac for some c ∈ F1 whence a ≥ p ∈ Q implies p ≤ b; thus, η is
well defined. The proof that η preserves joins uses Observation 6.1. Given a, b ∈ L
consider p ∈ η((a + b)/θ), i.e. p ∈ Q and p ≤ a + b. By Lemma 9.4 there are
q, r ∈ Q such that q ≤ a, r ≤ b and p ≤ q + r whence p ∈ η(a/θ) + η(b/θ).
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Figure 10. Neutral Filter Lemma

Finally, consider a/θ 6= 0 which means ac > 0 for all c ∈ F1. By choice of M
there is p ∈ PM such that p ≤ x for all x in the filter

aF1 = {x ∈ L | ac ≤ x for some c ∈ F1}.

Thus, p ∈ Q and p ≤ η(a/θ) which proves Q is L-dense in M . Thus, η is a
representation by Lemma 6.3.

�

10. U-quasivarieties of anisotropic orthogeometries

A subgeometry of an anisotropic orthogeometry (P,⊥) is a proper projective
subgeometry Q of P together with the restriction ⊥Q. The orthogonal gisjoint
union of anisotropic orthogeometries (Pi,⊥i) is the disjoint union P of the Pi
together with p ⊥ q iff p ⊥i q for some i or p ∈ Pi, q ∈ Pj for some i 6= j. Then
X 7→ (X ∩ Pi | i ∈ I) yields both an isomorphism of L(P ) and

∏
i L(Pi), Lc(P,⊥)

and
∏
i Lc(Pi,⊥i).

For a class G of anisotropic orthogeometries let SgG, UG, and PuG denote the
classes of all subgeometries, orthogonal unions, and ultraproducts of members of
G, respectively. Call G a U-quasivariety if it is closed under these operators.

For any class G of anisotropic orthogeometries, let Gω denote the class of finite
dimensional members of G and L(G) the class of all MOLs admitting a representa-
tion within some member of G. Let R(G) denote the class of all finite dimensional
anisotropic orthogeometries such that Lc(P,⊥) ∈ L(G). Call a U-quasivariety strong
if it is closed under R.

If V is a MOL variety, let G(V) denote the class of all anisotropic orthogeometries
(P,⊥) having Lc(Q,⊥Q) ∈ V for all finite dimensional subspaces Q of P .

Theorem 10.1. (1) L(G) ⊆ V{Lc(P,⊥) | (P,⊥) ∈ G<ω}.



ON GEOMETRIC REPRESENTATIONS OF MODULAR ORTHOLATTICES 25

(2) L(G) is an MOL variety if G is a U-quasivariety of anisotropic orthogeome-
tries.

(3) G(V) is a strong U-quasivariety of anisotropic orthogeometries, given any
MOL variety V.

(4) (2) and (3) establish a 1-1-correspondence between strong U-quasivarieties
of anisotropic orthogeometries and MOL varieties generated by their finite
height members. V and Q are in correspondence if and only if they satisfy
the same orthoimplications.

Proof. cf. [12, Thm.2.2, Cor.2.3]. (1). Let η be a representation of L in (P,⊥).
By Theorem 8.2 L has an atomic M extension satsfying the orthoimplications of
(P,⊥). By Lemma 7.1 that are the orthoimplications satisfied by all (Q,⊥Q), Q
finite dimensional subspace of P . Converting orthoimplications into identities by
Lemma 7.3 we get that M whence L is in the variety generated by these Lc(Q,⊥Q).

(2) Closure under subOLs is obvious. If L =
∏
i Li and Li represented in (Pi,⊥I)

via εi then L is represented in the orthogonal disjoint union by εa =
∑
i εia.

Concerning homomorphic images, we refer to the proof of Proposition 9.2: Let L
be represented in (P0,⊥0) and M0 the atomic MOL-extension of L associated via
Thm.8.2, Let M be an ultrapower of M0 according to Lemma 9.3; then the proof of
Prop.9.2 applies to provide for any homomorphic image K of L a representation in
some subgeometry (Q. ⊥Q) of the orthogeometry (P,⊥) associated with M . Now,
(P,⊥) is an ultrapower of the geometry (P0,⊥0) of M0 - since the geometries are
definable in the MOLs. Thus, the (Q,⊥Q) are in G.

(3) Closure under Sg, U, and R is obvious. If (P,⊥) is ultraproduct of the
(Pi,⊥i) and U is an n-dimensional subspace of P , choose points pki ∈ Pi such that
the (pki | i ∈ I), k = 1, . . . , n determine spanning points p1, . . . , pn of U and let
Ui be the subspace of Pi spanned by pi1, . . . , pin. Then U is a subspace of the
ultraproduct of the Ui.

(4) For an MOL variety V let V<ω denote its subvariety generated by its finite
heigth members. By (1) we have L(G(V)) ⊆ V<ω Conversely, if L ∈ V is of finite
height, then L ∼= Lc(PL,⊥) where ⊥ is the orthogonality, whence L ∈ L(G(V)). It
follows V = L(G(V) if and only if V = V<ω.

If (P,⊥) ∈ G, then L(Q,⊥Q) ∈ L(G) for all finite dimensional subspaces Q of
P whence (P,⊥) ∈ G(L(G)) by definition. Conversely, assume (P,⊥) ∈ G(L(G)).
If Q is a finite dimensional subspace of P , then Lc(Q,⊥Q) ∈ L(G) by definition,
whence (Q,⊥Q) ∈ G since G is closed under R. Now, observe that, by Lemma
10.2 bewlow, (P,⊥) is a subgeometry of an ultraproduct of its finite dimensional
subspaces, whence (P,⊥) ∈ G.

Finally, bserve that by (1) and Lemmas 7.1 and 7.3, the orthoimplications of G
are vaild in L(G) and the orthoimplcations of V in G(V), the latter by the definition
of G(V).

Lemma 10.2. If a first order structure A has substructures Ai such that each finite
subset of A is contained in some Ai then A embeds in an ultraproduct of the AI .

Proof. This is due to Malcev.
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11. One atom might suffice

Lemma 11.1. In the situation given in Thm.11.2, consider an MOL L and an
embedding η : L→ L(P ) of the 0-1-lattices such that ηa ⊥ ηa′ for all a ∈ L. Then
Q is L-η-closed.

Proof. We may consider L a 0-1-sublattice of L(P ) and η the identity map.
Consider a ⊕ d = 1 = 1L(P ) in L, q 6≤ d, q ∈ Q. Let p = a(q + d). Then, by

modularity, p ∈ P and q⊥d′ ≺ d′, whence a′ + q⊥d′ ≺ 1. But p⊥ ≥ a′ from p ≤ a
and p⊥ ≥ (q + d)⊥ = q⊥d′ from p ≤ q + d; moreover, p⊥ < 1 by anisotropictity.
Thus, a′+q⊥d′ ≤ p⊥ < 1 whence p⊥ ≺ 1 and so p ∈ Q proving that Q is L-η-closed.

We finish with a result which was intended to establish representations of MOLs:
though, no serious application has been found so far.

Theorem 11.2. Let (P,⊥) be an a anisotropic pre-orthogeometry and Q the set of
all points in P having orthogonal p⊥ a hyperplane of P . Then Q is a proper projec-
tive subgeometry of P and an orthogeometry under the induced pre-orthogonality.

Proof. Our proof will be by calculation in the geomodular lattice L(P ) endowed
with the unary operation x 7→ x⊥ given by the pre-orthogonality ⊥. We split the
proof up into four Claims and define M as the set of all joins

∑
X in L(P ), X

a finite subset of Q. The first Claim establishes some of the rules of calculation
from Proposition 4.2 also in the given context. They will be freely used in proving
Claims 2-4.

Claim 1. If u ∈M and dim(u) = n then u = u⊥⊥, u+u⊥ = 1 and codim(u⊥) = n.
Furthermore, for u, v ∈M , u ≤ v iff v⊥ ≤ u⊥.

Proof of Claim 1. See Figure 11. Let u ∈ M with dim(u) = n and u = Σnpi,
with pi ∈ Q, for each i. u⊥ = Πnp⊥i , and since pi ≺ 1 for each i, codim(u⊥) ≤ n.
Since ⊥ is anisotropic, uu⊥ = 0, and so dim([u, u+ u⊥]) = n, by modularity. But
u ≤ u+ u⊥ ≤ 1 now gives u+ u⊥ = 1, by modularity, and codim(u⊥) = n. Always
u ≤ u⊥⊥ and, by anisotropicity, u⊥u⊥⊥ = 0. Hence, by modularity u = u⊥⊥.
Finally for this claim, u ≤ v in M automatically gives v⊥ ≤ u⊥ but now, from
above,

u = u⊥⊥ ≤ v⊥⊥ = v.

This completes the proof of Claim 1.

Claim 2. Q is a projective subgeometry of P .
Proof of Claim 2. It suffices to show that Q has the projective property. To

this end suppose (p, a, b) and (p, c, d), where p, a, b, c, d ∈ Q, are collinear triples
but that p, b, c are not collinear. Recall that collinearity is that inherited from P ,
in other words that given by the geomodular lattice L(P ). We need to show that
there exists q ∈ Q with (q, a, c) and (q, b, d) both collinear triples. Since P is a
projective geometry q = (a + c)(b + d) ∈ P satisfies the collinearity requirements
cf. Figure 1. We need to show q ∈ Q, i.e.. q⊥ ≺ 1.

Now, (cf. Figure 12) q⊥ ≥ (a+c)⊥+(b+d)⊥ ≥ (a+c)⊥, and codim((a+c)⊥) = 2
from Claim 1. If (a+ c)⊥ = (a+ c)⊥ + (b+ d)⊥ then, by the last part of Claim 1,
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Figure 11. Claim 1
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a+c ≤ b+d, which we have assumed does not occur. Also, because ⊥ is anisotropic,
q⊥ 6= 1. So now,

1 > q⊥ ≥ (a+ c)⊥ + (b+ d)⊥ > (a+ c)⊥,

gives, 1 � q⊥ = (a+ c)⊥ + (b+ d)⊥, and q ∈ Q.

Claim 3. Q is a proper projective subgeometry of P .
Proof of Claim 3. See Figure 13. We show by induction on |X| that p ≤ u =

∑
X

with p ∈ Q and finite X ⊆ Q implies that p is in the subspace U of Q generated
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Figure 13. Claim 3

by X. So, let X = Y ∪ {q} with q 6∈ Y and v =
∑
Y . If p ≤ v we are done by

induction. For p = q the claim ist trivial. Otherwise, we have r = v(p + q) ∈ P .
Now, in view of Claim 1, v⊥ 6≤ p⊥ since p 6≤ v whence dim[v⊥ + p⊥q⊥, 1] ≤ 1. On
the other hand, 1 > r⊥ ≥ v⊥ + (p+ q)⊥ ≥ v⊥ + p⊥q⊥ whence r⊥ ≺ 1. Thus r ∈ Q
and so r ∈ U by induction. Since q ∈ U and p, q, r are collinear, it follows p ∈ U .

Claim 4. ⊥ induces an anisotropic orthogonality on Q.
Proof of Claim 4. By hypothesis, p 6⊥ p for all p ∈ Q. We are left to show

that for p 6= q in Q there is r ∈ Q such that r ≤ p + q and r ⊥ p. See Figure
14. Choose r = (p + q)p⊥. Since p⊥ ≺ 1 we have r ∈ P . Since p, q and p + q
are in M , we already know that they are closed, that dim[(p + q)⊥, 1] = 2, and
r + p⊥q⊥ = (p + q + p⊥q⊥)p⊥ = (p + q + (p + q)⊥)p⊥ = 1p⊥ = p⊥. From
r ≤ p+ q we have r⊥ ≥ p⊥q⊥. Assuming r⊥ = p⊥q⊥ it would follow p = p⊥⊥ ==
(r + p⊥q⊥)⊥ = r⊥(p⊥q⊥)⊥ = 0 . Also, r⊥ = 1 would contradict anisotropicity.
Thus p⊥q⊥ ≺ r⊥ ≺ 1 since p⊥q⊥ = (p + q)⊥ has codimension 2, and it follows
r + r⊥ = 1, i.e. r ∈ Q.

�

Corollary 11.3. Let φ be a representation of the MOL L in the anisotropic or-
thogeometry (P,⊥) and let Q = {p ∈ P | p + p⊥ = 1}. Define η : L → L(Q)
by

η(a) = {p ∈ Q | p ≤ φ(a)},
for all a ∈ L. If Q is (L, φ)-dense (in particular, if L is simple and Q 6= ∅) then η
is a representation of the MOL L in the anisotropic orthogeometry (Q,⊥Q) which
is a proper projective subgeometry of P .

Proof. By Theorem 11.2, Q is a proper projective subgeometry of P and an
orthogeometry under the induced orthogonality. Clearly, η(a) ⊥Q η(a′) for a ∈ l.
It remains to show that Q is (L, η)-closed; for once this is done we simply apply
Lemma 6.3 with M = L(P ). For simple L refer to Corollary 6.5.
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Figure 15. Theorem 11.3

Let a, d ∈ L with a+ d = 1 and ad = 0, whence φ(a) and φ(d) are complements
of each other in M and, by Lemma 6.6, so are φ(a′) = φ(a)⊥ and φ(d′) = φ(d)⊥.
See Figure 15. Let p ∈ Q and p 6≤ φ(d). Let q = φ(a)(p + φ(d)). We have q ∈ P ,
we will show q⊥ ≺ 1.

Since, p⊥ ≺ 1, (φ(d) +p)⊥ = φ(d)⊥p⊥ ≺ φ(d)⊥. Now, q ≤ φ(a) and q ≤ p+φ(d)
so q⊥ ≥ φ(a)⊥ + p⊥φ(d)⊥. But,

φ(a)⊥ + p⊥φ(d)⊥ ≺ φ(a)⊥ + φ(d)⊥ = 1.

Since q⊥ 6= 1, q⊥ = φ(a)⊥ + p⊥φ(d)⊥ ≺ 1.

�

Corollary 11.4. Let M be a modular 0-1-lattice with anisotropic pre-orthogonality
⊥. Then P = PM with the restriction of ⊥ is an anisotropic pre-orthogeometry
and (Q,⊥Q) defined as in Theorem 11.2 satisfies the orthoimplications of (M,⊥).
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Moreover, if L is an MOL and if φ is a 0-1- lattice homomorphism of L into M
such that φ(a) ⊥ φ(a′) for all a ∈ L and such that, referring to Corollary 11.3, Q
is (L, φ)-dense (in particular, if L is simple and Q 6= ∅), then η is a representation
of the MOL L in the anisotropic orthogeometry (Q,⊥Q).

Proof. The first claims follow from Theorem 11.2 and Lemma 7.1. Clearly, PM is
L closed in M and φ is a representation of the 0-lattice L in the projective space
PM by Lemma 6.3. By definition of ⊥P , η(a) = {p ∈ P | p ≤ φ(a)} is also a
representation of the MOL L in the pre-orthogeometry (P,⊥P ). By Theorem 11.3,
η is a representation of the MOL L in the orthogeometry (Q,⊥Q).

�

12. Discussion

An MOL, L, is n-distribuitive if it satisfies the identity

x

n∑
i=0

xi =
n∑
i=0

x
∑
j 6=i

xi

According to [23], this is the case if and only if L is a subdirect product of simple
MOLs of height ≤ n. Due to [15] and the fact that any interval sublattice of L
with the induced orthocomplementation is in the variety of L, it follows that for
any variety V of MOLs the following are equivalent

(1) V contains a simple member of height 3
(2) V contains an atomic member which is not 2-distributive.

Call V a Bruns variety it V is if (i) holds for any non-2-distributive subvariety of V.
Gunter Bruns [4] had conjectured that any MOL variety is a Bruns variety. The
proof he had in mind was to show that any subdirectly irreducible MOL generated
by an orthogonal 3-frame would be of height 3. A height 6 conterxample was soon
provided by Müller, according to [14] there are counterexamples of arbitrarily large
finite as well as infinite height. While the analogous claim for varieties of modular
lattices is easily proved (any non-2-distributive lattice admits a 3-frame in a height
3 interval I of its filter lattice, whence I is simple complemented, in particular) all
attempts on a similar approach for MOLs failed badly.

At present, no non-trivial example of a Bruns variety of MOLs in knwon - the
trivial examples provided by the n-distributive MOL-varieties is Bruns (since its
subdirectly irreducible members are of height ≤ n). Thus, one should discard the
Bruns Conjecture as unreasonable and ask the following question.

Problem 12.1. Is there any Bruns variety of MOLs which is not n-distributive
for any n?

In contrast, there are non-trivial examples of MOL-varieties generated by their
finite height members. But these could be verified only on the basis of strong results
from Functinal Analysi. (cf. [13, 18]):
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The MOL varieties V generated by projection lattices of finite
Rickart C∗-algebras algebras Ai are generated by either by one
or all subspace MOLs L(Cn) w.r.t. canonical inner product.

Theorem 10.1 establishes a 1-1-correspondence between certain classesQ of anisotropic
orthogeometries and MOL varieties V generated by their finite height members.
From this point of view, the latter appear to be rather special varieties.

The most interesting one is the variety R generated by the L(Qn) n < ω. With
[19, Digr.5.22], the fact that

√
p0 6∈ Q(

√
p1, . . . ,

√
pn) for distinct primes pi, and

with Jónsson’s Lemma it follows that the varieties L(Q(
√
p)3), p ranging over primes

≡ 3 mod4, form, in the lattice of of subvarieties of R, an independent set of covers
of the variety generated by L(Q3). In particular, R has 2ℵ0 subvarieties.

Problem 12.2. Is any subvariety of R a Bruns variety? Does R coincide with the
variety N generated by the L(Cn), n < ω?
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