
RINGS OF QUOTIENTS OF FINITE AW∗-ALGEBRAS:
REPRESENTATION AND ALGEBRAIC APPROXIMATION

CHRISTIAN HERRMANN AND MARINA SEMENOVA

Abstract. We show that Berberian’s ∗-regular extension of a finite AW ∗-algebra
admits a faithful representation, matching the involution with adjunction, in the
C-algebra of endomorphisms of a closed subspace of some ultrapower of a Hilbert
space. We derive then that this extension is a homomorphic image of a regular
subalgebra of an ultraproduct of matrix ∗-algebras Cn×n.

1. Introduction

Goodearl and Menal [1, Theorem 1.6] have shown that any C∗-algebra C is a
homomorphic image of a residually finite dimensional C∗-algebra B. Moreover, if
C above is separable, then B is a subdirect product of matrix algebras Cn×n. The
first objective of the present paper is to show that one can choose B always as a
subalgebra of an ultraproduct of algebras Cn×n – and to generalize the result to
algebras represented in any inner product space. In this note, ultraproducts are
those defined in Model Theory.

Another main objective is then to extend this kind of algebraic approximation,
with ∗-regular B, to ∗-regular algebras of quotients. Such algebras have been con-
structed by Berberian [2] (analyzed by Hafner [3], Pyle [4], and Berberian [5]),
generalizing the Murray and von Neumann [6] ∗-regular algebra of unbounded op-
erators affiliated with a finite von Neumann algebra factor; and in a more general
setting by Handelman [7] and Ara and Menal [8]. Their results, relevant here, are
summarized in the following theorem (details are given in Section 7, below). See
also [9, Theorem 2.3], [10, Proposition 21.2].

Theorem 1. Let A be a finite Rickart C∗-algebra. Then A admits a classical ring
Q(A) of right quotients. The involution and C-algebra structure of A extend uniquely
to Q(A), turning the latter into a ∗-regular C-algebra. Moreover, A and Q(A)
have the same projections. If A is, in addition, an AW ∗-algebra, then Q(A) is the
maximal ring of right quotients of A.

The main result of the present note is the following.

Theorem 2. Let A and Q(A) be as in Theorem 1.
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(i) There are an inner product space V̂Ĉ which is an ultrapower of a Hilbert

space VC, a closed Ĉ-linear subspace U of V̂ , and a C-algebra embedding ι
of Q(A) into the endomorphism algebra of UĈ such that ι(r∗) is the adjoint
of ι(r) for any r ∈ Q(A).

(ii) Considering C-algebras with involution and pseudo-inversion, Q(A) is a
homomorphic image of a subalgebra of an ultraproduct of algebras Cn×n.

(iii) The ortholattice L(A) of projections of A is a homomorphic image of a sub-
ortholattice of an ultraproduct of projection ortholattices of algebras Cn×n.

Relevant concepts are explained below, the proof is given in Section 7. In (i), in

particular, Ĉ is an ultrapower of C and the scalar product on V̂Ĉ is obtained from
that of VC by the ultrapower construction. Moreover, if A is separable then VC can
be chosen separable.

The method of proof, of some interest in itself, is a representation of Q(A) within
a suitable inner product space, actually a closed subspace of an ultrapower of the
Hilbert space V in which A is represented due to the GNS-construction. This
is obtained considering Q(A) as a homomorphic image of some abstract algebraic
structure, mimicking an algebra of unbounded operators, and this in turn is used
to reveal Q(A) as homomorphic image of a subalgebra of a sufficiently saturated

elementary extension T̂ of the algebra (with unit) T of endomorphisms of V gener-

ated by those having finite dimensional image. The algebra T̂ can be obtained as
an ultrapower of T and admits a representation in an ultrapower of V .

The authors are obliged to Luca Giudici for stimulating discussions on the subject
and to the referee of a first version of this paper for valuable suggestions.

2. Inner product spaces, ∗-regular rings, and projections

A ∗-ring is a ring R (associative with unit) endowed with an involution; that is,
an anti-automorphism x 7→ x∗ of order 2. We shall consider representations of Λ-
algebras R with involution, where Λ is a commutative ∗-ring, within inner product
spaces VF ; to define such, we have to assume that F is also a Λ-algebra and that the
involutions are related, properly. The adequate concept is that of a ∗-Λ-algebra: a
Λ-algebra R which is also a ∗-ring such that 1Λr = r and (λr)∗ = λ∗r∗ for all λ ∈ Λ
and r ∈ R. For ∗-Λ-algebras, the concepts of homomorphism and subalgebra will
refer to both the Λ-algebra structure and the involution. Observe that C∗-algebras
are (rather special) ∗-C-algebras.

Our main interest here is the case where Λ is the ∗-ring C of complex numbers with
conjugation and F an elementary extension of C, but there is no extra effort needed
if one allows F to be any ∗-Λ-algebra which is a division ring. Then we say that a
[right] F -vector space VF is an inner product space, if it is endowed with a scalar
product (x, y) 7→ 〈x | y〉 which is an anisotropic (or totally regular) sesquilinear
form, hermitean with respect to the involution, cf. [11]. Basic concepts and results
for unitary spaces extend canonically. In particular, any F -linear subspace U is
an inner product space UF under the induced scalar product. Let πU denote the
orthogonal projection onto U if it exists; for example, if dimU <∞.



RINGS OF QUOTIENTS OF FINITE AW ∗-ALGEBRAS 3

The endomorphisms ϕ of VF form a Λ-algebra, where (λϕ)(v) = ϕ(v)λ for λ ∈ Λ,
v ∈ V – observe that Λ acts on V by vλ = v(λ1F ). Endomorphisms of VF admitting
an adjoint ϕ∗, with respect to the scalar product, form a subalgebra End∗Λ(VF ) in
the Λ-algebra of all endomorphisms, which is also a ∗-Λ-algebra; indeed, λ∗ϕ∗ is the
adjoint of λϕ. If ϕ is an endomorphism with dim imϕ <∞ then ϕ ∈ End∗Λ(VF ) and
dim imϕ∗ = dim(kerϕ)⊥ = dim imϕ.

A representation of a ∗-Λ-algebra R within an inner product space VF is a homo-
morphism ε : R → End∗Λ(VF ) or, more conveniently, a unitary R-F -bimodule RVF
such that (λr)v = r(vλ) and 〈rv | w〉 = 〈v | r∗w〉 for all r ∈ R, λ ∈ Λ, and v,
w ∈ V ; namely, rv = ε(r)(v). In accordance with this, we write application of an
endomorphism ϕ as ϕv and composition as ψϕ.

Our main concern will be faithful representations; i.e. representations RVF such
that rv = 0 for all v ∈ V if only if r = 0. If such a representation exists, then we
say that R is representable within VF . The Gelfand-Naimark-Segal construction (cf.
[12, §62]) yields the following

Fact 3. Any (separable) C∗-algebra is representable within a (separable) Hilbert space
(as an algebra of bounded operators).

There are two approaches to ∗-regular rings. For the first, call an ideal I of a ring
[von Neumann] regular if for any a ∈ I, there is x ∈ I such that axa = a; such an
element x is called a quasi-inverse of a (cf. [13]). Recall the following useful result,
cf. [14, Lemma 1.3].

Fact 4. A ring R is regular if it admits a regular ideal I such that R/I is regular.
Any ideal of a regular ring is regular.

A ∗-ring R is proper if r∗r = 0 implies r = 0 for all r ∈ R. Within any ∗-ring R,
a+ is a [Moore-Penrose] pseudo-inverse (or a Rickart relative inverse) of a if

a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a.

Fact 5. A ∗-ring R is proper and regular if and only if any a ∈ R admits a pseudo-
inverse a+ ∈ R. In this case, a+ is uniquely determined by a.

Fact 5 is well known (combine e.g. [15, XII Satz 2.4], [16, Proposition 88], and [17,
Lemma 4]). We choose to define a ∗-regular ring R as a ∗-ring with an additional
operation a 7→ a+ such that a+ is a pseudo-inverse of a. If R is also an ∗-Λ-
algebra, then we speak of a ∗-regular Λ-algebra. The concepts of subalgebras and
homomorphisms of ∗-regular algebras concern pseudo-inversion too. Though, when
speaking about representations, only the ∗-Λ-algebra structure matters. With Λ = Z
we may subsume all ∗-regular rings. The equivalence between the two concepts of
∗-regularity extends beyond consideration of single algebras.

Lemma 6. Let R and T be ∗-regular Λ-algebras, S a ∗-Λ-subalgebra of T , and
f : S → R a surjective homomorphism [of ∗-Λ-algebras] such that the ideal ker f of
S is regular. Then S is closed under pseudo-inversion in T and f : S → R preserves
pseudo-inversion; that is, in the context of ∗-regular Λ-algebras, S is a subalgebra of
T and f a homomorphism.
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Proof. S is proper, being a ∗-subring of T , and regular by Fact 4. Thus, S is ∗-
regular by Fact 5. The uniqueness of pseudo-inverse in T implies that S is closed
under pseudo-inversion. Uniqueness of pseudo-inverse in R implies that f preserves
pseudo-inversion. �

Fact 7. Let VF be an inner product space. The set

End∗Λf(VF ) = {ϕ+ λ id | λ ∈ F, ϕ ∈ End∗Λ(VF ), dim imϕ <∞}
forms a subalgebra of End∗Λ(VF ) which is a ∗-regular Λ-algebra. In particular, if VF
is finite dimensional, then End∗Λ(VF ) is a ∗-regular Λ-algebra.

Proof. If dim imϕ < ∞, then the subspace U = (kerϕ)⊥ is finite dimensional,
whence V = U ⊕ U⊥ and ϕ|U is an isomorphism of U onto W = imϕ. Since
U and W are finite dimensional, the inverse ψ : W → U of ϕ|U has an adjoint
ψ∗. Thus πUψπW has πWψ

∗πU as adjoint and belongs to End∗Λf(VF ). Moreover,
ϕ = ϕπUψπWϕ. Therefore, I = {ϕ ∈ End∗Λ(VF ) | dim imϕ < ∞} is a regular
ideal of End∗Λf(VF ). If dimVF < ∞ then I = VF . Otherwise, since End∗Λf(VF )/I is
isomorphic to F , Fact 6 applies to prove ∗-regularity of End∗Λf(VF ). �

The following is granted by the Gram-Schmidt orthonormalization process.

Fact 8. Let VF be an inner product space such that dimVF = n < ∞ and for any
λ, µ ∈ F , there is ν = ν∗ ∈ F such that λ∗λ + µ∗µ = ν2. Then End∗Λ(VF ) is
isomorphic to the matrix algebra F n×n with involution A = (aij) 7→ A∗, where A∗ is
the transpose of (a∗ij).

An element e of a ∗-ring is a projection, if e = e2 = e∗. Observe that any projection
is its own pseudo-inverse and that e = aa+ and f = a+a are projections if a+ is a
pseudo-inverse of a.

Fact 9. ap = 0 implies (a+)∗p = 0 and a∗p = 0 implies a+p = 0 for any ∗-regular
ring R, a ∈ R, and projection p ∈ R.

Proof. For e = aa+ and f = a+a, ap = 0 implies fp = a+ap = 0, whence pf =
(fp)∗ = 0. Therefore, pa+ = pa+aa+ = pfa+ = 0 and thus (a+)∗p = 0. From
a∗p = 0, we get pa = (a∗p)∗ = 0 whence pe = paa+ = 0. Therefore, ep = 0 and
a+p = a+aa+p = a+ep = 0. �

For the following fact, see [16, Chapter 2] and [10, §1].

Fact 10. If R is a regular ring, not necessarily with unit, then the principal left
ideals Ra form a (complemented) sublattice L̄(R) of the lattice of all left ideals and
for any a ∈ R, Ra = Re for an idempotent e.

Furthermore, the projections of a ∗-regular Λ-algebra R form an ortholattice L(R)
where the partial order is given by

e ≤ f if and only if fe = e if and only if ef = e,

least and greatest elements are given by the constants 0 and 1 of R. The orthocom-
plement is e′ = 1 − e; namely, e′ is a complement of e, e′′ = e, and e ≤ f if and
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only if f ′ ≤ e′. Join (supremum) and meet (infimum) are given by equalities

e ∪ f = f + (e(1− f))+e(1− f), e ∩ f = (e′ ∪ f ′)′.
The map e 7→ Re is an isomorphism from L(R) onto L̄(R).

As shown by von Neumann, any modular ortholattice with a certain kind of
‘coordinate system’ is isomorphic to L(R) for some ∗-regular algebra R with a system
of matrix units. In this sense, one has equivalent structures. Though, ∗-regular rings
appear much better suited for the present discussion.

Fact 11. If S is a subalgebra of a ∗-regular Λ-algebra R then L(S) is a sub-
ortholattice of L(R). If ϕ : R → S is a homomorphism then its restriction ψ to
L(R) is a homomorphism into L(S); ψ is surjective if ϕ is.

Proof. In view of Fact 10, only surjectivity of ϕ needs a word: given a projection
e in S choose any preimage a ∈ R. Then aa+ is a projection and ϕ(aa+) = ee+ =
e2 = e. �

3. Concepts from Model Theory

For a fixed commutative ∗-ring Λ with unit, we are going to consider the classes
of all ∗-Λ-algebras and of all ∗-regular Λ-algebras. Their members are viewed as 1-
sorted algebraic structures where each λ ∈ Λ determines a unary operation x 7→ λx.
Moreover, besides this and the ring structure (observe that additive inversion is not
required since it can be captured via −x = (−1Λ)x), for both types of algebras, we
also have a unary operation of involution, while for ∗-regular Λ-algebras, we consider
in addition a unary operation of pseudo-inversion. Considering ortholattices we
disregard the partial order. Since the three mentioned classes can be defined by
identities, they are closed under formation of direct products, subalgebras, and
homomorphic images; these concepts refer to the operations of ∗-Λ-algebras and of
∗-regular Λ-algebras respectively.

Let U be an ultrafilter over a set I. In view of the explicit definition of L(R) in
terms of R (Fact 10), the following statement holds.

Fact 12. L
(∏

i∈I Ri/U
)

=
∏

i∈I L(Ri)/U for any ∗-regular Λ-algebras Ri, i ∈ I.

We will also have to use ultraproducts of inner product spaces VF and represen-
tations RVF , but the presence of scalar products excludes viewing them as 1-sorted
algebraic structures. The most convenient way is to view an inner product space
VF as a 2-sorted algebraic structure with sorts V and F , carrying the group opera-
tions and the ∗-Λ-algebra operations, respectively. In addition, one has two binary
operations (v, α) 7→ vα ∈ V and (u, v) 7→ 〈u | v〉 ∈ F where u, v ∈ V and α ∈ F .
Considering a representation RVF , we have the ∗-Λ-algebra R as a third sort and,
in addition, a binary operation (r, v) 7→ rv ∈ V for r ∈ R and v ∈ V .

The concepts of homomorphism, subalgebra, direct product, and ultraproduct
generalize to many-sorted algebraic structures in an obvious way. All constructions
are built sort-wise; i.e. the sorts of a direct product (an ultraproduct, etc.) of Ai,
i ∈ I, are direct products (ultraproducts, etc.) of the sorts of Ai, i ∈ I. Of course,
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at the price of undue technical complications, one could also consider many-sorted
structures as 1-sorted relational structures.

Given a formula ϕ in the language, a structure A, and elements a1, . . . , an of A
matching the sorts of the free variables x1, . . . , xn occurring in ϕ, validity of ϕ in A
under the substitution xi 7→ ai is defined by the same inductive approach as in the
1-sorted case and denoted by

A |= ϕ(a1, . . . , an).

Fact 13. Let U be an ultrafilter over a set I. The following statements hold:

(i) Let Λ be a commutative ∗-ring, let Ri and Fi be ∗-Λ-algebras, let (Vi)Fi
be an

inner product space, and let Ri
(Vi)Fi

be a faithful representation for all i ∈ I.
Then VF =

∏
U(Vi)Fi

is an inner product space and RVF =
∏
U Ri

(Vi)Fi
is a

faithful representation, where F =
∏
U Fi and R =

∏
U Ri.

(ii) For a ∗-Λ-algebra F and a natural number n, the ultrapower (F n×n)I/U of
matrix ∗-Λ-algebras is isomorphic to the matrix ∗-Λ-algebra (F I/U)n×n.

Proof. (i) is an obvious application of the  Loś Theorem. The isomorphism in (ii) is
given by [

(ajki )j,k=1,...,n | i ∈ I
]
7→
(
[ajki | i ∈ I]

)
k,j=1,...,n

.

�

Fact 14. Any elementary extension of a representation RVF is again a represen-
tation R̂V̂F̂ , where F̂ is an elementary extension of F , V̂F̂ – of VF , and R̂ – of
R.

In the proof of our central result, we have to apply a concept of saturated struc-
tures. We shall present here a very weak form just sufficient for our purposes.
Considering a fixed structure A, add a new constant symbol a, called a parameter,
for each a ∈ A. In what follows, Σ(x) is a set of formulas with one free variable
x in this extended language. Given an embedding h : A → B, we call B modestly
saturated over A via h, if any set of formulas Σ(x) with parameters from A which
is finitely realized in A (where a is interpreted as aA = a) is realized in B (where a
is is interpreted as aB = h(a)). The following is a particular case of [18, Corollary
4.3.14].

Fact 15. Every structure A admits an elementary embedding h into some structure
B which is modestly saturated over A via h. One can choose B to be an ultrapower
of A and h to be the canonical embedding. Identifying a with h(a), one may assume
B to be an elementary extension of A.

4. Representations of algebras with involution

Theorem 16. Let a ∗-Λ-algebra R have a faithful representation in an inner product
space VF . Then R is a homomorphic image of a subalgebra S of an ultraproduct of
End∗Λ(UF ) with U ranging over finite dimensional subspaces of VF . Moreover, if R
is [∗-]regular then so is S.
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Recall that in the ∗-regular case, all algebraic constructions also refer to pseudo-
inversion; in particular, only ∗-regular ∗-Λ-subalgebras are admitted.

Proof. This proof is a variation of the approach of Tyukavkin [19] and Micol [20].
Choose any set I of finite dimensional subspaces of VF such that any finite di-

mensional subspace W of VF is contained in some member of I. Given a basis
B of the vector space VF , one may choose I to be the set of subspaces U of VF
spanned by finite subsets of B. If the basis is countable and enumerated, one may
choose I consisting of the subspaces spanned by initial segments. For U ∈ I, we
set U+ = {W ∈ I | U ⊆ W}. Notice that U+

1 ∩ U+
2 = (U1 + U2)+. Thus there is

an ultrafilter U on I such that U+ ∈ U for all U ∈ I. To simplify notation, let RU

denote the ∗-regular Λ-algebra End∗Λ(UF ). Form the direct product T =
∏

U∈I RU

and the ultraproduct T̂ =
∏

U∈I RU/U . The elements of T and T̂ will be denoted
as σ = (σU | U ∈ I) and [σ]. We first relate T with RVF .

Given σ ∈ T , r ∈ R, and U0 ∈ I, we say that J ∈ U witnesses σ ∼ r for U0 if and
only if J ⊆ U+

0 and

σUv = rv, σ∗Uv = r∗v for all U ∈ J and all v ∈ U0.

Observe that if J witnesses σ ∼ r for U0 ∈ I, then it does so for any U1 ⊆ U0. We
put σ ∼ r if for any U0 ∈ I there is J ∈ U witnessing σ ∼ r for U0. We also put

S = {σ ∈ T | σ ∼ r for some r ∈ R}.
We prove several auxiliary claims. Let σ, τ ∈ T and let r, r0, r1, s ∈ R.

Claim 1. There is a well defined map g : S → R, g(σ) = r, where σ ∼ r.

Proof of Claim. We have to show that σ ∼ r0 and σ ∼ r1 together imply r0 = r1.
Consider an arbitrary v ∈ V and U0 ∈ I containing v. Let Ji witness σ ∼ ri for U0,
i < 2. Then J = J1 ∩ J2 witnesses σ ∼ ri for U0, i < 2, too, and it follows that
r0v = σU0v = r1v. This shows that r0v = r1v for all v ∈ V . Since RVF is a faithful
representation, we conclude that r0 = r1. �

Claim 2. Considering ∗-Λ-algebras, S is a subalgebra of T and g : S → R is a
homomorphism.

Proof of Claim. Let σ ∼ r, τ ∼ s, and λ ∈ Λ. We have to show that

(1) σ∗ ∼ r∗, (2) λσ ∼ λr, (3) τ + σ ∼ s+ r, (4) τσ ∼ sr.

Note that (1) is obvious by definition. To prove (2)-(4), we consider U0 ∈ I and
choose J ∈ U witnessing σ ∼ r and K ∈ U witnessing τ ∼ s for U0. Then
J ∩K ∈ U witnesses both, σ ∼ r and τ ∼ s, for U0. Applying linearity, one gets for
any U ∈ J ∩K and any v ∈ U0:

(λσU)v = (σUv)λ = (rv)λ = (λr)v;

(λσ)∗Uv = (σ∗Uv)λ∗ = (r∗v)λ∗ = (λ∗r∗)v = (λr)∗v;

(σ + τ)Uv = σUv + τUv = rv + sv = (r + s)v;

(σ + τ)∗Uv = σ∗Uv + τ ∗Uv = r∗v + s∗v = (r∗ + s∗)v = (r + s)∗v.
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Therefore, J ∩ K witnesses λσ ∼ λr and σ + τ ∼ r + s for U0, and (2)-(3) are
proved. To prove (4), we choose U1 ∈ I such that U1 ⊇ rU0 and U2 ∈ I such that
U2 ⊇ s∗U0. Let J0 ∈ U witness τ ∼ s for U1 and let J1 ∈ U witness σ ∼ r for U2.
Then J ′ = J ∩K ∩ J0 ∩ J1 ∈ U , and one gets for any U ∈ J ′ and any v ∈ U0:

(τσ)Uv = τU(σUv) = τU(rv) = s(rv) = (sr)v;

(τσ)∗Uv = σ∗U(τ ∗Uv) = σ∗U(s∗v) = r∗(s∗v) = (r∗s∗)v = (sr)∗v,

whence J ′ witnesses τσ ∼ sr for U0, and (4) is also proved. �

Claim 3. The map g : S → R is surjective.

Proof of Claim. Given r ∈ R, let ϕ = ε(r) denote the associated endomorphism of
VF . For U ∈ I, we set

σU = πUϕ|U = πUϕπU |U ∈ RU

and σ = (σU | U ∈ I), where πU is the orthogonal projection of V onto U . Observe
that σ∗U = πUϕ

∗πU |U = πUϕ
∗|U . Now given U0 ∈ I, let U1 ∈ I be such that

U1 ⊇ U0 + rU0 + r∗U0 and let J = U+
1 ∈ U . Then for any U ∈ J and any v ∈ U0,

one has rv, r∗v ∈ U and

σUv = πU
(
ϕ(πUv)

)
= πU(ϕv) = πU(rv) = rv;

σ∗Uv = πU
(
ϕ∗(πUv)

)
= πU(ϕ∗v) = πU(r∗v) = r∗v.

Thus J witnesses σ ∼ r for U0 and it follows that g(σ) = r. �

We put

Ŝ = {[σ] | σ ∈ S}.

Claim 4. Considering ∗-Λ-algebras, Ŝ is a subalgebra of T̂ and f : Ŝ → R, f([σ]) =
r, where σ ∼ r, is a well defined onto homomorphism.

Proof of Claim. In view of Claim 2 it suffices to show that [τ ] = [σ] and σ ∼ r imply
τ ∼ r. Let K = {U ∈ I | σU = τU}; in particular, K ∈ U . Given U0 ∈ I, let J
witness σ ∼ r for U0. Then J ∩K witnesses τ ∼ r for U0. �

For any U0 ∈ I, we put χU0 = (χU0
U | U ∈ I) ∈ T , where χU0

U is the orthogonal
projection of U onto U0 if U0 ⊆ U and χU0

U = 0 otherwise.

Claim 5. [σ] ∈ ker f if and only if

(∗) [σ] · [χU0 ] = [σ∗] · [χU0 ] = 0 for all U0 ∈ I.

Proof of Claim. By definition, [σ] ∈ ker f if and only if σ ∼ 0. So, let σ ∼ 0 and let
U0 ∈ I. Choose J ∈ U witnessing σ ∼ 0 for U0. Then for all U ∈ J and all v ∈ U0

one has σUv = 0 = σ∗Uv which implies σUχ
U0
U = 0 = σ∗Uχ

U0
U . As J ∈ U , (∗) holds.

Conversely, assume that (∗) holds and let U0 ∈ I. This means that K = {U ∈ I |
σUχ

U0
U = 0 = σ∗Uχ

U0
U } ∈ U . Then J = K ∩ U+

0 ∈ U witnesses σ ∼ 0 for U0. �

Claim 6. ker f is regular.
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Proof of Claim. By Fact 7, RU is ∗-regular for any U ∈ I, whence so is the ultra-
product T̂ . Observe that for any U0 ∈ I, [χU0 ] ∈ T̂ is a projection as χU0

U is a
projection in RU for any U ∈ I. Now let [σ] ∈ ker f and let [τ ] be its pseudo-inverse

in T̂ . Then Claim 5 and Fact 9 imply that

[τ ] · [χU0 ] = [τ ∗] · [χU0 ] = 0 for all U0 ∈ I,
which in turn implies by Claim 5 that [τ ] ∈ ker f . �

Now we complete the proof of the theorem. The first claim for ∗-Λ-algebras follows
from Claim 4 immediately. In the ∗-regular setting, one may apply Lemma 6 due
to Claim 6. �

Remark 17. Assume that VF admits a countable orthonormal basis v0, v1, v2, . . .
(e.g. if dimVF = ω and F satisfies the hypothesis of Fact 8). Let I consist of the
subspaces Un spanned by {v0, . . . , vn}, n < ω, and let U extend the cofinite filter.
Then one can view End∗Λ

(
(Un)F

)
, n < ω, as matrix algebras F n×n uniformly. In this

case, ker f consists of elements of the form [An | n < ω] such that for any m < ω,
there is J ∈ U such that the first m rows and m columns of An are 0 provided that
Un ∈ J , cf. Tyukavkin [19].

Corollary 18. Any C∗-algebra is a homomorphic image of a subalgebra of an ul-
traproduct of algebras Cn×n, n < ω.

Proof. We apply Theorem 16 to the representation given by the GNS-construction
and observe that End∗Λ(UC) ∼= Cn×n if U is a finite dimensional subspace of a unitary
space (cf. Fact 8). �

The following provides a method to obtain representations of homomorphic im-
ages, elaborating on Micol [20, Theorem 3.8].

Proposition 19. For any regular ∗-Λ-algebra R having a faithful representation
within an inner product space VF , there is an ultrapower V̂F̂ of VF such that, for
any regular ideal I = I∗, R/I admits a faithful representation within some closed

subspace of V̂F̂ .

Proof. According to Fact 15, there is an ultrapower R̂V̂F̂ of the faithful representation

RVF which is modestly saturated over RVF via the canonical embedding. Then V̂ is
an R-module via the canonical embedding of R into R̂ and

U = {v ∈ V̂ | av = 0 for all a ∈ I} =
⋂
a∈I

(aV̂ )⊥

is a closed subspace of V̂F̂ and a left (R/I)-module. Moreover, from I = I∗ one has

〈(r + I)v | w〉 = 〈v | (r∗ + I)w〉 for all v, w ∈ U,
which proves that R/IUF̂ is a representation of R/I.

We show that this representation is faithful; that is, for any a /∈ I, there has to
be v ∈ U such that av 6= 0. Since v ∈ U means bv = 0 for all b ∈ I, we have to show
that the set

Σ(x) = {ax 6= 0} ∪ {bx = 0 | b ∈ I}
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of formulas with parameters from {a}∪ I and a variable x of type V is satisfiable in

R̂V̂F̂ . Due to modest saturation, it suffices to show that for any b1, . . . , bn ∈ I, there
is v ∈ V such that av 6= 0 and biv = 0 for all i ∈ {1, . . . , n}. In view of Fact 10, by
regularity of I there is an idempotent e ∈ I such that Ie =

∑n
i=1 Ibi; in particular,

bie = bi and biv = 0 for all i ∈ {1, . . . , n} whenever ev = 0. Thus it suffices to show
that there is v ∈ V such that ev = 0 but av 6= 0.

Assume the contrary, namely that ev = 0 implies av = 0 for any v ∈ V . For
any w ∈ V , let v = (1 − e)w. As ev = 0, we get av = 0 by our assumption.
Therefore, 0 = av = a(1 − e)w for all w ∈ V whence a(1 − e) = 0, as RVF is a
faithful representation. But then a = ae ∈ I, a contradiction, and we are done. �

5. Algebras of generalized operators

Given a commutative ∗-ring Λ, a pre-∗-Λ-algebra is a set R endowed with binary
operations + and ·, constants 0R and 1R, for each λ ∈ Λ a unary operation written
as r 7→ λr, and a symmetric binary relation ./ such that for any r ∈ R there is
r∗ ∈ R with r ./ r∗ and such that for all r, r∗, s, s∗ ∈ R and all λ ∈ Λ:

(a) r ./ r∗ and s ./ s∗ jointly imply r + s ./ r∗ + s∗;
(b) r ./ r∗ and s ./ s∗ jointly imply r · s ./ s∗ · r∗;
(c) r ./ r∗ implies λr ./ λ∗r∗;
(d) 0R ./ 0R and 1R ./ 1R.

An action of R on an inner product space VF , where F is a ∗-Λ-algebra, associates
with each r ∈ R a linear subspace dom r of VF and an F -linear map dom r → V
written as v 7→ rv. Thus, in particular, for all v, w ∈ V , all r ∈ R, and all α ∈ F :

(e) if u, v ∈ dom r, then v + w ∈ dom r and r(v + w) = rv + rw;
(f) if u ∈ dom r, then uα ∈ dom r and r(vα) = (rv)α.

We write RVF for the inner product space V with right action of F and left action
of R and we consider it as a 3-sorted structure with sorts V , F , and R: the action
of R on V is conceived as the ternary relation

{(r, v, w) ∈ R× V × V | r ∈ R, v ∈ dom r, w = rv}.
We also write rX = {rv | v ∈ X} and r−1(X) = {v ∈ dom r | rv ∈ X} for any
X ⊆ V .

As additional structure, we assume there is a downward directed set D of linear
subspaces of VF . We say that the action of R on VF is D-supported if the following
hold for all r, s ∈ R and all λ ∈ Λ:

(i) D ⊆ dom r for some D ∈ D;
(ii) for any D ∈ D, there is D′ ∈ D such that D′ ⊆ r−1(D);
(iii) there isD ∈ D such thatD ⊆ dom r∩dom s∩dom(r+s) and (r+s)v = rv+sv

for all v ∈ D;
(iv) 0Rv = 0 and 1Rv = v for all v ∈ V ;
(v) there is D ∈ D such that D ⊆ dom(r · s)∩ s−1(dom r)∩ dom s and (r · s)v =

r(sv) for all v ∈ D;
(vi) there is D ∈ D such that D ⊆ dom r ∩ dom(λr) and (λr)v = (rv)λ for all

v ∈ D;
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(vii) if r ./ r∗, then there is D ∈ D such that D ⊆ dom r∩ dom r∗ and 〈rv | w〉 =
〈v | r∗w〉 for all v, w ∈ D.

Given a D-supported action of R on VF , we define a binary relation ≈D on R by
r ≈D s if and only if for any r∗ ./ r and any s∗ ./ s, there is D ∈ D

such that r ≈D s is witnessed by D under this proviso, namely:
D ⊆ dom r ∩ dom r∗ ∩ dom s ∩ dom s∗ and
rv = sv, r∗v = s∗v for all v ∈ D.

We speak of a Λ-algebra of generalized operators on VF and denote it by (RVF ;D)
if, in addition, the following holds:

(viii) r ./ t and s ./ t imply r ≈D s for all r, s, t ∈ R.

Lemma 20. If (RVF ;D) is a Λ-algebra of generalized operators, then ≈D is a con-
gruence with respect to the operations defined on R. Moreover, for any r, r∗, s,
s∗ ∈ R such that r ./ r∗ and s ./ s∗, r ≈D s implies r∗ ≈D s∗.

Proof. It is straightforward that ≈D is reflexive and symmetric. We prove that ≈D
is transitive. Let r ≈D s and s ≈D t. Let also r ./ r∗ and t ./ t∗. Then there is
s∗ ∈ R such that s ./ s∗. Let D0 ∈ D witness r ≈D s under the proviso r ./ r∗ and
s ./ s∗. Let D1 ∈ D witness s ≈D t under the proviso s ./ s∗ and t ./ t∗. As D is
directed, there is D ∈ D such that D ⊆ D0 ∩D1. Then D witnesses r ≈D t under
the proviso r ./ r∗ and t ./ t∗.

For any λ ∈ Λ, we prove that ≈D respects the unary operation λ·. Suppose that
r ≈D s for some r, s ∈ R. To prove that λr ≈D λs, let t ./ λr and u ./ λs. Let also
D′ ⊆ dom r ∩ dom r∗ ∩ dom s ∩ dom s∗ witness r ≈D s under the proviso r ./ r∗ and
s ./ s∗. Then according to (c) and (viii), t ≈D λ∗r∗ and u ≈D λ∗s∗; in particular,
there are D0r, D0s ∈ D such that tv = (λ∗r∗)v for all v ∈ D0r and uv = (λ∗s∗)v
for all v ∈ D0s. Moreover, according to (vi), there are D1r, D2r, D1s, D2s ∈ D such
that:

D1r ⊆ dom r ∩ dom(λr) and (λr)v = (rv)λ for all v ∈ D1r;

D2r ⊆ dom r∗ ∩ dom(λ∗r∗) and (λ∗r∗)v = (r∗v)λ∗ for all v ∈ D2r;

D1s ⊆ dom s ∩ dom(λs) and (λs)v = (sv)λ for all v ∈ D1s;

D2s ⊆ dom s∗ ∩ dom(λ∗s∗) and (λ∗s∗)v = (s∗v)λ∗ for all v ∈ D2s.

As D is directed, there is D ∈ D such that D ⊆ D′ ∩
⋂
i<3Dir ∩

⋂
i<3Dis. Then one

gets for any v ∈ D:

(λr)v = (rv)λ = (sv)λ = (λs)v;

tv = (λ∗r∗)v = (r∗v)λ∗ = (s∗v)λ∗ = (λ∗s∗)v = uv.

Therefore, D witnesses λr ≈D λs under the proviso λr ./ t and λs ./ u.
The fact that≈D respects + can be established in a similar but easier way using (a)

and (iii). We prove now that ≈D respects ·. Suppose that r0 ≈D s0 and r1 ≈D s1.
To prove that r0 · r1 ≈D s0 · s1, let t ./ r0 · r1 and u ./ s0 · s1. Let also D0 ⊆
dom r0 ∩ dom r∗0 ∩ dom s0 ∩ dom s∗0 witness r0 ≈D s0 under the proviso r0 ./ r∗0,
s0 ./ s

∗
0, while D1 ⊆ dom r1 ∩ dom r∗1 ∩ dom s1 ∩ dom s∗1 witnesses r1 ≈D s1 under

the proviso r1 ./ r
∗
1, s1 ./ s

∗
1. Then according to (b) and (viii), t ≈D r∗1 · r∗0 and
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u ≈D s∗1 · s∗0; in particular, there are D0r, D0s ∈ D such that tv = (r∗1 · r∗0)v for all
v ∈ D0r and uv = (s∗1 · s∗0)v for all v ∈ D0s. Moreover, according to (v), there are
D1r, D2r, D1s, D2s ∈ D such that:

D1r ⊆ dom(r0 · r1) ∩ r−1
1 (dom r0) ∩ dom r1

and (r0 · r1)v = r0(r1v) for all v ∈ D1r;

D2r ⊆ dom(r∗1 · r∗0) ∩ (r∗0)−1(dom r∗1) ∩ dom r∗0

and (r∗1 · r∗0)v = r∗1(r∗0v) for all v ∈ D2r;

D1s ⊆ dom(s0 · s1) ∩ s−1
1 (dom s0) ∩ dom s1

and (s0 · s1)v = s0(s1v) for all v ∈ D1s;

D2s ⊆ dom(s∗1 · s∗0) ∩ (s∗0)−1(dom s∗1) ∩ dom s∗0

and (s∗1 · s∗0)v = s∗1(s∗0v) for all v ∈ D2s.

According to (ii), there are D′0, D′1 ∈ D such that D′0 ⊆ r−1
1 (D0) and D′1 ⊆

(r∗0)−1(D1). In particular, r1D
′
0 ⊆ D0 and r∗0D

′
1 ⊆ D1. Since D is directed, there is

D ∈ D such that

D ⊆ D0 ∩D1 ∩D′0 ∩D′1 ∩
⋂
i<3

Dir ∩
⋂
i<3

Dis.

Then one gets for any v ∈ D:

(r0 · r1)v = r0(r1v) = s0(r1v) = s0(s1v) = (s0 · s1)v;

tv = (r∗1 · r∗0)v = r∗1(r∗0v) = s∗1(r∗0v) = s∗1(s∗0v) = (s∗1 · s∗0)v = uv.

Thus D witnesses r0 · r1 ≈D s0 · s1 under the proviso r0 · r1 ./ t and s0 · s1 ./ u.
Finally, suppose that r ./ r∗, s ./ s∗, and r ≈D s. To prove compatibility with

./, let t ./ r∗ and u ./ s∗. Then r ≈D t and s ≈D u by (viii). As ≈D is transitive,
we conclude that t ≈D u. Thus there is D ∈ D which witnesses t ≈D u under the
proviso t ./ r∗ and u ./ s∗. Then D witnesses r∗ ≈D s∗ under the same proviso. �

It will be shown in Theorem 22 that the factor structure R/≈D is always a ∗-Λ-
algebra.

Fact 21. If RVF is a representation of the ∗-Λ-algebra R, then (RVF ; {V }) is a Λ-
algebra of generalized operators where r ./ s iff s = r∗. Here ≈D is the equality
relation.

Theorem 22. Let (RVF ;D) be a Λ-algebra of generalized operators on an inner
product space VF . Then R/≈D is a ∗-Λ-algebra. Moreover, if R/≈D is ∗-regular,
then it admits a faithful representation within a closed subspace of some ultrapower
of VF .

Remark 23. The proof of Theorem 22 is quite similar to that of Theorem 16, and
one might conjecture that R/≈D is a homomorphic image of a subalgebra of an
ultraproduct of endomorphism algebras of finite dimensional subspaces of VF . A
difficulty in establishing this comes from the fact that no ultrafilter ‘compatible’
with D is at hand. The conjecture can be verified in the case of F = C (cf. proof of
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Theorem 2) but is doubtable in general. Nonetheless, the proof of Theorem 16 (and
Tyukavkin’s ideas behind) give some intuition for the following proof.

Proof of Theorem 22. Let T = End∗Λf (VF ); then besides the action of R on V we
have also the left action of T on V . The resulting 4-sorted structure is denoted by
by T,RVF . In particular, T is a ∗-regular algebra by Fact 7 and TVF is a faithful
representation. According to Fact 15, T,RVF admits a modestly saturated elemen-

tary extension T̂ ,R̂V̂F̂ . By Fact 14, T̂ is a ∗-regular algebra and T̂ V̂F̂ is a faithful

representation. We put for σ ∈ T̂ and r ∈ R
σ ∼ r iff for any r∗ ./ r in R, there is D ∈ D, D ⊆ dom r ∩ dom r∗

such that σv = rv and σ∗v = r∗v for all v ∈ D.
In this case, we say that D witnesses σ ∼ r under the proviso r ./ r∗. We put also

S = {σ ∈ T̂ | σ ∼ r for some r ∈ R}.
Recall that relation ≈D on R, defined for an algebra of generalized operators, is a
congruence relation by Lemma 20. Put [r] = {s ∈ R | s ≈D r}.

Claim 1. The map g : S → R/≈D, g(σ) = [r], where σ ∼ r, is well defined.

Proof of Claim. Let Dr and Ds witness σ ∼ r and σ ∼ s under the proviso r ./ r∗

and s ./ s∗, respectively. Since D is directed, there is D ∈ D such that D ⊆ Dr∩Ds.
We get for all v ∈ D that rv = σv = sv and r∗v = σ∗v = s∗v, whence r ≈D s. �

Claim 2. In the language of ∗-Λ-algebras, S is a subalgebra of T̂ and g : S → R/≈D
is a homomorphism.

Proof of Claim. Assume σ ∼ r, τ ∼ s. In view of Lemma 20, it suffices to show that

(1) σ∗ ∼ r∗, (2) λσ ∼ λr, (3) τ + σ ∼ s+ r, (4) τσ ∼ s · r.
Let Dr ∈ D witness σ ∼ r under the proviso r ./ r∗. To prove relation (1), we
consider any t ∈ R such that r∗ ./ t. By axiom (viii) we have t ≈D r; the latter is
witnessed by some D′ ∈ D under the proviso t ./ r∗ and r ./ r∗. As D is directed,
there is D ∈ D such that D ⊆ D′∩Dr. Then D witnesses σ∗ ∼ r∗ under the proviso
r∗ ./ t, as σ∗v = r∗v and (σ∗)∗v = σv= rv = tv for all v ∈ D.

Concerning (2), we consider any t with λr ./ t. By (c) we have λr ./ λ∗r∗, whence
t ≈D λ∗r∗ by (viii); the latter is witnessed by some D0 ∈ D. According to (vi), there
is D1 ∈ D such that D1 ⊆ dom r ∩ dom(λr) and (λr)v = (rv)λ for all v ∈ D1. Since
D is directed, there is D ∈ D such that D ⊆ D0 ∩D1 ∩Dr. One has for all v ∈ D:

(λσ)v = (σv)λ = (rv)λ = (λr)v;

(λσ)∗v = (λ∗σ∗)v = (σ∗v)λ∗ = (r∗v)λ∗ = (λ∗r∗)v = tv,

whence D witnesses relation (2) under the proviso λr ./ t.
To prove (3) and (4), we assume that Ds ∈ D witnesses τ ∼ s under the proviso

s ./ s∗. Let s + r ./ t for some t ∈ R. According to (a), we have also s + r ./
s∗ + r∗, whence s∗ + r∗ ≈D t by (viii). Let D′ witness the latter under the proviso
t ./ s + r and s∗ + r∗ ./ s + r. According to (iii), there are D0, D1 ∈ D such
that D0 ⊆ dom s ∩ dom r ∩ dom(s + r), D1 ⊆ dom s∗ ∩ dom r∗ ∩ dom(s∗ + r∗) and
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sv + rv = (s + r)v for all v ∈ D0, s∗v + r∗v = (s∗ + r∗)v for all v ∈ D1. Since D is
directed, there is D ∈ D such that D ⊆ D′ ∩D0 ∩D1 ∩Dr ∩Ds. Then one has for
all v ∈ D:

(τ + σ)v = τv + σv = sv + rv = (s+ r)v;

(τ + σ)∗v = (τ ∗ + σ∗)v = τ ∗v + σ∗v = s∗v + r∗v = (s∗ + r∗)v = tv,

whence D witnesses relation (3) under the proviso s+ r ./ t.
Let s · r ./ t for some t ∈ R. According to (b), we have also s · r ./ r∗ · s∗, whence

r∗ · s∗ ≈D t by (viii). Let D′ witness the latter under the proviso t ./ s · r and
r∗ · s∗ ./ s · r. According to (v), there are D0, D1 ∈ D such that

D0 ⊆ dom(s · r) ∩ r−1(dom s) ∩ dom r;

D1 ⊆ dom(r∗ · s∗) ∩ (s∗)−1(dom r∗) ∩ dom s∗

and

(s · r)v = s(rv) for all v ∈ D0;

(r∗ · s∗)v = r∗(s∗v) for all v ∈ D1.

Since D is directed, there is D′ ∈ D such that D′ ⊆ Dr ∩Ds ∩D0 ∩D1. Moreover,
according to (ii), there is D ∈ D such that D ⊆ D′ ∩ r−1(D′) ∩ (s∗)−1(D′). Thus
D ⊆ Dr, while rD ⊆ Ds. Similarly, D ⊆ Ds, while s∗D ⊆ Dr.

Therefore, one has for all v ∈ D:

(τσ)v = τ(σv) = τ(rv) = s(rv) = (s · r)v;

(τσ)∗v = (σ∗τ ∗)v = σ∗(τ ∗v) = σ∗(s∗v) = r∗(s∗v) = (r∗ · s∗)v = tv,

whence D witnesses relation (4) under the proviso s · r ./ t.
Of course, 0 ∼ 0R and 1 ∼ 1R by (iv). �

Claim 3. The map g is surjective.

Proof of Claim. Given r ./ r∗ in R, by (vii) there is D ∈ D such that D ⊆ dom r ∩
dom r∗ and 〈x | r∗y〉 = 〈rx | y〉 for all x, y ∈ D. We show that there is σ ∈ T̂ such
that σv = rv and σ∗v = r∗v for all v ∈ D. Let v1, . . . , vn ∈ D and let U be the
subspace of VF spanned by v1, . . . , vn. Consider the finite dimensional subspace
W = U + rU + r∗U of V and F -linear maps

ϕ0 : U → W, ϕ0v = rv, and ψ0 : U → W, ψ0v = r∗v.

In particular, 〈x | ψ0y〉 = 〈ϕ0x | y〉 for all x, y ∈ U . Choose a basis u1, . . . , uk of U
and extend it to a basis u1, . . . , um of W . There are unique ϕ, ψ ∈ End∗Λ(WF ) such
that

〈ϕui | uj〉 = 〈ui | ψuj〉 =


〈ui | ψ0uj〉 for j 6 k;

〈ϕ0ui | uj〉 for i 6 k;

0 otherwise.

It follows that ψ = ϕ∗, ϕ|U = ϕ0, and ψ∗|U = ψ0. Considering the orthogonal
projection ρ = πW , we get that ρ ∈ T . Moreover, one has

σ = ρϕρ ∈ T, σ∗ = ρψρ ∈ T ; σv = ϕ0v = rv, σ∗v = ψ0v = r∗v
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for all v ∈ U . Now, consider the set of formulas

Σ(ξ) = {(ξv = r v) & (ξ∗v = r∗ v) | v ∈ D},
where ξ is a variable of sort T . If Ψ(ξ) ⊆ Σ(ξ) is finite, then only finitely many
parameters vi, vi ∈ D, occur in Ψ(ξ) and, as shown above, there is σ ∈ T such that

Ψ(σ) holds in RVF . Since T̂ ,R̂V̂F̂ is modestly saturated over T,RVF , we conclude that

there is σ ∈ T̂ such that Σ(σ) holds in T̂ ,R̂V̂F̂ , i.e. σv = rv and σ∗v = r∗v for all
v ∈ D. This proves that σ ∼ r. �

Claim 4. For any v ∈ V , there is a unique projection π̂v ∈ T̂ such that π̂vv = v
and such that for any w ∈ V̂ , there is λ ∈ F̂ such that π̂vw = λv.

Proof of Claim. There is a unique projection πv ∈ T such that πvv = v and im πv
is the subspace spanned by v; namely the orthogonal projection onto the subspace
spanned by v. The claim follows from the fact that T̂ ,R̂V̂F̂ is an elementary extension
of T,RVF . �

Claim 5. σ ∈ ker g if and only if for any t ./ 0R, there is D ∈ D such that
σπ̂v = 0 = σ∗π̂v for all v ∈ D, where π̂v is as in Claim 4.

Proof of Claim. Assume that σ ∈ ker g and t ./ 0R. Then σ ∼ 0R is witnessed by
some D0 ∈ D under the proviso 0R ./ t. On the other hand, we have by (d) and (viii)
that t ≈D 0R. Let the latter be witnessed by D1 ∈ D under the proviso 0R ./ 0R
and t ./ 0R. Then there is D ∈ D such that D ⊆ D0 ∩D1 and

(∗) σv = 0Rv = tv = σ∗v for all v ∈ D.
Since 0Rv = 0, (∗) is equivalent to

(∗∗) σπ̂v = 0 = σ∗π̂v for all v ∈ D.
Conversely, consider any t ./ 0R and assume that (∗∗) holds for some D ∈ D. By
(d) and (viii), t ≈D 0R is witnessed by some D0 ∈ D. Then σ ∼ 0R is witnessed by
any D′ ∈ D such that D′ ⊆ D ∩D0 under the proviso t ./ 0R. �

Claim 6. ker g is regular.

Proof of Claim. Since T is ∗-regular so is T̂ . Thus any σ ∈ ker g has a pseudo-inverse
σ+ in T̂ . Now, in view of Claim 5 and Fact 9, σ ∈ ker g implies σ+ ∈ ker g. �

We now prove the statements of the theorem. The first one follows from Claims
2 and 3. If im g = R/≈D is ∗-regular, then ∗-regularity of S follows from Lemma 6.

Moreover, since T is faithfully represented in VF , T̂ is faithfully represented in V̂F̂
by Fact 14. Therefore, its substructure S is also faithfully represented in V̂F̂ , and
faithful representability of its homomorphic image R/≈D within a closed subspace

U of an ultrapower ṼF̃ of V̂F̂ follows with Proposition 19. Finally, observe that the

modestly saturated extension T̂ ,R̂V̂F̂ can be chosen isomorphic to an ultrapower of

T,RVF by Fact 15. In particular, ṼF̃ is isomorphic to an ultrapower of VF by Fact
13(i). Composing the representation of R/≈D in UF̃ with this isomorphism, we get
a faithful representation of R/≈D in a closed subspace of an ultrapower of VF . �
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6. Rings of quotients

We refer to Rowen [21, Chapter 3] for rings of quotients – except that we consider
right quotients. Let A be a Λ-algebra, let Ir(A) denote the set of all right ideals I
of A, and let Hom(I, A) denote the set of all linear maps f : IA → AA. A right ideal
I ∈ Ir(A) is dense (in A) if for any J ⊇ I in Ir(A) and any f ∈ Hom(J,A), one has
f = 0 provided that f |I = 0.

A subset E of Ir(A) is a set of supports (for A) if the following hold:

(i) Every member of E is dense (in A);
(ii) A ∈ E and I ∩ J ∈ E for any I, J ∈ E ;

(iii) f−1(J) ∈ E for any I, J ∈ E and any f ∈ Hom(I, A).

Observe that (iii) applies in particular to the left multiplication la : A→ A, la(x) =
ax, for any a ∈ A. This includes the special case a = λ1A, where lλ1A : x 7→ λx.
Observe that any I ∈ Ir is invariant under λ and put λf = lλ1A ◦ f = f ◦ (lλ1A|I)
for f ∈ Hom(I, A). The following is well known.

Lemma 24. The set E0 of all dense right ideals of A is a set of supports for A.

Given a set E of supports, define the algebra R(A, E) of abstract quotients over E
as follows:

R(A, E) =
{

(f, I) | I ∈ E , f ∈ Hom(I, A)
}
.

Endow R(A, E) with the operations of a pre-Λ-algebra:

(f, I) + (g, J) = (f |K + g|K, K), where K = I ∩ J ;

λ(f, I) =
(
(λf)|K, K

)
, where K = λ−1(I);

(f, I) · (g, J) =
(
(f ◦ g)|K, K

)
, where K = g−1(I)

0R = (0, A), 1R = (idA, A)

Define the binary relation ≡E on R(A, E) by

(f, I) ≡E (g, J) if and only if f |K = g|K for some K ∈ E with K ⊆ I ∩ J.
The following facts are either well known or easy to prove.

Proposition 25. Let A be a Λ-algebra and let E be a set of supports for A.

(i) (f, I) ≡E (g, J) if and only if f |(I ∩ J) = g|(I ∩ J).
(ii) ≡E is a congruence relation on R(A, E); we denote the factor structure by

Q(A, E) and the canonical homomorphism by πE .
(iii) The map ω : A → R(A, E), ω(a) = (la, A), is a Λ-algebra embedding; ≡E

restricts to identity on ω(A). In particular, πE ◦ω is a Λ-algebra embedding.
(iv) (f, I) · (la, A) ∈ ω(A) if and only if a ∈ I; in this case, (f, I) · (la, A) =

(lf(a), A).
(v) R(A, E) is a subalgebra of R(A, E0) and ≡E is the restriction of ≡E0.
(vi) Q(A, E0) = Qmax(A), the maximal ring of right quotients of A.

(vii) πE ◦ ω embeds A into Qmax(A).

We recall that the set of projections of a ∗-ring is ordered by

e ≤ e′ if and only if e′e = e if and only if ee′ = e.
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Theorem 26. Let A be a ∗-Λ-algebra, let E be a set of supports for A, and let
R = R(A, E) be such that

(a) For any I ∈ E, there is a directed set PI of projections in I such that
PIA =

⋃
e∈PI

eA is a directed union and PIA ∈ E.
(b) The involution of A extends to Q(A, E).
(c) There is a faithful representation ε of A in the inner product space VF .

Then there is an algebra (RVF ;D) of generalized operators such that R/≈D and
Q(A, E) are isomorphic as ∗-Λ-algebras.

Proof. To any I ∈ E , we assign a certain directed set PI of projections which wit-
nesses (a). We define the action of R on VF . We put

dom(f, I) = D(I) =
⋃
e∈PI

im ε(e);

(f, I)v = ε(f(e))(v) if v ∈ im ε(e), e ∈ PI .
Observe that ε(e)(v) = v for any v ∈ im ε(e) since e is a projection.

Claim 1. For any (f, I) ∈ R, the action of (f, I) is well defined.

Proof of Claim. Assume that v ∈ im ε(e) ∩ im ε(e′) for some e, e′ ∈ PI . Since
PI is directed, there is e′′ ∈ PI such that e′′e = e and e′′e′ = e′. Then im ε(e),
im ε(e′) ⊆ im ε(e′′) and

ε
(
f(e)

)
(v) = ε

(
f(e′′e)

)
(v) = ε

(
f(e′′)e

)
(v) =

(
ε
(
f(e′)

)
◦ ε(e)

)
(v) =

= ε
(
f(e′′)

)(
ε(e)(v)

)
= ε
(
f(e′′)

)
(v).

Similarly, ε
(
f(e′)

)
(v) = ε

(
f(e′′)

)
(v), whence ε

(
f(e)

)
(v) = ε

(
f(e′)

)
(v). �

Claim 2. For any I ∈ E, D(I) is an F -linear subspace of VF and

(f, I) : dom(f, I)→ V

is an F -linear map for any (f, I) ∈ R.

Proof of Claim. Let u, v ∈ D(I), and let λ ∈ F . As PI is directed, there is e ∈ PI
such that u, v ∈ im ε(e). As im ε(e) is a subspace of V , u + v, uλ ∈ imε(e). Using
the fact that ε is a representation, we get:

(f, I)(u+ v) = ε
(
f(e)

)
(u+ v) = ε

(
f(e)

)
(u) + ε

(
f(e)

)
(v) = (f, I)u+ (f, I)v;

(f, I)(uλ) =
(
ε
(
f(e)

)
(u)
)
λ =

(
(f, I)u

)
λ.

�

For (f, I), (g, J) ∈ R, we put

(f, I) ./ (g, J) if and only if πE(g, J) =
(
πE(f, I)

)∗
.

Since πE is a pre-Λ-algebra homomorphism and since ∗ is an involution on Q(A, E),
(a)-(c) of the definition of a pre-∗-Λ-algebra hold. Item (d) holds obviously. Let

D = {D(I) | I ∈ E}.
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Claim 3. For any (f, I), (g, J) ∈ R, (f, I) ≈D (g, J) if and only if (f, I) ≡E (g, J).

Proof of Claim. Assume that (f, I) ≈D (g, J) is witnessed by D(K) for some K ∈ E
under some proviso. As K ∩ I ∩ J ∈ E , we may assume such that K ⊆ I ∩ J . Then
for each e ∈ PK and any v ∈ im ε(e), one has

ε
(
f(e)

)
(v) = (f, I)v = (g, J)v = ε

(
g(e)

)
(v).

This implies that for any u ∈ V ,

ε
(
f(e)

)
(u) =ε

(
f(e2)

)
(u) = ε

(
f(e)e

)
(u) = ε

(
f(e)

)(
ε(e)(u)

)
=

=ε
(
g(e)

)(
ε(e)(u)

)
= ε
(
g(e)e

)
(u) = ε

(
g(e2)

)
(u) = ε

(
g(e)

)
(u),

whence f(e) = g(e), as ε is a faithful representation. Then for any a ∈ eA, we have

f(a) = f(ea) = f(e)a = g(e)a = g(ea) = g(a).

According to (a), PKA =
⋃
e∈p(K) eA is a dense right ideal. As f |PKA = g|PKA, we

conclude that f |K = g|K which proves that (f, I) ≡E (g, J).
Conversely, assume πE(f, I) = πE(g, J) and consider any (h0, K0), (h1, K1) ∈ R

such that (h0, K0) ./ (f, I) and (h1, K1) ./ (g, J) in R. By definition, the latter
means that

πE(h0, K0) =
(
πE(f, I)

)∗
=
(
πE(g, J)

)∗
= πE(h1, K1).

Therefore, for K ∈ E such that K ⊆ I ∩ J ∩ K0 ∩ K1, we get f |K = g|K and
h0|K = h1|K. Then D(K) witnesses (f, I) ≈D (g, J) under the given proviso. �

Claim 4. (RVF ;≈D) is an algebra of generalized operators.

Proof of Claim. For any (f, I) ∈ R, D(I) = dom(f, I), whence (i) follows. If (f, I) ∈
R and D(J) ∈ D for some J ∈ E , then K = f−1(PJA) ∈ E by (a) and by (iii) of the
definition of a set of supports for A. Let v ∈ im ε(e) for some e ∈ PK . As K ⊆ I,
we get f(e) ∈ PJA. Thus f(e) = e′f(e) for some e′ ∈ PJ by (a). Therefore,

(f, I)v = ε
(
f(e)

)
(v) = ε

(
e′f(e)

)
(v) = ε(e′)

(
ε
(
f(e)

)
(v)
)
∈ im ε(e′) ⊆ D(J).

Hence (f, I)D(K) ⊆ D(J) and (ii) holds.
Suppose that (f, I), (g, J) ∈ R and K = I ∩ J . Then K ∈ E and D(K) ⊆

dom(f, I) ∩ dom(g, J) ∩ dom
(
(f, I) + (g, J)

)
. Moreover, for any e ∈ PK and any

v ∈ im ε(e), we have:(
(f, I) + (g, J)

)
v = ε

(
(f + g)(e)

)
(v) = ε

(
f(e) + g(e)

)
(v) =

=
(
ε
(
f(e)

)
+ ε
(
g(e)

))
(v) = ε

(
f(e)

)
(v) + ε

(
g(e)

)
(v) = (f, I)v + (g, J)v.

Therefore, (iii) holds.
Consider (f, I), (g, J) ∈ R. According to the proof of (ii), K = g−1(PIA) ∈ E and

(g, J)D(K) ⊆ D(I). Thus D(K) ⊆ dom(g, J) ∩ (g, J)−1
(
dom(f, I)

)
= dom

(
(f, I) ·



RINGS OF QUOTIENTS OF FINITE AW ∗-ALGEBRAS 19

(g, J)
)
. Moreover by (a), for any e ∈ PK and any v ∈ im ε(e), there is e′ ∈ PI such

that g(e) = e′g(e). Therefore, we have for any v ∈ im ε(e):(
(f, I) · (g, J)

)
v = ε

(
(f ◦ g)(e)

)
(v) = ε

(
f
(
g(e)

))
(v) = ε

(
f
(
e′g(e)

))
(v) =

= ε
(
f(e′)g(e)

)
(v) = ε

(
f(e′)

)
ε
(
g(e)

)
(v) = (f, I)

(
(g, J)v

)
,

whence (v) also holds. It is clear that (iv) also holds.
To prove (vi), let λ ∈ Λ and let K = λ−1(I) ∩ I. Then K ∈ E by (ii)-(iii) of the

definition of a set of supports for A. For any e ∈ PK , we have λe = λe2 = e(λe).
Therefore, we have for any v ∈ im ε(e):(

λ(f, I)
)
v = ε

(
(λf)(e)

)
(v) = ε

(
f(λe)

)
(v) = ε

(
f(e · λe)

)
(v) =

= ε
(
f(e) · λe

)
(v) = ε

(
f(e)

)
ε(λe)(v) = ε

(
f(e)

)(
ε(e)(v)λ

)
=

= ε
(
f(e)

)
(vλ) = ε

(
f(e)

)
(v)λ =

(
(f, I)v

)
λ,

whence (vi) follows.
To prove (vii), we assume that (f, I) ./ (g, J). According to Proposition 25(iv),

ω(f(e)) = (f, I) ·ω(e) for any e ∈ PI . By hypothesis (b), πEω is a ∗-homomorphism,
whence

πEω
(
f(e)∗

)
= πE

(
ω(f(e))

)∗
=
(
πE(f, I) · πEω(e)

)∗
= πEω(e)∗ ·

(
πE(f, I)

)∗
=

= πEω(e) · πE(g, J) = πE
(
ω(e) · (g, J)

)
= πE(le ◦ g, J).

Thus there is K0 ∈ E such that K0 ⊆ J and for all a ∈ K0, one has

e · g(a) = (le ◦ g)(a) = lf(e)∗(a) = f(e)∗ · a.

Let K = K0∩I∩J . Then K ∈ E and D(K) ⊆ D(I)∩D(J) = dom(f, I)∩dom(g, J).
Let u, v ∈ D(K). Then according to (a) there is e ∈ PK such that u, v ∈ im ε(e).
Since ε is a representation, we have using the above:

〈(f, I)u | v〉 = 〈ε
(
f(e)

)
(u) | v〉 = 〈u | ε

(
f(e)

)∗
(v)〉 = 〈u | ε

(
f(e)∗

)
(v)〉 =

= 〈u | ε
(
f(e)∗

)
ε(e)(v)〉 = 〈u | ε

(
f(e)∗ · e

)
(v)〉 = 〈u | ε

(
e · g(e)

)
(v)〉 =

= 〈u | ε(e)ε
(
g(e)

)
(v)〉 = 〈u | ε(e∗)ε

(
g(e)

)
(v)〉 =

= 〈ε(e)(u) | ε
(
g(e)

)
(v)〉 = 〈u | ε

(
g(e)

)
(v)〉 = 〈u | (g, J)v〉.

Therefore, (vii) holds.
If (g0, J0) ./ (f, I) ./ (g1, J1), then πE(g0, J0) =

(
πE(f, I)

)∗
= πE(g1, J1), whence

(g0, J0) ≡E (g1, J1) and (viii) follows from Claim 3. �

The above claims prove that (RVF ;D) is an algebra of generalized operators.
According to Claim 3, R/≈D ∼= Q(A, E). �
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7. Proof of main results

For the following concepts, cf. [22] and [10]. Let A be a ring. We put for any
X ⊆ A:

Annr(X) = {a ∈ A | Xa = 0};
Annl(X) = {a ∈ A | aX = 0}

and call those sets the right and the left annihilator of X, respectively. A ∗-ring
A is Baer [Rickart ] if for any [singleton] subset X of A, Annr(X) = eA for some
projection e ∈ A. In this case, the left annihilator of X is also generated by a
projection. If, in addition, A is a C∗-algebra then one speaks of an AW ∗-algebra
[Rickart C∗-algebra, respectively]. According to [10, 14.22, 14.24], this definition of
an AW ∗-algebra is equivalent to the one given in [24]. Every von Neumann algebra
is an AW ∗-algebra. A ∗-ring A is finite (it is called ∗-finite in [10]) if xx∗ = 1 implies
x∗x = 1 for all x ∈ A. A has sufficiently many projections, if any proper right ideal
contains a non-zero projection. A satisfies LP ∼ RP (notation LP ∼∗ PR is used
in [10]) if for any x ∈ A and projections e, f ∈ A such that Annr(x) = (1− e)A and
Annl(x) = A(1− f), there is y ∈ A such that e = yy∗ and f = y∗y.

A right ideal I of a ring A is essential or large in J ⊇ I if I ∩ K 6= 0 for any
K ∈ Ir(A) such that 0 6= K ⊆ J . Of course, if I is essential in A then any ideal
J ⊇ I is. The following statement is well known and straightforward to prove.

Lemma 27. Let I, J ∈ Ir(A) be such that I ⊆ J and J is essential in A. Then I
is essential in J if and only if I is essential in A.

Recall that A is non-singular if Annr(x) is essential if and only if x = 0. Moreover,
for any non-singular ring the notions of ‘dense in A’ and ‘essential in A’ right ideals
coincide. Any Rickart ∗-ring is obviously non-singular.

Proposition 28. Assume that A and Q(A) are as in one of the following:

(i) A is a finite Rickart C∗-algebra and Q(A) is its classical ring of right quo-
tients;

(ii) A is a ∗-Λ-algebra which is a finite Baer ∗-ring satisfying LP ∼ RP and
having sufficiently many projections and Q(A) is its maximal ring of right
quotients.

Then there is a set E of supports such that Q(A, E) is isomorphic to Q(A) and
such that (a) and (b) of Theorem 26 are satisfied, turning Q(A, E) into a ∗-regular
Λ-algebra. Moreover, in both cases the involution on A extends uniquely to an invo-
lution on Q(A); and, with this involution, Q(A) is ∗-regular.

Proof. Case (i). Following Handelman [7, p. 177], let E consist of all right ideals
I ∈ E0 such that there is a countable set X ⊆ I with

∑
x∈X xA ∈ E0. According

to [7, Proposition 2.1] and Lemma 27, there is a countable orthogonal set P ⊆ I of
projections such that the ideal J =

∑
e∈P eA is essential in A. Let

PI = {e0 + . . .+ en | n < ω, e0, . . . , en ∈ P}.
Then PI is a directed set of projections and J =

⋃
e∈PI

eA ∈ E0. Thus hypothesis
(a) of Theorem 26 holds. Moreover, (i)-(iii) of the definition of a set of supports
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hold by [7, Lemmas 2.3-2.4], and Q(A, E) is regular according to [7, Lemma 2.7].
Furthermore, in [7, Theorem 2.1] a ∗-regular subring R of QH(A) = Q(A, E) is
constructed such that the involution on R extends the involution on A. Later, it
was shown by Ara and Menal [8, p. 129] that R = QH(A) is the classical ring of
right quotients of A. The uniqueness of extension is obvious in this case.

Case (ii). Let E = E0. According to Lemma 24, E0 is a set of supports. The proof of
[4, Corollary 4.10] (cf. [3, Lemma 5]) together with [4, Proposition 4.11] yield that
hypothesis (a) of Theorem 26 holds. According to Pyle [23] and Hafner [3, Theorem
2], Q(A, E0) is ∗-regular with involution extending the involution of A. Uniqueness
of extension of involution follows from [10, Corollaries 21.22 and 21.27], see also
[9]. �

Corollary 29. Let A and Q(A) be as in Proposition 28 and let Λ = F = C in
case (i). For any faithful representation ε of A within a Hilbert space VC, Q(A)
is isomorphic to the ∗-C-algebra R/≈D for some C-algebra (RVC;D) of generalized
operators on VC.

Proof of Theorem 2. By the GNS-construction (Fact 3), A has a faithful represen-
tation in some Hilbert space VC. By Corollary 29, Q(A) ∼= R/≈D for some algebra
(RVC;D) of generalized operators. Theorem 22 provides a faithful representation of

the latter in some closed subspace U of an ultrapower V̂Ĉ = V I
C/U . This proves (i).

Then by Theorem 16 we get that Q(A) is a homomorphic image of a subalgebra
of an ultraproduct

∏
k∈K End∗Λ

(
(Uk)Ĉ

)
/W , where dimUk = nk < ω for all k ∈

K. By Facts 8 and 13(ii), End∗Λ
(
(Uk)Ĉ

)
is isomorphic to (Cnk×nk)I/U for any k ∈

K. All these algebraic constructions respect pseudo-inversion, whence (ii) follows.
Furthermore, (ii) in turn implies (iii) due to Facts 11 and 12. �

We finally recall some facts concerning finite AW ∗-algebras A. A ∗-regular ex-
tension QB(A) was constructed by Berberian [2]. Hafner [3] and Pyle [4] showed
that, as a ring, QB(A) is the maximal ring of right quotients of A. Therefore, this
subsumes under case (ii) of Proposition 28. Indeed, according to Berberian [10,
14.31], A satisfies LP ∼ RP , see also [24, Theorem 5.2] and A has sufficiently many
projections by [24, Lemma 2.2].

On the other hand, in [5, proof of Theorem 10] Berberian observed that, for a finite
AW ∗-algebra, his construction QB(A) yields the the classical ring of right quotients
of A. We outline a proof in the present framework. As remarked by Ara and Menal
[8, p. 129], QH(A) consists of all x ∈ QM(A), the maximal ring of right quotients,
such that there is an orthogonal sequence of projections ek with xek ∈ A for all k and
J =

∑
k ekA essential in A. The elements x of QB(A) (which is QM(A) as a ring)

are implemented by OWCs, which are sequences of the form (xn, fn) with xn ∈ A
and xnfm = xmfm and x∗nfm = x∗mfm for all m < n where the fn form an SDD, an
ascending chain of projections in A with join 1. Observe that there is an orthogonal
sequence en of projections with joins fn =

∑
k6n ek, whence xnek = xnfkek = xkek

and x∗ek = x∗ek if n > k. From (the proof of) [2, Theorem 2.1] it is immediate
that xek ∈ QB(A) is implemented by some OWC (xnek, gn) which is equivalent to
the OWC (xkek, hn), where hn = 0 for n < k and hn = 1 for n > k. Thus, xek ∈ A
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for any k and, to derive QB(A) ⊆ QH(A), it suffices to show that J =
∑

k ekA is
essential in A. So consider a right ideal K 6= 0 of A. There is a non-zero projection
e ∈ K and continuity of L(A) yields e = e∩

∨
k ek = e∩

∨
k fk =

∨
k(fk ∩ e), whence

e = fk ∩ e = efk ∈ J ∩K for some k.

8. Discussion

Evidently, our approach has some similarities with the method established by Elok
and Szabó [25] for proving direct finiteness of the group ring D(G) of a (sofic) group,
where D is any division ring. The idea is to construct, by means of ultralimits, a
pseudo-rank function N on the direct product E of endomorphisms rings of D-vector
spaces generated by finite subsets of G and to embed D(G) into the continuous
regular ring E/kerN .

More specifically, one may ask to which extent one could replace, in the special
case of von Neumann algebras, the model theoretic ultraproducts by von Neumann
algebra ultraproducts, cf. e.g. [26], and to gain some insight into the more serious
problems concerning these. Though, the saturation property of model theoretic
ultraproducts appears to be crucial for our approach.

There is a great variety of results on Baer ∗-rings satisfying certain conditions
which imply ∗-regularity of maximal rings of quotients, see e.g. [5, 10, 3, 4, 9];
(i) in Proposition 28 is one of them. In contrast, results on representations of
∗-rings within inner product spaces appear to be located at two extremes: the GNS-
construction on the ‘continuous side’ and the results on rings with minimal right
ideals (cf. [27]) on the ‘discrete side’. It would be desirable to have results based on
a weaker (lattice theoretic) form of continuity.

In a subsequent work we will use the results of the present note for a detailed
discussion of classes of ∗-algebras and modular ortholattices representable within
inner product spaces over ∗-fields elementarily equivalent to R and C, respectively,
including solvability and complexity of certain decision problems for these classes. In
particular, it will be shown that any Q(A) as in Theorem 1 (as well as its projection
ortholattice) has decidable equational theory. This is one more indication that the
algebras Q(A) are very special members of the class of all ∗-regular rings – recall
that Q(A) is directly finite since it has a unit regular extension (Handelman [9, 7]).
But it remains open to which extent direct finiteness is inherited by homomorphic
images of subalgebras of (model theoretic) ultraproducts of matrix ∗-algebras Cn×n.
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