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ON THE EQUATIONAL THEORY OF PROJECTION LATTICES OF

FINITE VON-NEUMANN FACTORS

CHRISTIAN HERRMANN

Abstract. For a finite von-Neumann algebra factor M, the projections form a modular

ortholattice L(M) . We show that the equational theory of L(M) coincides with that of

some resp. all L(Cn×n) and is decidable. In contrast, the uniform word problem for the

variety generated by all L(Cn×n) is shown to be undecidable.

§1. Introduction. Projection lattices L(M) of finite von-Neumann algebra
factors M are continuous orthocomplemented modular lattices and have been
considered as logics resp. geometries of quantum meachnics cf. [25]. In the finite
dimensional case, the correspondence between irreducible lattices and algebras,
to wit the matrix rings Cn×n, has been completely clarified by Birkhoff and
von Neumann [5]. Combining this with Tarski’s [27] decidability result for the
reals and elementary geometry, decidability of the first order theory of L(M) for
a finite dimensional factor M has been observed by Dunn, Hagge, Moss, and
Wang [7].

The infinite dimensional case has been studied by von Neumann and Murray
in the landmark series of papers on ‘Rings of Operators’ [23], von Neumann’s
lectures on ‘Continuous Geometry’ [28], and in the treatment of traces resp.
transition probabilities in a ring resp. lattice-theoretic framework [20, 29].

The key to an algebraic treatment is the coordinatization of L(M) by a ∗-
regular ring U(M) derived from M and having the same projections: L(M) is
isomorphic to the lattice of principal right ideals of U(M) (cf. [8] for a thor-
ough discussion of coordinatization theory). For finite factors this has been
achieved in [23], more generally for finite AW∗-algebras and certain Baer-∗-rings
by Berberian in [2, 3].

In the present note we show that the equational theory of L(M) coincides
with that of L(Cn×n) if L(M) is n + 1- but not n-distributive for some n; and
with that of all L(Cn×n), n < ∞, otherwise - which applies to the type II1
factors. In the latter case, the equational theory is decidable, but the theory of
quasi-identities is not.
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§2. Modular ortholattices: Equations and representations. An alge-
braic structure (L, ·,+,′ , 0, 1) is an ortholattice (shortly OL) if there is a partial
order ≤ on L such that, for all a, b ∈ L, 0 ≤ a ≤ 1, a · b = ab = inf{a, b},
a + b = sup{a, b}, a′′ = a, and a ≤ b iff b′ ≤ a′. It is a modular ortholattice
(shortly: MOL) if, in addition, a ≥ b implies a(b + c) = b + ac. One can define
this class by a finite set of equations, easily ([4, 5]).

If V is a unitary space then the subspaces of finite dimensions together with
their orthogonal complements form an MOL L(V ) - a sublattice of the lattice
of all subspaces. For V of finite dimension n, we have L(V ) ∼= L(Cn) for Cn

endowed with the canonical scalar product. A lattice is n-distributive if and only
if it satsifies

x

n∑

i=0

yi =
n∑

i=0

x
∑

j 6=i

yj .

Lemma 2.1. L(Ck) is n-distributive if and only if k ≤ n.

Proof. Huhn [18, p. 304] cf. [13]. ⊣

For a class C of algebraic structures, e.g. ortholattices, let VC denote the
smallest equationally definable class (variety) containing C cf. [6]. By Tarski’s
version of Birkhoff’s Theorem, VC = HSPC where HC, SC, and PC denote the
classes of all homomomorphic images, subalgebras, and direct products, resp.,
of members of C. Define

N = V{L(Ck) | k <∞}.

Clearly, L(Ck) ∈ SHL(Cn) for k ≤ n. Within the variety of MOLs, each ortho-
lattice identity is equivalent to an identity t = 0 (namely, a = b if and only if
a(ab)′+b(ab)′ = 0). If L is an MOL and u ∈ L then the section [0, u] is naturally
an MOL with orthocomplement x 7→ xu = x′u.

Lemma 2.2. An ortholattice identity t = 0 with m occurences of variables
holds in a given atomic MOL L if any only if it holds in all sections [0, u] of L
with dimu ≤ m.

Proof. As usual, we write x for sequences (x1, . . . , xn) with n varying ac-
cording to the context. We show by induction on complexity: if f(x) is a lattice
term with each variable occuring exactly once and if p is an atom of L and ai in
L with p ≤ f(a) in L then there are pi ≤ ai in L which are atoms or 0 such that

p ≤ f(p). Indeed, if f = x1 let p1 = p. Now, let x = y z and a = b c, accordingly.
If f(x) = f1(y) · f2(z) then p ≤ f1(b) and p ≤ f2(c) and we may choose the
qi ≤ bi and and rj ≤ cj by inductive hypothesis and put p = q r. On the other

hand, consider f(x) = f1(y) + f2(z). If f2(c) = 0 then p ≤ f1(b) and we may
choose qi ≤ bi by induction and rj = 0. Similarly, if f1(b) = 0. Otherwise, there

are atoms pi such that p1 ≤ f1(b), p
2 ≤ f2(c) and p ≤ p1 +p2 (cf. [1]). Applying

the inductive hypothesis, we may choose qi ≤ bi and rj ≤ cj , atoms or 0, such
that p1 ≤ f1(q) and p2 ≤ f2(r) whence p ≤ f(p) where p = q r.
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Now, consider an identity t(x) = 0. By de Morgan’s laws, we may assume that
t is in so called negation normal form, i.e. there is a lattice term f(y z) with each
variable occuring exactly once from which t(x) arises substituting the variable
xαi for yi, the negated variable x′βj for zj (with suitable functions α and β).

Assume t(a) > 0 in L. Since L is atomic, there is an atom p with p ≤ t(a).
With bi = aαi and cj = a′βj one obtains t(a) = f(b c). As shown above, there

are qi ≤ bi and rj ≤ cj such that p ≤ f(q r). Put

uk =
∑

αi=k

qi, vk =
∑

βj=k

rj , w =
n∑

k=1

uk + vk.

Then uk ≤ ak ≤ w and vk ≤ a′k ≤ w. Thus, a′k ≤ u′k and vk ≤ uw
k . For the MOL

[0, w] it follows by monotonicity that 0 < p ≤ f(q r) ≤ t(a). ⊣

A unitary representation of an MOL L is a 0-lattice embedding ε : L→ L(V )
into the lattice of all subspaces of a unitary space such that

ε(a′) = ε(a)⊥ for all a ∈ L.

This means that ε is an embedding of the ortholattice L into the orthostable
lattice associated with the unitary space V in the sense of Herbert Gross [10].

Corollary 2.3. L ∈ N for any MOL admitting a unitary representation.

Proof. By [14, Thm.2.1]) L embeds into an atomic MOL L̂ such that the
sections [0, u], dimu <∞ are subspace ortholattices of finite dimensional unitary

spaces (namely, if L is represented in V then L̂ consists of all closed subspaces X

such that dim[X ∩ εa, X + εa] <∞ for some a ∈ L). By Lemma 2.2, L̂ whence
also L belong to the variety N generated by these. ⊣

Corollary 2.4. N = VL(V ) for any unitary space of infinite dimension.

§3. Regular rings with positive involution. An associative ring (with or
without unit) R is (von Neumann) regular if for any a ∈ R there is a quasi-inverse
x ∈ R such that axa = a cf. [28, 22, 9]. A ∗-ring is a ring with an involution ∗

as additional operation:

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, x∗∗ = x.

A ∗-ring is ∗-regular if it is regular and, moreover, positive: xx∗ = 0 only for
x = 0. Equivalently, for any a ∈ R there is a (unique) projection e (i.e. e = e∗ =
e2) such that aR = eR. Particular examples are the rings Cn×n of all complex
n× n-matrices with r∗ the adjoint matrix, i.e. the transpose of the conjugate.

The projections of a ∗-regular ring with unit form a modular ortholattice
L(R) where e ≤ f ⇔ e = ef and e′ = 1 − e. Now, e 7→ eR is an isomorphism
of L(R) onto the ortholattice of principal right ideals of R and we may use the
same notation for both. Observe that L(Cn) ∼= L(Cn×n), canonically, where a
subspace X corresponds to the set of all matrices with columns in X cf. the
following Proposition.

Proposition 3.1. (Giudici). Let M be a right module over a ring S and let
R be a regular subring of the endomorphism ring End(MS). Then L(R) embeds
into the lattice of submodules of MS via ε(φR) = Imφ.
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Proof. This is (1) in the proof of [8, Thm.4.2.1] in the thesis of Luca Giudici,
cf. [15, Prop.9.1]. ⊣

Corollary 3.2. If R and S are ∗-regular rings, R a ∗-subring of S, then
L(R) is a sub-OL of L(S).

Proof. R embeds into EndSS via r 7→ r̂ where r̂(x) = rx for x ∈ S. By
Prop.3.1 this yields an embedding of L(R) into L(S) with eR 7→ Imê = eS for
e ∈ L(R). Since e′ = 1 − e in both OLs, we have L(R) a sub-OL of L(S). ⊣

Corollary 3.3. For any ∗-regular ring S,

VL(S) = V{L(R) | R at most countable, regular ∗-subring of S}

Proof. ‘⊇’ follows from Cor.3.2. Conversely, L(S) belongs to the variety
generated by its finitely generated sub-OLs L. Endow S with a unary operation
q such that aq(a)a = a for all a in S. Now, for any such L there is an at most
countable ∗-subring R of S containing L and also closed under the operation q.
Observe that for e, f ∈ L(R) one has e ≤ f if and only if ef = e, i.e. e ≤ f in
L(S). Thus L is also a sublattice of L(R): assume we have join e ∨ f = g in L

and h ∈ L(R) with h ≥ e, f in L(R). Then h ≥ g in L(S) whence h ≥ g which
means e∨ f = g also in L(R). Similarly for meets. Also, since L is closed under
the orthocomplement e 7→ 1 − e in L(S), the same is true in L(R). It follows,
that L is a sub-OL of L(R). ⊣

Let V be a unitary space. Denote by φ∗ the adjoint of φ - if it exists. A
unitary representation of a ∗-ring R is a ring embedding ι : R → End(V ) such
that ι(r∗) = ι(r)∗ for any r ∈ R.

Corollary 3.4. If ι : R → End(V ) is a unitary representation of the ∗-
regular ring R, then

ε(eR) = Imι(e)

is a unitary representation of the MOL L(R) in V .

Proof. The lattice embedding follows from Prop.3.1. Now, observe that

ε(eR)⊥ = Im(id − ι(e)) = ε((1 − e)R) = ε(eR)′)

since e and ι(e) are selfadjoint idempotents. ⊣

§4. Finite von-Neumann algebras. A von-Neumann algebra (cf. [17]) M

is an unital involutive C-subalgebra of the algebra B(H) of all bounded operators
of a separable Hilbert space H with M = M′′ where A′ = {φ ∈ B(H) | φψ =
ψφ ∀φ ∈ A} is the commutant of A. M is finite if rr∗ = 1 implies r∗r = 1.
For such, the projections e of M, i.e. the e = e2 = e∗, form a (continuous)
modular ortholattice L(M). Here, the order is given by e ≤ f ⇔ e = ef and
one has e′ = 1 − e. A finite von-Neumann algebra is a factor if its center is
C ·1. Particular examples of a finite factors are the algebras Cn×n of all complex
n-by-n-matrices.

Theorem 4.1. (Murray-von-Neumann.) Any finite von-Neumann algebra fac-
tor is either isomorphic to Cn×n for some n <∞ (type In) or contains for any
n <∞ a subalgebra isomorphic to Cn×n (type II1).
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Proof. [23, 14.1] and [24, Thm. XIII]. ⊣

For any operator φ defined on some linear subspace of H , write φηM if
ψφψ−1 = φ for all unitary ψ ∈ M′ (cf [23, Def.4.2.1]). Let U(M) consist of
all closed linear operators φ with φηM and having dense linear domain. Con-
sider the following operations with domain U(M)

(φ, ψ) 7→ [φ+ ψ], (φ, ψ) 7→ [φ ◦ ψ], φ 7→ [φ∗]

where [χ] denotes the closure of the linear operator χ.

Theorem 4.2. (Murray-von-Neumann.) For every finite factor M, U(M) is a
∗-regular ring having M as ∗-subring and such that φ∗ is adjoint to φ. Moreover,
M and U(M) have the same projections.

Proof. This is trivial for type In. For II1 factors this is [23, Thm. XV]
together with [28, Part II, Ch.II, App 2.(VI)] and [29, p.191] for ∗-regularity.
Now, consider π : D → H in U(M) such that π = π∗ = π2. Then U = Imπ ⊆
D so π is a projection of D, i.e. D = U ⊕⊥ V . By density of D it follows
U⊥⊥ ⊕⊥ V ⊥⊥ = H and π extends to a projection π̂ of H onto U⊥⊥. From πηM

it follows π̂ηM, whence π̂ ∈ U(M) and π = π̂ ∈ M by [23] Lemmas 16.4.2 and
4.2.1. ⊣

An important concept in the Murray-von-Neumann construction is that of an
essentially dense linear subspace X of H (w.r.t. M). Here, we need only the
following properties:

1. Essentially dense X is dense in H [23, Lemma 16.2.1].
2. The domains of members of U(M) are essentially dense [23, Lemma 16.4.3].
3. For any φ ∈ U(M) and essentially dense X , the preimage φ−1(X) is essen-

tially dense [23, Lemma 16.2.3].
4. Any finite or countable intersection of essentially dense Xn is essentially

dense [23, Lemma 16.2.2].

Theorem 4.3. (Luca Guidici.) Any countable ∗-subring of U(M) is repre-
sentable.

Proof. Consider any countable ∗-subring R of U(M). A representation of R
is constructed from the given Hilbert space H . Let H0 be the intersection of all
domains of operators φ ∈ R. By (2), H0 is essentially dense. Define, recursively,
Hn+1 as the intersection of Hn and all preimages φ−1(Hn) where φ ∈ R. By
(3) and (4), Hn+1 is essentially dense. By (4), the intersection Hω =

⋂
n<ω Hn

is essentially dense and, by (1), dense in H . By construction, Hω is invariant
under R.

Now, for φ ∈ R define ε(φ) = φ|Hω . Then ε : R → EndC(Hω) is a ∗-ring
homomorphism. Indeed, e.g. [φ + ψ]|Hω is an extension of φ|Hω + ψ|Hω and
equality holds since both are maps with the same domain. Also ε(φ∗) is the
restriction of the adjoint φ∗ in H , whence the adjoint in Hω. If ε(φ) = 0, then
Hω is contained in the closed subspace kerφ and it follows φ = 0 by density.
Thus, ε is a representation. ⊣

§5. Equational theory of projection lattices.



6 CHRISTIAN HERRMANN

Theorem 5.1. For any class M of finite von-Neumann algebra factors, and
V = V{L(M) | M ∈ M} one has V = VL(Cn) if and only if V satisfies the
n + 1-distributive law but not the n-distributive law. Moreover, V = N if and
only if V satisfies no n-distributive law. In any case, the equational theory of V
is decidable.

Proof. Let M be a finite von-Neumann algebra factor. In view of Thm.4.2
and Cor.3.3, we have to consider countable regular ∗-subrings R of U(M). By
Thm.4.3, each such R is representable. By Cor.3.4 and Cor.2.3 we have L(R) ∈
N and it follows L(M) ∈ N .

By Lemma 2.1, Cor.3.2, and Thm.4.1, M contains factors of arbitrarily large
finite dimensions or a type II1 factor if and only if V is n-distributive for no n. In
this case, V = N . Otherwise, there is a maximal n such that V is n-distributive,
in particular all members of M are of the form Ck×k with k ≤ n and k = n

occurs, so V = VL(Cn×n).
Recall that according to Tarski [27] the (ordered) field R has a decidable first

order theory. This extends to the field C endowed with the unary operation of
conjugation and then (uniformly) to the involutive C-algebras Cn×n. Encoding
the geometry in Tarski style into C or von-Neumann style into Cn×n, it follows,
that there is a uniform decision procedure for the first order theories of the
L(Cn) ∼= L(Cn×n). This settles the case of V = VL(Cn×n). To decide whether
an identity t = 0 holds in N , by Lemma 2.2 it suffices to decide validity in
L(Cm×m), m the number of occurences of variables in t. ⊣

§6. Von-Neumann frames. Let n ≥ 3 fixed. An n-frame, in the sense of
von-Neumann [28], in a lattice L is a list a : ai, aij , 1 ≤ i, j ≤ n, i 6= j of elements
of L such that for any 3 distinct j, k, l

aj

∑

i6=j

ai = 0 = ajajk,
∑

i

ai = 1

aj + ajk = aj + ak, ajl = alj = (aj + al)(ajk + akl).

If L is modular and n ≥ 4 then

R(L, a) = {r ∈ L | ra2 = 0, r + a2 = a1 + a2}

can be turned into a ring, the coordinate ring. For the present purpose it suffices
to know that R(L, a) is a semigroup under the multiplication

s⊗ r = [(r + a23)(a1 + a3) + (s+ a13)](a2 + a3)](a1 + a2)

cf. [21] where R(L, a) is denoted by L12 and r = r12 replaced by the array
of the rij obtained via the prespectivities provided by the akl. Thus, for each
multiplicative term t(x) = xn · ((. . . · x2) · x1) there is a lattice polynomial

t̂(a, x) = xn ⊗ ((. . .⊗ x2) ⊗ x1)

such that t̂(a, r) = t(r) for all substitutions r in R(L, a).
In the sequel, orthocomplementation is no longer an issue and we write L(V )

for the lattice of all subspaces of V , L(R) for the lattice of all right ideals of R.
If Rn×n is the n × n-matrix ring of some ring R with unit and L = L(Rn×n)
with the canonical n-frame a then R(L, a) is isomorphic to R - here a consists
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of the EjjR
n×n and (Ejj −Eij)R

n×n where the Eij form the canonical basis of
the R-module Rn×n. Indeed, one has a 1-1-correspondence between R, R(L, a),
and certain right submodules of Rn given by

r ↔ (E11 − rE21)R
n×n ↔ (e1 − re2)R

where e1, . . . , en is the canonical basis of Rn. Using the notations (rx, sx, tx) =
(e1r + e2s+ e3t)R and r̃ = (e1 − re2)R we compute

(r̃ + a23)(a1 + a3) = (x, y − rx,−y) ∩ (u, 0, v) = (x, 0,−rx)
(s̃+ a13)(a2 + a3) = (x− y,−sx, y) ∩ (0, u, v) = (0,−sy, y)
s̃⊗ r̃ = (x,−sy, y − rx) ∩ (u, v, 0) = (x,−srx, 0).

This translates back into L(Rn×n) and shows that r 7→ r̃ is an isomorphism
between the semigroups R and R(L, a).

§7. Quasivarieties and word problems. A quasi-identity is a sentence

∀x.
k∧

j=1

sj(x) = tj(x) ⇒ s(x) = t(x)

where the sj(x) and so on are terms. A quasivariety is a class of algebraic struc-
tures defined by quasi-identities, equivalently an axiomatic class closed under
substructures and direct products.

A solution of the uniform word problem for a class C consists in a decision
procedure for quasi-identities (i.e. a solution for all finite presentations). The
restriced word problem is unsolvable for C if for some fixed premise the associated
set of quasi-identities is undecidable within C. In other words, within the quasi-
variety QC generated by C there is a finitely presented member having unsolvable
word problem.

Unsolvability of the restricted word problem has been established by Hutchin-
son [19] and Lipshitz [21] for any class C of modular lattices with L(V ) ∈ QC
for some infinite dimensional vector space V . Also, based on analoguous results
of Gurevich [11] for semigroups, Lipshitz has shown unsolvability for classes
{L(Fn) | F ∈ F , n < ∞}, F any class of fields, and for C the class of finite
(complemented) modular lattices. These results extend to classes having the
appropriate lattice reducts.

For sufficiently large classes of modular ortholattices (e.g. containing all 14-
distributives) unsolvability in 3 generators has been shown by M.S. Roddy [26]
and this has been used in [16] to prove undecidabilty of the equational theory
for the class of all n-distributives for fixed n ≥ 14.

Let S (Sfin) denote the class of all (finite) semigroups, and Sp the set of
semigroups Fn×n

p (n ≥ 1) where Fp is the prime field of characteristic p, prime
or 0. Let M denote the class of all modular lattices, Mp the set of lattices
L(Fn

p ) ∼= L(Fn×n
p ) (n ≥ 1) . For a class C denote by RSC and RLC the class of

all semigroup resp. lattice reducts of structures in C and by ThqC the set of all
quasi-identities valid in C.

Theorem 7.1. A quasivariety Q has unsolvable uniform word problem if Sp ⊆
SRSQ ⊆ S or Mp ⊆ SRLQ ⊆ M for some p.
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Proof. Given a finite semigroup S, one may consider the semigroup ring
Fp[S] as an Fp-vector space V and thus embed S into EndFp

(V ) ∼= Fn×n
p where

n = |S|. It follows ThqSp ⊆ ThqSfin for all p and equality for p > 0. Since
Qn×n ∈ SPu{Fn×n

p | p prime}, one has

ThqSp = ThqSfin for all p.

This is contained in Lipshitz [21, Lemma 3.5]. The claim in the semigroup case
follows from the result of Gurevich and Lewis [12] that there is no recursive Γ
such that ThqS ⊆ Γ ⊆ ThqSfin.

According to the preceeding section and again following Lipshitz [21], one
may associate with each quasi-identity φ as above in the semigroup language a

quasi-identity φ̂ in the lattice language
∀a∀x α(a) ∧

∧
i(xiaa = 0 ∧ xi + a2 = a1 + a2)

∧
∧

j ŝj(a, x) = t̂j(a, x) ⇒ ŝ(a, x) = t̂(a, x)

where α(a) states that a is a 4-frame. Since R(L, a) is a semigroup for any

modular lattice L, it follows that φ̂ ∈ ThqM for all φ ∈ ThqS. On the other

hand, if φ̂ holds in L(R4×4), substituting the canoncial 4-frame for a, then φ

holds in R. In particular, for the ring R = Fn×n
p we encode equality of products

of n × n-matrices over Fp into equality of particular lattice elements. Thus,

considering all R = Fn×n
p , n ≥ 1, it follows φ ∈ ThqSp for φ̂ ∈ ThqMp. This

proves that φ ∈ ThqSp if and only if φ̂ ∈ ThqMp.
Now, given ThqM ⊆ ∆ ⊆ ThqMp define Γ as the set of those quasi-identities

φ in semigroup language with φ̂ ∈ ∆. Then

ThqS ⊆ Γ ⊆ ThqSp

and if ∆ is recursive then so is Γ. ⊣

Corollary 7.2. N as well as the class of projection lattices of finite factors
have an undecidable uniform word problem. The quasivariety Q generated by all
ortholattices L(Cn×n) (n < ω) has an undecidable restricted word problem and
is not a variety.

Proof. The undecidability claim is immediate by Thm.7.1 resp. the quoted
result of Lipshitz [21, Thm.3.6]. By decidability of the L(Cn×n), the complement
of ThqQ within the set of quasi-identities is recursively enumerable. If Q were a
variety, then by Thm.5.1 it would coincide with N and be recursively axiomati-
zable. Thus ThqQ would be recursively enumerable, too, and this would imply
solvability of the uniform word problem. ⊣

Problem 7.3. Is the restricted word problem solvable for (a) N resp. (b) the
class of projection lattices of finite factors ?
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