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A review of some of Bjarni Jónsson’s results on
representation of arguesian lattices

Christian Herrmann

Abstract. We review (and slightly extend) Bjarni Jónsson’s results on representa-
tions of arguesian lattices that are complemented, of low height, or of simple gluing
structure.

1. Introduction

Based on preliminary work of Schützenberger, Bjarni Jónsson has intro-
duced [21, 22] a lattice theoretic inequality (i.e., in essence an identity) valid
in all lattices of commuting equivalence relations and, on the other hand, valid
in the subspace lattice of a projective space if and only if the space is desar-
guean. Lattices satisfying this inequality are called arguesian and have played
a major rôle both in Modular Lattice Theory and its applications within Uni-
versal Algebra. The focus of this review will be on lattices embeddable into
subspace lattices of vector spaces. The author is indebted to the referee for a
very careful report and a variety of helpful suggestions.

2. Preliminaries: subspace lattices

All lattices L to be considered will be modular with bounds 0, 1. For the
basics about these and the relations between projective spaces P , their lattices
L(P ) of subspaces, and subspace lattices L(VD) of vector spaces VD, D a
division ring, we refer to the literature, e.g., [1, 6].

The height of L is d(L) = n < ∞ if some, whence every, maximal chain in
L has n + 1 elements. We put d(L) = ∞, otherwise; also, d(a) = d([0, a]L) is
the height of a. A map f : L → M is isometric if d(x) = d(f(x)) for all x ∈ L.
Any L is a subdirect product of subdirectly irreducibles. If d(L) < ∞, then L

is subdirectly irreducible if and only if L is simple.
Consider a set P of points endowed with a set G of at least 2-element

subsets, the lines. We say that pairwise distinct points p, q, r are collinear if
{p, q, r} ⊆ g for some g ∈ G. In order that P (more precisely, (P,G)) is a
projective space, one requires that any two distinct points are contained in a
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unique line, that any two distinct lines have at most one point in common, and
that for any collinear triplets p, x, r and q, y, r with p, q, r pairwise distinct and
non-collinear, there is unique z such that p, q, z are collinear. A subset Q of P

is a subspace if g ⊆ Q whenever g is a line with |g ∩Q| ≥ 2. The subspaces of
P form a complemented (modular) lattice L(P ) ordered by inclusion. Points
p, q are perspective if p = q or if there is r such that p, q, r are collinear. This
defines an equivalence relation on P , the classes of which are the components
Pi. The L(Pi) are subdirectly irreducible and L(P ) is canonically isomorphic
to a direct product of the L(Pi). P is desarguean if and only if L(P ) is
arguesian.

A lattice L of finite height is isomorphic to some L(P ) if and only if it is
complemented (and modular); namely, as P one may choose the set atoms of
L and as lines the P ∩ [0, u] where d(u) = 2.

Recall that an element c of L is central if and only if there is a complement
d of c such that x = xc + xd for all x ∈ L; equivalently, x �→ (xc, xd) is an
isomorphism of L onto [0, c] × [0, d].

Fact 2.1. For L = L(P ) of finite height, the central elements are exactly the
∑

Q where Q is a union of components. Any congruence of L is generated
by a unique pair c/0 with central c. The congruences θc, θd associated with
the central c, d are complementary if and only if c, d are complementary. In
this case, θc, θd is the unique pair of complementary congruences such that
c/0 ∈ θc and d/0 ∈ θd. See e.g., [1, Chapter IV].

Fact 2.2. L(P ) of height ≥ 3 is isomorphic to some L(VD) (and d(L(VD)) =
d(L(P ))) if and only if L(P ) is subdirectly irreducible and arguesian; moreover,
D is then unique up to isomorphism. Namely, P is desarguean in this case
([22]) and the Coordinatization Theorem applies.

Any division ring D has a characteristic χ(D): the minimum n > 1 such
that n1D = 0D (which is a prime it if exists), and χ(D) = 0, otherwise. Thus,
any subdirectly irreducible arguesian L ∼= L(P ) of height ≥ 3 has a unique
characteristic χ(L) = χ(D) where L ∼= L(VD). The case of lattices L of height
≤ 2 is now dealt with by the following: we may attribute to such L any
characteristic c.

Fact 2.3. If L is of height n ≤ 2, then L embeds isometrically into L(VD)
for any n-dimensional vector space VD with |D| ≥ |L| − 3. Any injective map
between the sets of atoms extends to such an embedding.

Embedding subspace lattices of the same characteristic into a single one
becomes possible due to the following facts.

Fact 2.4. For any division ring D and infinite cardinal κ > |D|, there is a di-
vision ring D′ of cardinality κ extending D. This follows from the Löwenheim–
Skolem Theorem. More meaningful constructions are due to Cohn [5].
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Fact 2.5. Division rings Di (for i ∈ I) embed simultaneously into some divi-
sion ring D if and only if they have the same characteristic. For |I| = 2, this
follows from Cohn’s proof of the amalgamation property (cf. [4]) for general
I, then by the Löwenheim–Skolem Theorem.

Fact 2.6. If VD is an D-vector space and D′ a division ring extending D, then
L(VD) embeds into L(WD′) whenever dimVD = dimWD′ . WD′ is isomorphic
to VD ⊗D D′.

Fact 2.7.
∏

i∈I L(ViDi
) embeds into

∏
i∈I L(ViD) for any D-vector spaces ViD;

the embedding is isometric in case of finite dimension. Namely,

(Ui | i ∈ I) �→
∑

i∈I

Ui.

3. Preliminaries: gluing

The gluing construction was introduced by Dilworth and Hall; the full power
of the construction and the associated structural analysis was demonstrated
in [22, 23]. A lattice L is a gluing of L0 and L1 with overlap [u, v] if

0 < u ≤ v < 1 in L, L0 = [0, v], L1 = [u, 1], and L = L0 ∪ L1.

Observe that d(L) = d(L1)+d(L2)−d[u, v] in case of finite height. Moreover,
the lattice structure of L is completely determined by that of the Li, the
elements u ∈ L0, v ∈ L1, and the identity map f : [u, 1L0 ]L0 → [0L1 , v]L1

(which describes the overlap). Thus, it follows (cf. [22, Lemma 3.4])

Fact 3.1. For L a gluing of L0 and L1 with overlap [u, v], if fi : Li → M are
homomorphisms that coincide on [u, v], then f0 ∪ f1 : L → M is a homomor-
phism extending both fi; it is an (isometric) embedding if both f0, f1 are. If
the θi are congruences on Li (for i = 0, 1), that coincide on [u, v], then there is
a unique congruence θ on L that restricts to θi on Li for i = 0, 1. In particular,
L is a subdirect product of L0 and L1 if u = v, and L is simple if so are the
Li and u < v.

Considering L0 and L1, separately, u ∈ L0, v ∈ L1, and an isomorphism
f : [u, 1L0 ]L0 → [0L1 , v]L1 , a gluing L of L0 with an isomorphic copy of L1

arises by identifying f(x) with x for all x ∈ [u, 1L0 ]. The resulting lattice will
always be modular.

Jónsson considered this construction of a lattice L for Li = L(ViDi) and
dim ViDi

= 3. In [22, Theorem 3.6], he chose dim v = 1 and D1, D2 of dis-
tinct prime characteristic to obtain an example of a simple lattice of height
5 isomorphic to a lattice of permuting equivalences but not embeddable into
the normal subgroup lattice of any group. Allowing also characteristic 0, we
will call such L of type J . On the other hand, in Case 5 of [23, Theorem 3.1],
Jónsson showed that D1 ∼= D2 if L is arguesian and dim v = 2, and that then
L embeds isometrically into some L(VD1).
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To have a more general view of these and related constructions, recall the
following facts about finite height modular lattices: define a∗ and a∗ as the join
of all upper covers and the meet of all lower covers of a, respectively, with the
convention that 1∗ = 1 and 0∗ = 0. Then the (prime) skeleton S(L) = {x ∈
L | (x∗)∗ = x} and its associated S∗(L) = {y ∈ L | (y∗)∗ = y} are complete
join and meet sub-semilattices of L, resp., and x �→ x∗, y �→ y∗ are mutually
inverse isomorphisms between the lattices S(L) and S∗(L). Moreover, L is
the union of its intervals Lx = [x, x∗] for x ∈ S(L), and these blocks Lx are
the maximal complemented intervals of L. For the case n ≤ 4, this kind of
analysis is already in [23].

Iterating the gluing construction in finitely many steps with Li that are
complemented and of finite height, one obtains an L where the skeleton S(L)
is a chain {0, . . . , k}: this means there are chains

0 = u0 < · · · < uk and v0 < · · · < vk = 1, with ui < vi,

such that the Li = [ui, vi] are exactly the maximal complemented intervals
of L.

Fact 3.2. If L is a modular lattice with S(L) a chain, then L is a subdi-
rect product of simple lattices having chain skeletons. This follows from the
Corollary to [27, Lemma 1].

Lemma 3.3. If L is of finite height with S(L) a chain, then L is simple if
and only if all blocks Li are simple, d(Li) ≥ 2, and |Li ∩ Li+1| > 1 for all i.

Proof. This has been stated as Lemma 2 in [27] and proved for the case
|S(L)| = 2. We shall use a simpler approach relying on the concept of central
elements. We define

• a1 ⊥ a2 in L if and only if the interval [a1a2, a1+a2] of L is complemented
and a1, a2 are central elements of this interval.

• The pair θ1, θ2 of complementary congruences of L matches a1 ⊥ a2 if
the restriction to [a1a2, a1 + a2] is the pair of congruences determined via
Fact 2.1 by the pair a1, a2 of central elements of [a1a2, a1 + a2].

Observe: (∗) For any pair of complementary congruences on L, restriction to
an interval [u, v] yields a pair of complementary congruences on [u, v].

We prove the following claim by induction on |S(L)| for any L having a
chain skeleton.

Claim. For any a1 ⊥ a2 in L, there is a pair θ1, θ2 of congruences of L

matching a1 ⊥ a2.

Proof of the Claim. In case |S(L)| = 1, we have a single complemented L =
L0 and may assume L = L(P ) for some projective space P with irreducible
components Pj for j = 1, . . . , m. Choose a complement b of a1a2 in [0, a1 +a2]
and let bi = bai. Due to the isomorphism between the intervals, also b1 ⊥ b2.
Thus, by Fact 2.1, there cannot be points pi ≤ bi such that p1, p2 ∈ Pj for
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some j. Now, for i = 1, 2, let Qi be the union of all Pj containing some point
p ≤ bi, and Q the union of the remaining components. Then c1 =

∑
Q1+

∑
Q

and c2 =
∑

Q2 are complementary central elements, and the associated pair
θ1, θ2 of congruences matches a1 ⊥ a2.

If |S(L)| > 1, let L′
1 =

⋃k
i=1 Li. Then L is a gluing of L0 and L′

1 with
overlap [u, v] where u = u1, v = v1. Given a1 ⊥ a2 in L, we have a1, a2 ∈ Li

for some i. Thus, we have a1, a2 ∈ L0 or a1, a2 ∈ L′
1.

In the first case, choose ci and θi as in the preceding paragraph. Then
c1 + u, c2 + u are complementary central elements of [u, 1Lo ] and it follows
c1 + u ⊥ c2 + u in L′

1. By the inductive hypothesis, we have a pair τ1, τ2 of
congruences on L′

1 matching c1 + u ⊥ c2 + u. By (∗), the restrictions of θ1, θ2

as well as those of τ1, τ2 to [u, v] are complementary pairs, both containing
(c1 + u)/u, resp., (c2 + u)/u; thus, by Fact 2.1, both pairs restrict to the same
pair of congruences of [u, v]. For each i = 1, 2, let μi be the common extension
of θi and τi according to Fact 3.1. Then μ1, μ2 is a pair of complementary
congruences of L. Indeed, any prime quotient of L belongs to at least one of
L0 or L′

1 and whence to some of the τi and θi. But μ1∩μ2 = id due to the way
the μi restrict to L0, L′

1, and the intersection of both. Finally, μ1, μ2 matches
a1 ⊥ a2 since so does the restriction θ1, θ2 to L0.

In the second case, by inductive hypothesis, we have congruences θ1, θ2 on
L′

1 matching a1 ⊥ a2. By (∗), the restriction to [u, v] gives a complementary
pair of congruences, induced by a complementary pair of c1, c2 of central ele-
ments of [u, v] due to Fact 2.1. In particular, c1 ⊥ c2 in L0 and, by the case of
|S(L)| = 1, we get complementary congruence τ1, τ2 of L0 matching c1 ⊥ c2.
As in the preceding case, we conclude that for i = 1, 2, there are extensions μi

of θi and τi according to Fact 3.1, and thus matching a1 ⊥ a2. This completes
the proof of the claim. �

Now if some Li is not simple, by Fact 2.1, it contains distinct atoms a1 ⊥ a2;
it follows that L has a non-trivial pair of complementary congruences. Con-
versely, if all blocks are simple and all overlaps non-trivial, then an easy induc-
tive argument on |S(L)| shows that all prime quotients are projective; thus, L

is simple. �

Fact 3.4. If L is arguesian of finite height with S(L) a chain, all blocks Li

simple, and d(Li ∩ Li+1) ≥ 2 for all i, then L embeds isometrically into some
L(VD) for VD a D-vector space; moreover, L has unique characteristic χ(D).
This is [27, Cor. 7], based on Case 5 of the proof of [23, Theorem 3.1].

4. Main results

The von Neumann approach to coordinatization via frames is the origin of
the following result of [17].
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Fact 4.1. There are sets Σc of lattice identities, for c prime or c = 0, such
that Σc is valid in L(VD) with dimVD ≥ 3 if and only if χ(D) = c.

Recall that a congruence variety is a lattice variety generated by the con-
gruence lattices of a variety of algebraic structures. The proof of the following
result of Freese and Jónsson [12] was crucial for the development of commu-
tator theory in congruence modular varieties as well as for Proposition 4.3
below. Its origins can be traced back to Jónsson’s proof that any modular
lattice variety having the amalgamation property must be arguesian.

Fact 4.2. Every modular congruence variety is arguesian.

The construction given in Jónsson [22, §3] motivated the lattice identities
γn,m(wk) established in [11]. Let Γ consist of all these where n = 2 and k a
prime.

Proposition 4.3. The identities in Γ are valid in all modular congruence
varieties. Moreover, for any a simple arguesian lattice L of finite height, if L

satisfies Γ, then all its simple complemented intervals of height ≥ 3 have the
same characteristic.

The converse of the second claim can be shown, easily, using the projectivity
of the configurations motivating the identities, but it is not needed here.

Proof. The first claim is the main result of [11]. We just outline the proof of the
second. Assume that L is simple arguesian of finite height and contains simple
complemented intervals [ui, vi], i = 1, 2 of height ni ≥ 3 and characteristic
c1 �= c2. Passing to suitable subintervals, we have ni = 3. Also, at least one
of the ci is a prime, say c1 = p. There are spanning frames of order 3, �a in
[u1, v1] and �b in [u2, v2]. Since L is simple, the quotients v1/(a1+a2) and b0/u2

are projective. With a suitable chain of transpositions via quotients ci/di, one
obtains a failure of an identity γ2,m(wp). �

Definition 4.4. Consider the following properties of a modular lattice L.

(i) L is isomorphic to some lattice of permuting equivalences.
(ii) L is arguesian.
(iii) L embeds into L(P ) for some desarguean projective space P .
(iv) L embeds into the subgroup lattice of some abelian group.
(v) L embeds into the normal subgroup lattice of some group.
(vi) L is a member of some modular congruence variety.
(vii) L is arguesian and satisfies Γ (cf. Proposition 4.3).
(viii) L is arguesian and not of type J .
(ix) L is arguesian and satisfies Σc for some c (cf. Fact 4.1).
(x) L embeds into L(VD) of some vector space VD.

The following is due to Jónsson [22, 24, 23, 8] for most parts. The equiva-
lence of (i) and (iv) for L of height ≤ 4 is addressed in [2, 3].
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Theorem 4.5. Consider a modular lattice L and refer to (i)–(x) from Defi-
nition 4.4.

(a) For complemented L,
(a1) (i)–(viii) are pairwise equivalent;
(a2) (ix) and (x) are equivalent;
(a3) (i)–(x) are pairwise equivalent if L is subdirectly irreducible.

(b) For L of finite height with S(L) a chain,
(b1) (i) and (ii) are equivalent;
(b2) (iii)–(vii) are pairwise equivalent;
(b3) (iii)–(vii), (ix), (x) are pairwise equivalent if L is subdirectly irre-

ducible.
(c) For L of height n ≤ 5,

(c1) (i) and (ii) are equivalent;
(c2) (iii)–(x) are pairwise equivalent;
(c3) (i)–(x) are pairwise equivalent if n ≤ 4.

In (b3), (c2), and (c3), the vector space VD of (x) can be chosen such that
dim VD = d(L) and χ(D) = χ(L).

First observe that all conditions imply that L is arguesian: (i) ⇒ (ii) is in
[21]; (iii) ⇒ (ii) is in [22, Theorem 1.7]; the implications (x) ⇒ (iv) ⇒ (v) ⇒
(vi) are obvious. (vi) ⇒ (ii) is Fact.4.2. Thus, in the sequel we may assume
all lattices L to be arguesian. Also (iii) ⇒ (iv): any irreducible direct factor
L(Pi) embeds into some L(ViDi

) (using Fact 2.2 if d(L(PI)) ≥ 3, Facts 2.3 and
2.4 if d(L(Pi)) ≤ 2) and L(P ) embeds into the subgroup lattice of the direct
product of the abelian groups Vi.

Proof of Theorem 4.5(a). In [24], Jónsson has shown that any complemented
modular lattice embeds into an L(P ) satisfying the same identities as does L.
Thus, (a1) follows from the implications derived in the preceding observation.
Moreover, if in (iii) L is subdirectly irreducible, it has to embed into one of
the L(Pi), and this gives (x). This proves (a3). If (ix) holds, then by Fact 4.1,
all L(Pi) have the same characteristic c and by Facts 2.2–2.6, we may choose
D such that each L(Pi) is isomorphic to some L(ViD). Then Fact 2.7 applies
to prove (a2). �

Lemma 4.6. If L is arguesian of finite height and a gluing of Li for i =
0, 1, having an isometric embedding into L(ViDi) such that χ(Di) = c and
d(L0 ∩ L1) = 1, then L admits an isometric embedding into some L(VD) with
χ(D) = c.

Proof. By Fact 2.5, there is D extending the Di with χ(D) = c and such
that Li embeds isometrically into any L(WiD) where dim WiD = dimViDi

.
Choose WD with dimWD = dimV0D0 + dimV1D1 − 1. Choose a subspace W0

of WD of dim W0 = dimV0D0 and U1 of codimension 1 in W0. Then one has
an isometric embedding f0 : L0 → L(W0D) and f1 : L1 → L(WD/U1). Since
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general linear groups act transitively on their vector spaces, we may assume
that f1(v) = W0/U1). Identifying L(WD/U1) with the interval [U1, W ] of
L(WD), f0 ∪ f1 defines an isometric embedding of L into L(WD). �

Proof of Theorem 4.5(b). (b1) is the main result of [27], building on Fact 3.4
and [22, Theorem 3.6]. Observe that (x) implies both (vii) and (ix) in view
of Proposition 4.3 and Fact 4.1. We show that either of (vii) and (ix) implies
(x) for simple arguesian L with S(L) a chain {0, . . . , k}. By Lemma 3.3, all
Li are simple. Let θ be the smallest equivalence relation on S(L) containing
all pairs (i, i + 1) where d(Li ∩ Li+1) ≥ 2. For any class X of θ, we have
LX =

⋃
i∈X Li is either of height 2 and LX = Li where X = {i}, or Fact 3.4

applies to LX . If the latter occurs, by Proposition 4.3, resp. Fact 4.1, there
is a unique characteristic c such that each of those LX is isomorphic to some
L(VXDX

) with χ(DX) = c. Otherwise, we may choose c arbitrary. In any case,
in view of Facts 2.3 and 2.4, we may assume that all LX embed isometrically
into some L(VXDX

) with all DX of characteristic c. Now, iterated application
of Lemma 4.6 applies to give an isometric embedding of L into L(VD) with D

of characteristic c. This proves (b3). Finally, (b2) follows in view of Fact 3.2
and the implication (iii) ⇒ (iv). �

Proof of Theorem 4.5(c). Let L be arguesian of height n ≤ 5. (c1) is [8, Theo-
rem 4.2]. For n ≤ 4, inspection of the proof in [23] gives (x). This proves (c3).
So let n = 5. If L is subdirectly reducible, then L embeds into L1×L2 with Li

of height ni > 0 such that n1 + n2 = 5, w.l.o.g. n1 ≤ 4 and n2 ≤ 2. Thus, by
(c3), the Li embed into isometrically into L(ViDi

). In view of Facts 2.3–2.6,
we may assume D1 = D2 = D and obtain an isometric embedding into some
L(VD) by Fact 2.7.

Thus, we may assume that L is simple. For S(L) not a chain, inspection of
the proof of [8, Theorem 4.2] shows that L has an isometric embedding into
some L(VD). So suppose that S(L) is a chain but that L does not isometrically
embed into any L(VD); in particular, the proof of (b3) does not apply. Then
there must be blocks Li1 , Li2 for i1 < i2, that are simple of height > 2 and
of different characteristic. Choose i2 − i1 minimal. If i2 = i1 + 1, then by
Facts 3.4 and 4.1, we must have d(Li1 ∩ Li2) ≤ 1, and from d(L) = 5 and a
dimension count, it follows that |S(L)| = 2, so that L is of type J . Otherwise,
the d(Lj) = 2 for i1 < j < i2 and d(Lj∩Li) = 1 for |j−i| = 1 and a dimension
count yields d(L) ≥ 6. �

5. Discussion

Haiman [16] has constructed, for any characteristic c, a height 14 simple
arguesian lattice having distributive skeleton, satisfying Σc and Γ, but not
isomorphic to any lattice of commuting equivalences. The subgroup lattices
of groups C

3
p2 do not belong to the variety generated by all complemented

modular lattices [18]. Thus, for height 6 we may ask the following.
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Problem 5.1. Which of the properties (i) and (iv)–(vi) are shared by all
arguesian lattices of height 6 and satisfying Γ?

Problem 5.2. Which of the properties (i), (iv)–(vi), and (x) are shared by all
arguesian lattices of height 6, having 2-distributive skeleton, and satisfying Γ?

The classes of all lattices having one of the properties (i), (iii)–(v), and (x)
(also the subclass with D of fixed characteristic c), respectively, of Theorem 4.5
are well known to be recursively axiomatizable quasivarieties; let us refer to
these as the J-quasivarieties. Within the higher arguesian identities, first con-
sidered by Bill Lampe, which are valid in all lattices of permuting equivalences,
Haiman [16] identified a series Dn such that no class C satisfying all Dn can
be finitely axiomatized provided that it contains all L(VD), dimVD finite and
D a fixed prime field (cf. MR1083826 (91m:06016)). The analogous result has
been obtained by Freese [10] for C contained in a modular congruence variety.
Thus, what one should ask for is an “effective” axiomatization of each of the
J-quasivarieties. Such should provide a positive answer, for the given quasiva-
riety, of the following problem (observe that the answer is positive under the
restrictions on L in Theorem 4.5)

Problem 5.3. For which of the J-quasivarieties is there an algorithm deciding
membership of finite lattices?

For the J-quasivarieties and the varieties they generate, none but the ob-
vious inclusions are known. Rather obvious non-inclusions can be established
using the “characteristic identities” from [17]; for congruence varieties of mod-
ules, a complete picture has been given by Hutchinson and Czédli [20]; the
related quasivariety inclusions have been analyzed by George Hutchinson in
several deep papers. A remarkable non-inclusion result is due to Pálfy and
Szabó [28]: an identity valid in all subgroup lattices of abelian groups but not
in the normal subgroup lattice of some finite member of the variety generated
by the quaternion group.

For none of the J-quasivarieties is it known whether it is a variety. However,
there is a counterexample for the quasivariety of submodule lattices over a
certain ring [7]. As Theorem 4.5(c) shows, the answer is yes in the following
if we restrict to dimVD ≤ 5.

Problem 5.4. Which of the properties (i), (iii)–(vi), and (x), if any, are
inherited by homomorphic images of sublattices of lattices L(VD) with dimVD

finite (and D a finite prime field)?

Finally, we should mention that the embedding results and problems we
have discussed are quite different from questions about isomorphic representa-
tions of arguesian lattices as congruence lattices. The most remarkable result
of the latter kind is due to Jónsson and Monk [25]: a primary arguesian lattice
L is coordinatizable, i.e., isomorphic to the submodule lattice of some finitely
generated faithful module over a completely primary uniserial ring, provided
it has geometric dimension gd(L) ≥ 3,
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Recall that a lattice is primary if it is modular of finite height, if any join
irreducible p is a cycle (i.e., [0, p] a chain), any meet irreducible h a cocycle
(i.e., [h, 1] a chain), and if any interval that is not a chain has at least 3 atoms.
The breadth of L is the maximal number of independent join irreducibles while
the geometric dimension gd(L) refers only to those of maximal height. That
the condition gd(L) ≥ 3 cannot be omitted in the coordinatization result has
been shown by Monk [26]. We use his construction to prove the following.

Theorem 5.5. There are finite primary lattices of height 5, geometric dimen-
sion 2, and breadth 3 that admit an isometric embedding into some L(VD) with
D a field, but that are not isomorphic to the congruence lattice of any algebra
in a congruence modular variety.

Proof. The primary lattices L constructed by Monk are of height 5, gd(L) = 2,
and breadth 3. We say that such are of Monk type. The following properties
are crucial; they are easy to derive (cf. e.g., [19, Section 2-4]) or to be read
from Monk’s construction: L is simple, contains u ≤ w with d(u) = 2 and
d(w) = 3 such that [0, u] = S(L) and [w, 1] = S∗(L) are the skeleton and the
dual skeleton, and such that all blocks Lx are simple of height 3. Also, there
are independent u1, u2, u3 in L with d(ui) = 2, [0, ui] = {0, pi, ui} for i = 1, 2,
and d(u3) = 1 such that u = p1 + p2, w = u + u3, and 1 = u1 + u2 + u3.
Moreover, u1 and u2 have a common complement in [0, u1 + u2] and so do p1

and u3 in [0, p1 + u3]. Finally, all intervals of height and breadth 2 have the
same cardinality q + 3, and we say that q is the order L.

Monk has shown that for any field D of cardinality q = |D| ≥ 3 there are
sublattices of L(VD) with dimVD = 5, that are of Monk type and order q

but not coordinatizable. We show, for finite q, that the latter are also not
isomorphic to the congruence lattice L(A) of any algebra A in a congruence
modular variety. Namely, we prove that any congruence lattice L = L(A) of
an algebra A in a congruence modular variety is coordinatizable, provided that
it is of Monk type of finite order q.

First, observe that the u1+u2 and p1+u3 are abelian congruences, and then
that A is abelian (cf. [13]). Thus, we may assume that A is a faithful module
MR, and we write Ui = ui, Pi = pi, U = u, and W = w. Since L is simple, all
its irreducible subquotients are isomorphic as R-modules; moreover, U1 ∼= U2

by perspectivity. Since MR is faithful, we may assume

M = R2 × I, U1 = R × 02, U2 = 0 × R × 0, and U3 = 02 × I,

where I is the unique proper right ideal of R; in particular, U = I2 × 0 and
W = I3. Thus, MR is a submodule of M̄R = R3

R and L the interval [0, M ]
of the height 6 lattice L̄ = L(M̄R). Observe that L(I3

R) is isomorphic to the
subspace lattice of an irreducible projective plane with the finite line L(I2

R×0),
whence finite. Also, it follows that L̄ is simple, too, whence any complemented
height 3 interval of L̄ is isomorphic to L(I3

R).
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Let N be the radical of M̄ , i.e., the intersection of all maximal submodules.
Then N ⊆ I3, since the R2×I, R×I×R, and I×R2 are maximal. On the other
hand, M̄R/N is generated by 3 elements (the images of the canonical generators
of M̄R) and each element of M̄R/N generates an irreducible submodule (since
L(M̄R/N) is complemented and since R has unique nontrivial right ideal). It
follows that L(M̄R/N) has height ≤ 3 and so N = I3.

From N = (M̄)∗ in L̄, it follows that S(L̄) = [0, N ]. On the other hand,
0∗ ⊇ N = I3 since I is irreducible. Thus, S∗(L̄) ⊆ [N, M̄ ] and X �→ X∗ (taken
in L̄) is an order embedding of [0, N ] into [N, M̄ ]. Since both intervals are of
height 3 and the same finite cardinality, this map is a lattice isomorphism
ψ : [0, N ] → [N, M̄ ], and it follows that S∗(L̄) = [N, M̄ ]. Moreover, all [X, X∗]
for X ∈ S(L) are isomorphic to the subspace lattice of the same irreducible
finite projective plane. In particular, all height and breadth 2 intervals of L̄

have q + 1 ≥ 3 atoms. Thus, by Guidici [14] and Tesler [29] (cf. [19, §3]),
L̄ is a primary lattice. Being the submodule lattice of R3

R, L̄ is also argue-
sian and of geometric dimension 3. Thus, by [25], L̄ is coordinatizable over
some completely primary uniserial ring T . But now, L̄ contains the 3-frame
Rei, R(ei − ej), where e1, e2, e3 is the canonical basis of R3

R, and R as well
as T have to be isomorphic to the von Neumann coordinate ring associated
with this frame (cf. [9]). Thus, R is completely primary uniserial, proving
coordinatizability of L. �

We conclude with height 4 arguesian lattices L that are not isomorphic to
any congruence lattice L(A) for A in a congruence modular variety. Let L be
a gluing with overlap [u, v] of height 1 where L1 ∼= L(D3

D) with a field D of
prime order p and L0 of height 2 with p + 2 atoms. Assume L = L(A) with
γ = 0L0 , β = u, and α a complement of β in L0. Then the subalgebra α of A2

also has a modular congruence lattice. As in [15], let θi denote the preimage
of θ ∈ L(A) under the canonical projection πi of α onto A for i = 0, 1. Then
α0 = α1 and γi + β0 ∩ β1 = βi, whence M = [γ0 ∩ γ1, α0] is complemented of
height 3 with [γi, α0] isomorphic to L0. It follows that M is a projective plane
of order p + 1. If such exists at all, it is non-desarguean, contradicting [12].
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