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Abstract

Correcting claims made in Herrmann and Takach (2005), we give
lattice theoretic characterizations of lattices, L, isomorphic to sub-
module lattices of finitely generated modules over commutative com-
pletely primary uniserial rings and of those isomorphic to subgroup
lattices of finite abelian p-groups. Dealing with coordinatization over
arbitrary completely primary uniserial rings, we have to exclude the
case that L has breadth ≥ 3 and all but 2 basis elements are atoms.
Primary Arguesian lattices L of the latter type are shown to admit a
cover preserving embedding into the subspace lattice of some vector
space. The approach is that of Herrmann and Takach (2005) but takes
into account Monk’s construction of non-coordinatizable primary Ar-
guesian lattices of the exceptional types.
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1 Introduction

We refer to Herrmann and Takach (2005) for definitions and basic results.
There it has been claimed that any Arguesian primary lattice L of geometric

1



dimension 2 and breadth ≥ 3 is coordinatizable as the submodule lattice of
some finitely generated faithful module over a completely primary uniserial
(shortly CPU) ring. Though, counterexamples of type [2, 2, 1] had been given
by Monk (1969), already, cf. Herrmann (2006) and Nation (2006). Here,
we say that a primary lattice L has type [h1, . . . , hm], where hi ≥ hi+1, if
hi = h(bi) is the height of bi for some/any (ordered) basis b1, . . . , bm such
that h(bi) ≥ h(bi+1). We say that a primary lattice of type [h1, h2, 1, . . . , 1]
with h2 > 1 is of Monk type. As it turns out, the results of Herrmann
and Takach (2005) remain valid for lattices L not of Monk type; for such of
Monk type, to obtain complete isomorphism invariants, it suffices to add the
condition of ‘Monk primality’, to be defined below, and to require that the
socle of L is coordinatized over a field.

First, recall that, in a modular lattice L of finite height, by a∗ and a∗ we
denote the join of all upper covers resp. the meet of all lower covers of a,
with the convention that 1∗ = 1 and 0∗ = 0. Also recall that we write a + b
for joins and ab = a ∩ b for meets. Now consider a primary lattice L of type
[2, 2, 1] and an (ordered) basis b1, b2, b3 of L. Let ⊥ = 0, u = b1∗, > = u+b2∗,
S = {⊥, u,>}, and Lx the interval sublattice [x, x∗], for x ∈ S. Consider

a 2-step projectivity (b1 + b2)/> ∼= (b1 + b3 +>)/> in L>,
a 3-step projectivity (b1 + b3 +>)/> ∼= (b3 +>)/u in Lu,
and a 5-step projectivity (b3 +>)/u ∼= >/0 in L⊥.

Denote by ψ the lattice isomorphism of [>, b1+b2] onto [0,>] which is induced
by the composition of these. We say that L is Monk primary if for any basis
there are projectivities as above such that for the induced isomorphism ψ
one has

ψx = x∗ for all x ∈ [>, b1 + b2].

Call a lattice Monk-primary if all its primary type [2, 2, 1] intervals are Monk
primary. Observe that this property can be expressed by a first oder axiom
in lattice language. As shown in Monk (1969), for any lattice L(RM) of type
[2, 2, 1] with socle U and radical W there is a semilinear map f : M/U → W
between R/P -vector spaces (P the maximal ideal of R) such that f(X) is the
radical of X for any X ∈ [U,M ] (so this map reveals L(RM) as an S-glued
sum over its prime skeleton S = [0,W ]. Though, Monk primality requires f
to be linear - which we could show only for lattices coordinatizable over CPU
rings R with an element p such that P = Rp and p+ P 2 central in R/P 2.

The ‘extended type’ a of primary Arguesian lattice L of breadth ≥ 3 is
[h1, . . . , hm; R̂] where [h1, , . . . , hm] is its type and R̂ is the isomorphism type
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of any coordinate ringR of L, a CPU ring such that the type [h3, h3, h3, . . . , hm]
section of L is coordinatized by a faithful R-module. Observe that R is unique
up to isomorphism and that R is a division ring in the case of Monk type.

The claims of §9 in Herrmann and Takach (2005) become correct if re-
stricted to the class of primary lattices which are not of Monk type or are
of Monk type and Monk primary with coordinate field. That is, extended
type is a complete isomorphism invariant for this class of lattices. For lat-
tices of type [h1, 1, . . . , 1] this is Thm.4 in Antonov and Nazyrova (1998) and
implicitly in the proof of the main result in Nation and Pickering (1987).

It follows that Monk primary Arguesian lattices of breadth ≥ 3 with
commutative coordinate ring are those coordinatizable over some commuta-
tive CPU ring. From that, we derive an internal characterization of lattices
isomorphic to subgroup lattices of finite abelian p-groups.

In Section 12 it is shown that a primary lattice of Monk type is Arguesian
if and only if it admits a cover preserving embedding into the subspace lattice
L(DV ) of some vector space.

This erratum presupposes the concepts from Herrmann and Takach (2005)
and those results which are explicitely mentioned (in the form Lemma A.1.1).
We will do so at the appropriate places in order to facilitate reading.

The basic approach remains unchanged; namely, to consider a (gluing)
decomposition of a primary lattice L into ‘blocks’: maximal intervals of ge-
ometric dimension ≥ 3. Coordinatization of these yields a ‘local coordinati-
zation’ of L.

The basic shortcoming of Herrmann and Takach (2005) was not to give
heed to matching the bounds of blocks when reducing an isomorphism be-
tween local coordinatizations of L and L′ to a local coordinatization of L: in
Proposition A.1.2 and its application in Corollary A.8.2. Thus, both results
need this stronger hypothesis and the latter has to be verified in the proof
of the main result, Corollary A.9.2 - which follows the old lines, otherwise.
The task is to define Φ> to obtain the proper matching of bounds of blocks.
In the case not of Monk-type, Φ> from the old proof will do due to a sim-
ple combinatorial result presented in Section 4 (the overlaps of blocks are
‘sufficiently large’ to provide this proper matching for free). In the case of
Monk type, the linear maps given by the definition of Monk-primality have
to be used in the definition of Φ>, commutativity of the coordinate ring R is
needed to make this work.

Also, the hypotheses in Lemma A.1.1 were insufficient: one has to require,
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in addition, that x 7→ ϕxσx and x 7→ ϕxπx preserve joins and meets, respec-
tively. Though, in all applications, namely in Corollary 2.3 (stated informally
in §A.1 ) and Lemma A.9.3, this additional hypothesis was satisfied.

The author is grateful to Luca Giudici and the referee for helpful com-
ments and suggestions.

2 Gluings of lattices

Compare §A.1. Recall that a lattice L is an S-glued sum, S another lattice,
if there are join resp. meet embeddings σ, π of S into L such that L is the
union of its blocks Lx = [σx, πx]. Lemma A.1.1 has to be corrected as follows.

LEMMA 2.1. Let L be modular lattice of finite height and an S-glued sum of
the Lx. Let L′ be any lattice.

1. Let α and β be a join resp. meet preserving map of S into L′ and, for
each x ∈ S, ϕx : Lx → L′ a homomorphism such that ϕxσx = αx,
ϕxπx = βx for all x ∈ S and such that ϕx and ϕy coincide on Lx ∩ Ly
for any x ≺ y in S. Then there is a unique homomorphism ϕ : L→ L′

extending all ϕx. ϕ is an embedding if so are all ϕx.

2. Let L′ an S ′-glued sum of the L′x, x ∈ S ′. Let δ : S → S ′ be an
isomorphism and, for each x ∈ S, ϕx : Lx → L′δx an isomorphism such
that ϕx and ϕy coincide on Lx ∩ Ly for any x ≺ y in S. Then there is
a unique isomorphism ϕ : L→ L′ extending all ϕx.

1. is a consequence of the fact that such L has a presentation given by the
lattice structure of the Lx, the join relations σx + σy = σ(x + y) and the
meet relations πx∩ πy = π(x∩ y) where x, y ∈ S. In a special case, this was
already observed in Lemma 3.4. of Jonsson (1954)
Proof. 1. We first show that ϕx and ϕy coincide on Lx ∩ Ly for any x, y in
S. Observe that Lx ∩ Ly ⊆ Lxy ∩ Lx+y since a ∈ Lx ∩ Ly implies σ(x+ y) =
σx + σy ≤ a ≤ πx ∩ πy = π(x ∩ y). Thus, it suffices to consider the case
x < y and the claim follows by induction on the length of a maximal chain
in the interval [x, y] of S. It follows that there is a unique map ϕ : L → L′

extending all ϕx.
We show in several steps that ϕ is join preserving. First, observe that

ϕσx+ ϕσy = αx+ αy = α(x+ y) = ϕσ(x+ y).
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Now, we show by induction on the length of a maximal chain in [x, z] that

ϕ(a+ σz) = ϕa+ ϕσz for a ∈ Lx and x ≤ z.

If x = z we use that ϕx preserves joins. Let x ≤ y ≺ z. Then σz ∈ Ly and
ϕ(a + σz) = ϕy(a + σy + σz) = ϕy(a + σy) + ϕyσz = ϕa + ϕσy + ϕσz =
ϕa + ϕσz. Finally, consider a ∈ Lx and b ∈ Ly and let z = x + y. Then
a+ b ∈ Lz = [σz, πz] since σ preserves joins and π preserves order. It follows
ϕ(a + b) = ϕ(a + σz + b) = ϕz(a + σz + b) = ϕz(a + σz) + ϕz(b + σz) =
ϕa+ϕσz +ϕb = ϕa+ϕσx+ϕσy+ϕb = ϕ(a+ σx) +ϕ(a+ σy) = ϕa+ϕb.
By duality, ϕ is meet preserving.

Assume that the ϕx are embeddings. To prove ϕ an embedding, it suffices
to show that a ≤ b and ϕa = ϕb jointly imply a = b. We may assume a ∈ Lx
and b ∈ Lz with x ≤ z. Again, we use induction. The claim is obvious for
x = z. Let x ≤ y ≺ z. Then ϕa ≤ ϕ(a+ σz) = ϕa+ϕσz ≤ ϕb = ϕa whence
a = a+ σz by inductive hypothesis since a+ σz ∈ Ly. Thus, we have a ∈ Lz
and apply the injectivity of ϕz.

2. Assume that L′ is an S ′-glued sum via σ′ and π′. Observe that the
hypotheses of 1. are satisfied with αx = σ′δx = ϕxσx and βx = π′δx = ϕxπx
since the bottom and top elements of Lx and L′δx are matched by ϕx. And
ϕ is surjective since so are the ϕx and since L′ is required to be the union of
the images of the ϕx. �

Recall from Section A.1 that a local coordinatization of an S-glued sum L
associates with each x ∈ S a coordinatization Rx,Mx, ωx of Lx = [σx, πx],
i.e. an isomorphism ωx : Lx → L(RxMx). The associated gluing maps

γxy : [ωxσy)L(RxMx) → (ωyπx]L(RyMy)

are isomorphisms given as the restrictions of ωyω
−1
x . A linear local coordi-

natization is such that Rx = R for all x and all gluing maps are induced
by linear isomorphisms between subquotients. Given an S ′-glued sum L′

(with maps σ′ and π′) with linear local coordinatization R,M ′
x, ω

′
x and glu-

ing maps γ′xy, a linear isomorphism (by abuse of language we say: of L onto
L′) is constituted by an isomorphism δ : S → S ′ and linear isomorphisms

Φx : RMx → RM
′
δx (x ∈ S)

such that (with induced lattice isomorphisms Φ̂x)

Φ̂yγxy = γ′δxδyΦ̂x|[ωxσy) for x ≺ y in S
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or, equivalently,
γ′
−1
δxδyΦ̂y|imγxy = Φ̂xγ

−1
xy .

PROPOSITION 2.2. Given an isomorphism δ : S → S ′ and linear local
coordinatizations R,Mx, ωx (x ∈ S) of L and R,M ′

x, ω
′
x (x ∈ S ′) of L′,

the R-linear isomorphisms Φx : RMx → M ′
δx (x ∈ S) constitute a linear

isomorphism if and only if the isomorphisms Φ̂xωx : Lx → L( RM
′
δx) (x ∈ S)

constitute a linear local coordinatization of L such that

(∗) Φ̂xωxσy = ω′δxσ
′δy and (∗∗) Φ̂yωyπx = ω′δyπ

′δx for all x ≺ y in S.

Proof. Assume that the Φx are given. Consider x ≺ y in S. Since Φ̂x is an
isomorphism, (∗) means that the image under Φ̂x of the domain [ωxσy)L(RMx)

of γxy coincides with the domain [ω′δxσ
′δy)L(RM ′δx) of γ′δxδy, i.e. that Φ̂x re-

stricts to an isomorphism ψx between these intervals. Similarly, since Φ̂y is an

isomorphism, (∗∗) means that the image under Φ̂y of the image (ωyπx]L(RMy)

of γxy is the image (ω′δyπ
′δx]L(RM ′δy) of γ′δxδy, i.e. that Φ̂y restricts to an iso-

morphism χx between these intervals. Also observe that γxy = ωyxω
−1
xy where

ωxy and ωyx are the restrictions of ωx and ωy to Lx ∩ Ly = [σy, πx]L.
Now, assume that (∗) and (∗∗) hold. Then

χyγxy = γ′δxδyψx if and only if γ′δxδy = χyγxyψ
−1
x .

The identity required for linear isomorphims follows since

Φ̂yγxy = χyγxy and γ′δxδyΦ̂x = γ′δxδyψx

and

χyγxyψ
−1
x = χyωyxω

−1
xy ψ

−1
x = χyωyx(ψxωxy)

−1 = Φ̂yωy(Φ̂xωx)
−1.

It remains to derive (∗) and (∗∗) from the definition of linear isomorphism.
First, observe that

γ′δxδyω
′
δxσ
′δy = 0L(RM ′δy)

since R,M ′
z, ω

′
z, (z ∈ S ′) is a linear local coordinatization of the S ′-glued sum

L′. As Φ̂y : L(RMy)→ L(RM
′
δy) is an isomorphism, it follows that

Φ̂−1y γ′δxδyω
′
δxσ
′δy = 0L(RMy) = γxyωxσy.
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Thus,
γ′δxδyω

′
δxσ
′δy = Φ̂yγxyωxσy = γ′δxδyΦ̂xωxσy

by the definition of linear isomorphism; now, injectivity of γ′δxδy implies (∗).
In particular, as observed above, the domain of γ′δxδy is the image under Φ̂x

of the domain of γxy. It follows that

(ωδyπ
′δx] = imγ′δxδy = im(γ′δxδyΦ̂x|domγxy)

= im(Φ̂yγxy) = Φ̂y(imγxy) = Φ̂y((ωyπx])

whence (∗∗). �

COROLLARY 2.3. Any linear isomorphism between linear local coordinati-
zation of lattices L and L′ induces a (unique) lattice isomorphism ϕ : L→ L′

such that ϕ|Lx = ω′−1δx Φ̂xωx.

These lattice isomorphisms ϕ have been called ‘locally linear isomorphisms’ in
Herrmann and Takach (2005) if σ and σ′ are identity maps and and δ = ϕ|S.
In the sequel, we prefer to call such locally linear lattice isomorphisms.
Proof. ϕx = ω′−1δx Φ̂xωx is an isomorphism of Lx onto L′δx. We have to verify
the compatibility condition in the hypothesis of Lemma 2.1 (2). So consider
x ≺ y in S and a ∈ Lx ∩ Ly. Then

ϕy a = ω′
−1
δy Φ̂yωy a = ω′

−1
δy Φ̂yγxyωx a =

= ω′
−1
δy γ

′
δx δyΦ̂xωx a = ω′

−1
δx Φ̂xωx a = ϕx a. �

3 Semi-primary lattices

§A2 is valid without changes. We give a summary. Given a basis b1, . . . , bm
of a semi-primary lattice, one has each Ci = (bi] a chain and the union of
these chains generates a distributive cover preserving sublattice D of L, with∏m

i=1Ci isomorphic to D via (x1, . . . , xm) 7→
∑m

i=1 xi. The elements of D are
said to fit into the basis b1, . . . , bm. Given two such, u ≤ v where v =

∑m
i=1 vi

with vi ∈ Ci, the u+ v1, . . . , u+ vm form a basis of [u, v] (omitting the terms
u + vi where u ≤ vi), the induced basis of [u, v]. Unless stated otherwise,
bases will be ordered, i.e. with heights hi = h(bi) ≥ h(bi+1) and [h1, . . . , hm]
the type of L. This convention does not apply to induced bases.
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4 Geometric decomposition

§A.3 and §A.4 remain valid and will be heavily used. In the sequel, L will be
always semi-primary of type [h1, . . . , hm] and the concepts of gluing decompo-
sition of L into blocks Lx, of local coordinatization, and linear isomorphism
will always refer to the geometric decomposition according to the ‘geometric
skeleton’ S+(L) - with smallest and greatest elements ⊥ = 0 and > = 1+.
The following recall from Theorem A.4.1 and Corollaries A.4.2 and A.4.4 the
basic facts about the geometric decomposition. tp(u) denotes the type of
[0, u].

COROLLARY 4.1. Let b1, . . . , bm be any basis of L, m ≥ 2. Let n = h3 if
m ≥ 3 and n = 1 otherwise.

1. The geometric skeleton and its dual are given as S+(L) = (1+] =
(bh1−n1 + bh2−n2 ] and S+(L) = [0+) = [bn1 + bn2 +

∑
i>2 bi).

2. The maps x 7→ x+ and y 7→ y+ are mutually inverse isomorphisms
between S+(L) and S+(L). L is a S+(L)-glued sum of its intervals
Lx = [x, x+], x ∈ S+(L).

3. For y ∈ S+(L) and x ∈ L one has x = y+ if and only if [x, y] is of type
[h3, h3, h3, . . . , hm] in case m ≥ 3, of type [1, 1] in case m = 2.

4. Let m ≥ 3. S+(L) is a chain if and only if h1 > h2 = h3. Otherwise,
S+(L) is primary of breadth 2. S+(L) is of height and breadth 2 if and
only if h1 = h2 = h3 + 1.

5. L is of Monk type if and only if m ≥ 3, S+(L) is of breadth 2, and
a+ = a∗ for all a ∈ L. In this case, also a+ = a∗ for all a ∈ L,
the geometric skeleton and the prime skeleton coincide, and so do their
duals.

COROLLARY 4.2. If u is a coatom of S+(L) then u is of one of the types
below and there is an ordered basis a1, . . . , am of L with hi such that

u = ah1−n−11 u+ = ah1−11 +
∑

i>1 ai if tp(u) = [h1 − n− 1],

u = ah1−n−11 + ah2−n2 u+ = ah1−11 +
∑

i>1 ai if tp(u) = [h1 − n− 1, h2 − n],

u = ah1−n1 + ah2−n−12 u+ = ah2−12 +
∑

i 6=2 ai if tp(u) = [h1 − n, h2 − n− 1].
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COROLLARY 4.3.

1. If u ≤ v in S+(L) then [u, v+] is of breadth m and [u, v] = S+([u, v+]).

2. If L is not of Monk type and u ≤ v in S+(L) then [u, v+] is also not of
Monk type.

3. If L is of Monk type and [u, v] a height and breadth 2 interval in S+(L)
then [u, v+] is of type [2, 2, 1, . . . , 1].

4. If u is a coatom in S+(L) then S+(L) ⊆ (u+].

Proof. 1. follows from Corollary 4.1 (1) and (2). By Corollary 4.1 (3), in case
of m ≥ 3 one has all [x, x+], x ∈ S+(L) of type [h3, h3, h3, . . . , hm] and h3 = 1
if and only if L is of Monk type. 3. By Corollary 4.1 (1) one has h(bi) = 2
for i = 1, 2. 4. If u is a coatom of S+(L) then u+ is a coatom of L (since
S+(L) is an upper section). By Lemma A.2.3 there is a (unordered) basis
b1, b2, . . . of L such that u+ = b1∗ +

∑
i>1 bi. Thus, 1+ ≤ u+ being the meet

of the b
hj−h3
j +

∑
i 6=j bi (cf. Corollary 4.1 (1)); whence S+(L) = (1+] ⊆ (u+].

�
We add some new material in the context of §A.4. Within a given L we

define, inductively,

a~0 = a, a~k+1 = (a~k)∗ = (a∗)~k−1.

For any u ∈ L and a ≤ u the definitions of a~k in L and (u] coincide.

LEMMA 4.4. Let L be of type [n, n] and k < n. Then for any x ≥ 1∗ in L
one has [x~k, x] of type [k, k].

Proof. Given x ≥ 1∗, there is a basis b1, b2 of L such that x = bn−i1 +bn−j2 with
i, j ∈ {0, 1}. Any basis will do if x ∈ {1, 1∗}; otherwise, due to breadth 2, x is
a coatom of L and such basis exists by Lemma A.2.3. By induction it follows
that x~k = bn−i−k1 + bn−j−k2 =: xk. Indeed, [xk, xk−1] is of height and breadth
2 whence xk = (xk−1)∗ since L has breadth 2. Now, bn−i1 + xk, b

n−j
2 + xk is a

basis of [xk, x]. �

LEMMA 4.5. Let m ≥ 3 and n = h3. Then h1 = h2 = n + 1 if and only if
S+(L) is of height and breadth 2. Assume h1 = h2 = n+1. Then for any basis
b1, . . . , bm of L and c =

∑
i>2 bi one has that x 7→ x(b1 + b2) and y 7→ y + c
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are mutually inverse isomorphisms between S+(L) and [bn1 + bn2 , b1 + b2].
Moreover,

x+ = (x(b1 + b2))~n for all x ∈ S+(L).

Also, for n > 1 (i.e. in non-Monk type) one has

(x(b1 + b2))∗ ∈ L> for all x ∈ S+(L).

Proof. First, observe that the sum (b1 + b2) + c is direct and apply Corollary
4.1 (1). Given x ∈ S+(L) = [bn1 + bn2 + c, 1] we have x ≥ c and, by Lemma
4.4, [y~n, y] of type [n, n] where y = x(b1 + b2) ≥ bn1 + bn2 = (b1 + b2)∗. Thus,
[y~n, x] is of type [h3, h3, h3, . . . hm] whence y~n = x+ in view of Corollary 4.1
(3). And, if n > 1 then y∗ ≥ (bn1 + bn2 )∗ = bn−11 + bn−12 ≥ b11 + b12 = >. �

LEMMA 4.6. Let L,L′ be semi-primary of the same type non-Monk type as
in Lemma 4.5. Given bases b1, . . . , bm of L and b′1, . . . , b

′
m of L′, assume that

there are isomorphisms ϕ⊥ : L⊥ → L′⊥′ and ϕ> : L> → L′>′ preserving the
induced bases and such that

ϕ⊥|L⊥∩L> = ϕ>|L⊥∩L> .

Then
ϕ>x = (ϕ⊥(x+))+ for all x ∈ S+(L).

Proof. From Cor.4.1.1 we have > = b11 + b12, ⊥+ = b1∗ + b2∗ +
∑

i>2 bi, and
the analogues for L′. Also, by Cor.4.1.1, for x ∈ S+(L) we have x′ := ϕ>x ∈
S+(L′). By Lemma 4.5 it follows

x+ = z~h3−1 where y = ((x(b1 + b2)), z = y∗ in L

x′+ = z′~h3−1 where y′ = ((x′(b′1 + b′2)), z
′ = y′∗ in L′.

Observe that y ∈ L>, y′ ∈ L′>′ , and ϕ>y = y′. Now, [z, y] and [z′, y′] are
breadth and height 2 intervals of L and L′ but, by Lemma 4.5, also of L>
and L′>′ , respectively; thus, y∗ = z and y′∗ = z′ hold also within the latter
and it follows ϕ>z = z′. By definition, z ≤ (b1+b2)∗ = b1∗+b2∗ ∈ L⊥ whence
ϕ⊥z = z′ and it follows ϕ⊥x+ = ϕ⊥z~h3−1 = z′~h3−1 = x′+. The claim is now
a consequence of Corollary 4.1 (2). �

LEMMA 4.7. If L is Monk primary of type [2, 2, 1, . . .] and b1, . . . , bm a basis
of L with projective isomorphism ψ : [b1∗ + b2∗, b1 + b2] → [0, b1∗ + b2∗]
witnessing Monk primality w.r.t. the basis b1, b2, b3 of (b1 + b2 + b3], then

x+ = ψ(x(b1 + b2)) for all x ∈ S+(L).

Proof. By Lemma 4.5 we have x+ = (x(b1 + b2))∗. �
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5 Completely primary uniserial rings

Recall that a ring is completely primary uniserial (CPU) if it has a maximal
ideal P such that P n = 0 for some (smallest) n, the rank of R, and such that
any left and and right ideal is of the form P k for some k. Then R∗ = R \ P
is the group of units of R. We presuppose all results of §A.5 and add the
following.

COROLLARY 5.1. If R is a commutative CPU ring then for any k ≥ rank
R there is a commutative CPU ring S such that R is a homomorphic image
of S.

Proof. The monoid M in the proof of Theorem A.5.2 has a set of pairwise
commuting generators. �

6 Submodule lattices

In the sequel, let R be a CPU ring, RM be a faithful finitely generated R-
module, and L(RM) its lattice of submodules. L is said to be coordinatized
over R if L ∼= L(RM). The type of L(RM) is also referred to as the type of

RM . Observe that for any type [h1, . . . , hm] there is RM of this type if and
only if R is of rank h1 (e.g. M =

∏m
i=1 P

h1−hm); moreover, RM is unique up
to linear isomorphism in this case.

We make use of all results of §A.6. Though, observe that in the definition
of ‘axis’ Y and Z have to be interchanged and that X is an axis for Y and Z if
and only if there is a linear map ϕ : Y → Z such that X = {y+ϕy | y ∈ Y }.
This observation also can be used to prove Lemma A.6.3. We complete the
results of §A.6 by one with focus on Monk-primality.

LEMMA 6.1. The lattice L(RM) is Monk-primary provided that R contains
an element p such P = Rp is the maximal ideal of R and p + P 2 central in
R/P 2.

Proof. Since intervals of L(RM) are isomorphic to some L(SN), S a homo-
morphic image of R and RN a subquotient of RM , it suffices to consider the
case that L = L(RM) is of type [2, 2, 1] with basis b1, b2, b3. Then P 2 = 0
and p is central in R. Choose a basis e1, e2, e3 of RM such that bi = Rei.
Then bi∗ = Rpei. Put

A = b1∗ + b2∗ = Rpe1 +Rpe2, B = b1 + b2 = Re1 +Re2

11



C = b1∗ + b2∗ + b3 = Rpe1 +Rpe2 +Re3.

The projectivities Ψ̂x, x = >, u,⊥, required by Monk primality are induced
by the linear isomorphisms Ψx composed of the canonical isomorphisms given
by the following lists of transpositions

B/A↗M/(R(e2 − e3) + C)↘ (Re1 +Re3 + A)/A

(Re1+Re3+A)/A ↘ (Re1+Re3)/Rpe1 ↗ (Re1+C)/R(e1−pe2)↘ C/Rpe1

C/Rpe1 ↘ (Rpe2 +Re3)/0↗ C/R(pe1 − pe2)↘
↘ (Rpe1 +Rpe3)/0↗ C/R(pe2 − e3)↘ A/0.

Observe that

Ψ>(e1 + A) = e1 + A, Ψ>(e2 + A) = e3 + A

Ψu(e1 + A) = pe2 +Rpe1, Ψu(e3 + A) = e3 + A

Ψ⊥(pe2 +Rpe1) = pe1, Ψ⊥(e3 + A) = pe2.

Thus,
Ψ(ei + A) = pei for i = 1, 2 where Ψ = Ψ⊥ΨuΨ>.

On the other hand, since p is central, Πv = pv defines an R-linear map of B
onto A with kernel A, so that we have the induced isomorphism Π̃ : B/A→
A. Since Ψ and Π̃ coincide on the basis e1 +A, e2 +A of B/A, we conclude
Ψ = Π̃. Finally, consider A < X < B. Then 0 < Π(X) < A. Since L(B) is of
type [2, 2] and X of height 3 there are cycles Y and Z of height 2 and 1 such
that X = Y ⊕Z. Thus Ψ̂(X) = Π(X) = pY +pZ = pY = Y ∩(pY ⊕Z) = X∗,
the radical of X. �

7 2-gluings.

§A.7 deals with the gluing of two intervals of geometric dimension ≥ 3. These
results are curcial and will be completed by the following.

COROLLARY 7.1. Let L,L′ be primary Arguesian of type [h1, . . . , hm] with
m ≥ 3 and h2 = h3 = h1 − 1, in particular S+(L) = {⊥,>} and S+(L′) =
{⊥′,>′}. Let R,Mx, ωx and R,M ′

x′ , ωx′ be linear local coordinatizations and
b1, . . . , bm and b′1, . . . , b

′
m be bases of L and L′ respectively. Let Φ⊥ : M⊥ →

M ′
⊥′ be a linear isomorphism matching the induced bases of L⊥ and L′⊥′.

Then there exists Φ> : M> → M ′
>′ such that Φ⊥,Φ> constitute a locally

linear lattice isomorphism matching the given bases.
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Proof. With c = b1 and c′ = b′1 this follows from Corollary A.7.3, immediately.

COROLLARY 7.2. The coordinate ring R of a primary Arguesian lattice of
Monk type is a division ring.

Proof. By Cor.4.1 (5), any basis elements of L⊥ are of height 1, whence P = 0
for the maximal ideal of R. �

8 2× 2-gluings.

Theorem A.8.1 and Corollary A.8.3 remain unchanged but Corollary A.8.2
has to be corrected as follows.

COROLLARY 8.1. Given primary Arguesian lattices L and L′ of breadth
≥ 3 and of the same type with geometric skeletons of height and breadth
2, let S and S ′ be 4-element sublattices of S+(L) and S+(L′), respectively.
Consider linear local coordinatizations R,Mx, ωx of LS and R,M ′

x′ , ω
′
x′ of L′S′

over the same R, linear isomorphisms Φx : RMx → RM
′
δx, an isomorphism

δ : S → S ′, and an atom v of S such that

(δv)+ = ω′
−1
>′ Φ̂>ω> (v+).

Then the Φx yield a linear isomorphism between LS and L′S′ provided they
yield linear isomorphisms between LU and L′δ(U) where U = S \ {v} and

U = {⊥, v}.

Proof. Let u be the second atom of S, u′ = δu, and v′ = δv. By Proposition
2.2, the conditions (∗) and (∗∗) are satisfied for all x ≺ y except v ≺ >.
For the latter, (∗∗) is satisfied by hypothesis since πv = v+ and π′v′ = v′+.
By Proposition 2.2 the Φ̂xωx yield linear local coordinatizations of the LU ,
whence by Theorem A.8.1 also for L. Thus, in order to apply Proposition
2.2 in the converse direction, it suffices to verify (∗) for v ≺ >.

First, observe that σ> = > ∈
⋂
x∈S Lx and σ′>′ = >′ ∈

⋂
x∈S′ L

′
x. Thus,

in particular,
ω′v′>′ = γ′⊥′v′γ

′−1
⊥′u′ω

′
u′>′.

Now, (∗) for u ≺ > reads as

ω′u′>′ = Φ̂uωu>
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and, indeed,

ω′v′>′ = γ′⊥′v′γ
′−1
⊥′u′Φ̂uωu> = γ′⊥′v′Φ̂⊥γ

−1
⊥uωu> = Φ̂vγ⊥vγ

−1
⊥uωu> = Φ̂vωv>

since the Φx constitute linear isomorphisms between the LU and Lδ(U). �
Also, we complete the section focussing on Monk-primality.

LEMMA 8.2. Let L and L′ be Monk primary of the same type [2, 2, 1, . . .] with
linear local coordinatizations R,Mx, ωx, x ∈ S(L) and R,M ′

x, ω
′
x, x ∈ S(L′)

where R is commutative. Let b1, . . . , bm and b′1, . . . , b
′
m be bases of L and L′,

u = b1∗, u
′ = b′1∗, and let Φ⊥ : RM⊥ → RM

′
⊥′ and Φu : RMu → RM

′
u′ induce a

linear local lattice isomorphism ϕ : L⊥∪Lu → L′⊥′∪L′u′ such that ϕbi = b′i for
i 6= 2 and ϕb2∗ = b′2∗. Then ϕ(S(L)) = S(L′) and there is Φ> : RM> → RM

′
>′

such that Φx (x ∈ S = {⊥, u,>}) induce a linear local lattice isomorphism ϕ̄
of LS onto L′S′, S

′ = ϕ(S), such that

ϕ̄(b2 +>) = b′2 +>′ and ϕ̄x = (ϕ̄(x+))+ for all x ∈ S+(L).

Proof. For any x ∈ S, the projectivity within Lx, given by Monk primality,
determines a linear isomorphism Ψx between the corresponding subquotients
of RMx. Then

Ψ = Ψ⊥Γ−1⊥uΨuΓ
−1
u>Ψ> : ω>(b1 + b2)→ ω⊥>

is an R-linear isomorphism and, in view of Lemma 4.7,

Ψ̂(x(b1 + b2)) = x+ for all x ∈ S+(L).

Similarly, we have Ψ′ for L′. Thus,

Ω = Ψ′
−1

Φ⊥Ψ : ω>(b1 + b2)→ ω′>(b′1 + b′2)

is an R-linear isomorphism such that Ω̂bi = b′i for i = 1, 2 and

(∗) Ω̂(x(b1 + b2)) = (ϕ(x+))+)(b′1 + b′2) for all x ∈ S+(L).

On the other hand,

Φ = Γ′u′>′ΦuΓ
−1
u> : ω>u

+ → ω>′u
′+

is a linear isomorphism such that Φ̂(b1) = b′1 = Ω̂(b1). Choose a basis e> of

M> such that Re>i = ω>bi, let e′>
′

i = Φei for i 6= 2 and e′>
′

2 = Ωe>2 . This
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yields a basis of M ′
> such that Re′>

′

i = b′i. Then Ωe>1 = re′>
′

1 for some unit
r in R. Define the linear isomorphism Φ> : M> →M ′

>′ by

Φ>e
>
i = e′

>′
i for i 6= 2 and Φ>e

>
2 = re′

>′
2 .

Then Φ> extends Φ so that Φ⊥,Φu,Φ> constitute a locally linear lattice
isomorphism ϕ̄ as required. On the other hand, due to commutativity of R,
the scalar multiple rΩ is an R-linear map which coincides with Φ> on the
domain of Ω. Therefore, Φ̂> extends Ω̂. The claim follows by (∗) and Lemma
4.5. �

9 Isomorphism invariants

Recall that any modular lattice L of finite height h and breadth ≤ 2 admits
a cover preserving embedding into the subspace L(DV ) if h = dimD V and
|D| + 3 ≥ |I| for any height 2 interval I. In particular, such lattices are
Arguesian. Theorem A.9.1 and Corollary A.9.2 have to be restated taking
into account the requirement of Monk-primality.

THEOREM 9.1. Extended type is a complete isomorphism invariant for each
of the following classes of primary lattices

1. uniform primary lattices of breadth ≤ 2;

2. primary Arguesian lattices of breadth ≥ 3 and not of Monk type;

3. Monk-primary Arguesian lattices of Monk type with coordinate field.

COROLLARY 9.2. For any two lattices L,L′, as in Thmeorem 9.1, of the
same extended type and for any ordered bases of L and L′ there is a basis pre-
serving isomorphism. Moreover, if L,L′ are of breadth ≥ 3 with given linear
local coordinatizations then the isomorphism can be chosen locally linear.

Proof. The reasoning of Section A.9 is valid if L is of breadth ≤ 2: observe
that in the proof of Lemma A.9.3 the hypotheses of the corrected Lemma
1.1 are verified; an alternative proof for this case is given in Section 11. The
latter can be seen as an easy variant of the proof for the case of breadth ≥ 3.

In the case of L,L′ of breadth ≥ 3 and the same extended type, in view
of Corollaries A.6.6 and A.8.3 we may choose linear local coordinatizations
Mx (x ∈ S+(L)) and M ′

x (x ∈ S+(L′)) of L and L′ over the same CPU ring
R. We show the following by induction on S+(L).
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(i) If u ∈ S+(L) and u′ ∈ S+(L′) are coatoms of the same type fitting into
bases of L and of L′ according to Corollary 4.2, then every locally linear
lattice isomorphism ϕ : (u+]→ (u′+] preserving the induced bases can
be extended to a basis preserving locally linear lattice isomorphism of
L onto L′.

(ii) If u ∈ S+(L) and u′ ∈ S+(L′) are coatoms of the same type then every
locally linear lattice isomorphism of (u+] onto (u′+] can be extended to
a locally linear lattice isomorphism of L onto L′.

(iii) For any ordered bases of L and L′ there exists a basis preserving locally
linear lattice isomorphism of L onto L′.

We prove these claims by induction on the height of S+(L). Observe that
by Corollary 4.1 (1) S+(L) and S+(L′) are of the same type, too. If S+(L)
is 1-element, then (i) and (ii) are void and RM⊥ ∼= RM

′
⊥ since they are of

the same type; moreover, any ordered bases can be matched via a linear
isomorphism.

In the inductive step, consider the premise of (i). By Corollary 4.3 (4)
we have S+(L) ⊆ (u+] and S+(L′) ⊆ (u′+]. Since ϕ matches bases, due to
Corollary 4.1 (1), it restricts to an isomorphism δ : S+(L) → S+(L′). Let
ϕ be induced by the linear isomorphism Φx : RMx → RM

′
δx (x ∈ (u]). We

have to define Φx for the remaining x ∈ S+(L) so that we obtain a linear
isomorphism inducing a basis preserving locally linear lattice isomorphism.

If S+(L) is a chain, then u and u′ = ϕu are the unique coatoms of S+(L)
and S+(L′). Apply Corollary 7.1 to the lattices [u) and [u′) with the induced
bases to obtain Φ> and so the required extension of ϕ.

Otherwise, both S+(L) and S+(L′) are primary of breadth 2, and admit
a unique second coatom v resp. v′ fitting into the given basis; thus δv =
ϕv = v′. Let w = u ∩ v = >∗ and w′ = u′ ∩ v′ = δw = >′∗. In particular,
S+(L) ⊆ [0, w+] and S+(L′) ⊆ [0, w′+], again by Corollary 4.3 (4). Observe
that, by Corollary 4.3 (1), [w) resp. [w′) have geometric skeletons [w,>]
and [w′,>′] of height and breadth 2 and ordered bases b1, b2, , b3, . . . and
b′1, b

′
2, b
′
3, . . . induced by the given ones of L and L′, respectively, such that

u ≤ b1, v ≤ b2, u
′ ≤ b′1, and v′ ≤ b′2 are atoms in [w) and [w′), respectively.

Moreover, δ restricts to an isomorphism of S+([w)) onto S+([w′)).
In case L not of Monk type, choose Φ> applying Corollary 7.1 to [u)

and [u′) with the induced bases. In case of Monk type choose Φ> applying
Lemma 8.2 to [w) and [w′) with the above bases. Thus, Φx (x ∈ S) yield a
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locally linear lattice isomorphism χ from LS onto L′S′ where S = {w, u,>}
and S ′ = {w′, u′,>′}. Moreover, by Lemma 4.6 resp. 8.2 we conclude that χ
restricts to an isomorphism of S+([w) onto S+([w′)) such that χx = (χx+)+.
Thus by Corollary 4.1 (2)

ω′
−1
>′ Φ̂>ωTx

+ = χx+ = (ϕx)+ = (δx)+ for all x ∈ S+([w)).

Now, for any coatom z 6= u of S+(L) we may apply the inductive hy-
potheses to the coatoms w ∈ (z] and w′ ∈ (δz] and the restriction of ϕ to
(w+]. Namely, we apply (i) for z = v and (ii), else. Thus, for each z ∈ S+(L)
we have a well defined Φz : RMz → RM

′
δz. The compatibility condition

Φ̂yγxy = γ′xyΦ̂x |domγxy is satisfied a fortiori if y 6= > (since y ≤ z for some
coatom z of S+(L)) or if x = u; in case y = > and x 6= u we apply Corollary
8.1 with S = {w, u, x,>}.

The induced isomorphism of L onto L′ is basis preserving, since the iso-
morphisms on (u+] and (v+] are basis preserving and since the basis of L
is contained in (u+] ∪ (v+]. To prove (ii) just choose bases to fit u and u′

according to Corollary 4.2 and apply (i). To prove (iii) choose coatoms u
and u′ fitting into the induced bases of S+(L) and S+(L′), analogously. In
particular, u and u′ are of the same type and so are u+ and u′+. By the
inductive hypothesis (ii) there is a locally linear lattice isomorphism ϕ of
(u+] onto (u′+] preserving the induced bases. Hence, we can apply (i) to get
the required isomorphism of L onto L′. �

10 Coordinatization

Theorem A.10.1 and Corollary A.10.2 have to be restated as follows.

THEOREM 10.1.

1. For any extended type [k, l; q], q ≥ 2, there exist up to isomorphism
exactly one semi-primary lattice L of this type. L is coordinatizable, if
and only if q is infinite or of the form q = pd + 1, p a prime. In this
case, one has L coordinatizable over F [x]/(xk), F any field such that
|F |+ 1 ≥ q.

2. For any extended non-Monk type [h1, . . . , hm; R̂], m ≥ 3, there is up to
isomorphism exactly one primary Arguesian lattice L of this type. In
particular, a primary lattice L of non-Monk type and breadth ≥ 3 is
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coordinatizable (L ∼= L(SM)) if and only if it is Arguesian; here, S can
be chosen commutative if R is so.

3. For a primary lattice L of Monk type [h1, h2, 1, . . .] the following are
equivalent

(i) L is Monk primary Arguesian with commutative coordinate ring.

(ii) L is coordinatizable over S with p ∈ S such that P = Sp is the
maximal ideal of S and p+ P 2 central in S/P 2.

(iii) L is coordinatizable over F [x]/(xh1), F the coordinate field of L.

Proof. 1. This is the first claim of Theorem 10.1 Herrmann and Takach (2005)
and the proof, given there, applies. In 2. choose by Thmeorem A.5.2 a CPU
ring S having rank of L and R as a homomorphic image (and S commutative
if R is so, cf. Corollary 5.1). Choose SM of the type of L. Then L and L(SM)
have the same extended type and Theorem 9.1 applies to yield L ∼= L(SM).

In 3. (iii) implies (ii), trivially, and (i) follows from (ii) by Lemma 6.1. If
(i) holds, and if SM is chosen of the type of L where S = F [x]/(xh1), then
Theorem 9.1 applies to prove L ∼= L(SM). �

Recall (cf. Freese (1979)) that a (von Neumann) 3-frame in a modular
lattice is given by independent elements a1, a2, a3 and common complements
cij = cji of ai and aj in (ai + aj] for i 6= j such that cik = (ai + aj)(cij + cjk)
for pairwise distinct i, j, k. We say that the frame is of height n if the ai
are cycles of height n. Following von Neumann, there are lattice terms ⊕
and ⊗ in variables x, y, xi, xij and, for any 3-frame in a modular lattice one
considers the set of complements of a2 in (a1 + a2] endowed with the binary
operations (r, s) 7→ ⊕(r, s, a1 . . . , c23) and (r, s) 7→ ⊗(r, s, a1 . . . , c23): this
is the coordinate domain of the frame. The frame has characteristic k if
cl(a1, . . . , c23) = a1 if and only if l = k, where the terms ck = ck(x1, . . . , x23)
are inductively defined by

c1 = x12, ck+1 = ck ⊕ x12.

For any free R-module with basis e1, e2, e3 one obtains a 3-frame ai = Rei
and cij = R(ei − ej) such that r 7→ R(e1 − re2) is an isomorphism of R onto
the coordinate domain. In particular, R has characteristic k if and only if
the coordinate domain of the frame has characteristic k.

COROLLARY 10.2. Let L be a primary lattice of type [h1, . . . , hm].
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1. If L is Arguesian of breadth ≥ 3 then the coordinate ring is isomorphic
to the coordinate ring of any 3-frame of height h3 in L.

2. L is coordinatizable over some commutative CPU ring if and only if
one of the following holds

(1) L is of breadth 2 and q-uniform with q infinite of q = pd + 1 for
some d and prime p.

(2) L is of breadth ≥ 3, Monk primary, Arguesian, and any height 3
frame has commutative coordinate domain.

3. For a fixed prime p, L is isomorphic to the subgroup lattice of some
finite abelian p-group if and only if one of the following holds

(1) L is of breadth 2 and p+ 1-uniform for some prime p.

(2) L is of breadth ≥ 3, Arguesian, not of Monk type, p+ 1-uniform,
and (*): if there is a 3-frame of height n but none of height n+ 1
then some/any 3-frame of height n has characteristic ph3.

(3) L is of Monk type, Arguesian, Monk primary, and p+ 1-uniform.

4. Except primality, all lattice properties in 2. and 3. can be expressed by
sets of first order formulas. Considering lattices of height bounded by
given h, all properties in 3. (including primality) can be expressed by
a single formula.

The characterization of subgroup lattices of finite abelian groups is now im-
mediate via the primary decomposition.
Proof. 1. follows from the preceding remarks. In 2. the breadth 2 case is
dealt with by Theorem 9.1 (1). In the breadth ≥ 3 case, necessity follows
from Lemma 6.1, while sufficiency follows from Theorem 9.1 (2) and (3).

3. Again, necessity is obvious: in (2) observe that any frame of height n
has to belong to L⊥ whence n ≤ h3 and that L⊥ contains 3-frames of height
h3. To show sufficiency via Theorem 9.1 we verify that L and L(

∏m
i=1 Z/(phi)

have the same extended type. This is obvious in (1) while in (3) L⊥ ∼=
L(FF

m) ∼= L((Z/(p))m with p-element field F . It remains to show that in
(2) the coordinate ring R is isomorphic to Z/(pn), n = h3. In L(RM⊥) ∼=
L⊥ one has a 3-frame of height n associated with a basis of RM⊥. Let R0

denote the smallest subring of R. By hypothesis, |R0| = pn whence R0
∼=

Z/(pn). Having the same extended type [n, n; p+ 1], the lattices L(R(Re1 +
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Re2)), and L((Z/(pn))2 are isomorphic with Rei 7→ (Z/(pn))ei (Cor.9.2).
This isomorphism provides a bijection between the sets of complements of
Re2 and (Z/(pn))e2 respectively and it follows |R| = pn = |R0| whence
R = R0.

4. Obviously, the Arguesian law, Monk primality, and q-uniformity for
fixed q can be expressed by a single formula, each. The same holds for
commutativity of the coordinate domain of a 3-frame, for ‘breadth ≥ m’
(existence of boolean sublattice with m atoms), and for Monk type: there
exists a 3-frame of height 1 but none of height 2. To express uniformity, one
needs one formula for each finite q ≥ 3: if there is some interval of height
and breadth 2 with q elements then all such intervals must have q elements.
Similarly, excluding q not of the form pd + 1 one needs one formula for each
p and d. Finally, in (*) the second condition is given by a single formula
whereas the first needs infinitely many. If h is a bound on height, in (*) it
suffices to consider n ≤ h; also, in defining primality, it suffices to consider
joins and meets of at most h elements. �

The following is Corollary A.10.4.

COROLLARY 10.3. A primary lattice is Arguesian if and only if it admits
a cover preserving embedding into a coordinatizable lattice.

Proof. If the primary Arguesian lattice L is not coordinatizable, then it is
either of of Monk type or of extended type [h1, h2; q] with q finite. In the first
case, the claim, follows from Thmeorem 12.1, below. In the second, there is
a cover preserving embedding of L into the subspace lattice of some vector
space (cf. Herrmann (1973)). �

11 Semi-primary lattices of breadth 2

In this and in the following section we consider semi-primary lattices L of
breadth 2 or of Monk type. In particular, S+(L) = S(L) is the prime skeleton,
a+ = a∗ for all a, and the blocks Lx of the geometric decomposition are the
maximal complemented intervals of L.

LEMMA 11.1. Let L be semi-primary of breadth 2, L′ modular with h(L) =
h(L′), and τ : [1∗, 1] → [t, 1′] an embedding into a height 2 interval of L′.
Assume that for any coatom u of L there is given an embedding ψu : (u] →
(τu] such that ψu and ψv coincide on (1∗] for all u, v. Then there is a unique
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embedding ψ : L→ L′ extending all ψu. Moreover, if L′ is also semi-primary
of breadth 2 and if τ and the ψu are isomorphisms then ψ is an isomorphism.

Proof. ψa = ψua for a ∈ (u] and ψ1 = 1′ is a well defined injective map. The
ψu are cover preserving, hence so is ψ and it suffices to show that ψ preserves
meets. τu > ψu1∗ = ψv1∗ < τv for any two coatoms of L whence ψ1∗ = t.
Thus, given a ≤ u and b ≤ v, we have ψa∩ψb = t∩ψa∩ψb = ψ1∗∩ψa∩ψb =
ψu(a∩1∗)∩ψv(b∩1∗) = ψu(a∩1∗)∩ψu(b∩1∗) = ψu(a∩1∗∩b∩1∗) ≤ ψ(a∩b).
The remaining meets are obviously preserved.

If L′ is also semi-primary of breadth 2 and if all ψu and τ are isomor-
phisms, then ψ is bijective and restricts to an isomorphism δ : S(L)→ S(L′)
(in view of t = 1′∗) and we may apply Lemma 1.1 with ϕ1∗ = τ and ϕz = ψu|Lz
if z ≤ u∗, u a coatom of L - observe that z∗ ≤ u whence ψu maps Lz onto a
height 2 subinterval of L′δz and equality follows from L′δz having height 2. �

LEMMA 11.2. Extended type is a complete isomorphism invariant for uni-
form semi-primary lattices of breadth 2.

Proof. We show the following by induction on height.

(i) If u ∈ L and u′ ∈ L′ are coatoms of the same type fitting into bases
of L and of L′ according to Corollary 4.2, then every isomorphism
ψu : (u]→ (u′] preserving the induced bases can be extended to a basis
preserving isomorphism of L onto L′.

(ii) If u ∈ L and u′ ∈ L′ are coatoms of the same type then every isomor-
phism ψu of (u] onto (u′] can be extended to an isomorphism of L onto
L′.

(iii) For any ordered bases of L and L′ there exists a basis preserving iso-
morphism of L onto L′.

The cases, where u = 0 or L is a chain, are trivial. Otherwise, we may choose
bases a1, a2 and a′1, a

′
2 such that u = a1 + a2∗ and u′ = a′1 + a′2∗. Consider

an isomorphism ψu : (u] → (u′] mapping a1 onto a′1 and a2∗ onto a′2∗ (such
exists by inductive hypothesis (ii)). By Corollary4.1 (1), ψu restricts to an
isomorphism of S(L) onto S(L′). Define the isomorphism τ : [1∗, 1]→ [1′∗, 1

′]
by τv = (ψuv∗)

∗ for v ≺ 1. Then v and τv are of the same type, whence
by inductive hypothesis (iii) for each v ≺ 1 there is an isomorphism ψv :
(v] → (τv] extending ψu|(1∗]. Lemma 11.1 yields the extension ψ to an
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isomorphism of L onto L′. Moreover, for v = a1∗ + a2, in choosing ψv we
may apply inductive hypothesis (i) to the basis a1∗, a2 and a′1∗, a

′
2 to obtain

ψa2 = a′2. �

12 Embedding results

Recall that any modular lattice of breadth 2 and finite height admits a cover
preserving embedding into L(DV ), D any division ring such that |D| ≥
|[x, x∗]| − 3 for all x in the prime skeleton S(L) (cf. Herrmann (1973)).

THEOREM 12.1. Let L be a primary Arguesian lattice of breadth m ≥ 3 and
extended type [h1, h2, 1, . . . , 1; D̂]. Then D is a division ring and L admits
an embedding into L(DV ), dimD V = h(L).

Proof. By Corollary4.1 (1), S+(L) = S(L) is primary of breadth ≤ 2; observe
that m = h(Lx), x ∈ S(L). By Corollary 7.2, D is a division ring. We
show the following by induction on h(L) = dimD V for any given linear local
coordinatization D,Mx, ωx of L.

(i) There are cover preserving embeddings δ : S(L) → L(DV ) and δ∗ :
S∗(L) → L(DV ), δ0 = 0, δ∗1 = V , and a linear isomorphism Φx (x ∈
S(L)) between the given local coordinatization of L onto the canon-
ical one of the sublattice

⋃
x∈S+(L)[δx, δ

∗x∗] of L(DV ) - observe that

dimD δ
∗x∗/δx = m.

(ii) Given coatoms u of S+(L) and U of L(DV ), and δu, δ
∗
u, and Φx as in (i)

w.r.t. (u∗] (with D,Mx, ωx, x ∈ S(u∗])) and the vector space U , there
is an extension to L as required in (i).

The case S(L) = {0} is obvious. In the inductive step, given coatoms u of
S(L) and U of L(DV ) apply the inductive hypothesis (i) to provide the data
assumed in (ii). Continue to derive the claim of (i) and (ii). By Corollary 2.3
these data yield an embedding ϕ of (u∗] into L(DU). Observe tat δux = ϕx
for x ∈ S(u∗] and > ≤ u∗ by Corollary 4.3 (4). Define δx = ϕx for x ∈ S(L),
δ∗x = δ∗ux

∗ for x ≤ u, and δ∗1 = V . Choose Φ> according to Corollary A.7.2
to obtain a linear isomorphism between the linear local coordinatizations of
Lu ∪ L> and [δu, U ] ∪ [δ>, V ] ⊆ L(DV ).

The proof is complete if u is the unique coatom of S(L). Otherwise,
choose a second coatom v of S(L) and let w = uv. Choose a coatom W
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in [δ>, U ]. Then there is an isomorphism f : [w,>] onto [W,V ] such that
fu = U . Define δ∗x = fx for x ∈ [w,>]. Now, any coatom x of S(L) is
an atom of [w,>] and for x 6= u inductive hypothesis (ii) applies to (x∗] and
the coatom w of S(x∗] = (x]. This yields δ∗y and Φy for y ≤ x, y 6≤ w.
By Lemma 11.1, δ∗ is an embedding of S∗(L) into [ϕ0∗, V ]. By Corollary
8.1, the Φy (y ∈ Sx = {w, u, x,>}) yield a linear isomorphism between the
local coordinatizations of LSx and of

⋃
y∈Sx [δy, δ

∗y] ⊆ L(DV ). Thus, these
combine to a linear isomorphism as required in (i) and (ii). �

13 Discussion

The result that semi-primary lattices are those having prime skeleton a chain
has first been published in Appendice D of Giudici (1995) and by Tesler
(1995); it has been refined by Regonati and Sarti (2000). Coordinatizability
of primary Arguesian lattices of geometric dimension ≥ 3 has first been
shown by Monk (1966) in the von Neumann approach. A direct proof that
any primary lattice of geometric dimension ≥ 4 is Arguesian has been given
Monk (1969). A thorough discussion of coordinatizability questions can be
found in Giudici (1995). Primary lattices of breadth 2 which are isomorphic
to subgroup lattices of finite abelian groups have been also characterized
in Anishchenko (1965). An ‘external’ characterization of subgroup lattices
of abelian groups is given by Contiu (2012), based on the characterization
of subgroup lattices of groups, due to Yakovlev (1974), and referring to an
embedding into a sufficiently rich lattice.

In Antonov and Nazyrova (2005) it has been claimed that any primary
Arguesian lattice of geometric dimension ≥ 3 can be embedded into the
subspace lattice of some vector space. A counterexample is given by the
subgroup lattice of A3, A the cyclic group of order 4, cf. Nation (2006b).
The same counterexample applies to the claim of Antonov and Nazyrova
(2002) that any finite primary Arguesian lattice L of geometric dimension
≥ 3 can be coordinatized over a factor ring of the polynomial ring F [x], F
the coordinatizing field for the socle of L.

Finally, we have to discuss primary Arguesian lattices L of Monk type
[h1, . . . , hm; D̂]. As shown, above, there is up to isomorphism exactly one
Monk primary lattice of this type (and one can deduce coordinatizability) if
D is commutative.

For the case of type [2, 2, 1, . . . ; D̂] primary Arguesian lattices, L, it has
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been proposed by the referee that the following two equivalent conditions
(motivated by Monk’s example) should characterize coordinatizability:

(i) For some/any D,D′ of isomorphism type D̂ and for some/any iso-
morphisms ω⊥ : L⊥ → L(DV⊥) and ω> : L> → L(D′V>) there is
a semilinear bijection ψ : D′V >/ω>(0∗) → ω⊥(>) ⊆ DV ⊥ such that
ω⊥(z∗) = ψ(ω>(z)) for all z ∈ S∗(L).

(ii) For some/any 3-frames a⊥i , c
⊥
ij and a>i , c

>
ij in height 3 subintervals [0, u]

of L⊥ and [v, 1] of L> such that a>3 = 0∗, a⊥i = (a>i +0∗)∗ for i = 1, 2, and
c⊥12 = (c>12 + 0∗)∗ one has that the map z 7→ (z+ 0∗)∗ is an isomorphism
of coordinate rings of the frames.

Observe that (ii) can be expressed by a sentence in the first order language
of lattices. The characterization implies that for |D| ≤ 4 any L is coordina-
tizable (since any isomorphism between L(DV ) and L(D′V

′), dimDV = 2, is
induced by a semilinear map) while for |D| > 5 Monk’s construction applies
to yield non-coordinatizables.

The equivalence of (i) and (ii) (and of ‘some’ and ‘any’) follows from the
Fundamental Theorem of Projective Geometry and basic facts on coordina-
tization via frames. As observed by the referee, for L = L(RM) we have
X∗ = rad X = pX and the map f : M/S → radM , S = soc M, between D-
vector spaces, D = R/P , is α semilinear where α is such that rp ∈ pα(r+P ).
Thus, L satisfies (i). And, conversely, any pair (D,α) occurs, up to isomor-
phism, in this way: define R as the skew polinomial ring D[p] with additional
relations p2 = 0 and rp = pα(r) for r ∈ D.

Now, consider Arguesian L of fixed type [2, 2, 1, . . . , D̂]. Let us say that L
is of type (D,α) if L admits a linear local coordinatization ωx : Lx → L(DVx)
for which (i) takes place with an α-semilinear map. In view of Corollary
A.8.3, any L we consider satisfies (i) if and only if it is of some type (D,α).
Clearly, type (D,α) is preserved under locally linear lattice isomorphism:
given such onto L′ with ω′x : L′x → L(DV

′
x) define ψ′ = Φ⊥ψΦ̃−1> where

Φ̃> : V>/ω>(0∗)→ V ′>/ω
′
>(0∗) is induced by Φ>. We claim that lattices L,L′

of the same type (D,α) are isomorphic - and this will finish the proof of the
characterization.

In view of Thmeorem 12.1 we may assume that L is given as the union
of intervals [ψ(X), X] of L(DV ), X ∈ [U, V ], where dimDV = h(L) = m+ 2,
codim U = 2 = dimW , and ψ : V/U → W an α-semilinear bijection.
Similarly for L′. Choose an isomorphism ϕU : U → U ′ such that ϕ(W ) = W ′.
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Choose v1, v2 such that v1 + U, v2 + U is a basis of V/U . Now, choose v′1, v
′
2

such that ψ′(v′i) = ϕ0(ψ(vi + U)) for i = 1, 2. Then ϕ0 extends to a linear
isomorphism ϕ such that ϕ(vi) = v′i. Let ϕ̃ : V/U → V ′/U ′ the induced linear
isomorphism. It follows that the α-semilinear maps ϕψ and ψ′ϕ̃ coincide since
they do so on the basis v1, v2. Thus, there is a linear isomorphism connecting
the data of L and that of L′, whence L ∼= L′.

PROBLEM 13.1 Considering coordinatizable lattices of Monk type in gen-
eral, is there an internal characterization or a characterization as cover pre-
serving sublattices of lattices L(DV )?
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