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Abstract

We show that every primary lattice can be considered a glueing of intervals
having geometric dimension at least 3 and with a skeleton of breadth at
most 2. We call this geometric decomposition. In the Arguesian case, we
analyse the sub-glueings corresponding to cover preserving sublattices of
the skeleton which are 2-element chains or a direct product of 2 such. We
show that these admit a cover preserving embedding into the submodule
lattice of a finitely generated module over a completely primary uniserial
ring. It follows, that a primary Arguesian lattice can be cooordinatized
by such module if the skeleton of the geometric decomposition is a chain.
This fails due to an example of G.S. Monk [29] if the skeleton has breadth
2. Moreover, there are non-isomorphic eaxmples of this type having iso-
morphic skeletons and isomorphism between the corresponding intervals.
Hence, most of the statements in sections 9 and 10 are wrong. The main
results of Antonov and Nazyrova [25, 26] are wrong, too, since the subgroup
lattice of Cgk (k > 2, n > 3) cannot be embedded into the subspace lattice
of any vector space [28], Credit for Thm.3.1 below should be also given to
[31, 27, 30]. The due Corrigenda and Addenda are given in: On the co-
ordinatizationm of primary arguesian lattices of low geometric dimension,
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of maximal order respectively submodules of maximal rank. The characteristic
property is that these lattices are primary Arguesian with three independent cy-
cles of maximal rank. These were needed in order to apply the intricate geometric
coordinatization methods. They provide also the basis for the von Neumann style
internal construction of the coordinate ring.

The main result of the present paper yields that primary Arguesian lattices are
exactly the lattices isomorphic to lattices of all submodules of finitely generated
modules over completely primary uniserial rings - only in the case that there are
just 2 independent cycles (i.e. in case of breadth 2) one has to add the condition
that height 2 intervals are chains or have a fixed number ¢ of atoms where ¢ is
either infinite or p* + 1 with prime p. Lattices of finite Abelian p-groups are then
characterized by the fact that the coordinate ring is the integers modulo some
p" resp. k = 1 in breadth 2, and subgroup lattices of finite Abelian groups by
having central elements providing the primary decomposition into p-groups.

The breadth 2 case is purely combinatorial and has in essence already been
done by Ribeiro [22]. So the interesting case is that of breadth > 3 lattices. We
understand these as being glued together of maximal intervals to which the result
of Jénsson and Monk applies. Extending the methods of Jénsson [16], Pickering
[21], and Day et al. [8] beyond division rings and “2-dimensional gluings”, it is
shown that all these intervals have the same coordinate ring R which together
with the type, i.e. ranks occurring in a decomposition of 1 as direct sum of cycles,
yields a complete isomorphism invariant. On the other hand, for any value of the
invariant a suitable submodule lattice is constructed.

Certain special cases, where the coordinate ring is a division ring, have been
dealt with by Nation and Pickering [20], Day et al. [§], and Antonov and Nazarova
[1]. As compared to [8] we have to describe in more detail the machinery of local
(re)coordinatizations. This is due to the more general skeletons considered and
to the fact that for the blocks extension of automorphisms defined on an ideal
is possible only in special circumstances (a phenomenon well known from the
computation of Jordan normal forms).

1 Gluing of lattices

We consider lattices L of finite height with bounds 0 and 1. We write a + b for
joins, ab = a N b for meets. By (a] and [a) we denote principal ideals and filters.
The principal reference for lattice theory is [6]. Concerning subgroup lattices see
4, 23].

Given L consider a lattice S and one-to-one maps ¢ and 7 of S into L which
are join- resp. meet-preserving. If ox < oy < wx for each covering pair x < y in

S and if
L= U lox, Tx]

zeS



then the structure of L can be recovered from the structure of S and of the
blocks L, = [ox,mz| and, of course, the maps o and 7 - see [11, 7, 8]. We may
require that o is the identity map. In that case we speak of a decomposition of
L into an S- glued sum and call S the skeleton and 7(S) the dual skeleton of this
decomposition. If 7' is a sublattice of S, then Ly = (J, ., L. is a sublattice of L.
Ly is a T-glued sum if T is cover-preserving and an interval sublattice of L if T’
is one of S. The following is obvious.

LEMMA 1.1. If the lattice L is the S-glued sum of the lattices L, (x € S) and
vz (v € S) are homomorphisms of L, into L' with the property that ¢, coincides
with @, on Ly N Ly for all x <y in S, then \J,cq ¥ is a homomorphism of L
into L'.

A coordinatization of a lattice L is given by a ring R, a left R-module M, and
an isomorphism w of L onto the lattice L(zrM) of all left R-submodules of M
(we write L(M) if no confusion is possible). It may be convenient to admit only
faithful R-modules as we will do later on.

We say that an isomorphism ¢ from L(gM) onto L(sN) is (a-)semi-linearly
induced (with respect to the isomorphism « : R — 9) if there is an a-semi-linear
isomorphism ® of the R-module M onto the S-module N such that p(X) = ®(X)
for all X € L(grM). If ® is a semi-linear map, we denote the induced lattice map
by . If R =S and « is the identity map, we speak of a linearly induced map.
Observe that, if & : R — S is a ring isomorphism, then rz := a(r)z turns
any S-module g/ into an R-module g N such that L(sN) = L(rN). Moreover,
®: gM — gN is a-semi-linear if and only if ® : kM — grN is linear.

A local coordinatization of an S-glued sum L associates with each x € S a coor-
dinatization R,, M,,w, of L, = [ox,mz|. The associated gluing maps are

Yoy = Wy O w;l D weoy) L) — (wyﬂ:p]L(My).
Clearly,
Vyz © Yoy = Ywz © Yow O Ly N L, forz <y, w<2zin S.

We speak of a linear local coordinatization if R, = R for all x and all gluing maps
are induced by linear isomorphisms

Lyt M/ (weoy) = wyme C M,

Given an S’-glued sum L’ with linear local coordinatization R, M’ w! and gluing
maps v, a linear isomorphism of L onto L' is given by an isomorphism ¢ : § — S
and linear isomorphisms

@x:Mx—M\/[(gx rec S
such that

A

Dy 0 Yay = Vsusy © d, on [w,oy) forz <y in S.



PROPOSITION 1.2. Given the isomorphism 6 : S — S’, the module isomor-
phisms ®, : M, — Mj, constitute a linear isomorphism between linear local
coordinatizations if and only if the lattice isomorphisms ®, o w, : Ly — L(M;,)
constitute a linear local coordinatization of L.

Proof. This is fairly trivial: since I';, = w, ow, ' we have
- 2 _ & T P 2 —1
suoy © Po = Py oLy iff 5, =Pyow,0(Ppow,) . O

Also, we obtain isomorphisms

wito 0w, : L, — L.
From Lemma 1.1 it follows that a linear isomorphism between linear local coor-
dinatizations induces a lattice isomorphism. Such a lattice isomorphism ¢ will
be called locally linear if, in addition, o and ¢’ are identity maps and § = ¢|S.

Decompositions into glued sums may be also viewed as tolerances 0 (i.e. symmet-
ric and reflexive binary relations compatible with the lattice operations) where
a 6 b if and only there is some block containing both a and b. Here, the additional
requirement is that 6 is glued, i.e. a 8 b for each prime quotient. Conversely, every
glued tolerance leads to a decomposition into a glued sum (see [2, 7]): For each
a € L we have greatest a’ and smallest ay such that a6 a’ and aay. Then

b<da’ ifand only if by <a

which means that the maps = — ¢y and = — 2 form a pair of adjoints between
L and its dual. In particular, they are join resp. meet preserving and S can be
recovered as

S={zecL|z= (2"} ={ae| 2z €L}

while oz = z and 7z = 2°. The blocks are recovered as the maximal intervals
[a,b] such that afb. Moreover, each tolerance is determined by its set @ of
quotients (the a/b with a@b) and these sets are characterized by the following

properties and their duals (see [2]):
a/beQ, a>c>d>b implies ¢/d € Q

a/beQ, c=a+d, b=and implies ¢/d € Q
a/b, ¢/b € @ implies (a +¢)/b € Q.

For modular lattices L of finite height a particular such decomposition is given
by
bOa if and only if [a,b] is complemented

for a < b. In this case a* := a? is the join of a and all its upper covers in L so
that a* is the greatest element such that [a,a*] is complemented. a, is defined,
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dually, and subscript L is added, if necessary. We speak of the prime skeleton
and dual prime skeleton of L and denote them by S(L) and S*(L), respectively.

The breadth of a modular lattice is defined as the maximum number of indepen-
dent elements in interval sublattice. It is easily seen (cf. [11]) that this is the
maximal breadth (height) of blocks of the prime tolerance. Breadth 1 lattices are
chains. Every breadth 2 modular lattice of finite height is Arguesian (cf. [12]).

2 Semi-primary lattices

An element c of a lattice L is called a cycle if (] is a chain, and a dual cycle if
[c) is a chain. If ¢ is a cycle and L modular then a+cisacyclein [a). If ¢,d € L
are cycles and ¢ < d, then c is called a sub-cycle of d. A cycle ¢ is called a k-cycle
or of rank k if (c| is of height k. The unique k-sub-cycle of the cycle ¢ will be
denoted by c*.

LEMMA 2.1. In a modular lattice of finite height, if ¢ is a rank k cycle and
¢ < > ¢ with cycles ¢; of rank k; then k < maxk;. If, in addition, the ¢; are
independent then ¢ <3 ck.

Proof. The proofs of Theorem 4.6 and Corollary 4.12 in [19] are valid for modular
lattices of finite height, in general. O

A lattice L is said to be semi-primary if L is of finite height, modular and
every element of L is the join of cycles and the meet of dual cycles - see [19]
from where we recall the most important facts. A semi-primary lattice is called
primary if no elements have exactly two upper covers, equivalently, if all of its
complemented intervals are irreducible. Every interval sublattice or dual of a
semi-primary lattice is semi-primary.

Let L be a semi-primary lattice. For a € L, the maximum rank of cycles ¢ < a
is called the rank of a. The rank of L is defined as the rank of 1. By Lemma 2.1
it is the maximum of the ranks of the ¢; if 1 is a join of cycles cq, ..., ¢p,.

LEMMA 2.2. [19] If rank(L) = r and a € L is an r-cycle, then a has a comple-
ment in L. In fact, for every element x of L with aNx = 0 there is a complement
a >z of a.

Every element a of L is the join of independent cycles (# 0) - and these form a
basis of a. Indeed, every rank(a)-sub-cycle of a can be completed to a basis of a.
By Ore’s Theorem, the basis elements are unique up to exchange isomorphism.
In particular, a has a well defined type tp(a) = (ki, ko, . . ., k) where r is the rank
of a and k; is the number of i-cycles in a basis of a and m = > k; is the number
of basis elements. Usually, we will order the basis elements ay, ..., a,, such that
the ranks h; = h(a;) form a non-increasing sequence and will speak of an ordered
basis. Accordingly, we may denote the type of a also by the sequence [hy, ..., hy).
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The type tp(L) of L is defined as the type of 1. A basis of 1 is also called a
basis of L. If ¢1,..., ¢y, is a basis of L, then the cf are the join irreducibles in a
sublattice which is isomorphic to the direct product of m chains of heights h(c;)
and the elements of which are said to fit into the basis. For each such a one has

the induced basis formed by the a N ¢;. In particular, c},..., ¢l is a basis of (0*].
Moreover, the ¢; = > ., ¢; form a basis of the dual lattice (said to be dual to the

(&)

given basis) with the same fitting elements and (¢;] = [c}). Thus, the type of a
semi-primary lattice is equal to the type of its dual.

LEMMA 2.3. FEvery atom or coatom fits into some basis.

Proof. For an atom this means a < ¢; for some j. We proceed by induction on
the height of L. Let ¢ be a rank(L)-cycle. If a < ¢ then we can consider any basis
of L containing c. If a £ ¢ then by Lemma 2.2 there exists a complement d of ¢
with @ < d. Now apply the inductive hypothesis for (d] and add ¢ to the basis of
d so obtained. For a coatom we obtain a basis of the dual lattice and fit it into

the dual of this basis. O
Of course, behind the equivalence of the two concepts of type there is a bijec-
tive correspondence between finite non-increasing sequences [hy, ..., h,,| of inte-

gers > 1 and sequences (kq,..., k) of integers > 0 with k, # 0 given by

r=nhy, ki=|{j|h; =1}, hj =max{s|j < Zkz}

s<1
Defining a partial order on sequences of the first kind by
(g1, -, ) < [h1,... hy] ff n<m and g; <h; foralli<n
it translates to
(i, ool < (kyyoo k) iff s<7oand Y L, <> K forallt <s.
i=t i=t

Both ways we have the descending chain condition so that we may use order
induction on types.

LEMMA 2.4. tp(I) < tp(L) for every interval-sublattice I of a semi-primary
lattice L. In particular, rank I < rank L.

Proof. Induction on the height of /. Consider I = [a) with an atom a and choose
a basis ¢i, ..., ¢, of L such that a < ¢,,. Then the ¢; + a (i < m) together with
¢ (if that is # a) form a basis of I and tp(/) < tp(L). Dually, for I = (b]. DO

COROLLARY 2.5. The breadth of L equals the size of a basis, i.e. m = ., k;.



Proof. Consider a maximal number of independent elements in an interval [a, b].
Without loss of generality we may assume that these are atoms in [a, b]. Hence,
their number is bounded by the size of a basis of [a, b] and so of L. The converse
is trivial. O

The geometric dimension gd(L) of a semi-primary lattice L is the maximal
number of independent cycles of maximal rank. The geometric rank is the max-
imal n such that there are at least 3 independent n-cycles. In other words, n is
maximal such that > k; > 3. Rank and geometric rank coincide if and only if
gd(L) > 3,ie. tp(L) = [n,n,n,....

Given bases ay,...,a, of L and df,...,al, of L' an isomorphism ¢ : L — L’
is basis preserving if p(a;) = a. for all i. It follows that ¢(al) = ¢(a") for all h.

1

3 Skeletons of semi-primary lattices

THEOREM 3.1. A modular lattice L of finite height is semi-primary if and only
if S(L) and S*(L) are interval sublattices.

COROLLARY 3.2. Let L be a semi-primary lattice. If the type of L is (kq, ..., k)
then the type of S(L) is (ka, ..., k), and the corresponding blocks are of type (m)
where m = Y_._, k;. More precisely, if ay, ..., ay is a basis of L then the a; form
a basis of the block (0*] and the nonzero a?(a")_l form a basis of S(L). Conversely,
if the type of S(L) is (h1,...,h) and the type of the blocks is (m) then the type
of L is (m—> hiy,hy,...., ).

COROLLARY 3.3. The prime skeleton of a semi-primary lattice consists of the
elements which do not contain a maximal cycle.

COROLLARY 3.4. If a semi-primary lattice has a basis consisting of cycles of
the same rank r then the maximal cycles are the rank r cycles.

Proof. The corollaries will be proved at the end of the section. In the proof of
the theorem we shall use of the fact that for x < b € L we have 2*® = 2*Nb and
Ty(h] = T4, and dually for ideals.

The ‘only if’ is in [9]. For convenience, a proof is included, here. We proceed
by induction on the height of L. Let L be semi-primary. If a < 1, is an atom
choose a basis ¢y, ..., ¢, such that a < ¢;. Since ¢; £ 1, we have a < ¢; and a
cycle d covering a. It follows a = d, € S(L). Now, consider b < 1, minimal such
that b € S(L). Then b is join irreducible in L and (b*), = b, > 0. Choose an atom
a < b,. By inductive hypothesis we have b € S([a)) whence (b*), = (b*).a) = b,
a contradiction.

Conversely, assume that S(L) and S*(L) are intervals. Having a covering
pair z < y in S(L) means that we have a covering < y in L (since S(L) is
an interval) and a covering z* < y* in S*(L) (via the isomorphism) whence also
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x* < y*in L (since S*(L) is an interval). It follows that [z, z*] and [y, y*] are of
the same height. Therefore, all blocks have the same height.

We claim that the prime skeleton and the dual prime skeleton are intervals of
(b] for every coatom b of L. Consider an element a € L such that 0*® = 0*Nb <
a < b. By hypothesis a + 0* € S*(L) whence a + 0* = z* with = (a + 0%),.
Since z = a, + (0*), = a, < a we have 2*® = 2 Nb = (a +0*) N b = a, that
is, a € S*((b]).On the other hand let a < b,. Since b, < 1, we have a € S(L),
by assumption. If a* < b then a = (a*), = (a*).u € S((b]). Assume a* £ b and
¢x # a where c =bNa* < a*. Then ¢, < a and ¢ = (c,)* € S*(L) since [c., | has
the height of a block. By hypothesis one has b € S*(L), too. Being a subinterval
of a block, [b, N a*,a*] is complemented and so is, by modularity, [b,b. + a*].
Hence b, + a* < (by)* = b, a contradiction.

In view of the inductive hypothesis we have that every join irreducible element
a < 11is a cycle. Finally, assume that 1 is join irreducible. Then 1, € S(L) has
at most one lower cover b since b € S(L), b* < 1, and so b = 1,,. In this case
L is a chain. Thus, every element of L is a join of cycles. Meets are dealt with,
dually.

Coming to the proof of the corollaries, recall that (0*] has type (m) with
m = > k;. Since for b= a?(ai)_l the filter [b) has type (m), too, we get b = 1,.
In the second corollary, if a is covered by the cycle ¢, then a = ¢, € S(L). Thus,
any element not containing a maximal cycle is a join of elements in S(L) whence
in S(L). The converse is obvious from the type of S(L). Finally, if rank a; = r
for all 4, then ¢ < Y al ' = 1, for every cycle ¢ of rank < r whence ¢ € S(L) and
¢ is not maximal. O

4 Geometric decomposition

THEOREM 4.1. For every integer | and semi-primary lattice L there is a glued
tolerance 8 = 60; such that for all a < b

alb if and only if rankla,b] <.
Given any basis ay, . . ., a,, with rank a; = h; the skeleton and dual skeleton are

So= (Sat], 8= [3d).

The blocks are all of the same type

(B1,. ki, k) with k=Y ki, (ki,... k) =tp(L).

1=l



Of course, we put h — [ := 0 if h < I. One observes that for L = L(zrM) with
a completely primary uniserial ring R (cf. Section 5) this tolerance 6 is given
by X0Y if and only if P’X C Y and P'Y C X and that Xy = P'X and
X9={zxe M| PxzCX}
Proof. Let L be a semi-primary lattice. By Lemmas 2.4 and 2.1 it is clear that 6
is a tolerance. Let (kq,...,k,) be the type of L and let m = >_ k;. Clearly, the
indicated type of blocks is a bound on types of interval sublattices of rank < [.
First, we establish a decomposition into a glued sum with the required skeletons
and type of blocks. We do so by an iterated formation of prime skeletons.

Let SY(L) = S(L) and S*}(L) = S*(L). For j > 1 let S7(L) be the prime
skeleton of S77(L), and S*(L) the dual prime skeleton of S*~!(L). Observe
that the isomorphism z + x** of S(L) onto S*(L) restricts to an isomorphism

*1 SY(S(L)) — S¥(S*(L)).
By recursion on j, we define isomorphisms
or SI(L) — S7*(L).
Let of(x) = 2**. To define k| for j > 1, we compose
] S9(S(L)) = §7(S(L))
with the above isomorphism, that is

S(L *
pha() = o7 ()"

Using induction on j, we prove that for any semi-primary lattice L, the identity
map and the map gojL provide a decomposition of L into a glued sum with skeleton
SI(L). The case j = 1 is the classical decomposition into maximal complemented
intervals. In the step from j to j 4+ 1 we apply the inductive hypothesis to 7 and
S(L). This yields

x < gof(L)(x) < ¢5(L)(x)* = wfﬂ(:v) for x € S9TY(L) C SU(L).

Also, considering an element a € L we have a € [y,y*]|, for some y € S(L) and
y € [z, gpf(L)(a:)]s(L) for some x € S7(S(L)). Then z <y <a < y* < gpf(L) (2)* =
@¥ (), that is a € [z, ¢ (x)]. Finally, if # < y in S7*'(L) then the same is
true in S7(L) and
y <] (@) < i),
By Corollary 3.2, the type of S/(L) is (kjt1,...,k;). Using induction we
show that the type of [z, o} (2)] is (ki,...,kj1, > 7 ki). Let x € ST (L). The

type of [z, %S(L) ()] is (ka, ..., kj, >_i_; 1 ki) by the inductive hypothesis. Since

gpf(L) (x) € S(L) the interval [gp;-g(L) (), ¢k, ()] is a maximal complemented one

9



even in L and of type (37, k;). It follows that the interval [z, ¢, (z)] has

gof(L) (x) as meet of its coatoms and [z, gof(L) (x)] as its prime skeleton. Hence, by
Corollary 3.2, its type is

(Zkl —Zki,kg,...,]{?j, Z ]{fj) - (kl,kg,...,k}j, Z ]{71>
i=1 1=2

1=j+1 i=j+1

Now, let 7 = [. Then the blocks are of rank [ and of the claimed type. For any
basis we have u € S'(L) where u = > a""'. Since the height of u and [u, ¢u]
add up to the height of L, we have that u is the greatest element of S'(L) - which
is an ideal in view of Theorem 3.1. Moreover, if x < u then x < px < x? since
rank [z, ] < 1. Hence gpr = 2% € S%(L) and = € Sy(L) since [z, piz] is a
maximal interval of rank < [. Conversely, consider a € Sy(L) i.e. a = by for some
b. Since we have a glued sum, there is an z < u such that z < b < z%. It follows
a = by < (2%)9 = 2 < u. This summarizes to Sp(L) = (u]. The claim about
S%(L) follows by duality. O

COROLLARY 4.2. On each semi-primary lattice L of breadth > 3 there is a glued
tolerance having as blocks the maximal intervals of gd > 3, namely 0,, where n is
the geometric rank of L. The skeleton S (L) of 0, is an ideal of L. S (L) is a

chain of height hy — n if and only if L has geometric dimension 1. Otherwise,
Sy (L) is of breadth 2 and type [hy — n, hy — n].

Proof. We have n = hsg and h; > hs. Moreover, for u as in the proof of the
theorem we have u = a2 ™" 4 ah>™™ if hy > hg and u = a/* " if hy = hs. O

Let n be the geometric rank of the semi-primary lattice L. Skeleton and dual
skeleton of L with repsect to the tolerance 6, are denoted by S, (L) and S*(L).
We speak of the geometric decomposition and write at = a? for the join of a and

all cycles of rank < n in [a). We define a, dually.

COROLLARY 4.3. If x <y in Sy (L) then [x,y"] has rank n 4+ 1 and for every

cycle ¢ of rank n+ 1 in [z,y"] one has ¢! =y and * =cna™.

COROLLARY 4.4. If u is a coatom of S, (L) then u is of one of the types below

and there is an ordered basis ay, ..., a,, of L with h; such that
u = al w4 S if () = (b 1),
w= = S e if () = [y —n— 1, s — ),

w=a""far Tt ut =l 4 dizo i if tp(u) =[h1 —n, hy —n —1].

Proof. By Lemma 2.3 u fits into some basis of S (L) hence it may have only one
of the above types. u™ is a coatom of L, hence by Lemma 2.3 it fits into some
ordered basis. Since u™ is a coatom of ST(L) it has the required form. Now, for

x = a4 al27" the interval [z, ut] has the type of a block, whence z = u. O
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5 Completely primary uniserial rings

An (associative) ring R (with unit) is said to be completely primary uniserial
(CPU for short) if there is a two sided ideal P of R such that every left ideal
as well as every right ideal of R is of the form P* (where P° = R) - cf. [19].
The rank of such a ring is the smallest integer n such that P* = {0}. Particular
commutative examples are the rings A/Ap™ where A is a principal ideal domain
and p a prime. The following basic properties of CPU rings can be easily verified.

There exists an element a € R such that P = aR = Ra.

P'=d'R = Ra'.

a" ' #£0,a" = 0.

r is left, equivalently right, invertible if and only if r € R* = R\ P.

SANE R

Every element r € R is of the form r = a’u = va® where u and v are units,
0 < i < n such that r € P*\ P

6. 1 —a € R* and R is generated by R*.

COROLLARY 5.1. Let R be a CPU ring of rank n with mazimal ideal P. Then
for any cyclic left R-module, L(rM) is a chain of height < n and two such
modules are isomorphic if and only if they have the same height. In particular,
the left R-modules P™~'/P"~" and P™ are isomorphic for m > i.

Proof. The multiplication by a‘ on the right is a homomorphism of P™~% onto
P™ with kernel P, O

THEOREM 5.2. If R is a CPU ring then for every k > rank R there exists a
CPU ring S of rank k such that R is a homomorphic image of S.

Proof. Let R be a CPU ring of rank n with maximal ideal Ra. Clearly, it suffices
to consider £k = n+ 1. If n = 1 then R is a division ring and we may use
S = R[x]/(x?) where z is a commuting variable.

So let n > 2. We first construct a homomorphic preimage I of the envisioned
ring S. Let M be the free monoid with x and the elements of the unit group R*
as generators and the following relations

uv = w if that is the case in R*,
ur = zv if va = au in R with u,v € R*.

Then there is a homomorphism ® of M into R with ®x = a and du = u for
u € R* so that R* may be considered a sub-monoid of M. Moreover, the free
monoid on one generator x is obtained as a homomorphic image mapping x to x
and all generators u € R* to 1. Hence,

2Fu = 2lv with u,v € R* implies k = [.

11



Moreover, each element of M has a representation vz* = 2*u with u,v € R* and
k > 0 since these elements form a sub-monoid due to the required relations.

Now, let F' = Z[M] the free ring over this monoid, i.e. each element of F' has
a representation

Z zixFiu; = Z ¥ zu; with u; € R* and z; € Z.
; ;

Here, we may require the z*u; to be pairwise distinct and the z; # 0; under this
proviso, the z¥u; are unique up to permutation and for each z*u; the associated
coefficient z; is uniquely determined. Z(R*) is the subring of F' consisting of the
elements ), z;u; with w; € R*, z; € Z and

o = leZ(R*).
I=k

By the defining relations, the u € R* are units in F'. Also, using in addition the
commutation relations

vu = uvv u"ouw  for u,v € R

we see that F'r C rF for all » € F. Since rF' C F'r, too, we have
rF=Fr forallr e I

and every left or right ideal is an ideal. In particular, every maximal ideal @) of
F' is maximal both as left and right ideal whence F'/Q is a division ring and @ a
prime ideal of F.

Clearly, ® extends to a ring homomorphism from F' onto R. Let I be the
kernel of ® and P = ®~!(Ra), in particular x € P. Then P is a maximal ideal
of Frand P* C I C P. Also, Q = PNZ(R*) is an ideal of Z(R*) and

" FQ = U Q.
1=k

Now, consider ¢ = ). zju; € Q. There are v; € R* such that w;x = 2v; und we
have r = >, ziv; € Z(R*). Of course, ar = qx and a®(r) = ®(q)a € a*R. It
follows ®(r) ¢ R* whence r € (). This shows Qz C z@Q. Similarly, 2Q C Qx

whence
Qr =2xQ and QF = FQ.
Since x € P we have P = xF + () and it follows

P'=a'F+) Q.

k<l

12



Now, assume 2" € P""!. Then we have

wt =2 Y afge =) a4 e g
k<n j i

with zj, zx € Z, uj, up; € R* and g = >, ziiu; € P for all B < n. We
may assume that u,; = 1 and that all 2"+ u; pairwise distinct as well as, for
fixed k, all z*uy;. Then all these elements of M are pairwise distinct and from the
uniqueness of the representation we conclude z,; = 1 and z; = 2;; = 0, otherwise.
This yields 1 = ¢, € P, a contradiction.

Now, assuming I = PI one has I C P* for all k and P" = P"*! contradicting
™ € P\ P""1. Thus, PI # I and we may choose y € I\ PI. By Zorn’s Lemma
there is an ideal J O PI maximal with y ¢ J and J has a unique upper cover
J* in the ideal lattice. Now J C P since J # F and P"*! C J and P maximal
(choose a maximal ideal @ 2 J 2 P! then P C @Q since @Q is prime and P = Q
since P is maximal). Now, H/PH with H = I + J is a left R/P-vector space.
Consequently, the interval [PH, H| of the ideal lattice is complemented (recall
that left ideals are ideals) and so is the subinterval [J, I + J]. Hence there is a
complement K of J* in [J, I + J] which is a coatom in this interval. In particular
J = KnNJ" whence y ¢ K and K = J by the maximality of J. It follows that
J is a lower cover of I + J. Then S = F/(I N J) is Artinian of height n + 1.
Let us pass to this ring using the same names for the corresponding ideals. In
particular, we have the unique maximal ideal P with P"*! =0 and 0 # P™ C I.
Also, I is a minimal ideal. Hence I = P™ and the filter [/) in the ideal lattice
consists exactly of the P¥, k < n, since S/I = R is CPU of rank n. Now, consider
any ideal H 2 I. Then INH = 0 and I + H = P* for some k < n and
P11 = P+ PH C H whence k =n and H = 0. Thus, S is a CPU ring of rank
n+1and S/I = R. O

6 Submodule lattices
A modular lattice L is Arguesian if
(Ao + Bo) N (A1 + By) < Ay + By implies Cy < Cy + C
for all A;,B; € L (i =0,1,2) where {i,7,k} = {0,1,2} and
Ci = (A; + Ay) N (Bj + By).

In geometric terms: central perspectivity implies axial perspectivity. Every lat-
tice L(rM) of submodules is Arguesian. If R is a CPU ring and rM is finitely
generated, then L(rM) is also primary. Lattices isomorphic to such shall be
called coordinatizable. The main result in [19] is the following.
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THEOREM 6.1. Every primary Arguesian lattice of geometric dimension > 3 is
coordinatizable.

We collect some more facts about finitely generated modules gk M over a CPU
ring R and their lattices L = L(gM). The ring R can be chosen so that g M is
faithful - only such will be considered in the sequel. Then the rank of R is n =
rank L. If Rey, ..., Re,_1 form a basis of L, i.e. if

m—1
M = @ R@i

then eq,...,e,_1 will be called a basis of kM and the eg,...,e,_1 with the
relations a™e; = 0 yield a presentation of zkM where P = Ra is the maximal
ideal of R and h; = h(Re;) - but observe that

re; = 0 implies r =0 if and only if  h(Re;) = n.

If h; > hj for i < j then we have an ordered basis. The type of L will be also
called the type of gM. Viewing rM and gV as 2-sorted structures one gets that
for kM and ¢N of the same type, isomorphism « : R — S, and all ordered
bases eg, ..., en,_1 of gM and fy, ..., fn_1 of /N there is a uniquely determined
a-semi-linear bijection ® : gk M — ¢/N such that

O(e;))=f; fori=0,...,m—1.

Given a basis ey, ..., e,_1 such that h(eg) = n and a € R such that Ra is the
maximal ideal of R, we have the canonical semi-frame in L (cf. [18]) consisting
of the

E; = Re; (0<i<m)and Ey (1 <i<m), where E;; = R(e; +¢;).

In particular, if h; = n for ¢ <[ then the E; and Ey; (i <) generate a frame of
order [ in the sense of von Neumann (cf. [13]).

COROLLARY 6.2. The automorphism group of gM acts transitively on the set
of semi-frames associated with ordered bases.

We say that X is an axis for Y and Z in L if
XY =YPZ and X+ 7 >Y.

Observe that this concept is not symmetric in Y and Z.

LEMMA 6.3. Let h(Re;) > h(Re;). Then X = R(e;+re;) for somer € R if and
only if X is a complement of Re; in the ideal (Re; + Re;| of L and r € R* if and
only if X is an azis for Re;, Re;. If h(Re;) = n then r is uniquely determined.
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Proof. Such complement X is cyclic since X 2 Re;. Hence X = R(ae; + re;)
for some k and r. If £ > 0 then X + Re; = Rad*e; + Re; < Re; + Rej. Thus,
k = 0. Now, r = a*s with some k and s € R* and X + Re; < Re; + Re; if k> 0.
Therefore » € R* if X is an axis. The converse claims are obvious. Finally,
R(e; +re;) = R(e; + se;) implies e; + re; = x(e; + se;) for some x whence z =1
and r = s if h(Re;) = n. O

Define the coordinate domain
Rij = {R(ez + Tej) | r e R}

LEMMA 6.4. L is generated by the canonical semi-frame together with Ry, U Ry
resp. Roy provided that hg = hy = rank L resp. also ho = rank L.

Proof. We proceed by induction on n = rank L. Assume that the basis is ordered
with [ maximal such that h; = n. Let K be the sublattice generated by Ry U R1g
and the canonical semi-frame. First, observe that 0 and 1 may be interchanged
since

Ey; = R(ey +¢;) = (R(—eg + €1) + Eo;) N (EL + E;) for i > 1.
Moreover, any k with 1 < k£ <[ may take the role of 1 since
R(eo+reg) = (R(eg —rer) + Evg) N (Eo + Ey) € K.
Further elements of K are
Rrey = (R(eg +1rey) + Ey) N Ey, Rre; = (Rrey + Ey;) N E;

R(aeo + 61‘) = (R(—aeo + 61) + Elz) N (EO + Ez)
R’l“(ei + ej) = Eij N (RTGi + EJ) for 1 S [
R(aep, +raej) = (Raey + Rae;) N R(ey, + se;) for {h,j} = {0,1} where ra = as.

From these we obtain the canonical semi-frame and coordinate domains associ-

ated with the basis aeo, ..., ae;, e 1, ... en_1 of the R/P" 1-module
U= ZRaej + ZRej.
j<l j>1

Since the R/P" '-submodules of U are just the R-submodules of U we have all
of them in K, by induction. On the other hand, considering a cyclic submodule
X =R} ;rjej of gM not in (U], we have r; invertible for some j <[ and may
assume j = 0 and rg = —1. Then

X =) (Rleo—rse;)+ > Rey) € K.

J>0 k#0,j

Since any element of L is a join of cyclic submodules, we are done. O
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COROLLARY 6.5. Let ¢ : L(rM) — L(sN) be a lattice isomorphism matching
the canonical semi-frames associated with ordered bases eq, . ..,em—1 of RM and
fos- s fmo1 of sN. Assume that there are isomorphisms o, 5 : R — S such that
@(R(eo +re1)) = S(fo + alr)fi) and ¢(R(reo + e1)) = S(B(r)fo + f1) for all
r€ R. Ifgd(LpkM) > 2 then a = B and ¢ = ® for the a-semi-linear bijection
O kM — gN such that ®(e;) = f; for alli.

Proof. If r € R* then S(fo + B(r)~"f1) = S(B(r)fo + f1) = w(R(reo + 1)) =
©(R(eo + 17" e1)) = S(fo + a(r™") fi) whence f(r)~" = a(r™') and a(r) = B(r)
and a = 3 since R is generated by R*. Thus ® = ¢ on the generators of L(grM),
whence everywhere. O

COROLLARY 6.6. Ewvery isomorphism between lattices L(rM) and L(sM) as
above of gd > 3 is semi-linearly induced.

Proof. (cf. [5]) Following von Neumann (cf. [13]), R may be identified with any of

the coordinate domains R;; (4, j < [) the operations given in terms of the frame.

The same holds for S so we get the isomorphisms « and /. O
In particular, for such lattices we may call R the coordinate ring.

7 2-gluings

We now consider local coordinatizations R,, M,,w,, x € S; (L) associated with
the geometric decomposition of a primary Arguesian lattice L of breadth m > 3.
Recall that all L, are of the same type, of breadth m, gd > 3, and of rank n,
where n is the geometric rank of L. The ring R, has to be a coordinate ring of L,.
We say that a basis e, ..., e,_1 of g, M, is associated with the basis by, ..., by_1
of L, (via the given coordinatization) if

wy(b;) = Rye;  for all i.

First, we deal with the special case where S, (L) = {0, T} = 2, the two element
lattice. We write R = Ry, S = R, and v = vy7. We denote the elements of L by
the corresponding submodules of M, resp. M+ with a double notation X = ~vX
for elements in Lo N L.

Consider a basis by, ..., b,,_1 of L with ranks h;. In view of Corollary 4.2,
we may arrange it such that hy — 1 = hg = hy = n (this ordering fits better
to the applications of the Arguesian law). We say that a basis eq,..., e, 1 of
rMy associated with by, by, 05, ... and basis fy, ..., fin—1 of sMt associated with
T+bg,..., T+by,_1form a pair of bases associated with by, . .., b,,_1, i.e. one has

bi = Re,-, T + bz = sz = Rei + Pn_leg for 4 7& 2, bg = ng, bg = R62 = Qfg
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where P and () are the maximal ideals of R and S, respectively. We call such a
pair b-synchronized if Sb = @, and if (cf. Fig.1.)

R(eg+e;) + P" tea = S(fo+ f;) fori#2

R(Go + 62) + P"_lez = S(fO + bfg)
Observe that the ordering matters.
THEOREM 7.1. Let L be a primary Arguesian lattice of breadth > 3 with

Sy (L) = 2. Then for every local coordinatization w, : L, — L(g,M,), (x =0,T),
basis b, ...,bm—1 of L such that h(by) = h(by) = h(bs) — 1 = rank L, basis

€0, - -, em—1 of My associated with by, by, by, ... and generator b of the mazimal
tdeals of S = R there is a basis fo, ..., fm—1 of Mt yielding a b-synchronized pair
of bases associated with by, ..., by,_1. Given such, there is a unique isomorphism

a: R= Ry — S such that for the gluing map v = Yot
Y(R(eg +re1) + P ey) = S(fo + a(r) fi).

Moreover, with this o one has v = ® where ® is the a-semi-linear map from
rMy/(P"Ley) into sM+ such that

Dle; + P ley)=fi fori#2, e+ P ley) =bfo.

A b-synchronized pair of bases associated with a basis of L is strictly b-synchronized
if R =5 and if a in the Theorem is the identity map.
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Figure 1.

COROLLARY 7.2. For L as in the theorem, every coordinatization of Lo may
be completed to a linear local coordinatization of L. Given such, there is an
automorphism V1 of gM+ such that for the local coordinatization wy, \ilT o wT
the e; and f; form a strictly b-synchronized pair.

COROLLARY 7.3. Let L and L' be primary Arguesian lattices of breadth > 3 of
the same type, with S, (L) = 2 =2 S, (L'), and with linear local coordinatizations
over the same ring. Let ¢ and ¢ be cycles of maximal rank n + 1 in L resp.
L', Then every linear isomorphism ®y of My onto M| such that Dowc" = wyc™
can be extended to a linear isomorphism of the local coordinatizations such that

Orwre = whd.

COROLLARY 7.4. In a primary Arguesian lattice L of breadth > 3 the maximal
intervals of gd > 3 have isomorphic coordinate rings and are isomorphic. The
gluing maps are semi-linearly induced.

These rings are called the coordinate rings of L.
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Proof. Choose the basis fy, ..., f,n_1 to obtain a pair of bases associated with
the given basis of L. Now R(eg + ;) + P" ley is a axis for Reg + P 'ey and
Re; + P"'ey in the filter [P" 'ey) of L(grMy) and, via the gluing map, an axis
for Sfy and Sf; (resp. Sbfy if i = 2) in L(sM+). Thus, by Lemma 6.3 there are
s; € S* such

R(eog+e;)+P" ey = S(fotsif;) fori#0,2 R(egtes)+P" e = S(fo+bsafo).

To carry out the synchronization, replace f; by s;f; for i # 0.

Now, assume that a b-synchronized local coordinatization is given. R(eg+rej) +
P ley is a complement of Re; + P le, in the interval [P ley, Reg + Rey +
P ley] which corresponds via the gluing map to Sf; in the ideal (S fy + Sfi] of
L(sM-+). Hence, by Lemma 6.3 there is a unique «(r) € S such that

R(eo +rer) + P ey = S(fo + alr) fr).

We have a(0) = 0 and a(1) = 1. We have to show that « is an isomorphism. In
doing so, we may consider the ideal (by+ by + by of L which amounts to assuming
m = 3. We proceed as in the proof of Theorem 2.1 of [8]. The calculations are by
basic linear algebra as long as they are done within a single one of Lg or Lt. Yet,
the passage from Ly to L+ via the gluing can be calculated only for the sublattice
generated by the Re; + P" ey, R(eg + re1) + P ley and R(eg + e3) + P les.
To show compatibility with addition, let r,s € R and consider

Ao = Rey, Ay = R(eg+r(er+e2)), Ay =5S(fo+ alr)(fi + f2))
BD = R(eo + 861), Bl = R(@l + 62), Bg = S(fl + fg)
Then
(Ao + Bo) N (A1 + B1) = Reg < S(fo) + S(fr + fo) = Ao+ Bs

Cy = (Ag+ A1) N (By+ Bi) = R(eg + (1 + s)er + rey)

Cr = (Sfi+ A2) N (S(fo+ als)f1) + Bz) = S(fo + (alr) + als)) f1 + a(r) f2)
Ai+A; < R(egtrer)+Reat Ay < S(fota(r) fi)+S fotAr = S(fotalr) fi)+Sf
By + By < Rey + Rea + By < Sfi+Sfa+Ba=5f1+5f
Co < (S(fo+a(r)fi) +Sf2) N(Sfi+ Sf2) = Sfa.

From the Arguesian law we get

S(fo + Oé(?" + S)fl) + ng = 02 + ng

SCo+Ci+ S <Ci+Sfy=S(fo+ (alr) +al(s)) fi) + Sfa
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implying
fotalr+s)fi = 2(fo + (a(r) + a(s)) f1)

for some z € S and a(r + s) = a(r) + a(s).

Concerning multiplication consider
Ap = Rey, Ay =R(eg+rer+ (1 —r)ez), As=S(fo+a(r)fi+ (1 —ar))fs)

B[) = R(eo + 861), Bl = R(eo + 62), BQ = S(fo + fg)
Then

(Ao + Bo) N (Al + Bl) = RT’(EO + 61) = (Reo + R(eo + 7“61)) N R(eo + 61)

< Sa(r)(fi = f2) + S(fo+ f2) = As + Bo
Cy = R(eg + rse; + (1 —r)ea)
Cr=(Sfi+A) N (S(fo+ als)fr) + B2) = S(fo + a(r)als) fi + (1 — a(r)) f2).
Let I = {x € S| za(r) = 0}. Then

Co < (A1 +S fot A2)N(B1+S fo+B2) = (s(fota(r) f1)+S f2) N (S fo+S f2) = I fo+S fo.
By the Arguesian law
S(fot+a(rs)fi)+Sfo=Ca+Sfo < Co+Ci1+Sfo < Ifo+Sfat+S(fo+al(r)als)fr)

Hence there are x,y € S such that

fotalrs)fv =zfo+y(fo+alr)als)fr) and z-a(r)=0

Then

r+y=1 a(rs)=y-alr)a(s) = (1 —x)a(r)a(s) = a(r)a(s).
We now claim that ey, eg, es,... and f1, fo, fa,... form a b-synchronized pair as-
sociated with the basis by, by, ba, . ... We use the isomorphism

U : Raey + Z Re; — My/P" ey, W(e;) =e;+ P" ey, U(aey) = ey + P ey
i#2

where P = Ra (cf. Corollary 5.1). Now, for i > 2
R(ey + ;) + P ey = U((R(ey — e1) + Rleg + €;)) N (Rey + Re;))

= (S(fo—fi) +S(fo+ fi)) N(SfL+Sfi) =S(fr + fi)
R(ey+e3)+P" ey = U(R(e1+aes)) = U((R(eg—er )+ R(eg+aes))N(Rey+Raes))
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= (S(fo— f1) + S(fo+bf2)) N (Sfr + Sbfz) = S(f1 + fa).

Hence, we also get an isomorphism ( as required in Corollary 6.5 and may con-
clude that v is linearly induced by ®. O

Proof of the Corollaries. To obtain a linear local coordinatization of L turn
sM+ into an R-module via a. Now, assume that we start with a linear local
coordinatization, the gluing map being induced by the linear map I'. Theorem
7.1 provides us with « and a-synchronizing f;. By Lemma 6.3 we have s; € R*
such that

F(ei + P”_leg) = Sifi for ¢ 7é 2, F(eg + P”_leg) = Sg(lfg.
Let U+ be the automorphism of the R-module M+ such that
\IJT(fz) = Si_lfz‘ for all i.

Now, let local coordinatizations M,,w, of L and M. w! of L' be given, all over
the same ring R, and an isomorphism ®, : My — M. Complete ¢ = by to a basis
of L such that h(by) = h(b1) = n. Then V), = ¢’ and the 0 = Wi Dowy (b;) form
a basis of L' with h(b}) = h(b}) = n since wf ' Powo(b) = . Choose bases ¢; of
My, fi of M+ and W+ according to Corollary 7.2. Analogously, choose bases €/
of M, f! of M% and ¥’r. Now, let © : M+ — M* be the isomorphism such that

O(f;) = f/ and &+ = V7' 0 © 0 Ut. Then

Brewr(by) = W' OWrwr (by) = W' O(R ) = Wl (Rfy) = wh(bh). O

8 2 X 2-gluings

THEOREM 8.1. Let L be a primary Arquesian lattice of breadth > 3 and S =
2 X 2 a cover preserving sublattice of S, (L) with atom v and with 0 € S. Then
a local coordinatization of Ls = UzesL, over a single ring R is linear provided
that all gluing maps vy, with y # v are linearly induced.

COROLLARY 8.2. Let L,S and L', S" as in the Theorem with local coordinati-
zations of Lg and Ly, given by M, and M), over the same R. Let v be an atom of
S. Then isomorphisms § : S — S" and ®, : M, — M., yield a linear isomorphism
provided they do so if one considers the sublattices S\ {v} and {0,v}, only.

COROLLARY 8.3. FEvery primary Arquesian lattice of breadth > 3 admits a
linear local coordinatization (over any of its coordinate rings)
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Proof. Let us denote the atoms of S by u,v and let T = v 4+ v. Choose cycles
a; € L, and ay € L, of rank n + 1 where n is the geometric rank of the L.
Then a} = u # v = a3 and we may complete to a basis ag, ..., a,_1 of L with
h(ag) = n. Now assume that a local coordinatization w, : L, — L(gM,) of Lg
over the same ring R is given such that the gluing maps ~,, are linearly induced
with the possible exception of ~,1. In order to prove that v, is linearly induced
we may re-coordinatize the L, by means of linear maps.

Choose a such that Ra is the maximal ideal of R. Let eg, eq,ea,... be a
basis of M, associated with the basis ag,al,a’,.... In view of Corollary 7.2,
after re-coordinatization of M, there is a basis fy, f2, fi,... of M, completing
€g, €2, €1, ... to a strictly a-synchronized pair of bases associated with the basis
ap,ay,ay,...of LyU L,, By the same token, we obtain a basis g, g1, g2, . . . of M,
completing eq, eq, es a strictly a-synchronized pair of bases associated with the
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basis ag, at, as, ... of Ly U L,. Finally, one produces a basis hg, hy, ho, ... of M+t
completing fo, fi1, f1, ... to a strictly a-synchronized pair of bases associated with
the basis u + ag,u + a1, u + as, ... of L, U Lt. See Fig.2.

Again, we denote an element of Lg by the corresponding element of L(zrM,,)
- for all suitable . Then we get

R(rgo + sg1 + tags + Z rigi) + P" g
i>2

= R(reg + se; + tex + Z rie;) + P lep + P ey
i>2

= R(Tf(] -+ Saf1 + tfz + Z’l“lfz) + Pnilfg = R(T’ho -+ Sah1 + tahg + ZT’lhl)

i>2 i>2
Now, R(go + g2) + P" g, (i.e. its image under ,7) is an axis for Rhg and Rh,
in L(grM+) hence by Lemma 6.3 there is an s € R* such that

R(go + g2) + P""'g1 = R(ho + shs)
R(ahg + ashy) = (R(ho + shy))" ' = (R(go + ¢2))" " + P" gy

= R(ago + ags) + P g = R(ahy + ahy).

The reader should be warned that (Rg)* has rank < k while P*g has corank > k
in Rg. If follows a = as whence with hf, = shy we have

R(go + g2) + P"'g1 = R(hg + h}) and ah), = ahs,.

Replacing hy by hl, we achieve that go, g2, 91,... and hg, he, hy,... form an a-
synchronized pair associated with the basis v + ag,v + as,v + aq,... of L, U L.
Let a be the unique automorphism of R inducing v, according to Theorem 7.1.
In particular,

T+ R(go + g1 + 7rg2) = R(ho + ahy + a(r)hs).

We have to show that « is the identity map. Modifying the case of division rings
([8] Theorem 3.1), given any r € R we put

Ao = Rfi, Ai=R(fo+alr)fi+ f2), A2= R(fo+ f1)

By = Rgs, B1 = R(g0o+ g1 +792), Ba= R(g0+ 92)

and obtain
A0+BOZA0+T+BOZRh1+Rh2

Al + Bl = A1 + T + Bl = R(ho + Oé(?”)hl + ahg) + R(ho + (Zhl + OZ(T‘)hQ)
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A2—|—BQIA2+—|——|—BQ:R<h0+h1)+R(h0+h2)
(A() + Bo) N (Al + Bl) S R(Oz(?”) — a)(h1 — hg) S AQ + BQ.
By the Arguesian law it follows Cy < Cy + €. We put s = «(r) and compute

Cl == (Rf() + Rfl) N 0+ N (Rg() + Rgg) = (R@o + R61> N (RGQ + Reg) = Reo

Cy = (Rfi + R(fo + f2)) N 0" N (Rgz + R(go + g1))
= (Rey + R(eg 4+ €2)) N (Res + R(eg + €1)) = R(eg + €1 + e3)
(A1 + A) N 0" = (R(fo + f1) + R(fo + sfr + f2)) N (Rfo + Rafi + Rf»)
={(x+y)fo+(xs+y)fi+tzfa|z,y €R, xs+y € Ra}
={(z —zs+ta)fo+tafr +xfo | z,t € R}
=R((1—=38)fo+ f2) + R(afo+ afi) = R((1 — s)eg + e2) + R(aeg + €1).

Similarly
(B1 + By) N 0T = R((1 —7)eg + 1) + R(aey + e3).

From Cy < Cy + C; and O + Oy < 0" we have
Cy < (A1 + A)) N (By + By)N0T + O
In particular, there are z,y, p,q, z € R such that ey + e; + es = v + zey with
v=2x((1—alr))ey+ e) + ylaey + e1) = p((1 — r)eg + e1) + q(aey + e32).
It follows
z(l—a(r)+ya=pl—r)+qa=1—2 y=p=1, z=q=1

whence a(r) =r. O

Proof of the Corollaries. The first is immediate by Prop.1.2. For the second,
consider the geometric decomposition of L and fix a coordinatization of Ly. Ad-
just the coordinatization of L, by recursion on the height of y in S, (L): choose
y < x and apply Corollary 7.2 to [y, x*]. We have to show by induction that each
gluing map 7., is linearly induced. If z is the chosen y, this is so by construc-
tion. Otherwise, with w = y N z we have w < y, 2 < = and 7,y and 7, linearly
induced by inductive hypothesis. Then so is 7., by Theorem 8.1. Also, Theorem
8.1 implies the commutativity condition for the inducing linear maps. O
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9 Isomorphism invariants

In general, a primary Arguesian lattice is not determined by its prime skeleton
together with the isomorphism type of each block. A counterexample is given
by the lattices L(zR?) and L(5S®) where R is the integers modulo p? and S =
Flx]/(2?), F the p-element field - here all the skeletons and blocks are projective
planes of order p. This is why we have to consider the geometric decomposition.
By Corollary 7.4 for a primary Arguesian lattice of breadth > 3 there is up to
isomorphism only one coordinate ring R of maximal intervals of gd > 3. Thus, if
(k1, ..., k) is the type of L we may define the extended type as (kq,...,kq; R). In
particular, > k; > 3 and R is a CPU ring the rank of which is the minimal / such
that » ., k; > 3. This is meant, if we speak of an extended type, abstractly.

In breadth 2 primary lattices, blocks may have distinct cardinalities. We say
that a lattice is q-uniform if every length two interval that is not a chain has
g atoms. For primary Arguesian lattices of breadth > 3 one has ¢ the number
of 1-dimensional subspaces of a 2-dimensional R/P-vector space. For g-uniform
breadth 2 semi-primary lattices we introduce the extended type (k,l;q) where
¢1, ¢ is a basis with h(c); = k > h(ey) = 1. Observe that ¢ = 2 means that L is a
direct product of two chains. Abstractly, an extended type is a triple of cardinals
q > 2 and finite k£ > | > 1. The extended type of a chain is its height.

THEOREM 9.1. The extended type is a complete isomorphism invariant for uni-
form primary Arquesian lattices.

COROLLARY 9.2. For any two primary Arquesian lattices L, L’ of the same ex-
tended type and ordered bases of L and L' there is a basis preserving isomorphism.
Moreover, if L, L' are of breadth > 3 with given linear local coordinatizations then
the isomorphism can be chosen locally linear.

Proof. In the case of L, L’ of breadth > 3 and the same extended type, in view
of Corollary 6.6 and 8.3 we may choose linear local coordinatizations M, (z €
Sy (L)) and M. (z € ST(L")) of L and L’ over the same ring R. We show the
following by induction on Sy (L).

(i) f w € S4(L) and v' € S, (L) are coatoms of the same type fitting into
bases of L and of L’ according to Corollary 4.4, then every locally linear
isomorphism ¢ : (u*] — (4] preserving the induced bases can be extended
to a basis preserving locally linear isomorphism of L onto L'.

(ii)) If w € S¢(L) and v’ € Sy(L') are coatoms of the same type then every
locally linear isomorphism of (u"] onto (u'*] can be extended to a locally
linear isomorphism of L onto L'.

(iii) For any ordered bases of L and L’ there exists a basis preserving locally
linear isomorphism of L onto L'.
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If S;(L) is 1-element, then (i) and (ii) are void. My = M| since they are of the
same type and by Corollary 6.2 any ordered bases can be matched.

In the inductive step, assume that ordered bases aq, ... of L and df, ... of L'/
are chosen as required in (i). By assumption, ¢ is induced by a linear isomorphism
®, : M, — M, (v € (u]). We have to define ®, for the remaining r € S} (L)
so that we obtain a linear isomorphism inducing a basis preserving isomorphism.
Depending on the type of u we have j € {1,2} such that u + a; and v’ + aj are
cycles of maximal rank in L, U Lt and L] U L', respectively, and we may choose
&+ according to Corollary 7.3 such that ®+(u +a;) = u + aj. If Sy (L) is a chain
then j =1, a1 = u + a1 and a} = v/ + a} and we are done. Otherwise, in each
of S;(L) and S, (L") we have a unique second coatom v resp. v’ fitting into the
given basis and ¢(v) =v'. Let w =unNov =T, and v’ = v Nv' = pw = T/,.
Then for any coatom x # u of Sy (L) we may apply the inductive hypotheses to
the coatoms w € (z] and w' € (px] and the restriction of ¢ to (w*]. Namely,
we apply (i) for x = v and (ii), else. Thus, for each z € S, (L) we have a well
defined @, : M, — M. Moreover, the compatibility condition @Dy O Yoy = Vay od,
is satisfied a fortiori if ¥y # T or if x = w and follows from Corollary 8.2 if
y = T. The induced isomorphism of L onto L’ is basis preserving, since the
isomorphisms on (u*] and (v*] are basis preserving and since the basis of L is
contained in (u™] U (v*]. To prove (ii) just choose bases for u and u’ according
to Corollary 4.4 and apply (i). To prove (iii) choose coatoms u and u' fitting into
the bases, analogously. In particular, u and ' are of the same type and so are u™
and «'*. By the inductive hypothesis (iii) there is a locally linear isomorphism ¢
of (u*] onto (u'*] preserving the induced bases. ¢ matches the top elements T
of Si(L) and T’ of S;(L’) and restricts to an isomorphism between S, (L) and
Sy (L"). Hence, we can apply (i) to get the required isomorphism of L onto L'.

In the case of breadth 2, by inductive hypothesis we have an isomorphism ¢
matching the basis a}' ™', ah>~! of S(L) with the basis a/" ', a32~! of S(L'). Due
to breadth 2 the a; and a; are also dual cycles, whence doubly irreducible. Since
they are also in corresponding blocks, the proof of the following lemma yields an
isomorphism mapping a; onto a;. a

LEMMA 9.3. Let L and L' be semi-primary lattices of breadth < 2 and ¢ :
S(L) — S(L') an isomorphism such that for each x € S(L) the intervals [z, x*]
and [p(x), p(2)*] are of the same cardinality. Then ¢ extends to an isomorphism
of L onto L.

Proof. Induction on height. Choose a coatom ¢ in S(L). Then ¢* is a coatom
in L and ¢(c)* a coatom in L’. Moreover, the ideals (¢*] and (¢(c)*] have prime
skeletons (¢] and (pc| and, by inductive hypothesis, ¢|(c] extends to an isomor-
phism ¢ between them. Next, choose an atom a in S(L). Then the filters [a)
and [pa) have prime skeletons [a, 1] and [pa, p1.] matched by ¢l|la) = 9|[a, 1.],
so this extends to an isomorphism, again by inductive hypothesis. This provides
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us with an isomorphism x of (¢*] U [a) onto (¢(c)*] U [pa). Since this takes care
of the skeleton and its dual, as well, all remaining elements have to be doubly
irreducible (in breadth 2 every meet-reducible is in S(L), obviously). Hence, for
each z € S(L) we may choose an isomorphism Y, of [z, z*] onto [z, (z)*] which
coincides with x where this is defined. Now, observe that for x < y in S(L) we
have [z,z*| N [y,y*] = {y,2*}. Hence Lemma 1.1 provides an extension of ¢ to
an isomorphism of L onto L'. O

10 Coordinatization

THEOREM 10.1. For any extended type (k,l;q) there exist up to isomorphism
exactly one semi-primary lattice of this type. For any extended type (ki, ..., k.; R)
there is up to isomorphism exactly one primary Arguesian lattice of this type.

COROLLARY 10.2. A lattice L is coordinatizable (by a finitely generated module
over a CPU ring A) if and only if it is one of the following

(1) a finite chain
(2) q-uniform primary of breadth 2 with ¢ = p* + 1, p prime, or q infinite
(3) primary Arguesian of breadth > 3

A can be chosen as a factor ring of Flz|, F' a field, if and only if (1) or (2) with
|F| = pk, 0o or (8) with the coordinate ring a factor ring of F[z]. L is isomorphic
to the subgroup lattice of a finite Abelian p-group if and only if (1) or (2) with
k=1 or (8) with coordinate ring Z/(p").

Proof. Uniqueness has been shown in the preceeding section. Existence. We claim
that a lattice of type (k,[;q) can be constructed as a sublattice of L(M) where
F is a field such that |F|+1 > g and M = R x F|[z]/(2') the module over the
CPU R = F|xz]/(z*). Observe that L(M) is of type (k,[;|F|+ 1) and that, by
inductive hypothesis, we have a type (k—1, [ —1; ¢) sublattice S of [0, 1] (where
0—1:=0). Then x — 2* is an isomorphism of S onto a sublattice S* of [0%, 1].
Since [z,2*] is a height 2 interval with at least ¢ atoms, for each x € S we may
choose a height 2 sublattice L, with ¢ atoms containing [z, z*] N (S U S*). Then
the S-glued sum L has prime skeleton S and dual prime skeleton S* which both
are interval sublattices of S, so L is semi-primary and has the required type by
Theorem 3.1 and its corollary.

In the breadth > 3 case, choose by Theorem 5.2 a CPU ring A having rank
of L and R as a homomorphic image. With () the maximal ideal of A let

M = Pa/Q)"
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considered as an A-module. L(4M) is primary of the required extended type. O

By Inaba’s result [15], every primary lattice of geometric dimension > 4 is Ar-
guesian.

PROBLEM 10.3. Is every primary lattice of breadth > 4 Arguesian?

COROLLARY 10.4. A primary lattice is Arquesian if and only if it admits a
cover preserving embedding into a coordinatizable lattice.

This is in contrast to the examples of Haiman [10] of Arguesian lattices not
having even a representation by lattices of permuting equivalences. These lattices
have finite distributive prime skeleton and blocks which are projective geometries
over the same field. Yet, the skeletons fail to be cover preserving or sublattices.
This fact and known partial results (cf. the survey in [14]) gives some credit to
the following. Also, one observes that Theorems 7.1 and 8.1 only required the
Arguesian law for the special gluings, considered (in 7.1 the resulting lattice is
primary, of course).

PROBLEM 10.5. Does every semi-primary lattice satisfying the Arguesian law
resp. its higher dimensional versions admit a representation by permuting equiv-
alences?

For finite Abelian p-groups of the same order, embeddings of one subgroup lattice
into another have been studied by Barnes [3] and Schmidt [24]. Nontrivial such
exist only if the embedded lattice has a type with > ., k; < 2.

PROBLEM 10.6. How have the finitely generated modules gM and ¢ N over CPU
rings to be related in order that there exists a cover preserving 0-1-embedding of
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