
A characterization of subgroup lattices of finite
Abelian groups

Christian Herrmann and Géza Takách∗
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Abstract

We show that every primary lattice can be considered a glueing of intervals
having geometric dimension at least 3 and with a skeleton of breadth at
most 2. We call this geometric decomposition. In the Arguesian case, we
analyse the sub-glueings corresponding to cover preserving sublattices of
the skeleton which are 2-element chains or a direct product of 2 such. We
show that these admit a cover preserving embedding into the submodule
lattice of a finitely generated module over a completely primary uniserial
ring. It follows, that a primary Arguesian lattice can be cooordinatized
by such module if the skeleton of the geometric decomposition is a chain.
This fails due to an example of G.S. Monk [29] if the skeleton has breadth
2. Moreover, there are non-isomorphic eaxmples of this type having iso-
morphic skeletons and isomorphism between the corresponding intervals.
Hence, most of the statements in sections 9 and 10 are wrong. The main
results of Antonov and Nazyrova [25, 26] are wrong, too, since the subgroup
lattice of Cn

pk
(k ≥ 2, n ≥ 3) cannot be embedded into the subspace lattice

of any vector space [28], Credit for Thm.3.1 below should be also given to
[31, 27, 30]. The due Corrigenda and Addenda are given in: On the co-
ordinatizationm of primary arguesian lattices of low geometric dimension,
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of maximal order respectively submodules of maximal rank. The characteristic
property is that these lattices are primary Arguesian with three independent cy-
cles of maximal rank. These were needed in order to apply the intricate geometric
coordinatization methods. They provide also the basis for the von Neumann style
internal construction of the coordinate ring.

The main result of the present paper yields that primary Arguesian lattices are
exactly the lattices isomorphic to lattices of all submodules of finitely generated
modules over completely primary uniserial rings - only in the case that there are
just 2 independent cycles (i.e. in case of breadth 2) one has to add the condition
that height 2 intervals are chains or have a fixed number q of atoms where q is
either infinite or pk + 1 with prime p. Lattices of finite Abelian p-groups are then
characterized by the fact that the coordinate ring is the integers modulo some
pn resp. k = 1 in breadth 2, and subgroup lattices of finite Abelian groups by
having central elements providing the primary decomposition into p-groups.

The breadth 2 case is purely combinatorial and has in essence already been
done by Ribeiro [22]. So the interesting case is that of breadth ≥ 3 lattices. We
understand these as being glued together of maximal intervals to which the result
of Jónsson and Monk applies. Extending the methods of Jónsson [16], Pickering
[21], and Day et al. [8] beyond division rings and “2-dimensional gluings”, it is
shown that all these intervals have the same coordinate ring R which together
with the type, i.e. ranks occurring in a decomposition of 1 as direct sum of cycles,
yields a complete isomorphism invariant. On the other hand, for any value of the
invariant a suitable submodule lattice is constructed.

Certain special cases, where the coordinate ring is a division ring, have been
dealt with by Nation and Pickering [20], Day et al. [8], and Antonov and Nazarova
[1]. As compared to [8] we have to describe in more detail the machinery of local
(re)coordinatizations. This is due to the more general skeletons considered and
to the fact that for the blocks extension of automorphisms defined on an ideal
is possible only in special circumstances (a phenomenon well known from the
computation of Jordan normal forms).

1 Gluing of lattices

We consider lattices L of finite height with bounds 0 and 1. We write a + b for
joins, ab = a ∩ b for meets. By (a] and [a) we denote principal ideals and filters.
The principal reference for lattice theory is [6]. Concerning subgroup lattices see
[4, 23].

Given L consider a lattice S and one-to-one maps σ and π of S into L which
are join- resp. meet-preserving. If σx ≤ σy ≤ πx for each covering pair x ≺ y in
S and if

L =
⋃
x∈S

[σx, πx]

2



then the structure of L can be recovered from the structure of S and of the
blocks Lx = [σx, πx] and, of course, the maps σ and π - see [11, 7, 8]. We may
require that σ is the identity map. In that case we speak of a decomposition of
L into an S- glued sum and call S the skeleton and π(S) the dual skeleton of this
decomposition. If T is a sublattice of S, then LT =

⋃
x∈T Lx is a sublattice of L.

LT is a T -glued sum if T is cover-preserving and an interval sublattice of L if T
is one of S. The following is obvious.

LEMMA 1.1. If the lattice L is the S-glued sum of the lattices Lx (x ∈ S) and
ϕx (x ∈ S) are homomorphisms of Lx into L′ with the property that ϕx coincides
with ϕy on Lx ∩ Ly for all x ≺ y in S, then

⋃
x∈S ϕx is a homomorphism of L

into L′.

A coordinatization of a lattice L is given by a ring R, a left R-module M , and
an isomorphism ω of L onto the lattice L(RM) of all left R-submodules of M
(we write L(M) if no confusion is possible). It may be convenient to admit only
faithful R-modules as we will do later on.

We say that an isomorphism ϕ from L(RM) onto L(SN) is (α-)semi-linearly
induced (with respect to the isomorphism α : R→ S) if there is an α-semi-linear
isomorphism Φ of the R-module M onto the S-module N such that ϕ(X) = Φ(X)
for all X ∈ L(RM). If Φ is a semi-linear map, we denote the induced lattice map
by Φ̂. If R = S and α is the identity map, we speak of a linearly induced map.
Observe that, if α : R → S is a ring isomorphism, then rx := α(r)x turns
any S-module SN into an R-module RN such that L(SN) = L(RN). Moreover,
Φ : RM → SN is α-semi-linear if and only if Φ : RM → RN is linear.

A local coordinatization of an S-glued sum L associates with each x ∈ S a coor-
dinatization Rx,Mx, ωx of Lx = [σx, πx]. The associated gluing maps are

γxy = ωy ◦ ω−1x : [ωxσy)L(Mx) → (ωyπx]L(My).

Clearly,

γyz ◦ γxy = γwz ◦ γxw on Lx ∩ Lz for x ≺ y, w ≺ z in S.

We speak of a linear local coordinatization if Rx = R for all x and all gluing maps
are induced by linear isomorphisms

Γxy : Mx/(ωxσy)→ ωyπx ⊆My.

Given an S ′-glued sum L′ with linear local coordinatization R,M ′
x, ω

′
x and gluing

maps γ′xy a linear isomorphism of L onto L′ is given by an isomorphism δ : S → S ′

and linear isomorphisms

Φx : Mx →M ′
δx x ∈ S

such that
Φ̂y ◦ γxy = γ′δxδy ◦ Φ̂x on [ωxσy) for x ≺ y in S.
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PROPOSITION 1.2. Given the isomorphism δ : S → S ′, the module isomor-
phisms Φx : Mx → M ′

δx constitute a linear isomorphism between linear local
coordinatizations if and only if the lattice isomorphisms Φ̂x ◦ ωx : Lx → L(M ′

δx)
constitute a linear local coordinatization of L.

Proof. This is fairly trivial: since Γ̂xy = ωy ◦ ω−1x we have

Γ̂′δxδy ◦ Φ̂x = Φ̂y ◦ Γ̂xy iff Γ̂′δxδy = Φ̂y ◦ ωy ◦ (Φ̂x ◦ ωx)−1. �

Also, we obtain isomorphisms

ω′−1δx ◦ Φ̂x ◦ ωx : Lx → L′δx.

From Lemma 1.1 it follows that a linear isomorphism between linear local coor-
dinatizations induces a lattice isomorphism. Such a lattice isomorphism ϕ will
be called locally linear if, in addition, σ and σ′ are identity maps and δ = ϕ|S.

Decompositions into glued sums may be also viewed as tolerances θ (i.e. symmet-
ric and reflexive binary relations compatible with the lattice operations) where
a θ b if and only there is some block containing both a and b. Here, the additional
requirement is that θ is glued, i.e. a θ b for each prime quotient. Conversely, every
glued tolerance leads to a decomposition into a glued sum (see [2, 7]): For each
a ∈ L we have greatest aθ and smallest aθ such that a θ aθ and a θ aθ. Then

b ≤ aθ if and only if bθ ≤ a

which means that the maps x 7→ xθ and x 7→ xθ form a pair of adjoints between
L and its dual. In particular, they are join resp. meet preserving and S can be
recovered as

S = {x ∈ L | x = (xθ)θ} = {xθ | x ∈ L}

while σx = x and πx = xθ. The blocks are recovered as the maximal intervals
[a, b] such that a θ b. Moreover, each tolerance is determined by its set Q of
quotients (the a/b with a θ b) and these sets are characterized by the following
properties and their duals (see [2]):

a/b ∈ Q, a ≥ c ≥ d ≥ b implies c/d ∈ Q

a/b ∈ Q, c = a+ d, b = a ∩ d implies c/d ∈ Q

a/b, c/b ∈ Q implies (a+ c)/b ∈ Q.

For modular lattices L of finite height a particular such decomposition is given
by

b θ a if and only if [a, b] is complemented

for a ≤ b. In this case a∗ := aθ is the join of a and all its upper covers in L so
that a∗ is the greatest element such that [a, a∗] is complemented. a∗ is defined,
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dually, and subscript L is added, if necessary. We speak of the prime skeleton
and dual prime skeleton of L and denote them by S(L) and S∗(L), respectively.

The breadth of a modular lattice is defined as the maximum number of indepen-
dent elements in interval sublattice. It is easily seen (cf. [11]) that this is the
maximal breadth (height) of blocks of the prime tolerance. Breadth 1 lattices are
chains. Every breadth 2 modular lattice of finite height is Arguesian (cf. [12]).

2 Semi-primary lattices

An element c of a lattice L is called a cycle if (c] is a chain, and a dual cycle if
[c) is a chain. If c is a cycle and L modular then a+ c is a cycle in [a). If c, d ∈ L
are cycles and c ≤ d, then c is called a sub-cycle of d. A cycle c is called a k-cycle
or of rank k if (c] is of height k. The unique k-sub-cycle of the cycle c will be
denoted by ck.

LEMMA 2.1. In a modular lattice of finite height, if c is a rank k cycle and
c ≤

∑
ci with cycles ci of rank ki then k ≤ max ki. If, in addition, the ci are

independent then c ≤
∑
cki .

Proof. The proofs of Theorem 4.6 and Corollary 4.12 in [19] are valid for modular
lattices of finite height, in general. 2

A lattice L is said to be semi-primary if L is of finite height, modular and
every element of L is the join of cycles and the meet of dual cycles - see [19]
from where we recall the most important facts. A semi-primary lattice is called
primary if no elements have exactly two upper covers, equivalently, if all of its
complemented intervals are irreducible. Every interval sublattice or dual of a
semi-primary lattice is semi-primary.

Let L be a semi-primary lattice. For a ∈ L, the maximum rank of cycles c ≤ a
is called the rank of a. The rank of L is defined as the rank of 1. By Lemma 2.1
it is the maximum of the ranks of the ci if 1 is a join of cycles c1, . . . , cm.

LEMMA 2.2. [19] If rank(L) = r and a ∈ L is an r-cycle, then a has a comple-
ment in L. In fact, for every element x of L with a∩x = 0 there is a complement
a′ ≥ x of a.

Every element a of L is the join of independent cycles (6= 0) - and these form a
basis of a. Indeed, every rank(a)-sub-cycle of a can be completed to a basis of a.
By Ore’s Theorem, the basis elements are unique up to exchange isomorphism.
In particular, a has a well defined type tp(a) = (k1, k2, . . . , kr) where r is the rank
of a and ki is the number of i-cycles in a basis of a and m =

∑
ki is the number

of basis elements. Usually, we will order the basis elements a1, . . . , am such that
the ranks hi = h(ai) form a non-increasing sequence and will speak of an ordered
basis. Accordingly, we may denote the type of a also by the sequence [h1, . . . , hm].

5



The type tp(L) of L is defined as the type of 1. A basis of 1 is also called a
basis of L. If c1, . . . , cm is a basis of L, then the cki are the join irreducibles in a
sublattice which is isomorphic to the direct product of m chains of heights h(ci)
and the elements of which are said to fit into the basis. For each such a one has
the induced basis formed by the a ∩ ci. In particular, c11, . . . , c

1
m is a basis of (0∗].

Moreover, the c′i =
∑

j 6=i cj form a basis of the dual lattice (said to be dual to the
given basis) with the same fitting elements and (ci] ∼= [c′i). Thus, the type of a
semi-primary lattice is equal to the type of its dual.

LEMMA 2.3. Every atom or coatom fits into some basis.

Proof. For an atom this means a ≤ cj for some j. We proceed by induction on
the height of L. Let c be a rank(L)-cycle. If a ≤ c then we can consider any basis
of L containing c. If a 6≤ c then by Lemma 2.2 there exists a complement d of c
with a ≤ d. Now apply the inductive hypothesis for (d] and add c to the basis of
d so obtained. For a coatom we obtain a basis of the dual lattice and fit it into
the dual of this basis. 2

Of course, behind the equivalence of the two concepts of type there is a bijec-
tive correspondence between finite non-increasing sequences [h1, . . . , hm] of inte-
gers ≥ 1 and sequences (k1, . . . , kr) of integers ≥ 0 with kr 6= 0 given by

r = h1, ki = |{j | hj = i}|, hj = max{s | j ≤
∑
s≤i

ki}.

Defining a partial order on sequences of the first kind by

[g1, . . . , gn] ≤ [h1, . . . , hm] iff n ≤ m and gi ≤ hi for all i ≤ n

it translates to

(l1, . . . , ls) ≤ (k1, . . . , kr) iff s ≤ r and
s∑
i=t

li ≤
r∑
i=t

ki for all t ≤ s.

Both ways we have the descending chain condition so that we may use order
induction on types.

LEMMA 2.4. tp(I) ≤ tp(L) for every interval-sublattice I of a semi-primary
lattice L. In particular, rank I ≤ rank L.

Proof. Induction on the height of I. Consider I = [a) with an atom a and choose
a basis c1, . . . , cm of L such that a ≤ cm. Then the ci + a (i < m) together with
cm (if that is 6= a) form a basis of I and tp(I) ≤ tp(L). Dually, for I = (b]. 2

COROLLARY 2.5. The breadth of L equals the size of a basis, i.e. m =
∑r

i=1 ki.
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Proof. Consider a maximal number of independent elements in an interval [a, b].
Without loss of generality we may assume that these are atoms in [a, b]. Hence,
their number is bounded by the size of a basis of [a, b] and so of L. The converse
is trivial. 2

The geometric dimension gd(L) of a semi-primary lattice L is the maximal
number of independent cycles of maximal rank. The geometric rank is the max-
imal n such that there are at least 3 independent n-cycles. In other words, n is
maximal such that

∑r
i=n ki ≥ 3. Rank and geometric rank coincide if and only if

gd(L) ≥ 3, i.e. tp(L) = [n, n, n, . . .].
Given bases a1, . . . , am of L and a′1, . . . , a

′
m of L′ an isomorphism ϕ : L→ L′

is basis preserving if ϕ(ai) = a′i for all i. It follows that ϕ(ahi ) = ϕ(a′hi ) for all h.

3 Skeletons of semi-primary lattices

THEOREM 3.1. A modular lattice L of finite height is semi-primary if and only
if S(L) and S∗(L) are interval sublattices.

COROLLARY 3.2. Let L be a semi-primary lattice. If the type of L is (k1, . . . , kr)
then the type of S(L) is (k2, . . . , kr), and the corresponding blocks are of type (m)
where m =

∑r
i=1 ki. More precisely, if a1, . . . , am is a basis of L then the a1i form

a basis of the block (0∗] and the nonzero a
h(ai)−1
i form a basis of S(L). Conversely,

if the type of S(L) is (h1, . . . , hl) and the type of the blocks is (m) then the type
of L is (m−

∑
hi, h1, . . . , hl).

COROLLARY 3.3. The prime skeleton of a semi-primary lattice consists of the
elements which do not contain a maximal cycle.

COROLLARY 3.4. If a semi-primary lattice has a basis consisting of cycles of
the same rank r then the maximal cycles are the rank r cycles.

Proof. The corollaries will be proved at the end of the section. In the proof of
the theorem we shall use of the fact that for x ≤ b ∈ L we have x∗(b] = x∗∩ b and
x∗(b] = x∗, and dually for ideals.

The ‘only if’ is in [9]. For convenience, a proof is included, here. We proceed
by induction on the height of L. Let L be semi-primary. If a ≤ 1∗ is an atom
choose a basis c1, . . . , cm such that a ≤ c1. Since c1 6≤ 1∗ we have a < c1 and a
cycle d covering a. It follows a = d∗ ∈ S(L). Now, consider b ≤ 1∗ minimal such
that b 6∈ S(L). Then b is join irreducible in L and (b∗)∗ = b∗ > 0. Choose an atom
a ≤ b∗. By inductive hypothesis we have b ∈ S([a)) whence (b∗)∗ = (b∗)∗[a) = b,
a contradiction.

Conversely, assume that S(L) and S∗(L) are intervals. Having a covering
pair x < y in S(L) means that we have a covering x ≺ y in L (since S(L) is
an interval) and a covering x∗ < y∗ in S∗(L) (via the isomorphism) whence also
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x∗ ≺ y∗ in L (since S∗(L) is an interval). It follows that [x, x∗] and [y, y∗] are of
the same height. Therefore, all blocks have the same height.

We claim that the prime skeleton and the dual prime skeleton are intervals of
(b] for every coatom b of L. Consider an element a ∈ L such that 0∗(b] = 0∗ ∩ b ≤
a ≤ b. By hypothesis a + 0∗ ∈ S∗(L) whence a + 0∗ = x∗ with x = (a + 0∗)∗.
Since x = a∗ + (0∗)∗ = a∗ < a we have x∗(b] = x∗ ∩ b = (a + 0∗) ∩ b = a, that
is, a ∈ S∗((b]).On the other hand let a ≤ b∗. Since b∗ ≤ 1∗ we have a ∈ S(L),
by assumption. If a∗ ≤ b then a = (a∗)∗ = (a∗)∗(b] ∈ S((b]). Assume a∗ 6≤ b and
c∗ 6= a where c = b∩ a∗ ≺ a∗. Then c∗ ≺ a and c = (c∗)

∗ ∈ S∗(L) since [c∗, c] has
the height of a block. By hypothesis one has b ∈ S∗(L), too. Being a subinterval
of a block, [b∗ ∩ a∗, a∗] is complemented and so is, by modularity, [b∗, b∗ + a∗].
Hence b∗ + a∗ ≤ (b∗)

∗ = b, a contradiction.
In view of the inductive hypothesis we have that every join irreducible element

a < 1 is a cycle. Finally, assume that 1 is join irreducible. Then 1∗ ∈ S(L) has
at most one lower cover b since b ∈ S(L), b∗ < 1, and so b = 1∗∗. In this case
L is a chain. Thus, every element of L is a join of cycles. Meets are dealt with,
dually.

Coming to the proof of the corollaries, recall that (0∗] has type (m) with

m =
∑
ki. Since for b =

∑
a
h(ai)−1
i the filter [b) has type (m), too, we get b = 1∗.

In the second corollary, if a is covered by the cycle c, then a = c∗ ∈ S(L). Thus,
any element not containing a maximal cycle is a join of elements in S(L) whence
in S(L). The converse is obvious from the type of S(L). Finally, if rank ai = r
for all i, then c ≤

∑
ar−1i = 1∗ for every cycle c of rank < r whence c ∈ S(L) and

c is not maximal. 2

4 Geometric decomposition

THEOREM 4.1. For every integer l and semi-primary lattice L there is a glued
tolerance θ = θl such that for all a ≤ b

a θ b if and only if rank[a, b] ≤ l.

Given any basis a1, . . . , am with rank ai = hi the skeleton and dual skeleton are

Sθ =
(∑

ahi−li

]
, Sθ =

[∑
ali

)
.

The blocks are all of the same type

(k1, . . . kl−1, k) with k =
r∑
i=l

ki, (k1, . . . , kr) = tp(L).
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Of course, we put h − l := 0 if h < l. One observes that for L = L(RM) with
a completely primary uniserial ring R (cf. Section 5) this tolerance θ is given
by X θ Y if and only if P lX ⊆ Y and P lY ⊆ X and that Xθ = P lX and
Xθ = {x ∈M | P lx ⊆ X}.
Proof. Let L be a semi-primary lattice. By Lemmas 2.4 and 2.1 it is clear that θ
is a tolerance. Let (k1, . . . , kr) be the type of L and let m =

∑
ki. Clearly, the

indicated type of blocks is a bound on types of interval sublattices of rank ≤ l.
First, we establish a decomposition into a glued sum with the required skeletons
and type of blocks. We do so by an iterated formation of prime skeletons.

Let S1(L) = S(L) and S∗1(L) = S∗(L). For j > 1 let Sj(L) be the prime
skeleton of Sj−1(L), and S∗j(L) the dual prime skeleton of S∗j−1(L). Observe
that the isomorphism x 7→ x∗L of S(L) onto S∗(L) restricts to an isomorphism

∗ : S∗j(S(L))→ S∗j(S∗(L)).

By recursion on j, we define isomorphisms

ϕLj : Sj(L)→ Sj∗(L).

Let ϕL1 (x) = x∗L. To define ϕLj+1 for j > 1, we compose

ϕ
S(L)
j : Sj(S(L))→ S∗j(S(L))

with the above isomorphism, that is

ϕLj+1(x) = ϕ
S(L)
j (x)∗.

Using induction on j, we prove that for any semi-primary lattice L, the identity
map and the map ϕLj provide a decomposition of L into a glued sum with skeleton
Sj(L). The case j = 1 is the classical decomposition into maximal complemented
intervals. In the step from j to j + 1 we apply the inductive hypothesis to j and
S(L). This yields

x ≤ ϕ
S(L)
j (x) ≤ ϕ

S(L)
j (x)∗ = ϕLj+1(x) for x ∈ Sj+1(L) ⊆ Sj(L).

Also, considering an element a ∈ L we have a ∈ [y, y∗]L for some y ∈ S(L) and

y ∈ [x, ϕ
S(L)
j (x)]S(L) for some x ∈ Sj(S(L)). Then x ≤ y ≤ a ≤ y∗ ≤ ϕ

S(L)
j (x)∗ =

ϕLj+1(x), that is a ∈ [x, ϕLj+1(x)]. Finally, if x ≺ y in Sj+1(L) then the same is
true in Sj(L) and

y ≤ ϕ
S(L)
j (x) ≤ ϕLj+1(x).

By Corollary 3.2, the type of Sj(L) is (kj+1, . . . , kr). Using induction we
show that the type of [x, ϕLj (x)] is (k1, . . . , kj−1,

∑r
i=j ki). Let x ∈ Sj+1(L). The

type of [x, ϕ
S(L)
j (x)] is (k2, . . . , kj,

∑r
i=j+1 ki) by the inductive hypothesis. Since

ϕ
S(L)
j (x) ∈ S(L) the interval [ϕ

S(L)
j (x), ϕLj+1(x)] is a maximal complemented one
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even in L and of type (
∑r

i=1 ki). It follows that the interval [x, ϕLj+1(x)] has

ϕ
S(L)
j (x) as meet of its coatoms and [x, ϕ

S(L)
j (x)] as its prime skeleton. Hence, by

Corollary 3.2, its type is

(
r∑
i=1

ki −
r∑
i=2

ki, k2, . . . , kj,

r∑
i=j+1

kj) = (k1, k2, . . . , kj,
r∑

i=j+1

ki).

Now, let j = l. Then the blocks are of rank l and of the claimed type. For any
basis we have u ∈ Sl(L) where u =

∑
ahi−li . Since the height of u and [u, ϕlu]

add up to the height of L, we have that u is the greatest element of Sl(L) - which
is an ideal in view of Theorem 3.1. Moreover, if x ≤ u then x ≤ ϕlx ≤ xθ since
rank [x, ϕlx] ≤ l. Hence ϕlx = xθ ∈ Sθ(L) and x ∈ Sθ(L) since [x, ϕlx] is a
maximal interval of rank ≤ l. Conversely, consider a ∈ Sθ(L) i.e. a = bθ for some
b. Since we have a glued sum, there is an x ≤ u such that x ≤ b ≤ xθ. It follows
a = bθ ≤ (xθ)θ = x ≤ u. This summarizes to Sθ(L) = (u]. The claim about
Sθ(L) follows by duality. 2

COROLLARY 4.2. On each semi-primary lattice L of breadth ≥ 3 there is a glued
tolerance having as blocks the maximal intervals of gd ≥ 3, namely θn where n is
the geometric rank of L. The skeleton S+(L) of θn is an ideal of L. S+(L) is a
chain of height h1 − n if and only if L has geometric dimension 1. Otherwise,
S+(L) is of breadth 2 and type [h1 − n, h2 − n].

Proof. We have n = h3 and h1 > h3. Moreover, for u as in the proof of the
theorem we have u = ah1−n1 + ah2−n2 if h2 > h3 and u = ah1−n1 if h2 = h3. 2

Let n be the geometric rank of the semi-primary lattice L. Skeleton and dual
skeleton of L with repsect to the tolerance θn are denoted by S+(L) and S+(L).
We speak of the geometric decomposition and write a+ = aθ for the join of a and
all cycles of rank ≤ n in [a). We define a+, dually.

COROLLARY 4.3. If x ≺ y in S+(L) then [x, y+] has rank n + 1 and for every
cycle c of rank n+ 1 in [x, y+] one has c1 = y and cn = c ∩ x+.

COROLLARY 4.4. If u is a coatom of S+(L) then u is of one of the types below
and there is an ordered basis a1, . . . , am of L with hi such that

u = ah1−n−11 u+ = ah1−11 +
∑

i>1 ai if tp(u) = [h1 − n− 1],

u = ah1−n−11 + ah2−n2 u+ = ah1−11 +
∑

i>1 ai if tp(u) = [h1 − n− 1, h2 − n],

u = ah1−n1 + ah2−n−12 u+ = ah2−12 +
∑

i 6=2 ai if tp(u) = [h1 − n, h2 − n− 1].

Proof. By Lemma 2.3 u fits into some basis of S+(L) hence it may have only one
of the above types. u+ is a coatom of L, hence by Lemma 2.3 it fits into some
ordered basis. Since u+ is a coatom of S+(L) it has the required form. Now, for
x = ah1−n−11 +ah2−n2 the interval [x, u+] has the type of a block, whence x = u. 2
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5 Completely primary uniserial rings

An (associative) ring R (with unit) is said to be completely primary uniserial
(CPU for short) if there is a two sided ideal P of R such that every left ideal
as well as every right ideal of R is of the form P k (where P 0 = R) - cf. [19].
The rank of such a ring is the smallest integer n such that P n = {0}. Particular
commutative examples are the rings A/Apn where A is a principal ideal domain
and p a prime. The following basic properties of CPU rings can be easily verified.

1. There exists an element a ∈ R such that P = aR = Ra.

2. P i = aiR = Rai.

3. an−1 6= 0, an = 0.

4. r is left, equivalently right, invertible if and only if r ∈ R∗ = R \ P .

5. Every element r ∈ R is of the form r = aiu = vai where u and v are units,
0 ≤ i ≤ n such that r ∈ P i \ P i+1.

6. 1− a ∈ R∗ and R is generated by R∗.

COROLLARY 5.1. Let R be a CPU ring of rank n with maximal ideal P . Then
for any cyclic left R-module, L(RM) is a chain of height ≤ n and two such
modules are isomorphic if and only if they have the same height. In particular,
the left R-modules Pm−i/P n−i and Pm are isomorphic for m ≥ i.

Proof. The multiplication by ai on the right is a homomorphism of Pm−i onto
Pm with kernel P n−i. 2

THEOREM 5.2. If R is a CPU ring then for every k ≥ rank R there exists a
CPU ring S of rank k such that R is a homomorphic image of S.

Proof. Let R be a CPU ring of rank n with maximal ideal Ra. Clearly, it suffices
to consider k = n + 1. If n = 1 then R is a division ring and we may use
S = R[x]/(x2) where x is a commuting variable.

So let n ≥ 2. We first construct a homomorphic preimage F of the envisioned
ring S. Let M be the free monoid with x and the elements of the unit group R∗

as generators and the following relations

uv = w if that is the case in R∗,
ux = xv if va = au in R with u, v ∈ R∗.

Then there is a homomorphism Φ of M into R with Φx = a and Φu = u for
u ∈ R∗ so that R∗ may be considered a sub-monoid of M . Moreover, the free
monoid on one generator x is obtained as a homomorphic image mapping x to x
and all generators u ∈ R∗ to 1. Hence,

xku = xlv with u, v ∈ R∗ implies k = l.

11



Moreover, each element of M has a representation vxk = xku with u, v ∈ R∗ and
k ≥ 0 since these elements form a sub-monoid due to the required relations.

Now, let F = Z[M ] the free ring over this monoid, i.e. each element of F has
a representation∑

i

zix
kiui =

∑
i

xkiziui with ui ∈ R∗ and zi ∈ Z.

Here, we may require the xkiui to be pairwise distinct and the zi 6= 0; under this
proviso, the xkiui are unique up to permutation and for each xkiui the associated
coefficient zi is uniquely determined. Z(R∗) is the subring of F consisting of the
elements

∑
i ziui with ui ∈ R∗, zi ∈ Z and

xkF =
∞⋃
l=k

xlZ(R∗).

By the defining relations, the u ∈ R∗ are units in F . Also, using in addition the
commutation relations

vu = uvv−1u−1vu for u, v ∈ R∗

we see that Fr ⊆ rF for all r ∈ F . Since rF ⊆ Fr, too, we have

rF = Fr for all r ∈ F

and every left or right ideal is an ideal. In particular, every maximal ideal Q of
F is maximal both as left and right ideal whence F/Q is a division ring and Q a
prime ideal of F .

Clearly, Φ extends to a ring homomorphism from F onto R. Let I be the
kernel of Φ and P = Φ−1(Ra), in particular x ∈ P . Then P is a maximal ideal
of F and P n ⊆ I ⊆ P . Also, Q = P ∩ Z(R∗) is an ideal of Z(R∗) and

xkFQ =
∞⋃
l=k

xlQ.

Now, consider q =
∑

i ziui ∈ Q. There are vi ∈ R∗ such that uix = xvi und we
have r =

∑
i zivi ∈ Z(R∗). Of course, xr = qx and aΦ(r) = Φ(q)a ∈ a2R. It

follows Φ(r) 6∈ R∗ whence r ∈ Q. This shows Qx ⊆ xQ. Similarly, xQ ⊆ Qx
whence

Qx = xQ and QF = FQ.

Since x ∈ P we have P = xF +Q and it follows

P l = xlF +
∑
k<l

xkQ.

12



Now, assume xn ∈ P n+1. Then we have

xn = xn+1r +
∑
k≤n

xkqk =
∑
j

xn+1+kjzjuj +
∑
k,i

xkzkiuki

with zj, zki ∈ Z, uj, uki ∈ R∗ and qk =
∑

i zkiuki ∈ P for all k ≤ n. We
may assume that un1 = 1 and that all xn+1+kjuj pairwise distinct as well as, for
fixed k, all xkuki. Then all these elements of M are pairwise distinct and from the
uniqueness of the representation we conclude zn1 = 1 and zj = zki = 0, otherwise.
This yields 1 = qn ∈ P , a contradiction.

Now, assuming I = PI one has I ⊆ P k for all k and P n = P n+1 contradicting
xn ∈ P n \P n+1. Thus, PI 6= I and we may choose y ∈ I \PI. By Zorn’s Lemma
there is an ideal J ⊇ PI maximal with y 6∈ J and J has a unique upper cover
J∗ in the ideal lattice. Now J ⊆ P since J 6= F and P n+1 ⊆ J and P maximal
(choose a maximal ideal Q ⊇ J ⊇ P n+1, then P ⊆ Q since Q is prime and P = Q
since P is maximal). Now, H/PH with H = I + J is a left R/P -vector space.
Consequently, the interval [PH,H] of the ideal lattice is complemented (recall
that left ideals are ideals) and so is the subinterval [J, I + J ]. Hence there is a
complement K of J∗ in [J, I +J ] which is a coatom in this interval. In particular
J = K ∩ J∗ whence y 6∈ K and K = J by the maximality of J . It follows that
J is a lower cover of I + J . Then S = F/(I ∩ J) is Artinian of height n + 1.
Let us pass to this ring using the same names for the corresponding ideals. In
particular, we have the unique maximal ideal P with P n+1 = 0 and 0 6= P n ⊆ I.
Also, I is a minimal ideal. Hence I = P n and the filter [I) in the ideal lattice
consists exactly of the P k, k ≤ n, since S/I ∼= R is CPU of rank n. Now, consider
any ideal H 6⊇ I. Then I ∩ H = 0 and I + H = P k for some k ≤ n and
P k+1 = PI +PH ⊆ H whence k = n and H = 0. Thus, S is a CPU ring of rank
n+ 1 and S/I ∼= R. 2

6 Submodule lattices

A modular lattice L is Arguesian if

(A0 +B0) ∩ (A1 +B1) ≤ A2 +B2 implies C2 ≤ C0 + C1

for all Ai, Bi ∈ L (i = 0, 1, 2) where {i, j, k} = {0, 1, 2} and

Ci = (Aj + Ak) ∩ (Bj +Bk).

In geometric terms: central perspectivity implies axial perspectivity. Every lat-
tice L(RM) of submodules is Arguesian. If R is a CPU ring and RM is finitely
generated, then L(RM) is also primary. Lattices isomorphic to such shall be
called coordinatizable. The main result in [19] is the following.
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THEOREM 6.1. Every primary Arguesian lattice of geometric dimension ≥ 3 is
coordinatizable.

We collect some more facts about finitely generated modules RM over a CPU
ring R and their lattices L = L(RM). The ring R can be chosen so that RM is
faithful - only such will be considered in the sequel. Then the rank of R is n =
rank L. If Re0, . . . , Rem−1 form a basis of L, i.e. if

M =
m−1⊕
i=0

Rei

then e0, . . . , em−1 will be called a basis of RM and the e0, . . . , em−1 with the
relations ahiei = 0 yield a presentation of RM where P = Ra is the maximal
ideal of R and hi = h(Rei) - but observe that

rei = 0 implies r = 0 if and only if h(Rei) = n.

If hi ≥ hj for i ≤ j then we have an ordered basis. The type of L will be also
called the type of RM . Viewing RM and SN as 2-sorted structures one gets that
for RM and SN of the same type, isomorphism α : R → S, and all ordered
bases e0, . . . , em−1 of RM and f0, . . . , fm−1 of SN there is a uniquely determined
α-semi-linear bijection Φ : RM → SN such that

Φ(ei) = fi for i = 0, . . . ,m− 1.

Given a basis e0, . . . , em−1 such that h(e0) = n and a ∈ R such that Ra is the
maximal ideal of R, we have the canonical semi-frame in L (cf. [18]) consisting
of the

Ei = Rei (0 ≤ i < m) and E0i (1 ≤ i < m), where Eij = R(ei + ej).

In particular, if hi = n for i ≤ l then the Ei and E0i (i ≤ l) generate a frame of
order l in the sense of von Neumann (cf. [13]).

COROLLARY 6.2. The automorphism group of RM acts transitively on the set
of semi-frames associated with ordered bases.

We say that X is an axis for Y and Z in L if

X ⊕ Y = Y ⊕ Z and X + Z ≥ Y.

Observe that this concept is not symmetric in Y and Z.

LEMMA 6.3. Let h(Rei) ≥ h(Rej). Then X = R(ei+rej) for some r ∈ R if and
only if X is a complement of Rej in the ideal (Rei +Rej] of L and r ∈ R∗ if and
only if X is an axis for Rei, Rej. If h(Rei) = n then r is uniquely determined.

14



Proof. Such complement X is cyclic since X ∼= Rei. Hence X = R(akei + rej)
for some k and r. If k > 0 then X + Rej = Rakei + Rej < Rei + Rej. Thus,
k = 0. Now, r = aks with some k and s ∈ R∗ and X +Rei < Rei +Rej if k > 0.
Therefore r ∈ R∗ if X is an axis. The converse claims are obvious. Finally,
R(ei + rej) = R(ei + sej) implies ei + rej = x(ei + sej) for some x whence x = 1
and r = s if h(Rei) = n. 2

Define the coordinate domain

Rij = {R(ei + rej) | r ∈ R}.

LEMMA 6.4. L is generated by the canonical semi-frame together with R01∪R10

resp. R01 provided that h0 = h1 = rank L resp. also h2 = rank L.

Proof. We proceed by induction on n = rank L. Assume that the basis is ordered
with l maximal such that hl = n. Let K be the sublattice generated by R01∪R10

and the canonical semi-frame. First, observe that 0 and 1 may be interchanged
since

E1i = R(e1 + ei) = (R(−e0 + e1) + E0i) ∩ (E1 + Ei) for i > 1.

Moreover, any k with 1 < k ≤ l may take the role of 1 since

R(e0 + rek) = (R(e0 − re1) + E1k) ∩ (E0 + Ek) ∈ K.

Further elements of K are

Rre1 = (R(e0 + re1) + E0) ∩ E1, Rrei = (Rre1 + E1i) ∩ Ei

R(ae0 + ei) = (R(−ae0 + e1) + E1i) ∩ (E0 + Ei)

Rr(ei + ej) = Eij ∩ (Rrei + Ej) for i ≤ l

R(aeh + raej) = (Raeh +Raej)∩R(eh + sej) for {h, j} = {0, 1} where ra = as.

From these we obtain the canonical semi-frame and coordinate domains associ-
ated with the basis ae0, . . . , ael, el+1, . . . em−1 of the R/P n−1-module

U =
∑
j≤l

Raej +
∑
j>l

Rej.

Since the R/P n−1-submodules of U are just the R-submodules of U we have all
of them in K, by induction. On the other hand, considering a cyclic submodule
X = R

∑
j rjej of RM not in (U ], we have rj invertible for some j ≤ l and may

assume j = 0 and r0 = −1. Then

X =
⋂
j>0

(R(e0 − rjej) +
∑
k 6=0,j

Rek) ∈ K.

Since any element of L is a join of cyclic submodules, we are done. 2
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COROLLARY 6.5. Let ϕ : L(RM) → L(SN) be a lattice isomorphism matching
the canonical semi-frames associated with ordered bases e0, . . . , em−1 of RM and
f0, . . . , fm−1 of SN . Assume that there are isomorphisms α, β : R→ S such that
ϕ(R(e0 + re1)) = S(f0 + α(r)f1) and ϕ(R(re0 + e1)) = S(β(r)f0 + f1) for all
r ∈ R. If gd(LRM) ≥ 2 then α = β and ϕ = Φ̂ for the α-semi-linear bijection
Φ : RM → SN such that Φ(ei) = fi for all i.

Proof. If r ∈ R∗ then S(f0 + β(r)−1f1) = S(β(r)f0 + f1) = ϕ(R(re0 + e1)) =
ϕ(R(e0 + r−1e1)) = S(f0 + α(r−1)f1) whence β(r)−1 = α(r−1) and α(r) = β(r)
and α = β since R is generated by R∗. Thus Φ̂ = ϕ on the generators of L(RM),
whence everywhere. 2

COROLLARY 6.6. Every isomorphism between lattices L(RM) and L(SM) as
above of gd ≥ 3 is semi-linearly induced.

Proof. (cf. [5]) Following von Neumann (cf. [13]), R may be identified with any of
the coordinate domains Rij (i, j ≤ l) the operations given in terms of the frame.
The same holds for S so we get the isomorphisms α and β. 2

In particular, for such lattices we may call R the coordinate ring.

7 2-gluings

We now consider local coordinatizations Rx,Mx, ωx, x ∈ S+(L) associated with
the geometric decomposition of a primary Arguesian lattice L of breadth m ≥ 3.
Recall that all Lx are of the same type, of breadth m, gd ≥ 3, and of rank n,
where n is the geometric rank of L. The ring Rx has to be a coordinate ring of Lx.
We say that a basis e0, . . . , em−1 of RxMx is associated with the basis b0, . . . , bm−1
of Lx (via the given coordinatization) if

ωx(bi) = Rxei for all i.

First, we deal with the special case where S+(L) = {0,>} ∼= 2, the two element
lattice. We write R = R0, S = R>, and γ = γ0>. We denote the elements of L by
the corresponding submodules of M0 resp. M> with a double notation X = γX
for elements in L0 ∩ L>.

Consider a basis b0, . . . , bm−1 of L with ranks hi. In view of Corollary 4.2,
we may arrange it such that h2 − 1 = h0 = h1 = n (this ordering fits better
to the applications of the Arguesian law). We say that a basis e0, . . . , em−1 of

RM0 associated with b0, b1, b
n
2 , . . . and basis f0, . . . , fm−1 of SM> associated with

>+ b0, . . . ,>+ bm−1 form a pair of bases associated with b0, . . . , bm−1, i.e. one has

bi = Rei, >+ bi = Sfi = Rei + P n−1e2 for i 6= 2, b2 = Sf2, bn2 = Re2 = Qf2
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where P and Q are the maximal ideals of R and S, respectively. We call such a
pair b-synchronized if Sb = Q, and if (cf. Fig.1.)

R(e0 + ei) + P n−1e2 = S(f0 + fi) for i 6= 2

R(e0 + e2) + P n−1e2 = S(f0 + bf2).

Observe that the ordering matters.

THEOREM 7.1. Let L be a primary Arguesian lattice of breadth ≥ 3 with
S+(L) ∼= 2. Then for every local coordinatization ωx : Lx → L(RxMx), (x = 0,>),
basis b0, . . . , bm−1 of L such that h(b0) = h(b1) = h(b2) − 1 = rank L, basis
e0, . . . , em−1 of M0 associated with b0, b1, b

n
2 , . . . and generator b of the maximal

ideals of S = R> there is a basis f0, . . . , fm−1 of M> yielding a b-synchronized pair
of bases associated with b0, . . . , bm−1. Given such, there is a unique isomorphism
α : R = R0 → S such that for the gluing map γ = γ0>

γ(R(e0 + re1) + P n−1e2) = S(f0 + α(r)f1).

Moreover, with this α one has γ = Φ̂ where Φ is the α-semi-linear map from

RM0/(P
n−1e2) into SM> such that

Φ(ei + P n−1e2) = fi for i 6= 2, Φ(e2 + P n−1e2) = bf2.

A b-synchronized pair of bases associated with a basis of L is strictly b-synchronized
if R = S and if α in the Theorem is the identity map.
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Figure 1.

COROLLARY 7.2. For L as in the theorem, every coordinatization of L0 may
be completed to a linear local coordinatization of L. Given such, there is an
automorphism Ψ> of RM> such that for the local coordinatization ω0, Ψ̂> ◦ ω>
the ei and fi form a strictly b-synchronized pair.

COROLLARY 7.3. Let L and L′ be primary Arguesian lattices of breadth ≥ 3 of
the same type, with S+(L) ∼= 2 ∼= S+(L′), and with linear local coordinatizations
over the same ring. Let c and c′ be cycles of maximal rank n + 1 in L resp.
L′. Then every linear isomorphism Φ0 of M0 onto M ′

0 such that Φ̂0ω0c
n = ω′0c

′n

can be extended to a linear isomorphism of the local coordinatizations such that
Φ̂>ω>c = ω′>c

′.

COROLLARY 7.4. In a primary Arguesian lattice L of breadth ≥ 3 the maximal
intervals of gd ≥ 3 have isomorphic coordinate rings and are isomorphic. The
gluing maps are semi-linearly induced.

These rings are called the coordinate rings of L.
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Proof. Choose the basis f0, . . . , fm−1 to obtain a pair of bases associated with
the given basis of L. Now R(e0 + ei) + P n−1e2 is a axis for Re0 + P n−1e2 and
Rei + P n−1e2 in the filter [P n−1e2) of L(RM0) and, via the gluing map, an axis
for Sf0 and Sfi (resp. Sbf2 if i = 2) in L(SM>). Thus, by Lemma 6.3 there are
si ∈ S∗ such

R(e0+ei)+P
n−1e2 = S(f0+sifi) for i 6= 0, 2 R(e0+e2)+P

n−1e2 = S(f0+bs2f2).

To carry out the synchronization, replace fi by sifi for i 6= 0.

Now, assume that a b-synchronized local coordinatization is given. R(e0 + re1) +
P n−1e2 is a complement of Re1 + P n−1e2 in the interval [P n−1e2, Re0 + Re1 +
P n−1e2] which corresponds via the gluing map to Sf1 in the ideal (Sf0 + Sf1] of
L(SM>). Hence, by Lemma 6.3 there is a unique α(r) ∈ S such that

R(e0 + re1) + P n−1e2 = S(f0 + α(r)f1).

We have α(0) = 0 and α(1) = 1. We have to show that α is an isomorphism. In
doing so, we may consider the ideal (b0 +b1 +b2] of L which amounts to assuming
m = 3. We proceed as in the proof of Theorem 2.1 of [8]. The calculations are by
basic linear algebra as long as they are done within a single one of L0 or L>. Yet,
the passage from L0 to L> via the gluing can be calculated only for the sublattice
generated by the Rei + P n−1e2, R(e0 + re1) + P n−1e2 and R(e0 + e2) + P n−1e2.
To show compatibility with addition, let r, s ∈ R and consider

A0 = Re1, A1 = R(e0 + r(e1 + e2)), A2 = S(f0 + α(r)(f1 + f2))

B0 = R(e0 + se1), B1 = R(e1 + e2), B2 = S(f1 + f2).

Then

(A0 +B0) ∩ (A1 +B1) = Re0 ≤ S(f0) + S(f1 + f2) = A2 +B2

C2 = (A0 + A1) ∩ (B0 +B1) = R(e0 + (r + s)e1 + re2)

C1 = (Sf1 + A2) ∩ (S(f0 + α(s)f1) +B2) = S(f0 + (α(r) + α(s))f1 + α(r)f2)

A1+A2 ≤ R(e0+re1)+Re2+A2 ≤ S(f0+α(r)f1)+Sf2+A2 = S(f0+α(r)f1)+Sf2

B1 +B2 ≤ Re1 +Re2 +B2 ≤ Sf1 + Sf2 +B2 = Sf1 + Sf2

C0 ≤ (S(f0 + α(r)f1) + Sf2) ∩ (Sf1 + Sf2) = Sf2.

From the Arguesian law we get

S(f0 + α(r + s)f1) + Sf2 = C2 + Sf2

≤ C0 + C1 + Sf2 ≤ C1 + Sf2 = S(f0 + (α(r) + α(s))f1) + Sf2
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implying
f0 + α(r + s)f1 = x(f0 + (α(r) + α(s))f1)

for some x ∈ S and α(r + s) = α(r) + α(s).

Concerning multiplication consider

A0 = Re1, A1 = R(e0 + re1 + (1− r)e2), A2 = S(f0 + α(r)f1 + (1− α(r))f2)

B0 = R(e0 + se1), B1 = R(e0 + e2), B2 = S(f0 + f2).

Then

(A0 +B0) ∩ (A1 +B1) = Rr(e0 + e1) = (Re0 +R(e0 + re1)) ∩R(e0 + e1)

≤ Sα(r)(f1 − f2) + S(f0 + f2) = A2 +B2

C2 = R(e0 + rse1 + (1− r)e2)

C1 = (Sf1 + A2) ∩ (S(f0 + α(s)f1) +B2) = S(f0 + α(r)α(s)f1 + (1− α(r))f2).

Let I = {x ∈ S | xα(r) = 0}. Then

C0 ≤ (A1+Sf2+A2)∩(B1+Sf2+B2) = (s(f0+α(r)f1)+Sf2)∩(Sf0+Sf2) = If0+Sf2.

By the Arguesian law

S(f0+α(rs)f1)+Sf2 = C2+Sf2 ≤ C0+C1+Sf2 ≤ If0+Sf2+S(f0+α(r)α(s)f1)

Hence there are x, y ∈ S such that

f0 + α(rs)f1 = xf0 + y(f0 + α(r)α(s)f1) and x · α(r) = 0

Then

x+ y = 1, α(rs) = y · α(r)α(s) = (1− x)α(r)α(s) = α(r)α(s).

We now claim that e1, e0, e2, . . . and f1, f0, f2, . . . form a b-synchronized pair as-
sociated with the basis b1, b0, b2, . . .. We use the isomorphism

Ψ : Rae2 +
∑
i 6=2

Rei →M0/P
n−1e2, Ψ(ei) = ei + P n−1e2, Ψ(ae2) = e2 + P n−1e2

where P = Ra (cf. Corollary 5.1). Now, for i > 2

R(e1 + ei) + P n−1e2 = Ψ̂((R(e0 − e1) +R(e0 + ei)) ∩ (Re1 +Rei))

= (S(f0 − f1) + S(f0 + fi)) ∩ (Sf1 + Sfi) = S(f1 + fi)

R(e1+e2)+P n−1e2 = Ψ̂(R(e1+ae2)) = Ψ̂((R(e0−e1)+R(e0+ae2))∩(Re1+Rae2))
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= (S(f0 − f1) + S(f0 + bf2)) ∩ (Sf1 + Sbf2) = S(f1 + f2).

Hence, we also get an isomorphism β as required in Corollary 6.5 and may con-
clude that γ is linearly induced by Φ. 2

Proof of the Corollaries. To obtain a linear local coordinatization of L turn

SM> into an R-module via α. Now, assume that we start with a linear local
coordinatization, the gluing map being induced by the linear map Γ. Theorem
7.1 provides us with α and a-synchronizing fi. By Lemma 6.3 we have si ∈ R∗
such that

Γ(ei + P n−1e2) = sifi for i 6= 2, Γ(e2 + P n−1e2) = s2af2.

Let Ψ> be the automorphism of the R-module M> such that

Ψ>(fi) = s−1i fi for all i.

Now, let local coordinatizations Mx, ωx of L and M ′
x, ω

′
x of L′ be given, all over

the same ring R, and an isomorphism Φ0 : M0 →M ′
0. Complete c = b2 to a basis

of L such that h(b0) = h(b1) = n. Then b′2 = c′ and the b′j = ω′−10 Φ̂0ω0(bj) form

a basis of L′ with h(b′0) = h(b′1) = n since ω′−10 Φ̂0ω0(b
n
2 ) = c′n. Choose bases ei of

M0, fi of M> and Ψ> according to Corollary 7.2. Analogously, choose bases e′i
of M ′

0, f
′
i of M ′

> and Ψ′>. Now, let Θ : M> →M ′
> be the isomorphism such that

Θ(fi) = f ′i and Φ> = Ψ′−1> ◦Θ ◦Ψ>. Then

Φ̂>ω>(b2) = Ψ̂′−1> Θ̂Ψ̂>ω>(b2) = Ψ̂′−1> Θ̂(Rf2) = Ψ̂′−1> (Rf ′2) = ω′>(b′2). �

8 2× 2-gluings

THEOREM 8.1. Let L be a primary Arguesian lattice of breadth ≥ 3 and S ∼=
2 × 2 a cover preserving sublattice of S+(L) with atom v and with 0 ∈ S. Then
a local coordinatization of LS = ∪x∈SLx over a single ring R is linear provided
that all gluing maps γxy with y 6= v are linearly induced.

COROLLARY 8.2. Let L, S and L′, S ′ as in the Theorem with local coordinati-
zations of LS and L′S′ given by Mx and M ′

x over the same R. Let v be an atom of
S. Then isomorphisms δ : S → S ′ and Φx : Mx →M ′

x yield a linear isomorphism
provided they do so if one considers the sublattices S \ {v} and {0, v}, only.

COROLLARY 8.3. Every primary Arguesian lattice of breadth ≥ 3 admits a
linear local coordinatization (over any of its coordinate rings)
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v = Pn−1e2
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0+

e0

u = Pn−1e1

e1 = af1

h2

Figure 2.

Proof. Let us denote the atoms of S by u, v and let > = u + v. Choose cycles
a1 ∈ Lu and a2 ∈ Lv of rank n + 1 where n is the geometric rank of the L.
Then a11 = u 6= v = a12 and we may complete to a basis a0, . . . , am−1 of L with
h(a0) = n. Now assume that a local coordinatization ωx : Lx → L(RMx) of LS
over the same ring R is given such that the gluing maps γxy are linearly induced
with the possible exception of γv>. In order to prove that γv> is linearly induced
we may re-coordinatize the Lx by means of linear maps.

Choose a such that Ra is the maximal ideal of R. Let e0, e1, e2, . . . be a
basis of M0 associated with the basis a0, a

n
1 , a

n
2 , . . .. In view of Corollary 7.2,

after re-coordinatization of Mu there is a basis f0, f2, f1, . . . of Mu completing
e0, e2, e1, . . . to a strictly a-synchronized pair of bases associated with the basis
a0, a

n
2 , a1, . . . of L0 ∪Lu, By the same token, we obtain a basis g0, g1, g2, . . . of Mv

completing e0, e1, e2 a strictly a-synchronized pair of bases associated with the
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basis a0, a
n
1 , a2, . . . of L0 ∪ Lv. Finally, one produces a basis h0, h1, h2, . . . of M>

completing f0, f1, f1, . . . to a strictly a-synchronized pair of bases associated with
the basis u+ a0, u+ a1, u+ a2, . . . of Lu ∪ L>. See Fig.2.

Again, we denote an element of LS by the corresponding element of L(RMx)
- for all suitable x. Then we get

R(rg0 + sg1 + tag2 +
∑
i>2

rigi) + P n−1g1

= R(re0 + se1 + te2 +
∑
i>2

riei) + P n−1e1 + P n−1e2

= R(rf0 + saf1 + tf2 +
∑
i>2

rifi) + P n−1f2 = R(rh0 + sah1 + tah2 +
∑
i>2

rihi).

Now, R(g0 + g2) + P n−1g1 (i.e. its image under γv>) is an axis for Rh0 and Rh2
in L(RM>) hence by Lemma 6.3 there is an s ∈ R∗ such that

R(g0 + g2) + P n−1g1 = R(h0 + sh2)

R(ah0 + ash2) = (R(h0 + sh2))
n−1 = (R(g0 + g2))

n−1 + P n−1g1

= R(ag0 + ag2) + P n−1g1 = R(ah0 + ah2).

The reader should be warned that (Rg)k has rank ≤ k while P kg has corank ≥ k
in Rg. If follows a = as whence with h′2 = sh2 we have

R(g0 + g2) + P n−1g1 = R(h0 + h′2) and ah′2 = ah2.

Replacing h2 by h′2 we achieve that g0, g2, g1, . . . and h0, h2, h1, . . . form an a-
synchronized pair associated with the basis v + a0, v + a2, v + a1, . . . of Lv ∪ L>.
Let α be the unique automorphism of R inducing γv> according to Theorem 7.1.
In particular,

>+R(g0 + g1 + rg2) = R(h0 + ah1 + α(r)h2).

We have to show that α is the identity map. Modifying the case of division rings
([8] Theorem 3.1), given any r ∈ R we put

A0 = Rf1, A1 = R(f0 + α(r)f1 + f2), A2 = R(f0 + f1)

B0 = Rg2, B1 = R(g0 + g1 + rg2), B2 = R(g0 + g2)

and obtain
A0 +B0 = A0 +>+B0 = Rh1 +Rh2

A1 +B1 = A1 +>+B1 = R(h0 + α(r)h1 + ah2) +R(h0 + ah1 + α(r)h2)
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A2 +B2 = A2 +>+B2 = R(h0 + h1) +R(h0 + h2)

(A0 +B0) ∩ (A1 +B1) ≤ R(α(r)− a)(h1 − h2) ≤ A2 +B2.

By the Arguesian law it follows C2 ≤ C0 + C1. We put s = α(r) and compute

C1 = (Rf0 +Rf1) ∩ 0+ ∩ (Rg0 +Rg2) = (Re0 +Re1) ∩ (Re0 +Re2) = Re0

C2 = (Rf1 +R(f0 + f2)) ∩ 0+ ∩ (Rg2 +R(g0 + g1))

= (Re1 +R(e0 + e2)) ∩ (Re2 +R(e0 + e1)) = R(e0 + e1 + e2)

(A1 + A2) ∩ 0+ = (R(f0 + f1) +R(f0 + sf1 + f2)) ∩ (Rf0 +Raf1 +Rf2)

= {(x+ y)f0 + (xs+ y)f1 + xf2 | x, y ∈ R, xs+ y ∈ Ra}

= {(x− xs+ ta)f0 + taf1 + xf2 | x, t ∈ R}

= R((1− s)f0 + f2) +R(af0 + af1) = R((1− s)e0 + e2) +R(ae0 + e1).

Similarly
(B1 +B2) ∩ 0+ = R((1− r)e0 + e1) +R(ae0 + e2).

From C2 ≤ C0 + C1 and C1 + C2 ≤ 0+ we have

C2 ≤ (A1 + A2) ∩ (B1 +B2) ∩ 0+ + C1.

In particular, there are x, y, p, q, z ∈ R such that e0 + e1 + e2 = v + ze0 with

v = x((1− α(r))e0 + e2) + y(ae0 + e1) = p((1− r)e0 + e1) + q(ae0 + e2).

It follows

x(1− α(r)) + ya = p(1− r) + qa = 1− z, y = p = 1, x = q = 1

whence α(r) = r. 2

Proof of the Corollaries. The first is immediate by Prop.1.2. For the second,
consider the geometric decomposition of L and fix a coordinatization of L0. Ad-
just the coordinatization of Ly by recursion on the height of y in S+(L): choose
y ≺ x and apply Corollary 7.2 to [y, x+]. We have to show by induction that each
gluing map γzx is linearly induced. If z is the chosen y, this is so by construc-
tion. Otherwise, with w = y ∩ z we have w ≺ y, z ≺ x and γwy and γwz linearly
induced by inductive hypothesis. Then so is γzx by Theorem 8.1. Also, Theorem
8.1 implies the commutativity condition for the inducing linear maps. 2
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9 Isomorphism invariants

In general, a primary Arguesian lattice is not determined by its prime skeleton
together with the isomorphism type of each block. A counterexample is given
by the lattices L(RR

3) and L(SS
3) where R is the integers modulo p2 and S =

F [x]/(x2), F the p-element field - here all the skeletons and blocks are projective
planes of order p. This is why we have to consider the geometric decomposition.
By Corollary 7.4 for a primary Arguesian lattice of breadth ≥ 3 there is up to
isomorphism only one coordinate ring R of maximal intervals of gd ≥ 3. Thus, if
(k1, . . . , kr) is the type of L we may define the extended type as (k1, . . . , kr;R). In
particular,

∑
ki ≥ 3 and R is a CPU ring the rank of which is the minimal l such

that
∑r

i=l ki ≥ 3. This is meant, if we speak of an extended type, abstractly.
In breadth 2 primary lattices, blocks may have distinct cardinalities. We say

that a lattice is q-uniform if every length two interval that is not a chain has
q atoms. For primary Arguesian lattices of breadth ≥ 3 one has q the number
of 1-dimensional subspaces of a 2-dimensional R/P -vector space. For q-uniform
breadth 2 semi-primary lattices we introduce the extended type (k, l; q) where
c1, c2 is a basis with h(c)1 = k ≥ h(c2) = l. Observe that q = 2 means that L is a
direct product of two chains. Abstractly, an extended type is a triple of cardinals
q ≥ 2 and finite k ≥ l ≥ 1. The extended type of a chain is its height.

THEOREM 9.1. The extended type is a complete isomorphism invariant for uni-
form primary Arguesian lattices.

COROLLARY 9.2. For any two primary Arguesian lattices L,L′ of the same ex-
tended type and ordered bases of L and L′ there is a basis preserving isomorphism.
Moreover, if L,L′ are of breadth ≥ 3 with given linear local coordinatizations then
the isomorphism can be chosen locally linear.

Proof. In the case of L,L′ of breadth ≥ 3 and the same extended type, in view
of Corollary 6.6 and 8.3 we may choose linear local coordinatizations Mx (x ∈
S+(L)) and M ′

x (x ∈ S+(L′)) of L and L′ over the same ring R. We show the
following by induction on S+(L).

(i) If u ∈ S+(L) and u′ ∈ S+(L′) are coatoms of the same type fitting into
bases of L and of L′ according to Corollary 4.4, then every locally linear
isomorphism ϕ : (u+]→ (u′+] preserving the induced bases can be extended
to a basis preserving locally linear isomorphism of L onto L′.

(ii) If u ∈ S+(L) and u′ ∈ S+(L′) are coatoms of the same type then every
locally linear isomorphism of (u+] onto (u′+] can be extended to a locally
linear isomorphism of L onto L′.

(iii) For any ordered bases of L and L′ there exists a basis preserving locally
linear isomorphism of L onto L′.
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If S+(L) is 1-element, then (i) and (ii) are void. M0
∼= M ′

0 since they are of the
same type and by Corollary 6.2 any ordered bases can be matched.

In the inductive step, assume that ordered bases a1, . . . of L and a′1, . . . of L′

are chosen as required in (i). By assumption, ϕ is induced by a linear isomorphism
Φx : Mx → M ′

ϕx (x ∈ (u]). We have to define Φx for the remaining x ∈ S+(L)
so that we obtain a linear isomorphism inducing a basis preserving isomorphism.
Depending on the type of u we have j ∈ {1, 2} such that u + aj and u′ + a′j are
cycles of maximal rank in Lu ∪L> and L′u ∪L′>, respectively, and we may choose
Φ> according to Corollary 7.3 such that Φ̂>(u+ aj) = u+ a′j. If S+(L) is a chain
then j = 1, a1 = u + a1 and a′1 = u′ + a′1 and we are done. Otherwise, in each
of S+(L) and S+(L′) we have a unique second coatom v resp. v′ fitting into the
given basis and ϕ(v) = v′. Let w = u ∩ v = >∗ and w′ = u′ ∩ v′ = ϕw = >′∗.
Then for any coatom x 6= u of S+(L) we may apply the inductive hypotheses to
the coatoms w ∈ (x] and w′ ∈ (ϕx] and the restriction of ϕ to (w+]. Namely,
we apply (i) for x = v and (ii), else. Thus, for each x ∈ S+(L) we have a well
defined Φx : Mx →M ′

x. Moreover, the compatibility condition Φ̂y ◦γxy = γ′xy ◦ Φ̂x

is satisfied a fortiori if y 6= > or if x = u and follows from Corollary 8.2 if
y = >. The induced isomorphism of L onto L′ is basis preserving, since the
isomorphisms on (u+] and (v+] are basis preserving and since the basis of L is
contained in (u+] ∪ (v+]. To prove (ii) just choose bases for u and u′ according
to Corollary 4.4 and apply (i). To prove (iii) choose coatoms u and u′ fitting into
the bases, analogously. In particular, u and u′ are of the same type and so are u+

and u′+. By the inductive hypothesis (iii) there is a locally linear isomorphism ϕ
of (u+] onto (u′+] preserving the induced bases. ϕ matches the top elements >
of S+(L) and >′ of S+(L′) and restricts to an isomorphism between S+(L) and
S+(L′). Hence, we can apply (i) to get the required isomorphism of L onto L′.

In the case of breadth 2, by inductive hypothesis we have an isomorphism ϕ
matching the basis ah1−11 , ah2−12 of S(L) with the basis a′h1−11 , a′h2−12 of S(L′). Due
to breadth 2 the ai and a′i are also dual cycles, whence doubly irreducible. Since
they are also in corresponding blocks, the proof of the following lemma yields an
isomorphism mapping ai onto a′i. 2

LEMMA 9.3. Let L and L′ be semi-primary lattices of breadth ≤ 2 and ϕ :
S(L) → S(L′) an isomorphism such that for each x ∈ S(L) the intervals [x, x∗]
and [ϕ(x), ϕ(x)∗] are of the same cardinality. Then ϕ extends to an isomorphism
of L onto L′.

Proof. Induction on height. Choose a coatom c in S(L). Then c∗ is a coatom
in L and ϕ(c)∗ a coatom in L′. Moreover, the ideals (c∗] and (ϕ(c)∗] have prime
skeletons (c] and (ϕc] and, by inductive hypothesis, ϕ|(c] extends to an isomor-
phism ψ between them. Next, choose an atom a in S(L). Then the filters [a)
and [ϕa) have prime skeletons [a, 1∗] and [ϕa, ϕ1∗] matched by ϕ|[a) = ψ|[a, 1∗],
so this extends to an isomorphism, again by inductive hypothesis. This provides
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us with an isomorphism χ of (c∗] ∪ [a) onto (ϕ(c)∗] ∪ [ϕa). Since this takes care
of the skeleton and its dual, as well, all remaining elements have to be doubly
irreducible (in breadth 2 every meet-reducible is in S(L), obviously). Hence, for
each x ∈ S(L) we may choose an isomorphism χx of [x, x∗] onto [ϕx, ϕ(x)∗] which
coincides with χ where this is defined. Now, observe that for x ≺ y in S(L) we
have [x, x∗] ∩ [y, y∗] = {y, x∗}. Hence Lemma 1.1 provides an extension of ϕ to
an isomorphism of L onto L′. 2

10 Coordinatization

THEOREM 10.1. For any extended type (k, l; q) there exist up to isomorphism
exactly one semi-primary lattice of this type. For any extended type (k1, . . . , kr;R)
there is up to isomorphism exactly one primary Arguesian lattice of this type.

COROLLARY 10.2. A lattice L is coordinatizable (by a finitely generated module
over a CPU ring A) if and only if it is one of the following

(1) a finite chain

(2) q-uniform primary of breadth 2 with q = pk + 1, p prime, or q infinite

(3) primary Arguesian of breadth ≥ 3

A can be chosen as a factor ring of F [x], F a field, if and only if (1) or (2) with
|F | = pk, ∞ or (3) with the coordinate ring a factor ring of F [x]. L is isomorphic
to the subgroup lattice of a finite Abelian p-group if and only if (1) or (2) with
k = 1 or (3) with coordinate ring ZZ/(pn).

Proof. Uniqueness has been shown in the preceeding section. Existence. We claim
that a lattice of type (k, l; q) can be constructed as a sublattice of L(M) where
F is a field such that |F | + 1 ≥ q and M = R × F [x]/(xl) the module over the
CPU R = F [x]/(xk). Observe that L(M) is of type (k, l; |F | + 1) and that, by
inductive hypothesis, we have a type (k−1, l−1; q) sublattice S of [0, 1∗] (where
0− 1 := 0). Then x 7→ x∗ is an isomorphism of S onto a sublattice S∗ of [0∗, 1].
Since [x, x∗] is a height 2 interval with at least q atoms, for each x ∈ S we may
choose a height 2 sublattice Lx with q atoms containing [x, x∗] ∩ (S ∪ S∗). Then
the S-glued sum L has prime skeleton S and dual prime skeleton S∗ which both
are interval sublattices of S, so L is semi-primary and has the required type by
Theorem 3.1 and its corollary.

In the breadth ≥ 3 case, choose by Theorem 5.2 a CPU ring A having rank
of L and R as a homomorphic image. With Q the maximal ideal of A let

M =
r⊕
i=1

(A/Qi)ki
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considered as an A-module. L(AM) is primary of the required extended type. 2

By Inaba’s result [15], every primary lattice of geometric dimension ≥ 4 is Ar-
guesian.

PROBLEM 10.3. Is every primary lattice of breadth ≥ 4 Arguesian?

COROLLARY 10.4. A primary lattice is Arguesian if and only if it admits a
cover preserving embedding into a coordinatizable lattice.

This is in contrast to the examples of Haiman [10] of Arguesian lattices not
having even a representation by lattices of permuting equivalences. These lattices
have finite distributive prime skeleton and blocks which are projective geometries
over the same field. Yet, the skeletons fail to be cover preserving or sublattices.
This fact and known partial results (cf. the survey in [14]) gives some credit to
the following. Also, one observes that Theorems 7.1 and 8.1 only required the
Arguesian law for the special gluings, considered (in 7.1 the resulting lattice is
primary, of course).

PROBLEM 10.5. Does every semi-primary lattice satisfying the Arguesian law
resp. its higher dimensional versions admit a representation by permuting equiv-
alences?

For finite Abelian p-groups of the same order, embeddings of one subgroup lattice
into another have been studied by Barnes [3] and Schmidt [24]. Nontrivial such
exist only if the embedded lattice has a type with

∑
i>1 ki ≤ 2.

PROBLEM 10.6. How have the finitely generated modules RM and SN over CPU
rings to be related in order that there exists a cover preserving 0-1-embedding of
L(RM) into L(SN)?
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