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1 Introduction

Baer [1] observed that modular lattices of finite length (for example subgroup
lattices of abelian groups) can be conceived as subspace lattices of a projective
geometry structure on an ordered point set; the set of join irreducibles which
in this case are the cyclic subgroups of prime power order. That modular
lattices of finite length can be recaptured from the order on the points and,
in addition, the incidence of points with ‘lines’, the joins of two points, or
the blocks of collinear points has been elaborated by Kurinnoi [18] , Faigle
and Herrmann [7], Benson and Conway [2] , and , in the general framework
of the ‘core’ of a lattice, by Duquenne [5]. In [7] an axiomatization in terms
of point-line incidence has been given.

Here, we consider, more generally, modular lattices in which every element
is the join of completely join irreducible ‘points’. We prove the isomorphy of
an algebraic lattice of this kind and the associated subspace lattice and give
a first order characterization of the associated ‘ordered spaces’ in terms of
collinearity and order which appears more natural and powerful. The crucial
axioms are a ‘triangle axiom’ which includes the degenerate cases and a
strengthened ‘line regularity axiom’, both derived from [7]. As a consequence,
using Skolemization, we get that any variety of modular lattices is generated
by subspace latices of countable spaces.

The central concept, connecting the geometric structure and the lattice
structure, is that of a line interval (p + q)/(p + q) where p and q are points
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and p, q their unique lower covers. Given a line interval any choice of one
incident point per atom of the line interval produces a line of the space.

Under the descending chain condition, or countability of the point set, it
is possible to choose one line per line interval in such a way that the lattice
can be recovered from the order on the points and this ‘base of lines’. The
finite dimensional case has been dealt with in Herrmann and Wild [12].

As an application we consider modular lattices which are 2-distributive,
i.e. satisfy the identity

x(y + z + w) ≤ x(y + z) + x(y + w) + x(z + w)

or, equivalently, do not contain a projective plane in their variety, Huhn [13].
So these lattices constitute the properly lattice theoretic, ‘coordinate free’
part of modular lattice theory. Extending a theorem of Jónsson and Nation
[17] from the finite length case we have the following.

Theorem 1.1 Every 2-distributive modular lattice can be embedded in a vec-
tor space lattice over a field of arbitrary characteristic.

Proof. The proof follows from Corollary 6.1 and Theorem 8.1 below and
the fact that that the lattices embeddable into subspace lattices of vector
spaces of characteristic p form a universal class.

Let D2 be the class of 2-distributive modular lattices and Vp the variety
generated by subspace lattices of vector spaces of a given characteristic p.
Now, let p and q be two distinct characteristics. By the theorem, D2 is con-
tained in Vp ∩Vq. Since characteristic of a projective plane can be expressed
equationally, this intersection cannot contain any plane, so it equals D2.

Corollary 1.1 For distinct characteristics p and q, Vp ∩ Vq = D2.

2 Subspace lattices

An ordered space consists of a set of points, P, endowed with a partial order,
≤, and a ternary, totally symmetric collinearity relation with the following
two properties. Collinear points are pairwise incomparable, and, if p, q, r are
collinear and p, q ≤ s then r ≤ s. We will sometimes write C(p, q, r) for
‘p, q, r are collinear’. A subspace is an order ideal containing along with any
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two points of a collinear triple also the third. The set of all subspaces of P
ordered by containment forms an algebraic spatial lattice, L(P ) . Here, a
spatial lattice is a lattice M in which every element is a join of completely join
irreducible elements, or points, cf. [15]. So, if M is algebraic, then the points
are compact. Conversely, with any spatial lattice M we associate the set PM
of all its points, with the induced order, and with the collinearity relation:
C(p, q, r) iff p, q, r are pairwise incomparable, and p+ q = p+ r = q+ r. This
yields the ordered space S(M) of M . M is canonically meet embedded into
L(S(M)). On the other hand, any ordered space P is canonically isomorphic
to S(L(P )).

The concepts of ordered space and subspace can also be expressed in terms
of lines, maximal at least 2-element sets of incomparable points, any three
of which are collinear. It suffices, as in Benson and Conway [2], to consider
proper, i.e. at least 3-element lines. Then L(P ) consists of the 2-subspaces
in the sense of Buekenhout [3].

A complemented length 2 interval l/l in a lattice M is called a line interval
if x+ l = l implies x = l for all x in M . For a point p let p denote its unique
lower cover.

Lemma 2.1 In a modular spatial lattice l/l is a line interval if and only if
there are incomparable points p, q such that l = p + q and l = p + q. If so,
then l = x + y, l = x + y for all pairs x, y ≤ l, x, y 6≤ l of points such that
x+ l 6= y + l. In particular, l =

∏{x ∈M |x ≺ l}.

Proof. Let l/l be a line interval and let s and t be nonequal covers of l in
l/l. There exist points p, q with l+ q = s and l+ p = t. Setting x = p+ q we
get l + x = l whence x = l. Now, by modularity, ps = pl = p, qt = ql = q,
and therefore, p + q = st(p + q) = l. It remains to show that if p, q are
incomparable points then l/l is a line interval, where l = p+ q and l = p+ q.
Obviously l/l is a complemented length 2 interval, it remains to show that
if x+ l = l then x = l. First we will derive contradictions from x 6= l in two
special cases.

Case 1: x ≥ p.
In this case x + q = x + p + q = x + l = l = x + q. If x 6≥ q then xq = xq,
contradicting modularity.

Case 2: x � l, x 6≥ p, q.
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Then px ≥ p and qx ≥ q whence x ≥ p+ q = l and x = x+ l = l.

By Case 1 and symmetry, it suffices, for the general case, to consider x 6≥ p, q.
Applying Case 1 to x+p we get x+p = l. From px ≤ p it follows that p+x ≺ l.
If p+x 6≥ q then Case 2 applies to p+x so p+x = l, a contradiction. Therefore
p+ x ≥ q whence p+ x = l + q and l + x = q + p+ x= q + q + l = l + q < l,
another contradiction.

Lemma 2.2 In a modular spatial lattice if r is a point and if r ≤ a + b,
r 6≤ a and r 6≤ b then there are points p ≤ a and q ≤ b such that p, q, r are
collinear. If a = a(b+ r) is a point then we can assume p = a.

Proof. The proof of theorem 4.2 of Faigle and Herrmann [7] is valid
for spatial lattices too. It allows us to assume that a = p is a point and
p + b = r + b. In the next paragraph we will argue that the sublattice
generated by b, p, r, p, and r is a homomorphic image of the lattice pictured
in Fig. 1. Having shown this one can easily see from Fig. 1 that p ≤ r would
imply b ≤ r, and hence r = p + b. But this contradicts the fact that r is a
point. Hence by Lemma 2.1, p + r/(p + r) is a line interval so any point q
with q ≤ b(p+ r), q 6≤ b(p+ r) may be used.

First observe that br = br whence by modularity and hypothesis b+ r �
b+r 6≥ r, p. Therefore, p = p(b+r) and we deal with the sublattice generated
by b, p, r.r which satisfy the relations p+ b = r+ b and rp+rb ≤ r ≤ r. Now,
Fig. 1 shows the free modular lattice F with these generators and relations.
To see this we may refer to Wille [19] that only 2- and 5-element subdirectly
irreducible factors are possible and check that the 6 factors of F are the only
ones which satisfy the relations.

Lemma 2.3 Let M be a modular spatial lattice embedded into a modular
algebraic lattice L such that the compact elements of L are contained in M .
Then ψ given by

ψ(a) = {p ∈ PM : p ≤ a}

is a homomorphism of L onto L(S(M)) and ψ|M is faithful.

Proof. Obviously ψ|M is faithful. Let a, b ∈ L and let p ∈ ψ(a)∩ψ(b). Then
p ≤ a and p ≤ b and so p ≤ ab and meets are preserved. We claim that every
point p of M is a compact element of L, and therefore ψ is compatible with
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directed joins. Let p ∈ PM . Since L is algebraic, p is a join of a set X of
compact elements of L. By hypothesis X ⊆ L and either p ∈ X or x < p for
all x ∈ X. The latter would yield

∑
LX ≤ p , a contradiction.

To show ψ preserves joins of compact elements, let a, b ∈ L be compact
and let r ∈ ψ(a + b). Since L is algebraic a =

∑
i∈I ai with the ai compact

and b =
∑
j∈J bj with the bj compact. Then a, b ∈ M and by 2.2, r ≤ a′, or

r ≤ b′, or there exist points p and q with p ≤ a′, q ≤ b′ and C(p, q, r). In any
of these cases r ∈ ψ(a) + ψ(b).

The ontoness of ψ now follows immediately from the fact that PM is join
dense in L(S(M)).

Theorem 2.1 A modular spatial lattice M embeds canonically into L(S(M))
which is a homomorphic image of the ideal lattice of M . If M is algebraic
then this embedding is an isomorphism.

Proof. We apply 2.3 and in the first instance take L to be the ideal lattice
of M . If M is algebraic we set L = M .

Corollary 2.1 (Faigle [6]). Every modular lattice embeds into a modular
algebraic spatial lattice generating the same variety.

Proof. A lattice generates the same variety as its ideal and filter lattices
and the filter lattice is a spatial lattice.

3 Axiomatization

An ordered space is projective if it satisfies the regularity and triangle axioms
given below.

Regularity axiom: For any collinear p, q, r and r
′ ≤ r, r

′ 6≤ p and r′ 6≤ q there
are p

′ ≤ p and q
′ ≤ q such that p

′
, q

′
, r

′
are collinear.

A six-tuple (a, b, c, p, q, x) of pairwise incomparable points is called a triangle
configuration iff it satisfies the following list of collinearities, and no others,
see the figure below,

C(a, c, p), C(b, c, q), C(a, b, x), C(p, q, x)
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Figure 2: Triangle Configuration

Triangle axiom: If a, c, p and b, c, q are collinear then at least one of the
following holds;

1. there is an x so that (a, b, c, p, q, x) is a triangle configuration,

2. there is an a′ ≤ a such that b, q, a′ are collinear,

3. b, q, p are collinear,

4. there are a′ ≤ a and p′ ≤ p such that q, a′, p′ are collinear,

5. q ≤ a or q ≤ p.

Lemma 3.1 The join of subspaces of a projective ordered space is given by

S + T = S ∪ T ∪ {r| There exists x ∈ S, y ∈ T with C(r, x, y)}.

Proof. We have to show that

S ∨ T = S ∪ T ∪ {r| There exists x ∈ S, y ∈ T with C(r, x, y)}.

is a subspace. Regularity implies that S∨T is an order ideal and so it remains
to show that it is linearly closed: if r1, r2 ∈ S ∨ T and if C(r1, r2, r) then
r ∈ S ∨ T . We begin with the special case where at least one of r1, r2 is in
one of S or T . The proof will be given for r2 = s ∈ S, the other cases have

7



similar proofs. If r1 ∈ S∪T we get r ∈ S, since S is a subspace, or r ∈ S∨T
by definition.

Suppose we have C(s1, r1, t1), C(s, r1, r) with s1, s ∈ S and t1 ∈ T . We
will use the triangle axiom to show r ∈ S ∨ T . Let us apply the triangle
axiom to the pair of triples listed just above. Then one of the following must
occur:

(1) There is an x so that (s1, s, r1, t1, r, x) is a triangle configuration. In this
case C(s1, s, x) and C(x, t1, r), hence x ∈ S and r ∈ S ∨ T .

(2) There exists s′1 ≤ s1 with C(s, r, s′1) and hence r ∈ S.

(3) C(s, r, t1), this implies r ∈ S ∨ T .

(4) There are s′1 ≤ s1, t
′
1 ≤ t1 with C(s′1, t

′
1, r) and r ∈ S ∨ T .

(5) r ≤ s1 whence r ∈ S or r ≤ t1 whence r ∈ T .

For the general case we consider r1, r2 with C(r1, s1, t1), C(r2, s2, t2), for
some s1, s2 ∈ S, t1, t2 ∈ T . We will apply the triangle axiom three times. The
first two times possibility (1) will lead to another application of the triangle
axiom. The other possibilities will all either lead directly to r ∈ S∨T or will
reduce to the case already handled above.

We apply the triangle axiom to the collinearities, C(s2, r2, t2), C(r1, r2, r)
to get one of:

(1) There exists y so that (s2, r1, r2, t2, r, y) is a triangle configuration. We
will apply the triangle axiom again here, but let us deal with the other cases
first.

(2) There is an s′2 ≤ s2 with (r1, r, s
′
2). This case has already been dealt with.

(3) C(r1, r, t2) is another instance of the special case already dealt with.

(4) There are s′2 ≤ s2, t′2 ≤ t2 with C(r, s′2, t
′
2), which gives r ∈ S ∨ T .

(5) r ≤ s2 and then r ∈ S, or r ≤ t2 and then r ∈ T .

Assuming that (1) above occurs we apply the triangle axiom to the collinear-
ities, C(s1, r1, t1), C(s2, r1, y). We obtain one of the following:

(1) There exists s so that (s1, s2, r1, , t1, y, s) is a triangle configuration. In
particular, s ∈ S. We will use the triangle axiom one more time but again
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let us delay its use until we’ve handled the remaining possibilities. In all of
these we will show y ∈ S∨T . Since C(y, t2, r) , if we replace r1 with y and r2

with t2, then we have an instance of the special case handled above whence
r ∈ S ∨ T .

(2) There is an s′1 ≤ s1 with C(s′1, s2, y). This implies y ∈ S .

(3) C(s2, t1, y). In this case y ∈ S ∨ T .

(4) There are s′1 ≤ s1, t
′
1 ≤ t1 with C(s′1, t

′
1, y), so y ∈ S ∨ T .

(5) y ≤ s1 and we have y ∈ S, or y ≤ t1 and y ∈ T .

Let us assume that (1) occurs here as well. We apply the triangle axiom once
more to the collinearities C(t1, y, s), C(t2, y, r) to get one of the following:

(1) There is a t so that (t1, t2, y, s, r, t) is a triangle configuration. In partic-
ular, t ∈ T , s ∈ S, and C(s, t, r) imply r ∈ S ∨ T .

(2) There is a t′1 ≤ t1 with C(t′1, t2, r). This gives r ∈ T .

(3) C(t2, s, r) gives r ∈ S ∨ T .

(4) There are t′1 ≤ t1, s
′ ≤ s with C(t′1, s

′, r) and r ∈ S ∨ T .

(5) r ≤ t1 and r ∈ T , or r ≤ s and r ∈ S.

Theorem 3.1 The subspace lattice of a projective ordered space is modular.

Proof. The proof of proposition (3.4) in [7] can be followed virtually word
for word.

Theorem 3.2 The ordered space associated with a modular spatial lattice is
projective.

Proof. Regularity is immediate by 2.2. Let us write a/b ↗ c/d and
c/d↘ a/b if c = a+ d and b = cd. Assume C(a, c, p), C(b, c, q).

Let
l = a+ c = a+ p = c+ p, l = a+ c = a+ p = c+ p

k = b+ c = b+ q = c+ q, k = b+ c = b+ q = c+ q

9
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Figure 3: Case 2

ã = a+ l, p̃ = p+ l, b̃ = b+ k, q̃ = q + k

u = l + k, v = l + k, w = ãb̃.

If l ≥ k then, by Lemma 2.2 applied to q ≤ a + p, possibility (5) or (4) of
the triangle axiom takes place.

Otherwise, we have the following transpositions

c/c↗ k/b̃ and c/c↗ l/ã.

The sublattice generated by these quotients is actually generated by c, ã, b̃,
cf. An elementary analysis of the free modular lattice on these generators
together with the conditions ã ≺ l, b̃ ≺ k, k 6≤ l and ãc = b̃c = c shows that
one of the four sets of relations, case 2 through case 5 below (we have counted
l ≥ k as case 1) must hold, cf. Jónsson [16], Grätzer [10]. In view of Lemma
2.1, in any of these cases one easily determines the possible extensions to the
sublattice generated by the additional elements p̃ and q̃.

Case 2: l ≤ k, ã ≤ b̃, cf. figure 3 . In this case we have C(p, b, q) by Lemma
2.1 and hence (3) of the triangle axiom.

Case 3: l ≤ k, l ≤ ã+ b̃, cf. figure 4. Here we have two possible extensions.
By Lemma 2.1, in both cases we have C(b, q, a) and hence (2) of the triangle
axiom.
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Figure 4: Case 3

Case 4: l 6≤ k, l ≤ ã+ b̃, cf. figure 5. Here by Lemma 2.1 we have a+ c = ã.
Hence ak ≤ w would give ãk = ak + c ≤ w. We also have, in case 4,
c/c ↗ kl/kl ↘ ãk/w. Hence, if ãk = w then c = c, a contradiction, and
we have shown ak 6≤ w. So choose any point x, with x ≤ ak, x 6≤ w. It
follows that x 6≤ b since x ≤ b would give x ≤ ãb̃ = w. Similarly, x ≤ q gives
x ≤ ãq̃ = w. From Lemma 2.1 we have C(b,q,x). This is possibility (2) of
the triangle axiom.

Case 5: l 6≤ k, l 6≤ ã+ b̃, cf. figure 6, where u/v is a projective plane which
is depicted only partially.

Since a + b + v = ã + b̃ the quotient (ã + b̃)/v transposes down to (a +
b)/v(a + b) which is therefore of length 2, too, and thus turns out to be the
line interval (a+b)/(a+b), cf. 2.1. Assume (a+b)(p+q) ≤ v. It follows, from
just above, that (a+b)(p+q) ≤ a+b. This gives, u/(p̃+ q̃)↘ (a+b)/(a+b),
since now (a+b)(p̃+ q̃) = (a+b)(p+a+q+b) = a+b+(a+b)(p+q) = a+b.
But u/(p̃+ q̃) is a prime quotient and (a+ b)/(a+ b) is not, a contradiction.
Hence, (a+ b)(p+ q) 6≤ v.

Choose a point x ≤ (a+b)(p+q), and x 6≤ v. We claim that (a, b, c, p, q, x)
is a triangle configuration.

Clearly x 6≤ l, k and x ≤ l, k. Also x 6≤ ã, b̃, p̃, q̃ since, for example, ã(p̃+q̃)
= ã(p̃ + lq̃) = ã(p̃ + w) = ãp̃ ≤ v. We can therefore apply Lemma 2.1 to
get the collinearities C(a,b,x) and C(p,q,x) besides the given C(a,c,p) and
C(b,c,q). One can easily show that no other collinearities are possible.
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4 Lattice identities

In this section we will prove,

Theorem 4.1 Every modular lattice M can be embedded, within its variety,
into the subspace lattice of a projective ordered space whose point set Q is at
most countable or the cardinality of M .

To prove the theorem we need,

Lemma 4.1 For every lattice identity α there is a sentence α′ in the first
order language of ordered spaces so that α′ holds in a projective ordered space
if and only if α holds in its lattice of subspaces.

We will associate such a sentence with each lattice inequality p ≤ q. The
conjunction of the sentence associated with p ≤ q and the sentence associated
with q ≤ p will provide a sentence for the identity p = q. The procedure is
similar to that of the proof that identities are preserved in the ideal lattice,
cf. [4]. Let u1, ..., un be the variables occurring in p ≤ q and introduce a
‘point’ variable xij corresponding to the j’th occurrence of ui in p, (xij) will
denote the array of all the xij’s. (By using the absorption law we can ensure
that the same variables occur in p as in q.)

Lemma 4.2 For each subterm r of p there exists a formula r̃ = r̃(y, (xij)),
whose free variables come from (y) ∪ (xij), such that for every projective
ordered space P , every point a ∈ P and all subspaces U1, ..., Un in P ,

a ∈ r(U1, ..., Un)

iff

there exists an array (aij) with, for each i, j, aij ∈ Ui, and so that

r̃(a, (aij)) holds in P.
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Proof. The proof is by an easy induction on the length of r. If r is the j’th
occurrence of ui then let r̃ be the formula

y ≤ xij.

If r = st then let r̃ be the formula

s̃ ∧ t̃.

If r = s+ t then let r̃ be the formula,

(∃ys, yt)[C(y, ys, yt) ∧ s̃(ys, (xij)) ∧ t̃(yt, (xij)] ∨ s̃(y, (xij)) ∨ t̃(y, (xij)).

Verifying that these formulae work is straightforward (the last formula comes
directly from 2.2).

Lemma 4.3 For every subterm r of q there exists a formula r̂ = r̂(y, (xij)),
whose free variables come from (y)∪(xij), so that for every projective ordered
space P and array (a) ∪ (aij) in P ,

a ∈ r(Σja1j, ...,Σjanj)

iff
r̂(a, (aij)) holds in P.

Proof. To start the induction we need for each m, a formula βm(z, z1, ..., zm),
so that for all points a, a1, ..., am in P ,

a ∈ Σm
i=1ai

iff
βm(a, a1, ..., am) holds in P.

For each k let vk, v
′
k be two new variables. Let β1 be the formula, z ≤ z1,

and for m > 1 let βm be the formula,

(∃vm, v′m)[C(z, vm, v
′
m) ∧ (vm ≤ zm) ∧ βm−1(v′m, z1, ..., zm−1)]

∨β1(z, zm)∨ βm−1(z, z1, ..., zm−1).
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If r is an occurrence of ui in q and if ui occurs in p exactly m-times let r̂ be

βm(y, xi1, ..., xim).

As in Lemma 4.2, if r = st then r̂ is ŝ ∧ t̂, and if r = s+ t then r̂ is,

(∃ys, yt)[C(y, ys, yt) ∧ ŝ(ys, (xij)) ∧ t̂(yt, (xij)] ∨ ŝ(y, (xij)) ∨ t̂(y, (xij)).

We are now in a position to prove Lemma 4.1 .

Proof (of Lemma 4.1). The sentence corresponding to the inequality
p ≤ q is

(∀y, (xij))[p̃(y, (xij))→ q̂(y, (xij))]. (1)

Suppose p ≤ q in L(P ), and suppose for some interpretation of y and the
xij, p̃(y, (xij)) holds in P . Then by Lemma 4.2,

y ∈ p(Σjx1j, ...,Σjxnj).

Since p(Σjx1j, ...,Σjxnj) ⊆ q(Σjx1j, ...,Σjxnj), we have, by Lemma 4.3, q̂(y, (xij)).
Hence the sentence (1) is valid in P .

Conversely, suppose the sentence (1) is valid in P and let a ∈ p(U1, ..., Un).
Then by Lemma 4.2 there exists an array (aij), with aij ∈ Ui so that,
p̃(a, (aij)) holds in P . It follows that q̂(a, (aij)) holds in P as well, and
therefore by Lemma 4.3

a ∈ q(Σja1j, ...Σjanj) ⊆ q(U1, ..., Un).

Proof (of Theorem 4.1). In view of Corollary 2.1 we may assume that M
is a sublattice of a modular algebraic spatial lattice L in the variety generated
by M . We will construct an elementary substructure Q of S(L) having the
claimed cardinality such that φ(a) = {p ∈ Q | p ≤ a in L} defines a lattice
embedding of M into L(Q). By Theorem 3.2, S(L) and so Q are projective
ordered spaces. Now L is isomorphic to L(S(L)) by Theorem 2.1, so by
Lemma 4.1 L(Q) belongs to the variety generated by M . We construct Q as
follows:

Choose Q0 so that for each a < b in M there is p ∈ Q0 with p ≤ b, p 6≤ a.
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Suppose we are given Qn and n is even. By the downward Löwenheim-
Skolem-Tarski theorem there is an elementary substructure, Qn+1, of S(L)
whose cardinality is countable or of the cardinality of Qn, whichever is
greater.

Suppose we are given Qn and n is odd. For a, b in M and r in Qn with
r ≤ a+b there are p ≤ a and q ≤ b in P with p, q, r collinear. Qn+1 is formed
from Qn by adjoining a suitable p and q for every such triple a, b, r. The
cardinality of Qn+1 is at most countable or the cardinality of Qn, whichever
is greater.

Let Q = ∪∞i=1Qn.

It remains to show that φ is a lattice embedding. It is clear that φ is
an order embedding and that it preserves meets. That it preserves joins as
well is a consequence of the construction. Explicitly, let a, b ∈ M and let
r ∈ φ(a + b). Then, by construction, there are p, q ∈ Q with p ≤ a, q ≤ b
and p, q, r collinear. From 3.1 we see that r ∈ φ(a) + φ(b).

5 Decomposition.

Let P be a projective ordered space. Relating all points on a proper line,
we call such points perspective, and passing to the transitive closure gives a
decomposition of P into connected components, Qi (i ∈ I), some of which
may correspond to isolated points, i.e. points which are not on any proper
lines. With the induced order and space,

Proposition 5.1 Each component Qi is a projective ordered space and the
complete lattice homomorphisms

pri : L(P )→ L(Qi) S 7→ (S ∩Qi|i ∈ I)

define a subdirect decomposition of the L(P ) into the subdirectly irreducible
factors L(Qi)

Proof. Inspection of the axioms shows that each component is a projective
ordered space. Let S 6⊆ T be subspaces of P . There is a point p ∈ S − T
and p ∈ Qi for some i whence pri(S) 6= pri(T ).
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The map pri is clearly a map of L(P ) into L(Qi) preserving arbitrary
intersections and directed joins. Let S, T be subspaces of P and let r ∈
(S + T ) ∩ Qi. If r 6∈ S ∪ T then by Lemma 3.1 there exists s ∈ S, t ∈ T
with C(r, s, t). Since r ∈ Qi it follows s, t ∈ Qi and r ∈ (S ∩Qi) + (T ∩Qi).
Hence, in view of algebraicity (cf. 2.3), arbitrary joins are preserved.

For a point p in Qi the subspace {q ∈ Qi|q ≤ p} of Qi is the image of the
subspace {q ∈ P |q ≤ p} of P ; thus since the points of Qi are join dense, the
map pri is also onto.

By 3.1, each L(Qi) is modular. If p 6= q are on a proper line p/p and
q/q are projective via p+ q/p+ q + r where r is any third point on the line.
Since every proper quotient of L(Qi) contains a quotient transposing to a
p/p, subdirect irreducibility follows, cf [4], chapter 10. This completes the
proof of the proposition.

Conversely, we can compose projective ordered spaces. Let (Qi,≤i, Ci),
i ∈ I, be ordered projective spaces, Q the disjoint union of the Qi , the
relation C the disjoint union of the Ci, and ≤ an order on Q having restriction
≤i to Qi for all i.

Proposition 5.2 (Q,≤, C) is an ordered projective space if and only if Ci(p, q, r)
and p, q ≤ s 6∈ Qi implies r ≤ s and, secondly, Ci(p, q, r) and r ≥ r′ ∈ Qj, j 6=
i, implies r′ ≤ p,r′ ≤ q, or Cj(p

′, q′, r′) for some p′ ≤i p, q′ ≤i q .

For the proof just observe that this characterizes the (Q,≤, C) which are
regular ordered spaces and that the triangle axiom is satisfied automatically
since its hypothesis concerns points in a common component, only.

Corollary 5.1 If L is a spatial modular lattice then L is connected under
the transitive closure of perspectivity.

Corollary 5.2 Every variety of modular lattices is generated by its subdi-
rectly irreducible spatial algebraic members, cf. [8].

One easily derives a characterization of the scaffoldings of finite length
modular lattices (see Ganter, Poguntke, and Wille [9] for the definition and
a special case). The space associated with a finite length lattice can be
considered as a relative substructure of the scaffolding. Hence, one has to
rephrase the axioms of an ordered space and regularity into the language of
scaffoldings. This is easily done in view of Lemma 2.2.
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6 Bases of lines

Let M be a modular algebraic spatial lattice with point set PM . The set TM
of line tops of M consists of all joins p + q + r where p, q, r is a collinear
triplet. In view of Lemma 2.1 these are just the upper bounds l of at least
5-element line intervals. The associated lower bound was denoted by l.

Consider a system Λ of proper lines of M which is irredundant in the
sense that λ→ ∑

λ yields a bijection between Λ and the set TM of line tops.
We want to single out those Λ which capture the join structure of M . For
that purpose call a map φ of PM into a complete lattice L compatible with
Λ, if

φp+ φq = φp+ φr for all λ ∈ Λ and distinct p, q, r ∈ λ
. Call Λ a base of lines for M if for all compatible φ : PM → L by

φa =
∑
{φp : p ≤ a}

one defines a Λ-compatible from PM into L, too. This then means, that φ
is a complete join homomorphism of M into L. Considering φ the identity
map on PM one sees that the subspaces of S(M) are exactly the order ideals
X of PM which are 2-subspaces of the block space (PM ,Λ) :

λ ∈ Λ, |λ ∩X| ≥ 2 ⇒ λ ⊆ X.

Theorem 6.1 A modular algebraic spatial lattice admits a base of lines pro-
vided it has countable point set PM or one of PM and TM satisfy the descend-
ing chain condition.

For M of finite length this is the combination of (2.4) and (2.5) used in
[12] - observe that (2.4) is not correct for nonmodular lattices. There, and
more generally under d.c.c. any Λ will work just provided that λ→ ∑

λ is a
bijection of Λ onto TM . If we have d.c.c. for TM then the join compatibility
of the order preserving map φ is proved with the inductive approach taken
in the proof of (2.5) of [12]. Now observe that in view of Lemma 2.2 every
infinite descending chain in TM produces an infinite descending chain in PM .

A modular algebraic spatial lattice having no base of lines can be easily
constructed giving TM the structure of a binary tree with all branches infinite.
We summarize the above Theorem and the theory developed in sections 2,3,4
with the following:

19



Corollary 6.1 Every modular lattice belongs to a universal subclass of its
variety which is generated by subspace lattices of projective ordered spaces
admitting a base of lines.

Proof. A modular lattice is a member of a universal class of modular
lattices iff each of its finitely generated sublattices is. By Theorem 4.1, every
countable modular lattice M can be embedded, within its variety, into the
subspace lattice of a projective ordered space whose point set is countable.
By Corollary 6.1 every such subspace lattice admits a base of lines.

The main effort of this section will consist in the proof of the theorem in
case of countable PM . For this we need a mechanism for selecting Λ.

An incidence for M is a binary relation I between PM and TM such that
pIl implies p ≤ l and p 6≤ l. It is irredundant if there are no distinct pIl
and qIl such that p + l = q + l. It is complete if for each atom a of l/l
there is pIl with a = p + l. Given an irredunant and complete incidence
define for l ∈ TM : λ(l) = {p ∈ PM : pIl} to obtain a system ΛI of lines in
1-1-correspondence with TM . A pair (a, l), a ≺ l ∈ TM wil be called a task
(towards completeness) and say that p copes with the task if a = p+ l.

For each enumeration E of a subset U of PM one obtains an irredundant
incidence I(E) where for any given task (a, l) one has pI(E)l if p is the first
point in U which copes with the task. For an incidence I let P (I) be the set
of all points with pIl for some l. Observe that I may involve infinitely many
line tops even for finite P (I).

The incidence will be constructed step by step in such a manner that we
will be able to capture p + q for any perspective points p, q. To this end we
consider quadruples (p̂, q̂, p, q) of points with p ≤ p̂, q ≤ q̂, p 6≤ q̂, q 6≤ p̂, and
l = p+ q ∈ TM and define for any irredundant incidence I, with P (I) finite,
the concept of an I-predecessor and two finite sets of tasks:

A = A(I; p̂, q̂, p, q) and B = B(I; p̂, q̂, p, q).

This is done by induction on the size of

P (I; p, q) = {r ∈ P (I) : r ≤ p+ q or r ≤ q + p}.

We let A = A′ ∪ A′′, and B = B′ ∪ B′′, with A′, B′′ and B′, A′′ defined as
follows.
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If there is no p′ ∈ PM satisfying

p′ 6= p, p′Il, p′ + l = p+ l

then
A′ = {(p+ l, l)} and B′′ = ∅.

Assume there is such a p′ (which is then unique by irredundancy) and let
A′ = B′′ = ∅ if p′ ≤ p̂ or p′ ≤ q̂. Otherwise, we have p′ ≤ p + q, p′ 6≤ p,
p′ 6≤ q, p = p(q + p′) and so by Lemma 2.2 there exists a point q

√
≤ q so

that p, p′, q
√

are collinear. Fix any of these (so our construction depends on
some arbitrary choices; alternatively, we could have assumed a given reference
enumeration of PM and chosen the first suitable q

√
, there) and observe that

p′ 6∈ P (I; p, q
√

) and q
√
6≤ p̂ whence we can define by induction

A′ = A(I; p̂, q̂, p, q
√

), B′′ = B(I; p̂, q̂, p, q
√

).

and also declare the quadruple (p̂, q̂, p, q
√

) and each of its I-predecessors an
I-predecessor of (p̂, q̂, p, q). Symmetrically, if there is no q′ ∈ PM satisfying

q′ 6= q, q′Il, q′ + l = q + l

then,
B′ = {(q + l, l)} and A′′ = ∅.

If there is such a q′, fix one. Let B′ = A′′ = ∅ if q′ ≤ p̂ or q′ ≤ q̂. Otherwise,
there exists p

√
≤ p so that q, q′, p

√
are collinear and we can define

B′ = B(I; p̂, q̂, p
√
, q) and A′′ = A(I; p̂, q̂, p

√
, p)

and declare every I-predecessor of (p̂, q̂, p
√
, q) an I-predecessor of (p̂, q̂, p, q).

The quadruple (p̂, q̂, p, q) is saturated in I iff for each task (a, h) inA(I; p̂, q̂, p, q)
there exists s ∈ PM , s ≤ ap̂ so that sIh and symmetrically, for each task
(b, k) in B(I; p̂, q̂, p, q) there exists t ∈ PM with t ≤ bq̂ and tIk. Before going
on let us make some technical observations.

OBSERVATION 1. If (a, h) ∈ A(I; p̂, q̂, p, q) then (a, h) = (p + q, p + q) or
h ≤ p+ q.
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OBSERVATION 2. If (p̂, q̂, u, v) is an I-predecessor of (p̂, q̂, p, q) then u ≤ p,
v ≤ q, P (I;u, v) ⊂ P (I; p, q) and A(I; p̂, q̂, u, v) ⊆ A(I; p̂, q̂, p, q).

OBSERVATION 3. A quadruple has only finitely many I-predecessors.

OBSERVATION 4. If (p̂, q̂, p, q) is saturated in I then so too are all its
I-predecessors.

OBSERVATION 5. If (a, h) ∈ A(I; p̂, q̂, p, q) then aq̂ ≤ h .

Proof. We proceed by induction on |P (I; p, q)|. If (a, h) = (p+ q, p+ q) then

aq̂ = (p+ q)q̂ = pq̂ + q = p+ q

since p 6≤ q̂. Otherwise (a, h) ∈ A(I; p̂, q̂, p, q
√

) or (a, h) ∈ A(I; p̂, q̂, p
√
, q).

In either case the inductive hypothesis ensures aq̂ ≤ h.

Consider an enumeration p1, p3, ... of the points in PM by odd numbers
and Q2, Q4, ... of the quadruples by even numbers. We define partial one-to-
one enumerations En and their associated incidences In = I(En) inductively
as follows:

E0 = ∅

If n is odd then pn obtains in En the the smallest number not used in En−1,
unless it had a number already. If n is even, let A = A(In−1;Qn) and let
B = B(In−1;Qn) where Qn = (p̂, q̂, p, q). For each (a, h) in A (respectively B)
in turn we choose a point r = r(a, h) with r ≤ p̂ (respectively r ≤ q̂) which
copes with the task (a, h) . We extend En−1 to a finite partial enumeration
En such that p, q and each of these points r(a, h) have a number in En. Since
by Observation 5 no r ≤ q̂ can cope with a task from A and symmetrically,
no s ≤ p̂ can cope with a task from B, we get

OBSERVATION 6. Qn is saturated in In.

Let E the union of all En. E is an enumeration of PM . Let I = I(E).

OBSERVATION 7. For each task (a, l) there is a point r ≤ a with rIl.
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Proof. Let l = p+q with p ≤ a and consider the quadruple Q = (p, q, p, q). Q
is saturated in some In. If there were no such r then A(In;Q) would contain
the task (a, l), contradicting saturation.

Define the rank (m, k) of a quadruple Q such that m is the first number for
which Q is saturated in Im and such that k is the number of Im-predecessors
of Q. Order the ranks lexicographically. By observation 4, the rank of any
Im-predecessor of Q will be smaller than the rank of Q. Now, let φ a ΛI-
compatible map of PM into L. So, the proof of the Theorem is finished with
the following.

CLAIM 8. If p, q, r are collinear, p ≤ p̂, q ≤ q̂ then φr ≤ φp̂+φq̂. Moreover,
if qI(p+ q) and rI(p+ q) then φr ≤ φp̂+ φq.

Proof. Let l = p+ q . Of course we may assume that l 6≤ p̂, q̂ and that q̂ = q
in the additional claim. We consider the special case rIl, first, proceeding
by induction on the rank of the quadruple Q = (p̂, q̂, p, q). Let J be the
incidence witnessing the rank.

Consider, if it applies, p′ and q
√

from the definition of A′ and B′′. So in
particular p′Jl. Since J is defined via the enumeration E, we know that p′

is the first point in E coping with the task (p+ q, l) . But then p′ is also the
first point in E coping with the task (p′ + p, p′ + p), since (p′ + p)/(p′ + p)
transposes up to (p+ q)/l . Again, having J defined via the enumeration E,
we derive that p′J(p + p′). Thus, if p′ 6≤ p̂ and p′ 6≤ q̂, then we may apply
the inductive hypothesis to the J-predecessor quadruple (p̂, q̂, p, q

√
) and the

point p′ to derive φp′ ≤ φp̂ + φq̂). If p′ ≤ p̂ or p′ ≤ q̂ then φp′ ≤ φp̂ + φq̂
trivially.

If there is no p′ then the task (p + l, l) ∈ A. The saturation of Q in J
applied to (p + l, l) in A′ implies that there exists some point s coping with
this task and with sJl. Any point other than p would qualify as a p′ and it
follows that pJl.

So in either case we have some point in I(p̂, q̂) which is I-incident with
l and which copes with the task (p + l, l). Similarly, we have some point
φq′ ≤ φp̂ + φq̂) which is I-incident with l and which copes with the task
(q + l, l). Thus, by definition, r, p′, q′ are on a Λ-line and, by hypothesis,
φr ≤ φp′+ φq′ whence φr ≤ φp̂+ φq̂. Moreover, if qIl then p′, q, r are on the
same Λ-line whence φr ≤ φp′ + φq ≤ φp̂+ φq.
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The general case shall be shown by induction on the position of r in the
enumeration E. Let l1 = l and r1 the first point in E which copes with the
task (r+ l, l). Inductively, if for i < n the li and ri coping with (r+ li, r+ li)
such that li = r + ri−1 = ri + ri−1 are already defined let ln = r + rn−1 and
rn the first point in E which copes with the task (r + ln, ln). So rnIln) and
rn copes with all (r + li, li, i < n) too.

Observe that all ri, i < n, precede rn in the enumeration E; otherwise we
would have chosen rn earlier. By inductive hypothesis we have φri ≤ φp̂+φq̂),
for all i < n. Also, rn−1Iln since any point coping with (rn−1 + ln, ln) copes
also with rn−1 + ln−1.ln−1).

Since p + rn = l ≥ rn−1 the special case in Lemma 2.2, provides a point
p′ ≤ p such that p′, rn−1, rn are collinear. Applying the special case of the
Claim to p′ ≤ p̂, rn−1 ≤ rn−1, rn we get φrn ≤ φp̂+ φrn−1 ≤ φp̂+ φq̂.

7 2-Distributivity

For this and the following section let M a modular spatial lattice with point
set PM . Let ΛM be the set of all lines of M . For a line λ let λ/λ denote the
associated line interval , i.e. λ = Σ{p : p ∈ λ} and λ = Σ{p : p ∈ λ}, the

meet of all lower covers of λ. Let a ≺ b in M and Q = {p ∈ PM |p ≤ b, p 6≤ a}

Lemma 7.1 Every line λ with λ ≤ b, and λ 6≤ a contains a unique point p,
with p ≤ a. Every two distinct points q, r ∈ Q are on a proper line.

Proof. aλ ≺ λ, and the first claim follows from Lemma 2.1. For the
second part, observe that q and r are incomparable since, for example, q < r
would imply q ≤ r = ra. From the first part and Lemma 2.1, there is some
point p ≤ a with p, q, r collinear. This completes the proof.

An (a, b)-cycle is is a sequence {λi : 0 ≤ i < n} in ΛM with each λi ∩Q
containing at least 2-elements, all λi pairwise distinct, and λi ∩ λj ∩Q 6= ∅ if
and only if i = j or i− j ≡ ±1 modulo n.

Theorem 7.1 For a modular spatial lattice M the following are equivalent.

(i) M is 2-distributive

(ii) If q is a point and q ≤ ∑n
i=1 ai then q ≤ ai for some i, or there are

i 6= j and points pi ≤ ai, pj ≤ aj such that q, pi, pj are collinear.
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(iii) If a, c, p and b, c, q are collinear, then q ≤ a+b, q ≤ b+p, or q ≤ a+p.

(iv) S(M) contains no triangle configuration.

(v) There is no (a, b)-cycle in M .

Proof.

(i) implies (v). This is basically due to Jónsson and Nation [17] the additional
reasoning is given in the proof of ‘(1) implies (2)’ of (5.1) of [12].

(v) implies (iv). Let (a, b, c, p, q, x) be a triangle configuration. We claim
that for each of the four collinear triples the points of the triple are the only
ones in the configuration which, in M , are below the associated line top.

Assume, for example, that c ≤ a+b+x = l. The meet of any two of a+ l,
b+ l and x+ l is l. If c 6≤ l then, for example, c 6≤ a+ l and c 6≤ b+ l. But, by
Lemma 2.1, C(a, b, c), a contradiction. Thus c ≤ l, whence p ≤ a + l. Since
b, p, x are not collinear it follows p ≤ l and by C(a, c, p) we get a ≤ l which
is impossible. The other possibilities can be handled in a similar manner.

Now, let u = l + c = l + p = l + q and v = l + c = l + p = l + q. By
modularity and join irreducibility we get from the above that c, p, q 6≤ v ≺ u.
The three pairs from c, p, q give rise to three distinct line tops, so we would
obtain three lines constituting a (u, v)-cycle in M .

(iv) implies (iii). If (iv) holds only cases 2-5 of the triangle axiom can apply,
and (iii) is satisfied.

(iii) implies (ii). Assume (iii). If n ≤ 2 then (ii) is satisfied by Lemma
2.2. We will prove the claim for n = 3, the general result follows by a
straightforward induction.

Let q ≤ a1 + a2 + a3. If q ≤ ai + aj then the result follows from Lemma
2.2.. Otherwise, by Lemma 2.2, there are points b ≤ a1 and c ≤ a2 + a3 such
that b, c, q are collinear and, again by Lemma 2.2, there are points a ≤ a2,
p ≤ a3 with a, c, p collinear. By (iii), q ≤ a + b, q ≤ b + q or q ≤ a + p.
Another application of Lemma 2.2 proves the result.

(ii) implies (i). The 2-distributivity of L(S(M)) follows from (ii) easily,
whence that of M via Theorem 2.1.
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We conclude this section with some definitions and a combinatorial lemma
needed in the next section. Let M be a 2-distributive modular spatial lattice
and Λ an irredundant set of proper lines, i.e. λ 6= γ for all λ 6= γ in Λ. In
particular distinct lines in Λ cannot have more than one point in common.
Let PΛ be the union of all lines in Λ. Call a point p 6∈ PΛ isolated (with
respect to Λ).

A chain (respectively cycle) in (Q,Λ) , Q a subset of PM , is a sequence
{λi : 0 ≤ i < n} in Λ with all λi ∩Q at least 2-element and λi ∩ λj ∩Q 6= ∅
if and only if |i − j| ≤ 1 (respectively i = j or i − j ≡ ±1 modulo n). We
say that the chain joins λ0 with λn−1. Two lines of Λ belong to the same
component of (Q,Λ) if and only if they are joined by a chain in (Q,Λ) . The
set of all points in Q lying on the lines of a component will be also be called
a component.

Consider Γ ⊆ Λ, PΓ ⊆ U ⊆ PΛ and let Γ′ = Λ \ Γ. A depth function for
Γ and U is a map d from Λ into the natural numbers such that:

(i) d(λ) = 0 iff λ ∈ Γ.
(ii) If d(λ) = 1 then λ contains exactly one point from U .
(iii) If d(λ) > 1 then either there are exactly two points on λ which are in

U or there is one point on λ which is in U and one point on a line of depth
less than d(λ); also there is no other point on λ which is on a distinct line of
lesser or equal depth.

(iv) For each p ∈ PΛ − U there is a unique line of minimum depth con-
taining p.

For a in M let Pa = {p ∈ PM : p ≤ a} and let Λa = {λ ∈ Λ : λ ≤ a}.

Lemma 7.2 Let λ ≤ b for all λ ∈ Λ and let a and c be lower covers of b in
M . Then there are depth functions for Λa ⊆ Λ and U = Pa ∩ PΛ and for
Λa ∪ Λc ⊆ Λ and U = (Pa ∪ Pc) ∩ PΛ. In the first case, for any line of depth
greater than zero there is a unique chain joining it to a line of depth 1.

Proof. First observe that by Lemma 7.1 each line in Λ′a contains exactly
one point from Pa and that (PM ,Λ

′
a) is cycle free since any such cycle would

be an (a, b)-cycle contrary to Theorem 7.1.
In the first case, let all lines from Λa be of depth 0. Distinguish one line

in each component of (Qab,Λ
′
a) (where Qab = Pb \ Pa) giving it depth 1. For

each of the remaining lines there is a unique chain joining it with a line of
depth 1, because (PM ,Λ

′
a) is cycle free. Let the depth of such a line be the
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number of lines in the chain. Each such line of depth k > 1 will contain
exactly one point on a line of depth k − 1 and exactly one point from U .
Thus, for each k uo to the maximum there is exactly one line of depth k
Assuming λ of depth k having a common point 6∈ U with a line of depth
< k − 1 would produce a cycle.

In the second case let a 6= c and Γ = Λa ∪ Λc. Let Ω consist of those
lines from Γ′ which contain a point from Pac, and then no other point from
Pa ∪ Pc. Let ∆ consist of the remaining lines in Γ′ having exactly one point
from each Pa and Pc but none from Pac.

(1) No two lines λ1, λ2 from ∆ intersect in a point r ∈ PΛ − PΓ .

Assume that such an r exists and let pi ∈ λi with pi ≤ a and pi 6≤ c. If
p1 = p2 then λ1 = λ2 contradicting the irredundancy of Λ. If p1 6= p2 then
there is a line λ ∈ ΛM containing p1 and p2. Since λ 6≤ c, the sequence
λ1, λ2, λ is a (c, b)-cycle, contrary to Theorem 7.1.

Let R = Pb− (Pa ∪Pc) and observe that each line in Ω contains at least two
points of R. Of course, (R,Ω) is cycle free since such a cycle would be both
an (a, b)-cycle and a (c, b)-cycle. Let S = P∆ − (Pa ∪ Pc)).

(2) Each component of (R,Ω) contains at most one r ∈ S.

Let λ1, ..., λn be a chain in (R,Ω) and ri ∈ λi ∩ S for i = 1, n with r1 6= rn.
By definition of ∆ there exist pi ∈ Pa − Pac, qi ∈ Pc − Pac so that pi, qi, ri
on γi ∈ ∆, i = 1, n. If p1 = pn then γ1, λ1, λ2, ..., λn, γn is a (c, b)-cycle.
Otherwise, by Lemma 7.1 there is a line µ ∈ ΛM joining p1 and pn. Since,
µ = p1 + pn ≤ a, the lines µ, γ1, λ1, λ2, ..., λn, γn form a (c, b)-cycle.

Now, define the lines in Γ and ∆ to have depth 0 and 2, respectively.
If a component of (R,Ω) contains a point of S then choose a single line
containing this point and give it depth 3. If a component contains no point
from S then choose a line of the component arbitrarily and give it depth 1.
For each of the remaining lines there is a unique (since (R,Ω) is cycle free)
chain, consisting of m lines in (R,Ω) joining it with a line of depth d ≤ 3.
Let the depth of such a line be defined as m + 3. The observations (1) and
(2) above are useful for the proof that this defines a depth function.

We deal with the interesting case of two lines k and l in ∆. First, observe
that for any l ∈ ∆, al and cl belong to the line interval of l and are distinct
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and that l = acl.
Now Assume r ∈ k ∩ l ∩ S. Let b = r+ k and a = r+ l. Then r/r ↗ k/b

and r/r ↗ l/a. Following the proof of Thm.3.2 (=3.3 in AU) (with r in place
of c) we have l and k comparable or Cases 4 or 5. The latter is excluded by
2-distributivity. In Case 4 let pa ∈ l∩Pa, pb ∈ l∩Pb, qa ∈ k∩Pa, qb ∈ k∩Pb
the uniquely determined elements. According to Case 4

l + pa = k + qa = l + pb = k + qb = l + k

whence l ≤ a, a contradiction.
It remains to deal with e.g. k < l. then k 6≤ a implies k 6≤ l, whence

d = k + l in the line interval of k. Then ack is in the line interval of k and k
contains a point from Pac, contradiction.

8 Representation

In this section we will set up the machinery for a vector space representation
of the line spaces associated with 2-distributive modular algebraic spatial
lattices. Let M be a modular algebraic spatial lattice, Λ a set of lines of
M , k a field with |k| + 1 ≥ |λ| for all λ ∈ Λ, and E a k-vector space.
For X ⊆ E let < X > be the subspace of E generated by X. Any map
ϕ : PM → E provides us with an order preserving map ϕ : M → L(E) where
ϕ(a) =< ϕ(p)| p ≤ a > .

Call ϕ : PM → E a representation of (M,Λ) if for all p, q, r ∈ PM and
a ∈M

(1) ϕ(p) ∈ ϕ(a) implies p ≤ a,

(2) p, q, r ∈ λ, λ ∈ Λ, p 6= q implies ϕ(r) ∈< ϕ(p), ϕ(q) >,

(3) ϕ is a meet homomorphism of M into L(E).

Our candidate for a representation is built as follows:

Introduce vector space generator symbols ep, one for each p ∈ PM . For a
proper line λ of M fix a system Σλ of linear relations

αtep + βteq + γter = 0,
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αt, βt, γt ∈ k, one for each 3-element subset t = {p, q, r} of λ such that

λ+ p 7→ ep

is a representation of the lattice (λ/λ), endowed with a single line consisting
of all atoms, in the free k-vector space Eλ with generators ep, p ∈ λ and
relations Σλ. The cardinality restriction, |k| > |λ| implies that such a rep-
resentation exists; it can be derived from any embedding of the length two
lattice λ/λ into the subspace lattice of a 2-dimensional k-vector space. In
fact, the given 2-dimensional vector space is free on Σλ.

Let E be the k-vector space with presentation consisting of, as generators,

{ep | p ∈ PM},

and relations,
ΣΛ = ∪(Σλ, λ ∈ Λ).

The map
p→ ϕ(p) = ep ∈ E

is called canonical for k, M , and Λ. If k, M , and the Σλ are fixed, then for
each Λ we have a uniquely determined E = EΛ and ϕ = ϕΛ.

Observe that property (2) is an immediate consequence of the construc-
tion and that for Γ ⊆ Λ there is a canonical linear map

fΓΛ : EΓ → EΛ,

onto EΛ, such that for all p ∈ PM ,

ϕΛ(p) = fΓΛϕΓ(p).

Let FΛ denote the subspace generated by the ep, p ∈ PΛ, in EΛ. Isolated
points do not appear in any of the relations in ΣΛ , so they yield direct
summands:

EΛ = FΛ ⊕
⊕

(kep|p 6∈ PΛ).

Lemma 8.1 Let d be a depth function for Γ ⊆ Λ and PΓ ⊆ U ⊆ PΛ, and
let X be a selection of one point, not in U , from each λ ∈ Γ′ with d(λ) = 1.
Then there is a linear isomorphism g of EΛ onto

FΓ ⊕
⊕

(kep|p ∈ U − PΓ)⊕
⊕

(kep|p ∈ X)⊕
⊕

(kep|p 6∈ PΛ)

such that g ◦ fΓΛ|(FΓ ⊕
⊕

(kep|p ∈ U − PΓ)) is the canonical embedding into
the direct sum and g(ep) = ep, for all p ∈ X and all p 6∈ PΛ.
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Proof. It suffices to show that there is a unique way to define, in the
direct sum, vectors ep, for p ∈ PΛ, p 6∈ PΓ ∪X, in such a way that we get a
realization of ΣΛ. Proceeding inductively, assume that this definition is done
for all points on lines of depth less than d for given d > 0. Each line λ of
depth d contains exactly two points s, t for which es, et are already defined
and these are the only ones which may lie on any other line of depth d. These
facts follow directly from the properties of a depth function and from the fact
that, for d = 1, one of s and t is in PΓ, the other in X.

The linear relations Σλ determine the remaining assignments of the points
on λ to vectors on < es, et > uniquely. Because only two points have been
assigned already, there is such an assignment and it is faithful; this was
precisely the reason we defined the relations Σλ the way we did. So we can
extend our definition to all points on lines of depth d, simultaneously.

Theorem 8.1 Let k be a field and M a 2-distributive modular algebraic
spatial lattice with an irredundant set, Λ, of proper lines each of cardinality
at least |k| + 1. There exists a canonical map ϕ : PM → L(E), and every
such map is a representation of (M,Λ). If Λ is a base of lines then ϕ is a
cover preserving lattice embedding of M into L(E)

Proof. If Λ is a base of lines then property (2) implies that the map ϕ is
a join homomorphism of M into L(E). So we are left to verify that ϕ enjoys
properties (1) and (3).

For Λ = ∅ everything is trivial. Next, let Λ be nonempty and finite,
assume the claim is true for all proper subsets of Λ, and let b =

∑{λ|λ ∈ Λ}.
As a join of finitely many points, b is compact. As remarked above 8.1,

ϕΛ(x) = ϕΛ(bx)⊕
⊕

(kep|p ≤ x, p 6≤ b),

for any x ∈M .

From Lemmas 7.2 and 8.1 it follows that for any lower cover a of b we have

(4) fΛaΛ is faithful on ϕΛa
(a) and

ϕΛ(x) = fΛaΛ(ϕΛa
(x)) < ϕΛ(b), for all x ≤ a,

Let x ∈ M and p ∈ PM with ϕΛ(p) ≤ ϕΛ(x). If p 6≤ b then, from the
observation just above and the comment above Lemma 8.1, p ≤ x. If p ≤ b
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then, again from the observation just above, ep ∈ ϕΛ(bx). If b ≤ x then
p ≤ x. Otherwise bx ≤ b. Since b is compact, there ia an a ∈ M with
bx ≤ a ≺ b and we have ϕΛ(p) ≤ ϕΛ(a).

We wish to apply Lemmas 7.2 and 8.1, with U = Pa∩PΛ, to get ϕΛa
(p) ≤

ϕΛa
(bx). But to do this we first need to ensure that p ≤ a.
Assume p 6≤ a. Then there is a line λ of minimum depth containing p.

If ep ∈ ϕΛ(a) then λ contains two points whose images are in ϕΛ(a), p and
an element of U . It follows that the image of every point of λ is in ϕΛ(a).
We can proceed inductively along the unique chain joining λ with a line of
depth 1 (which exists by Lemma 7.2), and obtain an element r of X whose
image is in ϕΛ(a). This is in contradiction to Lemma 8.1.

Now |Λa| < |Λ|, because
∑
λ∈Λa

λ ≤ a < b =
∑
λ∈Λ λ. Hence, by the

inductive hypothesis, p ≤ bx. This proves (1) for the given finite Λ.
Now, consider two distinct lower covers a and c of b and let Γ = Λa ∪

Λc. Let B be the amalgamated free coproduct in the category of k-vector
spaces of ϕΛa

(a) and ϕΛc
(c) over ϕΛac

(ac) along the embeddings (viz. (4))
fΛacΛa|ϕΛac

(ac) and fΛacΛc|ϕΛac
(ac). Then EΓ is canonically isomorphic to

B ⊕ ⊕
(kep|p 6∈ Pa ∪ Pc) since this satisfies ΣΓ and is as free as possible.

Using Lemmas 7.2 and 8.1 another time we get that EΛ is, for suitable X,
canonically isomorphic to

B ⊕
⊕

(kep|p 6≤ b or p ∈ X).

Since amalgamated coproducts in the category of k-vector spaces are seper-
ating we have,

(5) for any two distinct lower covers a, c of b

ϕΛ(ac) = ϕΛ(a)ϕΛ(c).

Now consider c, d ∈ M and u ∈ ϕΛ(c) ∩ ϕΛ(d); then there exist unique
s, t ∈ EΛ with s ∈ ϕΛ(c+d) and t ∈⊕

(kep|p ≤ c+d, p 6≤ b) so that u = s+t.
But there also exist v, w ∈ EΛ with v ∈ ϕΛ(bc) and w ∈⊕

(kep|p ≤ c, p 6≤ b)
with u = v+w. The uniqueness of s and t imply s = v and t = w. Similarly,
s ∈ ϕΛ(bd) and t ∈⊕

(kep|p ≤ d, p 6≤ b). We have shown,

ϕΛ(c)ϕΛ(d) = ϕΛ(bc)ϕΛ(bd)⊕
⊕

(kep|p ≤ cd, p 6≤ b),
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and therefore,

(6) ϕΛ(c)ϕΛ(d) ≤ ϕΛ(bc)ϕΛ(bd) + ϕΛ(cd).

To complete the proof of the Theorem for the finite case we must show that
(3) holds. By (6) it suffices to consider x, y ≤ b. Let a ∈ M with x ≤ a ≺ b
and let c ∈ M with y ≤ c ≺ b; these exist by the compactness of b. By the
inductive hypothesis and (4), we can assume that (3) holds for any pair of
elements less than or equal to a or c. Hence, by (5), (4), and induction

ϕΛ(x)ϕΛ(y) = ϕΛ(xa)ϕΛ(yc) = ϕΛ(x) ϕΛ(a)ϕΛ(c) ϕΛ(y) = ϕΛ(x) ϕΛ(ac)ϕΛ(y)
= ϕΛ(xac)ϕΛ(y) = ϕΛ(xc)ϕΛ(y) = ϕΛ(xcy) = ϕΛ(xy).

Now, assume that Λ is infinite. By definition, EΛ is the k-vector space with
presentation

({ep|p ∈ PM}|
⋃

(Σλ|λ ∈ Λ)).

It follows that any relation which holds in EΛ is a consequence of only finitely
many of the relations of this presentation and therefore it holds in EΓ for
some finite Γ ⊆ Λ. Again, since (2) is built into the construction we only
have to show that (1) and (3) hold.

Now suppose v ∈ ϕΛ(x) ∩ ϕΛ(y) for some x, y ∈ M . Then there are two
representations of v in EΛ,

v =
n∑
i=1

αiepi =
m∑
i=1

βieqi ,

for some αi, βi ∈ k, pi ∈ PM and qi ∈ PM . Since this is a relation holding
in EΛ it must also hold in EΓ for some finite Γ ⊆ Λ. This implies that we
have u ∈ ϕΓ(x) ∩ ϕΓ(y) with fΓΛ(u) = v. From the finite case we know that
u ∈ ϕΓ(xy), i.e. in EΓ we can write u =

∑l
i=1 δieri with δi ∈ k and ri ∈ Pxy.

It follows from linearity of fΓΛ that v =
∑k
i=1 δieri in EΛ, and hence (3) holds.

In particular, if y is a point and v = ey ∈ ϕΛ(x) then we have u = ey ∈ ϕΓ(x)
whence y ≤ x by the finite instance of (1).

Finally, if p ∈ PM then ϕΛp
(p) ≺ ϕΛp

(p)+ < ep >= ϕΛp
(p). Hence, by

(4) above, ϕΛ(p) ≺ ϕΛ(p). Every cover in M transposes down to a cover of
the form p ≺ p, p ∈ PM , and hence, if ϕΛ is a lattice embedding, then ϕΛ

will preserve covers.
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