Frankl's Conjecture for lower semimodular lattices

Christian Herrmann and Rolf Langsdorf

Aug.1999

Fachbereich Mathematik, Technische Universität Darmstadt Schlossgartenstr.7 D64289 Darmstadt, Germany E-Mail:herrmann@mathematik.tu-darmstadt.de

Running title: On Frankl's Conjecture

Abstract

A stronger lattice theoretic version of Frankl's Conjecture on union closed families is verified for each of lower semimodular, sectionally complemented, and self-dual lattices. Frankl's Conjecture on union closed families of sets can be equivalently stated as a conjecture on finite lattices, cf Poonen [4]. Namely, for a finite lattice L, let $\chi(L) = m \cdot |L|^{-1}$ where m is the minimum size of an upper section [p, 1]with a join irreducible p. Then the conjecture and a stronger version due to Poonen [4] read as follows: For any finite lattice L with |L| > 1

- (a) $\chi(L) \le \frac{1}{2}$.
- (b) If $\chi(L) \ge \frac{1}{2}$ then L is boolean.

(b) implies (a) since $\chi(L) = \frac{1}{2}$ for boolean L. (a) has been proved by Poonen [4] for distributive and for sectionally complemented lattices, (b) by Abe and Nakano [1] for modular lattices. Using their approach we show

Theorem 1 Let L be a finite lattice, |L| > 1. Then L is boolean provided that $\chi(L) \geq \frac{1}{2}$ and that, in addition, one of the following holds

- L is lower semimodular
- all sections [0, x] of L are complemented lattices
- $\chi(L^*) \geq \frac{1}{2}$ where L^* is the dual of L.

In particular, it follows that for every L at least one of L and L^* satisfy Frankl's Conjecture (a) - a closely related result has been obtained by Johnson and Vaughan [3]. The key is the following definition, due to [1], of the subset D(L) of L

 $x \in D(L)$ if and only if for every $z \ge x$ there is $w \ge x$ such that z = x + w.

The proof is based on the following observations for |L| > 1

- (1) x > 0 if $x \in D(L)$.
- (2) $x \in D(L)$ iff for every $z \ge x$ there is a lower cover $w \ge x$ of z.
- (3) If $x \in D(L)$ then $|[x, 1]| \le \frac{1}{2}|L|$.
- (4) If $x \in D(L)$ and $|[x,1]| = \frac{1}{2}|L|$ then $L \cong [x,1] \times \{0,x\}$.
- (5) $1 \in D(L)$.

- (6) If L is sectionally complemented then $D(L) = L \setminus \{0\}$.
- (7) If L is lower semimodular and $x \in D(L)$ minimal, then x is join irreducible.
- (8) $\chi(L_1 \times L_2) = \min\{\chi(L_1), \chi(L_2)\}$ if $|L_i| > 1$.

Proof. Joins and meets are written as x + y and $x \cdot y$, respectively. (1),(3), (5) and (8) are obvious, (6) was observed in [4], proof of Prop.3.

Ad (2): Consider $z \ge x$. If $x \in D(L)$ choose $w \not\ge x$ maximal such that x + w = z. Then for any $w < y \le z$ one has $x \le y$ whence y = z, i.e. w is a lower cover of z. Conversely, if $w \not\le x$ is a lower cover of z, then z = x + w.

Ad (4): For any $z \ge x$ there is unique $w = \psi(z) \not\ge x$ such that $z = x + \psi(z)$. Thus, ψ is a map of [x, 1] into [0, u] where $u = \psi(1)$. By the definition, the join homomorphism $\phi(w) = x + w$ is a left inverse of ψ . Since $|[0, u]| \le |[x, 1]|$, it follows that ψ is an isomorphism and L is the disjoint union of [0, u] and [x, 1]. Moreover, x is an atom whence $L \cong [0, u] \times \{0, x\}$.

Ad (7): Suppose that x has distinct lower covers y_1, y_2 . Since $y_i \notin D(L)$ there are $z_i \geq y_i$ with no lower cover $w_i \not\geq y_i$ - for i = 1, 2. Put $z = z_1 + z_2$ and choose a lower cover $w \not\geq x$ according to (2). Since $x = y_1 + y_2$ we have $w \not\geq y_i$ for some i. Then $w \not\geq z_i$ and, by lower semimodularity, $w_i = z_i \cdot w \not\geq y_i$ is a lower cover of z_i . Contradiction.

Proof of the Theorem. Let L be lower semimodular resp. sectionally complemented, |L| > 1. Choose $x \in D(L)$ minimal. x is join irreducible by (7) resp. (6). Apply (3) to get $[x, 1] \leq \frac{1}{2}|L|$ and $\chi(L) \leq \frac{1}{2}$.

Now assume, in addition, that $\chi(L) = \frac{1}{2}$. |L| = 2 if x = 1. Otherwise, $|[x, 1]| = \frac{1}{2}$ and by (4) we get a direct decomposition of L into a two element lattice 2 and a lower section L' - which is lower semimodular resp. sectionally complemented, too, and |L'| > 1. By (8) we have $\chi(L') = \frac{1}{2}$. Therefore, we may apply induction to conclude that L' is boolean. Then so is L.

Finally, consider L such that $\chi(L) \geq \frac{1}{2}$ and $\chi(L^*) \geq \frac{1}{2}$. Choose a maximal join irreducible p and a meet irreducible $h \not\geq p$. By hypothesis, $|[p, 1]| \geq \frac{1}{2}|L|$ and $|[0, h]| \geq \frac{1}{2}|L|$. Since these two intervals are disjoint, they both have size $\frac{1}{2}|L|$ and their union is L. By maximality of p, all join irreducibles but p have to be in [0, h]. Consider $x \geq p$. Since x is a join of join irreducibles, it follows x = p + y for some $y \leq h$. In other words, $p \in D(L)$ and by (4) we get a direct decomposition of $L \cong L' \times 2$. By (8) we have $\chi(L') \geq \frac{1}{2}$ and $\chi(L'^*) \geq \frac{1}{2}$ and may apply induction.

Abe and Nakano [1] have provided an example of an atomistic, dually atomistic, and consistent lattice L such that D(L) contains no join irreducible element. Also, the smallest non-modular upper semimodular lattice contains a minimal element of D(L) which is not join irreducible.

References

- Abe, T. and Nakano, B.: Frankl's Conjecture is true in modular lattices. Graphs Comb. 14, 305-311 (1998)
- [2] Crawley, P. and Dilworth, R.P.: Algebraic Theory of Lattices. Englewood Cliffs NJ: Prentice Hall 1973
- [3] Johnson, R.T. and Vaughan, Th.P.: On union-closed families, I. J. Comb. Th. Ser.A 85, 112-119 (1999)
- [4] Poonen, B.: Union closed families. J. Comb. Th. Ser.A 59, 253-268 (1992)