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Abstract. Faithful representations of regular ∗-rings and modular complemented
lattices with involution within orthosymmetric sesquilinear spaces are studied
within the framework of Universal Algebra. In particular, the correspondence
between classes of spaces and classes of representables is analyzed; for a class of
spaces which is closed under ultraproducts and non-degenerate finite dimensional
subspaces, the latter are shown to be closed under complemented [regular] sub-
algebras, homomorphic images, and ultraproducts and being generated by those
members which are associated with finite dimensional spaces. Under natural re-
strictions, this is refined to a 1-1-correspondence between the two types of classes.

1. Introduction

For ∗-rings, there is a natural and well established concept of representation in
a vector space VF endowed with an orthosymmetric sesquilinear form: a homomor-
phism ε into the endomorphism ring of VF such that ε(r∗) is the adjoint of ε(r).
Famous examples of (faithful) representations are due to Gel’fand-Naimark-Segal
(C∗-algebras in Hilbert space) and Kaplansky (primitive ∗-rings with minimal right
ideal) [26, Theorem 1.2.2].

(Faithful) representability of ∗-regular rings within anisotropic inner product
spaces has been studied by Micol [40] and used to derive results in the universal
algebraic theory of these structures. For the ∗-regular rings of classical quotients
of finite Rickart C∗-algebras (cf. Ara and Menal [1]), representations have been
established in [25]. For complemented modular lattices L (CML for short) with
involution a 7→ a′, an analogue of the concept of representation is a (0, 1)-lattice
homomorphism ε into the lattice of all subspaces such that ε(a′) is the orthogonal
subspace to ε(a) (cf. Niemann [42]). The latter has been considered in the context
of synthetic orthogeometries in [18], continuing earlier work on anisotropic geome-
tries and modular ortholattices [20, 21, 22]. Primary examples are atomic CML
with associated irreducible desarguean orthogeometry and those CML which arise
as lattices of principal right ideals of representable regular ∗-rings.

The (proofs of the) main results of these studies relate closure properties of a class
S of spaces with closure properties of the class R of algebraic structures (faithfully)
representable within spaces from S. In particular, for S closed under ultraproducts
and non-degenerate finite dimensional subspaces, one has R closed under ultraprod-
ucts, homomorphic images, and ∗-regular [complemented, respectively] subalgebras.
Moreover, with an approach due to Tyukavkin [46], it has been shown that R is
generated, under these operators, by the endomorphism ∗-rings [by the subspace
lattices with involution U 7→ U⊥, respectively] associated with finite dimensional
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spaces from S (cf. Theorem 9.4). Conversely, any class R of structures generated
in this way has its members representable within S.

The first purpose of the present paper is to extend these results to regular ∗-rings
on one hand, to representations within orthosymmetric sesquilinear spaces on the
other. The second one is to give a more transparent presentation by dealing with
types of classes naturally associated with representations in linear spaces. We call
a class of structures R as above an ∃-semivariety of regular ∗-rings [complemented
modular lattices with involution or CMIL for short] and we call S a semivariety of
spaces. The quantifier ‘∃’ refers to the required existence of quasi-inverses [com-
plements, respectively]. In this setting, the above-mentioned relationship between
classes of structures R and classes of spaces S can be refined to a 1-1-correspondence
(cf. Theorem 9.7). Also, we observe that R remains unchanged if S is enlarged by
forming two-sorted substructures, corresponding to the subgeometries in the sense
of [18], (cf. Theorem 9.4). We also provide a useful condition on S such that R is
an ∃-variety, i.e. R also closed under direct products (see Proposition 10.2).

In the context of synthetic orthogeometries, the class R of representables is an
∃-variety if S is also closed under orthogonal disjoint unions. No such natural con-
struction is available for sesquilinear spaces. The alternative, chosen by Micol [40],
was to generalize the concept of faithful representation to a family of representations
with kernels intersecting to 0 [the identical congruence, respectively]; thus, associ-
ating with any semivariety of spaces an ∃-variety of generalized representables. We
derive these results in our more general setting (cf. Proposition 10.4).

For reference in later applications, e.g. to decidability results refining those of
[19], we consider ∗-rings which are also algebras over a fixed commutative ∗-ring.
Once the definitions are adapted, only a minimum of additional effort is needed in
proofs.

2. Lattices with involution

We assume familiarity with the basic constructions of Universal Algebra as pre-
sented e.g. in [7, 16], see also [39]. First, we recall some notation. For a class C of
algebraic structures of a fixed similarity type, by H(C), S(C), P(C), Ps(C), Pω(C), and
Pu(C), we denote the class of all homomorphic images, of structures isomorphic to
substructures, direct products, subdirect products, direct products of finitely many
factors, and ultraproducts of members of C, respectively. Elements of a reduced
product

∏
i∈I Ai/F are denoted as [ai | i ∈ I]. An algebraic structure A is sub-

directly irreducible if it has a least non-trivial congruence. In particular, if A is
subdirectly irreducible and A ∈ SP(C), then A ∈ S(C). By Birkhoff’s Theorem, any
algebraic structure is a subdirect product of its subdirectly irreducible homomorphic
images.

A class C of algebraic structures of the same type is a universal class if it is closed
under S and Pu; a positive universal class, shortly a semivariety, if it is closed also
under H; a variety if, in addition, it is closed under P. The following statement is
well known and easily verified.

Fact 2.1. A class K is universal [a semivariety, a variety] if and only if it can be
defined by universal sentences [positive universal sentences, identities, respectively].

For the following concepts, we refer to [5, 6]. We consider lattices with 0, 1 as
algebraic structures 〈L; ·,+, 0, 1〉 such that, for a suitable partial order, ab = a · b =
inf{a, b} and a+b = sup{a, b}. We write a⊕b instead of a+b, when ab = 0. Lattices
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form a well known equationally defined class. The same applies to the subclass of
modular lattices; that is, lattices satisfying

a ≥ c implies a(b+ c) = ab+ c.

A modular lattice L has height n < ω (which is also called the dimension of L
and denoted by dimL), if L has (n+ 1)-element maximal chains; we write dim a =
dim[0, a]. An atom is an element a ∈ L with dim a = 1. A lattice L is complemented
if for all a ∈ L, there is b ∈ L such that a⊕ b = 1. In a CML [i.e., a complemented
modular lattice] L, any interval [u, v] is complemented, too; L is atomic if for any
a > 0 there is an atom p ≤ a. It follows that a � b in L if and only if there is an
atom p ∈ L such that p ≤ a and p � b.

If a lattice L is endowed with an additional operation x 7→ x′ such that

x ≤ y′ if and only if y ≤ x′;

(x+ y)′ = x′y′;

1′ = 0, 0′ = 1,

then we speak of a Galois lattice. Observe that x ≤ y implies y′ ≤ x′, that x′′′ = x′,
and that x 7→ x′′ defines a closure operator on L. We call such a lattice a lattice
with involution if, in addition, x′′ = x for all x ∈ L; equivalently, if x 7→ x′ is a
dual automorphism of order 2 of the lattice L. Thus lattices with involution form
an equationally defined class. The following statement is straightforward to prove.

L:1
Lemma 2.2. Let L0, L1 be modular lattices with involution.

(i) A map ϕ : L0 → L1 is a homomorphism, if ϕ(x+ y) = ϕ(x) +ϕ(y), ϕ(x′) =
ϕ(x)′ for all x, y ∈ L0, and ϕ(0) = 0.

(ii) A subset X ⊆ L0 is a subalgebra of L0, if 0 ∈ X and X is closed under
operations + and ′.

The subclass of ortholattices consists of lattices with involution satisfying the iden-
tity xx′ = 0 (or equivalently, x+x′ = 1). We write MIL [CMIL] shortly for [comple-
mented] modular lattices with involution and MOL for modular ortholattices. We
use each abbreviation also to denote the class of all lattices with the corresponding
property. Observe that dimu = dim[u′, 1] in any MIL. For a modular Galois lattice
L, let Lf = {u, u′ | u ∈ L, dimu < ω}.

gal
Fact 2.3. If L is a Galois CML then Lf ∈ S(L) and is an atomic CMIL which is the
directed union of its subalgebras [0, u]∪[u′, 1], where dimu < ω and u⊕u′ = 1 (which
are all CMILs). If L is a CMIL, then Lf = {a ∈ L | dim a < ω or dim[a, 1] < ω}.
Proof. If p is an atom of L then p′ is a coatom. Indeed, if p′ ≤ x < 1 then 0 < x′ ≤ p,
whence x′ = p and x ≤ x′′ = p′.

It follows that dim[v′, u′] 6 dim[u, v] if the latter is finite. Namely, if dim[u, v] = 1
then v = u + p, where p is a complement of u in [0, v], whence an atom and so
v′ = u′p′ is a lower cover of u′ unless v′ = u′. Thus, if dimu < ω, then dimu′′ ≤
dim[u′, 1] ≤ dimu, u′′ = u, and x 7→ x′ provides a pair of mutually inverse lattice
anti-isomorphisms between the intervals [0, u] and [u′, 1] of L. Therefore, [u′, 1] ⊆ Lf .
Since {u ∈ L | dimu < ω} is closed under joins and 0 ∈ Lf , Lf ∈ S(L) by Lemma
2.2(ii) and, in particular, Lf is an MIL.

If X ⊆ Lf is finite, then there is u ∈ L such that dimu < ω and X = Y ∪ Z,
where y, z′ ∈ [0, u] for all y ∈ Y , z ∈ Z. Choose v as a complement of u + u′ in
[u, 1]. Then u, u′, v ∈ Lf whence u = v(u + u′) implies u′ = v′ + uu′. It follows
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that v + v′ = v + u+ uu′ + v′ = v + u+ u′ = 1 and vv′ = (v + v′)′ = 1′ = 0 whence
X ⊆ [0, v] ∪ [v′, 1]. This proves the first statement.

If L is a CMIL and dim[a, 1] < ω then dim a′ = dim[a, 1] < ω, thus a′ ∈ Lf and
a = a′′ ∈ Lf . �

For a lattice congruence θ on an MIL L, we put θ′ = {(a′, b′) | (a, b) ∈ θ}. Then
θ′ is also a lattice congruence on L and the congruences on L are exactly joins
θ∨ θ′, where θ is a lattice congruence on L. We call L strictly subdirectly irreducible
if its lattice reduct is subdirectly irreducible; i.e., L has a unique minimal (non-
trivial) lattice congruence θ (whence θ = θ′). Similarly, L is strictly simple if it is
simple as a lattice. In the case of MOLs one has θ = θ′ for all θ; thus subdirectly
irreducible MOLs [simple MOLs] are strictly subdirectly irreducible [strictly simple,
respectively].

atom
Fact 2.4. A strictly subdirectly irreducible CMIL L is atomic provided it contains
an atom. For the minimal nontrivial congruence θ, one has a ∈ Lf iff aθ0 or aθ1.
In particular, Lf is strictly subdirectly irreducible and atomic, too.

Proof. Let p be an atom in L. By modularity, the lattice congruence generated
by (0, p) is minimal. Thus given a > 0, one has (0, p) in the lattice congruence
generated by (0, a), whence by modularity, p/0 is projective to some subquotient
x/y of a/0. Then any complement q of y in [0, x] is an atom. Thus L is atomic and
it follows that xθy iff dim[xy, x+ y] < ω. In view of Fact 2.3, we are done. �

3. Projective spaces and orthogeometries
D:proj

Definition 3.1. A projective space P is a set, whose elements are called points,
endowed with a ternary relation ∆ ⊆ P 3 of collinearity satisfying the following
conditions:

(i) if ∆(p0, p1, p2), then ∆(pσ(0), pσ(1), pσ(2)) and pσ(0) 6= pσ(1) for any permuta-
tion σ on the set {0, 1, 2};

(ii) if ∆(p0, p1, a) and ∆(p0, p1, b), then ∆(p0, a, b);
(iii) if ∆(p, a, b) and ∆(p, c, d), then ∆(q, a, c) and ∆(q, b, d) for some q ∈ P .

The space P is irreducible if for any p 6= q in P there is r ∈ P such that ∆(p, q, r). A
set X ⊆ P is a subspace of P if p, q ∈ X and ∆(p, q, r) together imply that r ∈ X.

Any projective space P is the disjoint union of its irreducible subspaces Pi, i ∈ I,
which are called its components. The set L(P ) of all subspaces of an [irreducible]
projective space P is a [subdirectly irreducible] atomic CML, in which all atoms
are compact. Moreover, L(P ) ∼=

∏
i∈I L(Pi) via the map X 7→ (X ∩ Pi | i ∈ I).

Conversely, any atomic CML L with compact atoms is isomorphic to L(P ) via the
map a 7→ {p ∈ P | p ≤ a}, where P is the set of atoms of L and p, q, r ∈ P are
collinear if and only if r < p + q. Recall that Jónsson’s Arguesian lattice identity
[29] holds in L(P ) if and only if P is desarguean.

For a vector space VF , let L(VF ) denote the lattice of all linear subspaces of VF .
arg

Fact 3.2. (i) For any vector space VF , L(VF ) is a CML. Moreover, there exists
an irreducible desarguean projective space P such that L(VF ) ∼= L(P ).

(ii) For any irreducible desarguean projective space P with dimL(P ) > 2, there
is a vector space VF which is unique up to (2-sorted) isomorphism, such that
L(P ) ∼= L(VF ).

(iii) If P is irreducible and dimL(P ) > 3, then P is desarguean.
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(iv) Any subdirectly irreducible CML of height at least 4 is Arguesian.

Proof. Claim (i) is the content of [10, Proposition 2.4.15]. For (ii), see [10, Propo-
sition 2.5.6] and [10, Chapter 9]. For (iii), see [9, Chapter 11]. As to claim (iv),
according to Frink [11], any CML L embeds into L(P ) for some projective space
P . Since L is subdirectly irreducible as a lattice, it embeds into L(Pi) for some
irreducible component Pi of P , which is desarguean since dimL(Pi) > 3, whence
statement (iv) follows. �

D:ortho
Definition 3.3. An orthogeometry is a pair 〈P ;⊥〉, where P is a projective space
P endowed with a symmetric binary relation ⊥ of orthogonality such that for any
p, q, r, s ∈ P , the following hold:

(i) if p ⊥ q, p ⊥ r, and ∆(q, r, s), then p ⊥ s;
(ii) if p 6= q and r 6⊥ p, q, then r ⊥ t for some t ∈ P such that ∆(p, q, t);
(iii) there is t ∈ P such that p 6⊥ t.

Then the subspace lattice L(P ) together with the map

X 7→ X⊥ = {q ∈ P | q ⊥ p for all p ∈ X}
is a Galois CML which we denote by L(P,⊥). Observe that conditions (ii) and (iii)
amount to p⊥ being a coatom of L(P ) for any p ∈ P . For an MIL lattice L with
a least element 0, let PL = {p ∈ L | 0 ≺ p} be the set of atoms of L. We define
a collinearity on PL by putting ∆(p, q, r) for distinct atoms p, q, r ∈ PL such that
p ≤ q + r in L. Furthermore, p ⊥ q, if p ≤ q′.

Fact 3.4. [18, Lemma 4.2] For any MIL L, G(L) = 〈PL,⊥〉 is an orthogeometry.
arg2

Fact 3.5. The lattice L = L(P,⊥)f = {X,X⊥ | X ∈ L(P ), dimX < ω} is a CMIL
with L = Lf . Conversely, for any CMIL L with L = Lf , one has L ∼= LG(L)f .

Proof. See [18, Theorem 1.1] and Fact 2.3. �

4. Rings

When mentioning rings, we always mean associative rings, possibly without unit;
in the latter case, the principal right ideal generated by a equals {za | z ∈ Z}∪{ar |
r ∈ R}; also in this case, we denote it by aR. For a ring R, let L(R) denote the set
of all principal right ideals; which is a poset with respect to inclusion.

A ∗-ring is a ring R endowed with an involution; that is, an anti-automorphism
x 7→ x∗ of order 2, such that

(r + s)∗ = r∗ + s∗, (rs)∗ = s∗r∗, (r∗)∗ = r for all r, s ∈ R,
cf. [26] and [43, Chapter 2.13].

An element e of a ∗-ring R is a projection, if e = e2 = e∗. A ∗-ring R is proper if
r∗r = 0 implies r = 0 for all r ∈ R. Throughout this paper, let Λ be a commutative
∗-ring with unit. A ∗-Λ-algebra R is an associative (left) unital Λ-algebra which is
a ∗-ring such that

(λr)∗ = λ∗r∗ for all r ∈ R, λ ∈ Λ.

By AΛ, we denote the class of all ∗-Λ-algebras. Here, unless stated otherwise, we
consider the scalars λ ∈ Λ as unary operations r 7→ λr on R; in other words,
we consider ∗-Λ-algebras as 1-sorted algebraic structures. In view of the equality
λ∗1 = (λ1)∗, the action of Λ does not require particular attention.
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Congruence relations on R are in 1-1-correspondence with ∗-ideals ; that is, ideals
I with I = I∗, where I∗ = {r∗ | r ∈ I}. We call R strictly subdirectly irreducible if
its ring reduct is subdirectly irreducible, i.e. has a unique minimal non-zero ideal
I; in this case, I = I∗. Similarly, R is strictly simple if 0 and R are the only ideals.
In the ∗-ring literature, such ∗-rings are called ‘simple’, while simple ∗-rings are
called ‘∗-simple’. We say that an algebra R ∈ AΛ is atomic if any non-zero right
(equivalently, left) ideal contains a minimal one.

A ring R is [von Neumann] regular if for any a ∈ R, there is an element x ∈ R such
that axa = a; such an element is called a quasi-inverse of a. A ∗-ring R is ∗-regular
if it is regular and proper. By RΛ and R∗

Λ, we denote the classes of all regular and of
all ∗-regular members of AΛ. Observe that regular [∗-regular] ∗-rings with unit can
be dealt with as members of RZ [R∗

Z, respectively]. We refer to [41, 3, 4, 36, 14, 45]
for more details.

For any subset X of a ring R, we call the set

Annl(X) = {s ∈ R | sx = 0 for all x ∈ X}

the left annihilator of X. The right annihilator Annr(X) is defined symmetrically.
For a vector space VF over a division ring F , let End(VF ) denote the set of all
endomorphisms of VF .

reri
Fact 4.1. (i) For any vector space VF , End(VF ) is a regular simple ring.

(ii) A ring R is regular if it admits a regular ideal I such that R/I is regular.
Any ideal of a regular ring is regular.

(iii) A ring R is regular [∗-ring R is ∗-regular] if and only if for any a ∈ R
there is an idempotent [a (unique) projection, respectively] e ∈ R such that
aR = eR.

(iv) For any a, b in a regular ring R, there is an idempotent e ∈ aR + bR such
that ea = a and eb = b.

(v) For idempotents e, f in a regular ring R, one has Annl(eR) = {s ∈ R | se =
0} = R(1− e) and eR ⊆ fR if and only if Annl(fR) ⊆ Annl(eR).

(vi) The classes RΛ and R∗
Λ are closed under operators H and P.

Proof. Statements (i)-(v) are well known, cf. [4, 1.26], [14, Lemma 1.3], [14, Theorem
1.7]. In (vi), closure under P is obvious, closure under H follows by (iii). �

In particular, in the ∗-regular case, any ideal is a ∗-ideal by Fact 4.1(iii); thus
subdirectly irreducibles [simples] are strictly subdirectly irreducible [strictly simple,
respectively].

neu
Fact 4.2. (i) The principal right ideals of a regular ring R form a sublattice

L(R) of the lattice of all right ideals of R; L(R) is sectionally complemented
and modular.

(ii) For R ∈ RΛ [R ∈ R∗
Λ], L(R) is a CMIL [MOL, respectively] endowed with

the involution eR 7→ (1 − e∗)R, where e is an idempotent [a projection,
respectively]; we denote it by L(R).

(iii) If Ri ∈ RΛ, i ∈ I, and R =
∏

i∈I Ri then L(R) ∼=
∏

i∈I L(Ri).
(iv) If ε : R→ S is a homomorphism and R, S are regular rings, then ε : L(R) →

L(S), ε : aR 7→ ε(a)S is a 0-preserving homomorphism. If ε is injective, then
so is ε; if ε is surjective, then so is ε. If R, S ∈ RΛ, then ε : L(R) → L(S)
is a homomorphism.
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In Fact 4.2(ii), one can consider the preorder e ≤ f iff fe = e on the set of idempo-
tents of R and obtain the lattice L(R) factoring by the equivalence relation e ∼ f
iff e ≤ f ≤ e; the involution is given by e 7→ 1− e∗. For R ∈ R∗

Λ, any of the equiva-
lence classes contains a unique projection so that L(R) is also called the projection
[ortho]lattice of R.

Proof. (i) By Fact 4.1(ii), for any a ∈ R, there is an idempotent e ∈ R such that
aR = eR. For any idempotents e, f ∈ R, there is x ∈ R such that (f−ef)x(f−ef) =
f − ef . Therefore, (f − ef)R = g0R, R(f − ef) = Rg1, where g0 = (f − ef)x and
g1 = x(f − ef) are idempotents. According to the proof of [45, §2, Theorem 1], cf.
also the proof of [14, Theorem 1.1],

eR + fR = (e+ g0)R; eR ∩ fR = (f − fg1)R.

Furthermore, for any idempotent e, f ∈ R such that e ≤ f , (f − e)R is obviously a
complement of eR in [0, fR], whence L(R) is a sectionally complemented modular
lattice.

(ii) According to (i), L(R) is a CML. For R ∈ RΛ, the map eR 7→ Annl(eR) =
R(1− e) 7→ (1− e∗)R combines a dual isomorphism of L(R) onto the lattice of left
principal ideals with an isomorphism of the latter onto L(R).

(iii) The idempotents of R are (ei | i ∈ I), where ei ∈ Ri is an idempotent. Thus
the map

ϕ :
∏
i∈I

L(Ri) → L(R); ϕ : (eiRi | i ∈ I) 7→ (ei | i ∈ I)R,

where ei ∈ Ri is an idempotent for all i ∈ I, is well-defined, injective and onto.
Moreover, ϕ preserves the involution and the ordering. As ϕ−1 also preserves the
ordering, ϕ is a lattice homomorphism. See also [23, Lemma 30].

(iv) The fact that ε : L(R) → L(S) is a 0-preserving homomorphism follows from
the proof of (i). If ε is onto, then ε is also obviously onto. Suppose that ε is
injective and e0, e1 ∈ R are idempotents such that ε(e0)S = ε(e1)S. Then ε(e0) =
ε(e1)ε(e0) = ε(e1e0), whence e0 = e1e0. Similarly, e1 = e0e1 and thus e0R = e1R.
Moreover, if R, S ∈ RΛ, then ϕ preserves also 1 and the involution. See also [40]. �

5. Classes

Dealing with a class C of ∗-Λ-algebras or MILs, let S∃(C) [Ps∃(C)] consist of all
regular or complemented members of the class S(C) [of the class Ps(C), respectively].
Call C an ∃-semivariety if it is closed under operators H, S∃, Pu and an ∃-variety
if it is also closed under P, cf. [23], also [30] for an analogue within semigroup
theory. Let W∃(C) [V∃(C)] denote the least ∃-semivariety [∃-variety, respectively]
which contains the class C.

hs1
Fact 5.1. Let C ⊆ RΛ or C ⊆ CMIL.

(i) OS∃(C) ⊆ S∃O(C) for any class operator O ∈ {Pu,P,Pω}.
(ii) S∃H(C) ⊆ HS∃(C).
(iii) W∃(C) = HS∃Pu(C).
(iv) V∃(C) = HS∃P(C) = HS∃PuPω(C) = Ps∃W∃(C).
(v) W∃(C) and V∃(C) are axiomatic classes.
(vi) A ∈ W∃(C) if B ∈ W∃(C) for all finitely generated B ∈ S∃(A).

These statements are well known for arbitrary algebraic structures if suffix ∃ is
omitted. For the proof of Fact 5.1, we refer to Appendix.
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6. ε-Hermitean spaces and associated structures

Let Λ be a commutative ∗-ring and let F be a division ring which is a Λ-algebra
endowed with an anti-automorphism x 7→ x∗ such that (λr)∗ = λ∗r∗ for all λ ∈ Λ
and r ∈ F . The class of all such division rings will be denoted by FΛ. Again, the
action of Λ is not essential. For better readability, we will denote elements of F by
λ, µ, etc.

For F ∈ FΛ, we consider sesquilinear spaces which are [right] vector spaces VF

endowed with a scalar product or a sesquilinear form 〈 | 〉 : V × V → F ; that is,
for all u, v, w ∈ V and all λ, µ ∈ F , one has

〈u | v + w〉 = 〈u | v〉+ 〈u | w〉, 〈uλ | vµ〉 = λ∗〈u | v〉µ,
cf. [35, 17, 10]. Since we consider only one scalar product on VF at a time, we use
VF to denote the space endowed with the scalar product. Unless stated otherwise,
such spaces are dealt with as 2-sorted structures with sorts V and F . In particular,
this applies to the concepts of isomorphism, ultraproduct, and substructure. In
contrast, subspace will always mean an F -linear subspace; i.e. here we follow the
1-sorted view on the vector space VF .

A sesquilinear space VF 6= 0 is non-degenerate if 〈u | v〉 = 0 for all v ∈ V implies
u = 0. For ε ∈ F , VF is ε-hermitean if 〈v | u〉 = ε · 〈u | v〉∗ for all u, v ∈ V ;
VF is hermitean if it is 1-hermitean and λ 7→ λ∗ is an involution on F ; VF is skew
symmetric if it is (−1)-hermitean and λ∗ = λ for all λ ∈ F ; VF is anisotropic if
〈v | v〉 6= 0 for all v ∈ V .

We say that VF ′ arises from VF by scaling with 0 6= µ ∈ F if F ′ = F as Λ-algebra,
is endowed with the involution r 7→ µr∗µ−1, and VF ′ is considered with the scalar
product (u, v) 7→ µ〈u | v〉.

For vectors u, v ∈ V , we say that v is orthogonal to u and write u ⊥ v, if
〈u | v〉 = 0. The space VF is orthosymmetric or reflexive if ⊥ is a symmetric relation.
The orthogonal of a subset X is the subspace X⊥ = {v ∈ V | x ⊥ v for all x ∈ X}.

For ϕ, ψ ∈ End(VF ), we say that ψ is an adjoint of ϕ if 〈ϕ(u) | v〉 = 〈u | ψ(v)〉 for
all u, v ∈ V . If VF is non-degenerate then any ϕ ∈ End(VF ) has at most one adjoint
ψ ∈ End(VF ); if such exists, we write ψ = ϕ∗.

Fact 6.1. The relations of orthogonality and adjointness are left unchanged under
scaling; in particular, orthosymmetry is preserved under scaling. The following are
equivalent for any space VF with dimV /V ⊥ > 1

(i) VF is orthosymmetric.
(ii) VF is ε-hermitean for some (unique) ε ∈ F \ {0}.
(iii) Up to scaling, VF is either hermitean or skew-symmetric.

If VF is orthosymmetric, then adjointness is a symmetric relation on End(VF ). If VF

is non-degenerate, then any ϕ ∈ End(VF ) has at most one adjoint ψ ∈ End(VF ).

Proof. We refer to [17, I §1.3, §1.5]. Observe that any right vector space VF becomes
a left F op-vector space, where λv = vλ. Also, from a scalar product 〈 | 〉 in our
sense, one obtains a form Φ, which is linear in the left hand and semilinear in the
right hand argument, putting Φ(v, w) = 〈w | v〉∗. �

A subspace U ∈ L(VF ) is closed if U = U⊥⊥. A sesquilinear space VF which is
orthosymmetric and non-degenerate will be called pre-hermitean. In the sequel, we
consider only pre-hermitean spaces. If VF is, in addition, anisotropic, we also speak
of an inner product space. The subspace lattice L(VF ) with the additional unary
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operation X 7→ X⊥ is denoted by L(VF ). The lattice of all closed subspaces of VF

is denoted by Lc(VF ).
og

Fact 6.2. Let VF be a pre-hermitean space.

(i) L(VF ) is a Galois CML. In particular, W = W⊥⊥ if dimW < ω.
(ii) G(VF ) = (P,⊥), where P is the irreducible projective space of one-dimen-

sional linear subspaces of VF and vF⊥wF iff v ⊥ w, is an orthogeometry.
(iii) The map U 7→ {p ∈ P | p ⊆ U} defines an isomorphism from L(VF ) onto

L(G(VF )).
(iv) L

(
G(VF )

)
f
∼= L(VF )f and it is a strictly subdirectly irreducible Arguesian

CMIL; if VF is anisotropic, then L(VF )f is an MOL.
(v) For any strictly subdirectly irreducible Arguesian CMIL L of height at least

3 such that L = Lf , there is a (unique up to isomorphism and scaling, that
is, similitude) pre-hermitean space VF such that L ∼= L(VF )f ; if L is an
MOL, then VF is anisotropic.

(vi) If charF 6= 2, then dimVF < ω if and only if L(VF ) is an MIL.

Proof. Statement (i) follows from (ii)-(iii) and the fact that L
(
G(VF )

)
is a Galois

CML. Statement (ii) is the content of [10, Proposition 14.1.6]. Statement (iii) follows
from Fact 3.2(i) and [10, Proposition 14.1.6].

To prove (iv), we notice first that L
(
G(VF )

)
f

is a CMIL by Fact 3.5. More-

over, L(VF )f ∈ S
(
L(VF )

)
is an Arguesian lattice. Strict subdirect irreducibility of

L
(
G(VF )

)
f

follows from (i), [10, Example 2.7.2], and [18, Corollary 1.5]. Further-

more, if VF is anisotropic, then X⊥ is an orthocomplement of X for any X ∈ L(VF )
with dimX < ω.

We prove now (v). By [18, Corollary 1.5], there is an irreducible orthogeometry
(P,⊥) such that L ∼= L(P,⊥)f . By Fact 3.2(ii), there is a vector space UK such that
L(P ) ∼= L(UK). By [10, Theorem 14.1.8], there is a sesquilinear form Φ on UK such
that UK is pre-hermitean and L ∼= L(P,⊥)f

∼= L(UK)f . For uniqueness see [17, p.
33]. If L is an MOL, then VF is obviously anisotropic.

Finally, if dimVF < ω, then L(VF ) = L(VF )f is an MIL by (iv). Conversely, if
L(VF ) is an MIL, then the lattice Lc(VF ) is a sublattice of L(VF ), whence is modular.
Thus dimVF < ω by [33, Theorem], and statement (vi) follows. �

atex
Fact 6.3. Any subalgebra L of L(VF ) which is a MIL extends to a subalgebra L̂

of L(VF ) which is a MIL and such that L̂f = L(VF )f . In particular, L̂ is a strictly

subdirectly irreducible atomic MIL. Moreover, if L is a CMIL then L̂ is a CMIL.

Proof. Existence of L̂ with required properties follows from the proof of [18, Theorem

2.1]. In particular, L̂ is atomic. Strict subdirect irreducibility of L̂ follows from [18,
Corollary 1.5], see also Fact 6.2(iv). �

On any subspace UF of VF , we have the induced scalar product. When UF is
non-degenerate, UF is pre-hermitean, too. A finite dimensional subspace U of VF

is non-degenerate if and only if U ∩ U⊥ = 0, if and only if V = U ⊕ U⊥ (as
dimV /U⊥ = dimU). We write in this case U ∈ O(VF ) and say that U is a finite
dimensional orthogonal summand.

du
Fact 6.4. A pre-hermitean space VF [the lattice L(VF )f ] is directed union of the
subspaces U ∈ O(VF ) [of subalgebras [0, U ] ∪ [U⊥, V ], U ∈ O(VF ), respectively].
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Moreover, [0, U ] ∪ [U⊥, V ] ∼= L(UF ) × 2 for any U ∈ O(VF ) such that U 6= V . In
particular, L(UF ) ∈ HS∃

(
L(VF )f

)
for any U ∈ O(VF ).

Proof. The first claim concerning spaces has been proved in [18, Theorem 1.2] for
G(VF ), whence the claim about spaces follows by Fact 6.2. The claim for lattices
follows by Facts 2.3 and 6.2(iii). �

For a subspace U of VF , the subspace radU = U ∩ U⊥ is the radical of U . The F -
vector space UF/ radU is endowed with the scalar product 〈v+ radU | w+ radU〉 =
〈v | w〉 with respect to the given anti-automorphism of F . We call UF/ radU a
subquotient space and denote it also by U/ radU .

sq
Fact 6.5. Let VF be a pre-hermitean space and let UF be a subspace of VF . Then
UF/ radU is non-degenerate; it is ε-hermitean if VF is. The space UF/ radU is
isomorphic to any subspace WF of VF such that U = W ⊕ radU .

Proof. The map w 7→ w+ radU establishes an isomorphism (of sesquilinear spaces)
from W onto U/ radU . �

Recall that for a pre-hermitean space VF , End(VF ) denotes the endomorphism Λ-
algebra of VF . Observe that kerϕ = (imϕ∗)⊥ if ϕ∗ exists. The endomorphisms of VF

having an adjoint form a Λ-subalgebra of End(VF ), denoted by End∗(VF ), which is
closed under adjoints and forms a ∗-ring under this involution; thus End∗(VF ) ∈ AΛ.
We also observe that for v ∈ V , λ ∈ Λ, and ϕ ∈ End∗(VF ), one has

(λϕ)(v) = ϕ(v)λ, (λϕ)∗ = λ∗ϕ∗.
pu

Fact 6.6. For U ∈ L(VF ), one has V = U ⊕ U⊥ if and only if there is a projection
πU ∈ End∗(VF ) such that U = im πU . Such a projection πU is unique.

Projection πU in terms of Fact 6.6 is called the orthogonal projection onto U . Par
abus de langage, πU also denotes the induced epimorphism V → U , while εU denotes
the identical embedding U → V . Observe that πU and εU are adjoints of each other
in the sense that

〈εU(u) | v〉 = 〈u | πU(v)〉 for all u ∈ U, v ∈ V.
Moreover, the computational rules of End∗(VF ) yield, in particular, (εUϕπU)∗ =
εUϕ

∗πU for any ϕ ∈ End∗(UF ). Finally, πUεU = idU , while πUεUπU = πU and
U⊥ = ker(εUπU).

db
Fact 6.7. Let VF a pre-hermitean space and let dimVF = n < ω.

(i) There is a dual pair of bases {v1, . . . , vn} and {w1, . . . , wn} of VF ; that is,
〈vi | wi〉 = 1 for all i ∈ {1, . . . , n} and 〈vi | wj〉 = 0 for all i 6= j. Given
such a dual pair of bases and ϕ ∈ End(VF ) with ϕ(vj) =

∑
iwiaij, ϕ

∗ ∈
End(VF ) exists and ϕ∗(vi) =

∑
j wja

∗
ij. In particular, End∗(VF ) contains all

endomorphisms of VF and End∗(VF ) ∈ RΛ.
(ii) End∗(VF ) ∈ R∗

Λ if VF is anisotropic.
(iii) If UF ∈ O(VF ) then End∗(UF ) ∈ HS∃

(
End∗(VF )

)
.

Proof. For existence of dual bases, see [31, §II.6]. Straightforward and well known
calculations prove (i) and (ii); in particular, regularity of End∗(VF ) follows from
Fact 4.1(i). In (iii), let R consist of all ϕ ∈ End∗(VF ) which leave both U and U⊥

invariant. As R ∼= End∗(UF )× End∗(U⊥
F ), we get (iii). �
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We put J(VF ) = {ϕ ∈ End∗(VF ) | dim imϕ < ω}.
endreg

Fact 6.8. Let VF be a pre-hermitian space.

(i) J(VF ) is an ideal and a strictly simple regular subalgebra of End∗(VF ) (with-
out unit).

(ii) The principal right ideals of J(VF ) form an atomic sectionally complemented
sublattice of the lattice of all right ideals of J(VF ), which is isomorphic to
the lattice of finite dimensional subspaces of VF via the map ϕJ(VF ) 7→ imϕ.

(iii) For any ϕ1, . . . , ϕn ∈ J(VF ), there is U ∈ O(VF ) such that πUϕi = ϕi =
ϕiπU for all i ∈ {1, . . . , n}.

Proof. (i) If dimVF < ω then J(VF ) = End(VF ) by Fact 6.7(i). Let dimVF > ω.
Clearly, J(VF ) is an ideal and a Λ-subalgebra of End∗(VF ) (without unit). Observe
that πU ∈ J(VF ) for any U ∈ O(VF ) by Fact 6.6. Moreover by Fact 6.4, for any W
with dimW < ω, there exists U ∈ O(VF ) such that W ⊆ U .

Consider ϕ ∈ J(VF ) and recall that subspaces kerϕ = (imϕ∗)⊥ and kerϕ∗ =
(imϕ)⊥ are closed. To prove that ϕ∗ ∈ J(VF ), choose W ∈ O(VF ) such that W ⊇
imϕ = (kerϕ∗)⊥. Then W⊥ ⊆ kerϕ∗, whence imϕ∗ = ϕ∗(W ) is finite-dimensional.
It follows that

(∗) For any ϕ1, . . . , ϕn ∈ J(VF ), there is U ∈ O(VF ) such that U ⊇ imϕi+imϕ∗i
for all i ∈ {1, . . . , n} and ϕi(U) = imϕi and ϕ∗i (U) = imϕ∗1. In particular,
(a) U is a finite-dimensional pre-hermitean space;
(b) V = U ⊕ U⊥;
(c) U⊥ ⊆

⋂
i kerϕi ∩ kerϕ∗i ;

(d) πU ∈ J(VF );
(e) εUψπU ∈ J(VF ) and (εUψπU)∗ = εUψ

∗πU for any ψ ∈ End(UF ).

To prove that ϕ has a quasi-inverse in J(VF ), choose for ϕ a subspace U ∈ O(VF ) ac-
cording to (∗). By Fact 6.7(i), πUϕεU ∈ End∗(UF ) has a quasi-inverse ψ ∈ End∗(UF ).
We claim that χ = εUψπU is a quasi-inverse of ϕ in J(VF ). Indeed, χ ∈ J(VF ) by
(e) and ϕ(v) = 0 = χ(v) for any v ∈ U⊥ by (c) and ϕχϕ(v) = πUϕεUψπUϕεU(v) =
πUϕεU(v) = ϕ(v) for any v ∈ U .

To prove that J(VF ) is strictly simple, it suffices to show that for any 0 6= ϕ,
ψ ∈ J(VF ), ψ belongs to the ideal generated by ϕ. Again, choose for ϕ and ψ a
subspace U ∈ O(VF ) according to (∗). Applying Fact 4.1(i) to πUϕεU , πUψεU ∈
End(UF ), we get that there are m < ω and σ1, . . . , σm, τ1, . . . , τm ∈ End(UF ) such
that πUψεU =

∑m
i=1 τiπUϕεUσi. Then according to (∗), ψ =

∑m
i=1 εUτiπUϕεUσiπU

and εUσiπU , εUτiπU ∈ J(VF ) for all i ∈ {1, . . . ,m} by Fact 6.7(i).
(ii) We prove first that ϕ0J(VF ) ⊆ ϕ1J(VF ) is equivalent to imϕ0 ⊆ imϕ1 for

any ϕ0, ϕ1 ∈ End∗(VF ). Suppose first that imϕ0 ⊆ imϕ1 and take an arbitrary
ψ ∈ J(VF ); then ϕ0ψ, ϕ1ψ ∈ J(VF ). Choose for ϕ0ψ and ϕ1ψ a subspace U ∈ O(VF )
according to (∗). Then ξi = πUϕiψεU ∈ End(UF ) for any i < 2 and im ξ0 ⊆ im ξ1. As
dimUF < ω, ξ0 = ξ1χ for some χ ∈ End(UF ). According to (c), ϕ0ψ(v) = ϕ1ψ(v) =
0 for any v ∈ U⊥, whence

ϕ0ψ = πUϕ0ψεUπU = ξ0πU = ξ1χπU = πUϕ1ψεUχπU = ϕ1ψεUχπU ∈ ϕ1J(VF ),

as ψεUχπU ∈ J(VF ). The reverse implication is trivial by Fact 6.4.
Besides that, for any finite-dimensional W ∈ L(VF ), there is ϕ ∈ J(VF ) such that

W = imϕ. Indeed by Fact 6.4, there is U ∈ O(VF ) such that W ⊆ U , whence
W = imψ for some ψ ∈ End(UF ). Then W = imχ with χ = εUψπU ∈ J(VF ) by
Fact 6.6. This establishes the claimed lattice isomorphism.
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(iii) Finally, given ϕ1, . . . , ϕn ∈ J(VF ), choose a subspace U ∈ O(VF ) according
to (∗). Then imϕi + imϕ∗i ⊆ U , whence πUϕi = ϕi and πUϕ

∗
i = ϕ∗i . �

atex2
Fact 6.9. Any subalgebra R of End∗(VF ) extends to a subalgebra R̂ of End∗(VF ) such

that J(VF ) is a unique minimal ideal of R̂. In particular, R̂ is strictly subdirectly
irreducible and atomic with the left [right] minimal ideals being those of J(VF ).

Moreover, if R is regular then R̂ is also regular.

Proof. We refer to [40]. Let R̂ = R+ J(VF ). Clearly, R̂ is a subalgebra of End∗(VF )

and J(VF ) is an ideal of R̂ by Fact 6.8(i). If I 6= 0 is a left ideal of R̂ then choose
ϕ ∈ I such that I 6= 0. Then by Fact 6.4, 0 6= πUϕ ∈ J(VF )∩I for some U ∈ O(VF ).
By Fact 6.8(ii), there is a minimal left ideal M ⊆ J(VF )πUϕ ⊆ I of J(VF ). Then

M is also a minimal left ideal of R̂. If I is an ideal of R̂, then arguing as above and
applying simplicity of J(VF ), which follows from Fact 6.8(i), we get that J(VF ) ⊆ I.

Finally, Facts 4.1(ii) and 6.8(ii) imply regularity of R̂ when R is regular. �

In particular, Fact 6.9 applies to R = {λidV | λ ∈ F}; in this case, we denote the

corresponding subalgebra R̂ by End∗f (VF ).

7. Representations

A representation of an MIL (or CMIL) L in VF is a homomorphism ε : L→ L(VF ).
It is faithful if it is injective, i.e. an embedding; in this case, we usually identify L
with its image in L(VF ). A map ε : L → L(VF ) is a representation if it preserves
joins, involution, and the least element.

MOL
Lemma 7.1. Let ε be a representation of an MIL L in a pre-hermitean space VF .

(i) Any element in the image of ε is closed.
(ii) If ε is faithful and VF is anisotropic, then L is an MOL.

Proof. Let x ∈ L be arbitrary.
(i) We have ε(x) = ε(x′′) = ε(x′)⊥ = ε(x)⊥⊥.
(ii) If VF is anisotropic, then we have ε(xx′) = ε(x) ∩ ε(x)⊥ = 0. As ε is faithful,

we conclude that xx′ = 0. Hence ′ is an orthocomplement. �

The following is as obvious as crucial. A representation of an MIL ε : L → L(VF )
can be viewed as a 3-sorted structure with sorts L, V , and F and with the map ε
being captured by the binary relation (cf. [38, 37, 44] for this method)

{(a, v) | v ∈ ε(a)} ⊆ L× V,

which we denote by ε again.
axiom2

Fact 7.2. There is a recursive first order axiomatization of the class of all 3-sorted
structures associated with [faithful] representations of MILs in pre-hermitean spaces.

A representation of an MIL L within an orthogeometry (P,⊥) is a homomorphism
η : L→ L(P,⊥). The following obvious fact relates the two concepts of a represen-
tation.

ogrep
Fact 7.3. For an MIl L, ε is a [faithful] representation in VF if and only if the
mapping η : a 7→ {p ∈ P | p ⊆ ε(a)} is a [faithful] representation of L in the
orthogeometry (P,⊥) = G(VF ).
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atrep
Theorem 7.4. Let L be an Arguesian strictly subdirectly irreducible CMIL [MOL]
such that dimL > 2 and L has an atom. Then L admits a faithful representation
ε within some [anisotropic] pre-hermitean space VF such that ε induces a bijection
between the sets of atoms of L and of L(VF ). In particular, ε restricts to an iso-
morphism from Lf onto L(VF )f . The space VF is unique up to isomorphism and
scaling.

Proof. By Fact 2.4 L is atomic, whence Lf is strictly subdirectly irreducible and
atomic. Moreover by Fact 6.2(v), Lf

∼= L(VF )f for some pre-hermitean space VF

which is unique up to isomorphism and scaling. By definition and Fact 3.5, G(L) =
G(Lf ) = G(VF ). By [18, Lemma 10.4], L has a faithful representation within the
orthogeometry G(L), whence in the orthogeometry G(VF ). The desired conclusion
follows from Fact 7.3. �

The following fact is a corollary of Theorem 7.4 which is in principle already in [6].
atrepc

Fact 7.5. Up to isomorphism, the strictly simple Arguesian CMILs L of finite height
n > 2 are the lattices L(VF ), where VF is a pre-hermitean space with dimVF = n.
The space VF is determined by L up to isomorphism and scaling; VF is anisotropic,
if L is an MOL.

A representation of R ∈ AΛ within a pre-hermitean space VF is a AΛ-homomorphism
ε : R → End∗(VF ). It is convenient to consider representations as unitary R-F -
bimodules. More precisely, one has an action (r, v) 7→ rv = ε(r)(v) of R on the left
and an action (v, λ) 7→ vλ of F on the right satisfying the laws of unitary left and
right modules and such that

(λr)v = (rv)λ = r(vλ) for all v ∈ V, r ∈ R, λ ∈ Λ,

where vλ = v(λ1F ). Moreover,

〈rx | y〉 = 〈x | r∗y〉 for all r ∈ R, x, y ∈ V
(λr)∗v = (λ∗r∗)v = (r∗v)λ∗ for all v ∈ V, r ∈ R, λ ∈ Λ.

We denote a representation of R ∈ AΛ in VF by RVF . The R-F -bimodule RVF

will be considered as a 3-sorted structure with sorts V , R, and F ; R, F ∈ AΛ are
considered as 1-sorted structures, where λ ∈ Λ serves to denote the unary operation
x 7→ λx. Our main concern will be faithful representations; that is, representations

RVF such that rv = 0 for all v ∈ V if only if r = 0. Observe that a regular algebra
R is ∗-regular, if it admits a faithful representation in an anisotropic space.

axiom
Fact 7.6. Given a recursive commutative ∗-ring Λ with unit, there is a recursive first
order axiomatization of the class of all 3-sorted structures RVF where R, F ∈ AΛ,
VF is a hermitean space, and ε(r)(v) = w iff rv = w defines a faithful representation
of R in VF .

Lrep
Proposition 7.7. (i) If ε is a faithful representation of R ∈ RΛ in a pre-

hermitean space VF , then the map η : aR 7→ im ε(a) defines a faithful repre-
sentation of L(R) in VF .

(ii) If dimVF < ω then L(VF ) ∼= L(End∗(VF )).

Proof. (i) We refer to [12]. We may assume that R ⊆ End∗(VF ); that is, ε = id. By
Facts 4.1(i) and 4.2(iv), η is a (0, 1)-lattice embedding of L(R) into L(VF ). Moreover,

for any v ∈ V and an idempotent ϕ ∈ R, one has v ∈
(
η(ϕR)

)⊥
= (imϕ)⊥ iff
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〈ϕ∗(v) | w〉 = 〈v | ϕ(w)〉 = 0 for all w ∈ V , iff ϕ∗(v) = 0, iff v = (id − ϕ∗)(v), iff
v ∈ im(id− ϕ∗) = η

(
(ϕR)′

)
, whence η preserves the involution.

(ii) By (i) and Fact 6.7(ii), the identical map ε on End∗(VF ) defines a faithful
representation of L(VF ). It is surjective since any subspace is the image of some
endomorphism ϕ ∈ End∗(VF ). �

atrep2
Theorem 7.8. Let R ∈ AΛ be a primitive ring having a minimal right ideal.

(i) The algebra R admits a faithful representation ε within some pre-hermitean
space VF such that ε−1(J(VF )) ⊆ R.

(ii) The space VF can be chosen hermitean if and only if there is a projection
e ∈ R such that Re is a faithful simple R-module (otherwise, VF is skew
symmetric).

(iii) R is as in (ii) if and only if R is atomic and strictly subdirectly irreducible;
in this case, the minimal ideal is ε−1(J(VF )).

(iv) The space VF is unique up to isomorphism and scaling.

Proof. Statements (i)-(iii) are due to Kaplansky, cf. [26, Theorem 1.2.2] and [40, 42].
We prove (iv). By (i), Fact 6.8(ii), and Proposition 7.7(i), L(R)f has a representation
in VF , which is an isomorphism onto L(VF )f . Uniqueness of VF follows from Theorem
7.4. �

P:iso
Fact 7.9. Up to isomorphism, the strictly simple artinian members R of RΛ are
exactly the endomorphism algebras End∗(VF ), where VF is a pre-hermitean space
and dimVF < ω. Moreover, VF is uniquely determined by R up to isomorphism and
scaling; VF is anisotropic if R ∈ R∗

Λ.

Proof. Let R ∈ RΛ be strictly simple and artinian. By Theorem 7.8(i), R has a
faithful representation ε in a pre-hermitean space VF . According to Proposition
7.7(i), L(R) = L(R)f has a faithful representation in VF . As L(R) is a strictly
simple lattice of finite height, VF is finite-dimensional by Fact 7.5 and Theorem 7.4,
whence ε is an isomorphism by Theorem 7.8(i), as J(VF ) = End∗(VF ). We also refer
to Jacobson [28, Chapter IV, §12]. �

8. Preservation theorems
ultra

Lemma 8.1. Let U be an ultrafilter over a set I. Let also ViFi
be a pre-hermitean

space over Fi ∈ AΛ for all i ∈ I. Then F =
∏

i∈I Fi/U ∈ AΛ and V =
∏

i∈I Vi/U is
a pre-hermitean space over F .

(i) If Li is an MIL and (Li, Vi, Fi; εi) is a faithful representation for all i ∈ I,
then the associated ultraproduct (L, VF , F ; ε) is a faithful representation of
L =

∏
i∈I Li/U .

(ii) If Ri ∈ AΛ and Ri
ViFi

is a faithful representation for all i ∈ I, then the
associated ultraproduct RVF is a faithful representation of R =

∏
i∈I Ri/U .

(iii) Let U be an n-dimensional subspace of VF , n < ω. Then there are J ∈ U
and n-dimensional subspaces Ui of ViFi

, i ∈ J , such that U ∼=
∏

i∈J Ui/UJ ,
where UJ = {X ∈ U | X ⊆ J}, and

L(UF ) ∼=
∏
i∈J

L(UiFi
)/UJ , End∗(UF ) ∼=

∏
i∈J

End∗(UiFi
)/UJ

Proof. Statements (i) and (ii) are immediate by Facts 7.2 and 7.6. In (iii) observe
that for a fixed positive integer n, there is a set of first order formulas expressing
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that a set of vectors {v1, . . . , vn} is independent [is a basis], as well as a set of first
order formulas expressing that a vector v in the span of {v1, . . . , vn}. Thus, by the
 Loś Theorem, a basis of U determines J and bases of spaces Ui, i ∈ J . Now, apply
(i) to lattices Li = L(UiFi

), i ∈ J , to get an embedding of
∏

i∈J Li/UJ into L(UF ).
Surjectivity of this embedding is granted by the sentence stating that for any v1, . . . ,
vn, there is a such that v ∈ ε(a) if and only if v in the span of v1, . . . , vn. Similarly,
we apply (ii) in the ring case and use the sentence stating that for any basis v1, . . . ,
vn and any w1, . . . , wn, there is r such that rvi = wi for all i ∈ {1, . . . , n}. �

Inheritance of existence of representations under homomorphic images has been
dealt with, in different contexts, in [20, 18] for CMILs and by Micol in [40] for ∗-
rings. Apparently, it needs saturation properties of ultrapowers. Considering a fixed
structure A, add a new constant symbol a, called a parameter, for each a ∈ A. In
what follows, Σ(x1, . . . , xn) is a set of formulas with free variables x1, . . . , xn in this
extended language. Given an embedding h : A → B, we call B modestly saturated
[ω-saturated ] over A via h, if any set of formulas Σ(x1, . . . , xn), with parameters from
A [and finitely many parameters from B, respectively], which is finitely realized in
A [in B, respectively] is realized in B (where a is interpreted as aB = h(a)). The
following is a particular case of [8, Corollary 4.3.14].

sat
Fact 8.2. Every structure A admits an elementary embedding h into some structure
B which is [ω-]saturated over A via h. One can choose B to be an ultrapower of A
and h to be the canonical embedding. Identifying a with h(a), one may assume B
to be an elementary extension of A.

homlat
Theorem 8.3. Let a CMIL L [a ∗-Λ-algebra R] have a faithful representation within

a pre-hermitean space VF . There is an ultrapower V̂F̂ of VF such that any homo-
morphic image of L [such that for any regular ideal I = I∗, the algebra R/I] admits

a faithful representation within (U/ radU)F̂ , where U = U⊥⊥ is a subspace of V̂F̂ .

Proof. For R ∈ AΛ, we use the same idea as in the proof of [25, Proposition 25].
Though here, the scalar product induced on U , as defined below, might be degener-
ated. According to Fact 8.2, there is an ultrapower R̂V̂F̂ of the faithful representation

RVF which is modestly saturated over RVF via the canonical embedding. Then V̂ is
an R-module via the canonical embedding of R into R̂ and

U = {v ∈ V̂ | av = 0 for all a ∈ I} =
⋂
a∈I

(a∗V̂ )⊥

is a closed subspace of V̂F̂ and a left (R/I)-module. Moreover as I = I∗, one has

〈(r + I)v | w〉 = 〈v | (r∗ + I)w〉 for all v, w ∈ U,
We observe that U⊥ is also an (R/I)-module. Indeed, if v ∈ U⊥ then 〈(r + I)v |
u〉 = 〈v | (r∗ + I)u〉 = 0 for all u ∈ U . Thus with W = radU , one obtains an

(R/I)-F̂ -bimodule U/W , where (r + I)(v + W ) = rv + W for all r ∈ R and all
v ∈ U , which is also a subquotient of VF .

We show that R/I(U/W )F̂ is a faithful representation of R/I; that is, for any
a ∈ R\I, there has to be u ∈ U such that au /∈ W . It suffices to show that for any
a ∈ R\I, there are u, v ∈ U such that 〈au | v〉 6= 0. Since u ∈ U means bu = 0 for
all b ∈ I, we have to show that the set

Σ(x, y) = {〈ax | y〉 6= 0} ∪ {bx = 0 = by | b ∈ I}
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of formulas with parameters from {a} ∪ I and variables x, y of type V is satisfiable

in R̂V̂F̂ . Due to saturation, it suffices to show that for any b1, . . . , bn ∈ I, there are
u, v ∈ V such that 〈au | v〉 6= 0 and biu = biv = 0 for all i ∈ {1, . . . , n}. In view
of Fact 4.1(iv) and regularity of I, there is an idempotent e ∈ I such that bie = bi
for all i ∈ {1, . . . , n}; in particular biu = biv = 0 whenever eu = ev = 0. Thus it
suffices to show that there are u, v ∈ V such that eu = ev = 0 but 〈au | v〉 6= 0.

Assume the contrary; namely, let eu = ev = 0 imply 〈au | v〉 = 0 for all u, v ∈ V .
For arbitrary u′, v′ ∈ V , let u = (1− e)u′ and v = (1− e)v′. As eu = ev = 0, we get
by our assumption that 〈au | v〉 = 〈(1 − e∗)au | v′〉 = 0. This holds for all v′ ∈ V ,
whence (1− e∗)au = 0 since VF is non-degenerated. Thus (1− e∗)a(1− e)u′ = 0 for
all u′ ∈ V , whence (1 − e∗)a(1 − e) = 0, as RVF is a faithful representation. But
then a = e∗a+ ae− e∗ae ∈ I, a contradiction.

In the case of CMILs, given a representation ε : L → L(VF ), let G = G(VF ),
cf. Fact 6.2, and let π(v) = vF for v ∈ V . We consider the 4-sorted structure

(L, V, F,G; ε, π). According to Fact 8.2, there is an ultrapower (L̂, V̂ , F̂ , Ĝ; ε̂, π̂) of
(L, V, F,G; ε, π) which is modestly saturated over (L, V, F,G; ε) via the canonical

embedding. By Lemma 8.1(i), (L̂, V̂ , F̂ ; ε̂) is a faithful representation. In view of

Fact 6.2(ii), Ĝ ∼= G(V̂F̂ ) via π̂; and ρ̂ : W 7→ {v ∈ V̂ | π̂(v) ∈ W} defines an

isomorphism from L(Ĝ) onto L(V̂F̂ ) by Fact 6.2(iii).
Now, let θ be a congruence of L. According to the proof of [18, Theorem 13.1],

there is a faithful representation η : L/θ → L(W/W ′) in a subquotient W/W ′ of
G, where the subspace W is closed and W ′ = W ∩ W⊥. Then ρ̂(W )/ρ̂(W ′) is a

subquotient of V̂F̂ , ρ̂(W ) is a closed subspace of V̂ , and ρ̂η̂ is a faithful representation
of L/θ in ρ̂(W )/ρ̂(W ′) by Fact 7.3. The proof is complete. �

C:83
Corollary 8.4. Let a MOL L have a faithful representation within a pre-hermitean
space VF . There is an ultrapower V̂F̂ of VF such that any homomorphic image of L

admits a faithful representation within an pre-hermitean closed subspace UF̂ of V̂F̂ .

Proof. According to the proof of [18, Theorem 13.1] and the proof of Theorem 8.3,

there is an ultrapower V̂F̂ of VF such that any homomorphic image of L admits
a faithful representation within a subquotient W/W ′ of the orthogonal geometry

G(V̂F̂ ). As L is an MOL, according to the definition of W ′ (given in [18, page 355]
and denoted by U there), one has W ′ = ∅. Hence in the proof of Theorem 8.3,
radU = ρ̂(W ′) = 0. �

Importance of representations for the universal algebraic theory of CMILs and reg-
ular ∗-rings derives from the following

findim
Theorem 8.5. Let VF be a pre-hermitean space and let L ∈ MIL [R ∈ AΛ] have
a faithful representation within VF . Then L ∈ W

(
L(UF ) | U ∈ O(VF )

)
[R ∈

W
(
End∗(UF ) | U ∈ O(VF )

)
, respectively]. If L ∈ CMIL [R ∈ RΛ], then L ∈

W∃
(
L(UF ) | U ∈ O(VF )

)
[R ∈ W∃

(
End∗(UF ) | U ∈ O(VF )

)
, respectively].

Proof. We may assume that dimVF > ω. In view of Fact 6.3, we may also assume
that L is an atomic subalgebra of L(VF ) such that Lf = L(VF )f . Therefore, Fact 6.4
yields that Lf is the directed union of its subalgebras [0, U ]∪ [U⊥, V ] ∼= L(UF )× 2,
U ∈ O(VF ). Moreover for any U ∈ O(VF ), the algebra L(UF ) × 2 embeds into
L(WF ), where X ∈ L(U⊥), dimX = 1, and W = U +X ∈ O(VF ). Therefore,

Lf ∈ W
(
L(UF ) | U ∈ O(VF )

)
.
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Finally, the proof of [18, Theorem 16.3] yields L ∈ W(Lf ) and L ∈ W∃(Lf ) if L is
complemented.

Dealing with an algebra R ∈ AΛ, we first show that End∗f (VF ) ∈ W∃
(
End∗(UF ) |

U ∈ O(VF )
)
. By Fact 5.1(vi), it suffices to prove this inclusion for finitely generated

algebras B ∈ S∃(End∗f (VF )). By Fact 6.8(iii), we may assume that B is of the form
{εUϕπU +λ id | ϕ ∈ End∗(VF ), λ ∈ F} for some U ∈ O(VF ). Thus B ∼= End∗(UF )×F
and the latter embeds into End∗(WF ), where X ∈ L(U⊥), dimX = 1, and W =
U +X ∈ O(VF ).

In view of Fact 6.9, we may assume that R is a subalgebra of End∗(VF ) containing
A = End∗f (VF ). Let J = J(VF ) and let J0 denote the set of projections in J . By

Fact 8.2, there is an ultrapower (R̂V̂F̂ ; Â) of (RVF ;A) which is ω-saturated over

(RVF ;A). We may assume that R is a subalgebra of R̂ and Â is an ultrapower of A;

in particular, Â ∈ W∃
(
End∗(UF ) | U ∈ O(VF )

)
. For a ∈ Â and r ∈ R, we put

a ∼ r, if ae = re and a∗e = r∗e for all e ∈ J0.
c-1

Claim 1. For any a ∈ Â and any r, s ∈ R, a ∼ r and a ∼ s imply r = s.

Proof of Claim. For any U ∈ O(VF ), we have πU ∈ J0, whence rπU = aπU = sπU .
Considering r and s as endomorphisms of VF , we get that they coincide on any
U ∈ O(VF ), whence they coincide on VF by Fact 6.4. �

c-2
Claim 2. S = {a ∈ Â | a ∼ r for some r ∈ R} is a subalgebra of Â and the map

g : Â→ R, g : a 7→ r, where a ∼ r

is a homomorphism.

Proof of Claim. It follows from Claim 1 that g is well-defined. Let a, b ∈ Â and r,
s ∈ R be such that a ∼ r and b ∼ s. Then, obviously, a+ b ∼ r+ s, λa ∼ λr for any
λ ∈ Λ, and a∗ ∼ r∗. Let e ∈ J0, then be ∈ J . By Fact 6.8(iii), there is f ∈ J0 such
that fbe = be. Therefore, we get abe = afbe = rfbe = rbe = rse, whence ab ∼ rs.

Obviously, 0V̂ , idV̂ ∈ Â. For any U ∈ O(VF ) we have πU ∈ J0. Therefore, 0V̂ πU =
0U and idV̂ πU = πU imply in view of Fact 6.4 that 0V̂ ∼ 0R and idV̂ ∼ 1R. �

c-3
Claim 3. The homomorphism g is surjective.

Proof of Claim. Surjectivity of g is shown via the supposed saturation property.
Given r ∈ R, consider a finite set E ⊆ J0. According to Fact 6.8(iii), there is e ∈ J0

such that ef = f for all f ∈ E and er∗f = r∗f for all f ∈ E. Take a = re and
observe that af = ref = rf and a∗f = er∗f = r∗f for all f ∈ E. Thus the set of
formulas

Σ(x) =
{

[xe = re] & [x∗e = r∗e] & [e = e2 = e∗] | e ∈ J
}

with a free variable x of type A is finitely realized in (RVF ;A). As (R̂V̂F̂ ; Â) is

ω-saturated over (RVF ;A), we get that there is a ∈ Â with a ∼ r. �
c-4

Claim 4. If R is regular, then S is also regular.

Proof of Claim. In view of Fact 4.1(ii), it suffices to prove that ker g = {a ∈ S |
a ∼ 0} is regular. Observe that a ∼ 0 means that ae = 0 = a∗e for any e ∈ J0,
equivalently (1 − e)a = a = a(1 − e). Again, let E ⊆ J0 be finite. By Fact 6.8(iii),
there is e ∈ J0 such that ef = f for any f ∈ E. The ring A is regular by Facts 6.8(i)

and 6.9, whence Â is also regular. Therefore, the ring (1 − e)Â(1 − e) is regular
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by [4, 2.4]. Thus there is b ∈ Â such that aba = a and (1 − e)b = b = b(1 − e);
in particular, be = 0 = eb whence b∗e = 0. This implies that bf = bef = 0 and
b∗f = b∗ef = 0 for all f ∈ E. Therefore, the set of formulas

Σ(x) = {axa = a} ∪
{

[xe = 0] & [x∗e = 0] & [e = e2 = e∗] | e ∈ J
}

with a variable x of type A is finitely realized in (R̂V̂F̂ ; Â). Thus Σ(x) is realized in

(R̂V̂F̂ ; Â), and we obtain b ∈ Â such that aba = a and b ∼ 0; that is, b ∈ ker g. �

The desired statements concerning ∗-Λ-algebras follow from Claims 2-4. �

Remark 8.6. The statements of Theorem 8.5 concerning ∗-Λ-algebras were proved
in case of representability in inner product spaces in [25, Theorem 16]. Requiring
semivariety generation, only, a more direct approach is possible. For R ∈ AΛ,
one chooses in the proof of [25, Theorem 16] I = O(VF ). By Fact 6.4, any finite
dimensional subspace of VF is contained in some U ∈ I. Moreover, with the induced
scalar product, UF is a pre-hermitean space. A similar approach works for MILs.

9. (∃-)semivarieties of representable structures

Let S be a class of pre-hermitean spaces VF , where F ∈ AΛ and Λ is a fixed
commutative ∗-ring. In such a case, we also speak of a class of spaces over Λ.
The class S will always be assumed to be closed under isomorphisms and all class
operators include isomorphic copies. We denote by L(S) [R(S), respectively] the
class of all CMILs [all R ∈ RΛ respectively] having a faithful representation within
some member of S (we also say that these structures are representable within S).
We consider here conditions on S which assure that classes L(S) and R(S) are
∃-(semi)varieties.

Introducing class operators for spaces, let S(S) and Pu(S) denote the classes of
all non-degenerate 2-sorted substructures and all ultraproducts of members of S
respectively. In contrast to that, following the one-sorted view, let S1f (S) [S1q(S)]
denote the class of (isomorphic copies of) non-degenerate finite dimensional sub-
spaces [of all subquotients U/ radU with U = U⊥⊥, respectively] of members of S.
The following statement follows from Facts 6.2(i) and 6.5.

L:S
Lemma 9.1. For any class S of spaces over Λ, S1f (S) ⊆ S1q(S) and S1fS1q(S) =
S1f (S).

Let also Is(S) denote the class of spaces which arise from S by scaling and observe
that IsO(S) ⊆ OIs(S) for any of the mentioned class operators. Moreover,

L
(
Is(S)

)
= L(S) and R

(
Is(S)

)
= R(S).

Call S a universal class, if it is closed under Pu, S, and Is. Observe that SPuIs(S) is
the smallest universal class containing a class S. Call S a semivariety if it is closed
under Pu and S1f . Of course, any universal class is a semivariety, and the smallest
semivariety containing a class S is contained in SPu(S).

malcev
Proposition 9.2. Let S be a [recursively] axiomatized class of pre-hermitean spaces
over a [recursive] commutative ∗-ring Λ. Then L(S) and R(S) are [recursively]
axiomatizable.

Proof. Let Γr denote the set of first order axioms defining representations RVF within
VF ∈ S (cf. Fact 7.6) and let Σr denote the set of all universal sentences in the
signature of ∗-Λ-algebras which are consequences of Γr. Then Σr defines the class of
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all ∗-Λ-algebras representable in S. Adding to Σr the ∀∃-axiom of regularity defines
the subclass R(S). If Λ is recursive and S is recursively axiomatizable, then Γr

is recursive. By Gödel’s Completeness Theorem, Σr is recursively enumerable. By
Craig’s trick [27, Exercise 6.1.3], Σr is also recursive.

Similarly, taking Γl to be the set of first order axioms defining representations of
CMILs within spaces from S, and denoting by Σl the set of all universal sentences
in the signature of CMILs which are consequences of Γl, we get that Σl defines the
class L(S) of all CMILs representable in S. Moreover, if Γl is recursive, then Σl is
also recursive. We also refer to [38, 44]. �

A tensorial embedding of a pre-hermitean space VF into another one WK is given by
a ∗-Λ-algebra embedding α : F → K and an injective α-semilinear map ε : VF → WK

such that WK is spanned by im ε as a K-vector space and 〈ε(v) | ε(w)〉 = α
(
〈v |

w〉
)

for all v, w ∈ V ; in particular, ε is an isomorphism of VF onto a two-sorted
substructure of WK . A joint tensorial extension of spaces ViFi

, i ∈ {0, 1}, is given
by a pre-hermitean space WF = U0⊕⊥ U1 and tensorial embeddings of ViFi

into UiF

for i ∈ {0, 1}.
jeck

Lemma 9.3. Let F , F0, F1 ∈ AΛ, let VF be a pre-hermitean space, and let V0F0
and

V1F1
be finite dimensional pre-hermitean spaces.

(i) If αi and εi define a tensorial embedding of ViFi
into VF , i < 2, then

End∗(ViFi
) embeds into End∗(VF ) and L(ViFi

) embeds into L(VF ).
(ii) If VF is a joint tensorial extension of V0F0

and V1F1
, then End∗(V0F0

) ×
End∗(V1F1

) embeds into End∗(VF ) and L(V0F0
)×L(V1F1

) embeds into L(VF ).

Proof. (i) In view of Fact 6.7(i), ViFi
has a dual pair {v1, . . . , vn}, {w1, . . . , wn} of

bases; applying εi, one obtains such a pair for VF . Indeed, VF is obviously spanned by
both, {εi(v1), . . . , εi(vn)} and {εi(w1), . . . , εi(wn)}. Suppose that Σn

j=1εi(vj)λj = 0
for some λ1, . . . , λn ∈ F . Then for any k ∈ {1, . . . , n}, one gets

0 = 〈0 | wk〉 =
〈
Σn

j=1εi(vj)λj | εi(wk)
〉

= Σn
j=1αi

(
〈vj | wk〉

)
λj = λk,

whence {εi(v1), . . . , εi(vn)} is a basis of VF . Similarly, {εi(w1), . . . , εi(wn)} is a basis
of VF .

For ϕ ∈ End∗(ViFi
), let ξi(ϕ) be the F -linear map on V defined by ξi(ϕ) : εi(vj) 7→

εi

(
ϕ(vj)

)
for all j ∈ {1, . . . , n}. Clearly, ξi is a Λ-algebra embedding of End∗(ViFi

)
into End∗(VF ). Moreover by Fact 6.7(ii), ξ(ϕ∗) = ξ(ϕ)∗. For the claim about Galois
lattices, apply Facts 4.1(i), 4.2(iv), and 6.8(ii).

(ii) As VF = U0 ⊕⊥ U1, by (i), there are ∗-Λ-algebra embeddings

ξi : End∗(ViFi
) → End∗(UiF ), i ∈ {0, 1}.

Thus there is a unique embedding

ξ : End∗(V0F0
)× End∗(V1F1

) → End∗(VF )

such that ξ(ϕ0, ϕ1)|Ui
= ξi(ϕi) for i ∈ {0, 1}. By Facts 4.2(iii),6.7(i), and 7.7(ii),

L(V0F0)×L(V1F1)
∼= L

(
End∗(V0F0)

)
×L

(
End∗(V1F1)

) ∼= L
(
End∗(V0F0)×End∗(V1F1)

)
.

By Proposition 7.7(i), the latter admits a faithful representation in VF . �
flo

Theorem 9.4. Let S be a class of pre-hermitean spaces over Λ. Then

(i) L
(
S1qPu(S)

)
= L

(
SPuIs(S)

)
= W∃

(
L(S)

)
= W∃

(
L(VF ) | VF ∈ S1f (S)

)
;

(ii) R
(
S1qPu(S)

)
= R

(
SPuIs(S)

)
= W∃

(
R(S)

)
= W∃

(
End∗(VF ) | VF ∈ S1f (S)

)
.
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In particular, if the class S is a semivariety then the classes L(S) = L
(
SPuIs(S)

)
and R(S) = R

(
SPuIs(S)

)
are ∃-semivarieties generated by their strictly simple finite

height or artinian members, respectively.

Proof. The proofs of (i) and (ii) follow the same lines. We prove (ii).
Inclusion S∃Pu

(
R(S)

)
⊆ R

(
Pu(S)

)
follows immediately from Lemma 8.1. Then

W∃
(
R(S)

)
⊆ R

(
S1qPu(S)

)
by Theorem 8.3. By Theorem 8.5, R

(
S1qPu(S)

)
⊆

W∃
(
End∗(VF ) | VF ∈ S1fS1qPu(S)

)
. By Lemmas 8.1(iii) and 9.1, for any VF ∈

S1fS1qPu(S) = S1fPu(S), we have VF ∈ PuS1f (S) and End∗(VF ) ∈ Pu

(
End∗(WK) |

WK ∈ S1f (S)
)
. It follows that

W∃
(
R(S)

)
⊆ R

(
S1qPu(S)

)
⊆ W∃

(
End∗(WK) | WK ∈ S1f (S)

)
⊆ W∃

(
R(S)

)
.

Now, consider R ∈ R
(
SPu(S)

)
; that is, R is represented in a 2-sorted substructure

WK of some VF ∈ Pu(S). By Theorem 8.5, we have R ∈ W∃
(
End∗(UK) | UK ∈

S1f (WK)
)
. Let U ′

F denote the F -subspace of VF spanned by U . By Lemma 9.3(i),

End∗(UK) ∈ S∃
(
End∗(U ′

F )
)
. Thus, R ∈ W∃

(
R(S)

)
. Hence

R
(
SPuIs(S)

)
⊆ R

(
IsSPu(S)

)
= R

(
SPu(S)

)
⊆ W∃

(
R(S)

)
= R

(
S1qPu(S)

)
.

Inclusion R
(
S1qPu(S)

)
⊆ R

(
SPuIs(S)

)
is trivial by Lemma 9.1. �

More closure properties on S are needed if one intends to get a one-to-one corre-
spondence between classes of spaces and classes of structures in Theorem 9.4.

spread
Definition 9.5. Let VF , WK be pre-hermitean spaces over Λ, dimVF < ω, and let
S be a class of pre-hermitean spaces over Λ.

(i) VF is an L-spread of WK if dimVF > 2 and L(VF ) ∈ L(WK) The class S is
L-spread closed, if it contains all L-spreads of its members.

(ii) VF is an R-spread of WK if End∗(VF ) ∈ R(WK). The class S is R-spread
closed, if it contains all R-spreads of its members.

(iii) An R-[L-]spread closed universal class or a semivariety S is small, if S
coincides with the smallest R-[L-]spread closed universal class or a semiva-
riety which contains all members of S of dimension n < ω [of dimension
2 < n < ω, respectively].

Example 9.6. Consider the class S of all anisotropic hermitean spaces, where F ∈
SPu(Q); in particular, F |= ∀x x2 6= 2 and S is a universal class which does not
contain K3

K with the canonical scalar product, where K = Q(
√

2). Though, K3×3

whence L(K3×3) are representable within Q6
Q ∈ S by

a+ b
√

2 7→ a

(
1 0
0 1

)
+ b

(
1 1
1 −1

)
; where a, b ∈ Q,

which yields a ∗-ring embedding of K into Q2×2 thus giving rise to an embedding
of K3×3 into (Q2×2)3×3. In the sense of Definition 9.5, K3

K is an L-spread and an
R-spread of Q6

Q.
11

Theorem 9.7. (i) For any ∃-semivariety V of Arguesian CMILs generated by
its strictly simple members of finite height at least 3, there is a small L-
spread closed semivariety [universal class] S of pre-hermitean spaces over Z
such that V = L(S). Moreover, the class of members of S of dimension at
least 3 is unique.
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(ii) For any ∃-semivariety V ⊆ RΛ generated by its strictly simple artinian
members, there is a small R-spread closed semivariety [universal class] S of
pre-hermitean spaces over Λ such that V = R(S). Moreover, such a class S
is unique.

The class S above is anisotropic, if V consists of MOLs or V ⊆ R∗
Λ.

Remark 9.8. In the case of MOLs, it suffices to require in Theorem 9.7 that V
is generated by its strictly simple members of finite height and that V is not 2-
distributive. In this case, V contains all MOLs of height 2.

Proof. (i) Given an ∃-semivariety V of CMILs with all required properties, let KV
denote the class of strictly simple members of V of finite height at least 3. By
Fact 7.5, for any L ∈ KV , there is a pre-hermitean space VF over Z such that
dimVF = dimL and L ∼= L(VF ). By SV , we denote the class of spaces VF over Z
such that L(VF ) ∈ KV .

We put G0 = S1f (SV). For any ordinal α > 0, let Gα+1 be the union of two classes:
Pu(Gα) and the class of all VF ∈ S1f (V ′

F ), where V ′
F is an L-spread of some WK ∈ Gα.

Let also Gα =
⋃

β<α Gβ, if α is a limit ordinal.
c-13

Claim 1. S1f (Gα) ⊆ Gα and L(VF ) ∈ V for any α and VF ∈ Gα with dimVF < ω.

Proof of Claim. We argue by induction on α. For α = 0, the first claim follows
from the definition of G0. Moreover, if UF ∈ S1f (VF ) and L(VF ) ∈ V then L(UF ) ∈
HS∃(L(VF )) ⊆ V by Fact 6.4. The limit step is trivial. In the step from α to α+ 1,
we assume first that VF is isomorphic to an ultraproduct of spaces ViFi

∈ Gα, i ∈ I.
If UF ∈ S1f (VF ) and n = dimUF then, by Lemma 8.1(iii), UF is isomorphic to an
ultraproduct of some UiFi

∈ S1f (ViFi
) with dimUiFi

= n, i ∈ J , for some J ⊆ I.
By the inductive hypothesis, UiFi

∈ Gα and L(UiFi
) ∈ V . Thus UF ∈ Gα+1 and

L(UF ) ∈ V by Lemma 8.1(iii).
Now, let V ′

F be an L-spread of WK ∈ Gα and let VF ∈ S1f (WK). If UF ∈ S1f (VF )
then UF ∈ S1f (V ′

F ), whence UF ∈ Gα+1 by definition. By Theorem 8.5 and the
inductive hypothesis,

L(V ′
F ) ∈ W∃

(
L(W ′

K) | W ′
K ∈ O(WK)

)
⊆ V.

By Fact 6.4, L(UF ) ∈ HS∃(L(V ′
F )) ⊆ V. �

It follows that the L-spread closed semivariety K(V) of pre-hermitean spaces over
Z generated by SV is the union of the classes Gα, where α ranges over all ordinals.
Thus in view of the assumption V = W∃(KV) and Claim 1, one gets by Theorem
9.4(i)

V ⊆ L
(
K(V)

)
= W∃

(
L(VF ) | VF ∈ K(V), dimVF < ω

)
⊆ V .

To prove uniqueness, let S and S ′ be small L-spread closed semivarieties of pre-
hermitean spaces over Z such that L(S) = V = L(S ′). For any VF ∈ S with
2 < dimVF < ω, we have L(VF ) ∈ L(S) = L(S ′), whence VF is an L-spread of S ′
and VF ∈ S ′. Similarly, interchanging the roles of S and S ′, we get that S and S ′
have the same members of finite dimension at least 3.

To deal with the case of universal classes, one includes into the union Gα a third
class, namely S(Gα). Claim 1 and its proof remains valid, only the case of the
third class remains to be considered. Indeed, assume that VF ∈ Gα+1 is a 2-sorted
substructure of WK ∈ Gα and let UF ∈ S1f (VF ). Then UF ∈ S(WK) and UF ∈ Gα+1

by definition. Moreover, UF is a 2-sorted substructure of the K-subspace U ′
K of WK
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spanned by U . In particular, U ′
K ∈ S1f (WK) and the inductive hypothesis yields

U ′
K ∈ Gα and L(U ′

K) ∈ V . As L(UF ) embeds into L(U ′
K) by Lemma 9.3(i), it follows

that L(UF ) ∈ V .
(ii) The proof follows the same lines as the one of (i) replacing Fact 7.5 by Fact

7.9. Fact 6.4 by Fact 6.7(iii), and Theorem 9.4(i) by Theorem 9.4(ii). �

For results of the same type as Theorem 9.7, see also [24, Theorems 4.4-5.4].

10. ∃-varieties and representations
var

We first consider a condition on S under which the class of representables is an
∃-variety. Then we review the approach of Micol [40] to capture ∃-varieties via the
concept of generalized representation.

S-var
Definition 10.1. A semivariety S of pre-hermitean spaces over Λ is a variety if for
any finite dimensional V0F0

, V1F1
∈ S, there is a joint tensorial extension VF ∈ S.

varsp
Proposition 10.2. If S is a variety of pre-hermitean spaces over Λ, then L(S) and
R(S) are ∃-varieties.

Proof. In view of Proposition 5.1(iv) and Theorem 9.4, it suffices to notice that for
any finite-dimensional spaces V0F0

, V1F1
∈ S, the structures End∗(V0F0

)×End∗(V1F1
)

and L(V0F0
) × L(V1F1

) have a faithful representation within some member of S by
Lemma 9.3(ii). �

Classes L(S) of CMILs having a faithful representation within some member of a
class S of orthogeometries have been considered in [18]. The closure properties of
Theorem 9.4(i) hold also in this case with S(S) denoting formation of non-degenerate
subgeometries of members of S, S1f (S) and S1q(S) — formation of non-degenerate
finite dimensional subspaces and of subquotients U/ radU with U = U⊥⊥. In addi-
tion, one has the class U(S) of all disjoint orthogonal unions of members of S and
thus P

(
L(S)

)
⊆ L

(
U(S)

)
, cf. [18, Theorem 2.2]. Moreover, mimicking the concept

of an L-spread and the proof of Theorem 9.7, one obtains

Theorem 10.3. For any ∃-variety V of CMILs generated by its finite height mem-
bers, there is a small L-spread and U-closed semivariety [universal class] S of or-
thogeometries such that V = L(S). Moreover, such a class S is unique.

The objective of Micol [40] was to derive results for ∗-regular rings, analogous
to those above. Of course, representation requires some structure of the type of
sesquilinear spaces. Apparently, in general there is no axiomatic class of such spaces
which would serve for representing direct products of representable structures. Mi-
col solved this problem by introducing the concept of a generalized representation.
This concept was transferred to MOLs by Niemann [42].

A g-representation of A ∈ CMIL [A ∈ RΛ] within a class S of pre-hermitean
spaces is a family {εi | i ∈ I} of representations εi of A in ViFi

∈ S, i ∈ I. It
is faithful if

⋂
i∈I ker εi = 0. Let Lg(S) [Rg(S)] denote the class of all A ∈ CMIL

[A ∈ RΛ] having a faithful g-representation within S; equivalently, the class of
structures A having a subdirect decomposition into factors εi(A), i ∈ I, which have
a faithful representation within S.

Call an artinian algebra R ∈ RΛ strictly artinian if I = I∗ for any ideal I of R. By
the Wedderburn-Artin Theorem, this is equivalent to the fact that R is isomorphic
to a direct product of strictly simple factors (cf. [34, §3.4]). Similarly, call a finite
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height CMIL L strictly finite height if θ = θ′ for any lattice congruence θ of L. By
[5, Theorem IV.7.10]), this is equivalent to the fact that L is a direct product of
strictly simple factors.

flonik
Proposition 10.4. The following statements are true.

(i) For any semivariety S of pre-hermitean spaces, the class Lg(S) = Ps∃
(
L(S)

)
[Rg(S) = Ps∃

(
R(S)

)
] is an ∃-variety generated by its strictly simple finite

height [artinian] members, which are of the form L(VF ) [End∗(VF )] with
VF ∈ S, dimVF < ω.

(ii) For any ∃-variety V ⊆ CMIL [V ⊆ RΛ] which is generated by its strictly
finite height at least 3 [artinian] members, there is a semivariety S of pre-
hermitean spaces such that V = Lg(S) [V = Rg(S)].

(iii) A ∈ Lg(S) [A ∈ Rg(S)] if and only if A has an atomic extension Â which
is a subdirect product of atomic strictly subdirectly irreducible structures Ai

such that L(Ai)f
∼= L(ViFi

) [the minimal ideal of Ai is isomorphic to J(ViFi
)]

with ViFi
∈ S.

Proof. Statement (i) follows from Facts 5.1(iii)-(iv), 7.5, 7.9, and Theorem 9.4.
Statement (ii) follows from Facts 5.1(iv), 7.5, 7.9, and Theorem 9.7. Finally, state-
ment (iii) follows from Facts 6.3, 6.9 and Theorems 7.4, 7.8. �

For ∗-regular rings, the result of Proposition 10.4 is in essence due to Micol [40]. To
prove that g-representability is preserved under homomorphic images, she axioma-
tized families of inner product spaces as 3-sorted structures, where the third sort
mimics the index set I. Again, a saturation property is needed for the proof and
regularity is crucial. The fact that the ∃-variety of g-representable structures is gen-
erated by its artinian members was shown by her reducing to countable subdirectly
irreducible structures R, deriving countably based representation spaces (and form-
ing 2-sorted subspaces), and using the approach of Tyukavkin [46] with respect to
a countable orthogonal basis. Conversely, a substantial part of Theorem 9.4 follows
from Proposition 10.4.

Appendix A. Existence semivarieties

We characterize ∃-(semi)varieties contained in CMIL or in RΛ as model classes,
proving at the same time the operator identities of Fact 5.1. With no additional
effort, this can be done to include other classes of algebraic structures.

Given a set Σ of first order axioms, by Mod Σ we denote the model class {A |
A |= Σ} of Σ. By Th C [ThL C], we denote the set of sentences [from the fragment
L] of first order language which are valid in C. As usual, let x denote a sequence of
variables of length being given by context.

RegC
Definition A.1. A class C0 of algebraic structures of the same similarity type is
regular if there is a (possibly empty) set Ψ0 of conjunctions α(x, y) of atomic formulas(
i.e. formulas of the form

∧k
i=1 si(x, y) = ti(x, y)

)
and a class S such that

(i) C0 = S ∩Mod{∀x∃y α(x, y) | α(x, y) ∈ Ψ0};
(ii) S is closed under S and C0 is closed under H and P;
(iii) For any structures A, B ∈ C0, for any surjective homomorphism ϕ : A→ B,

for any formula α(x, y) ∈ Ψ0, and for any a, b ∈ B such that B |= α(a, b),
there are c, d ∈ A such that ϕ(c) = a, ϕ(d) = b, and A |= α(c, d).
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Without loss of generality, one may consider also the case when α(x, y) is of the

form
∧k

i=1 pi

(
t1(x, y), . . . , tm(x, y)

)
, where pi is a relation symbol of arity m or the

symbol = with m = 2.
From Definition A.1(ii) it follows immediately that any regular class is closed

under Pu. In the sequel, we shall fix a regular class C0 and write for any C ⊆ C0:

S∃(C) = C0 ∩ S(C) and Ps∃(C) = C0 ∩ Ps(C).

Let C0 be a regular class. A Skolem expansion A∗ of A ∈ C0 adds for each α(x, y) ∈
Ψ0 an operation fα on A such that A |= α(a, fα(a)) for all a ∈ A.

SRegC
Definition A.2. A class C0 is strongly regular if it is regular and

(iii′) For any structures A, B ∈ C0, for any surjective homomorphism ϕ : A→ B,
for any formula α(x, y) ∈ Ψ0, for any a, b ∈ B such that B |= α(a, b), and
for any c ∈ A such that ϕ(c) = a there is d ∈ A such that ϕ(d) = b and
A |= α(c, d).

SRC
Remark A.3. It is obvious that if a class C0 satisfies (iii′) of Definition A.2, then C0

satisfies (iii) of Definition A.1. For any strongly regular class C0, for any A, B ∈ C0,
and for any surjective homomorphism ϕ : A→ B, if B∗ is a Skolem expansion of B,
then there is a Skolem expansion A∗ of A such that ϕ : A∗ → B∗ is a homomorphism.
Clearly, C0 is strongly regular if it satisfies (i)-(ii) of Definition A.1 and for any
α ∈ Ψ0 and for any a ∈ A ∈ C0, there is unique b such that α(a, b). This applies, in
particular, to completely regular [inverse] semigroups.

In what follows, when we speak of a [strongly] regular class C, we always assume that
the set of formulas Ψ0 and the classes C0 and S are given according to Definition
A.1 [Definition A.2, respectively].

exlem
Proposition A.4. For any variety V with a ∗-ring reduct, the class of structures
A ∈ V having ∗-regular reducts forms a strongly regular class. In particular, the
class R∗

Λ of all ∗-regular ∗-Λ-algebras is strongly regular.

Proof. Let Ψ0 = {xyx = y} and let S = V ∩ Mod(∀x xx∗ = 0 → x = 0). Then
C0 defined as in Definition A.1(i) consists of the ∗-regular members of V . Closure
of C0 under H and P follows from the fact that ∗-regularity can be defined by the
sentence:

∀x∃y (y = y2 = y∗) & (∃u x = uy) & (∃u y = ux).

The proof of (iii′) essentially goes as in [15, Lemma 1.4], cf. [23, Lemma 9]. Indeed,
the two-sided ideal I = kerϕ is regular. Let c ∈ A be such that a = ϕ(c), and let
aba = a in B. There is y ∈ A such that ϕ(y) = b. Then c−cyc ∈ I. Since I is regular,
there is u ∈ I such that (c− cyc)u(c− cyc) = c− cyc. It follows from the latter that
cuc−cycuc−cucyc+cycucyc+cyc = c. Taking d = u−ucy−ycu+ycucy+y, we get
cdc = cuc−cucyc−cycuc+cycucyc+cyc = c and d−y = u−ucy−ycu+ycucy ∈ I,
whence ϕ(d) = b. �

Further examples of strongly regular classes are the class of all regular [comple-
mented] members of any variety having ring [bounded modular lattice, respectively]
reducts, see [23, Lemma 9]. The latter can be easily modified to the class of all rela-
tively complemented lattices; here α(x1, x2, x3, y) is given by y

(
(x1 +x2)x3 +x1x2

)
=

x1x2 & y +
(
(x1 + x2)x3 + x1x2

)
= x1 + x2.
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We consider fragments of the first order language associated with a given regular
class C0. Let Lu consist of all quantifier free formulas; up to equivalence, we may
assume that Lu consists of conjunctions of formulas

∧n
i=1 βi →

∨m
j=1 γj, where βi,

γj are atomic formulas and n, m > 0. The set Lq ⊆ Lu of all quasi-identities is
defined by m = 1. The set Lp consists of all formulas of the form

n∧
i=1

αi(xi, yi) →
m∨

j=1

γj,

where n > 0, m > 1, and αi(xi, yi) ∈ Ψ0. Then Le ⊆ Lp is defined by m = 1; its
members are called conditional identities, while those of Lp are conditional disjunc-
tions of equations. As usual, validity of a formula means validity of its universal
closure. We write Thx instead of ThLx .

exvar
Theorem A.5. Let C0 be a regular class and let C ⊆ C0. Then

(i) C0 ∩ Mod Thu C = S∃Pu(C). In particular, C is definable by universal sen-
tences relatively to C0 if and only if it is closed under S∃ and Pu.

(ii) C0 ∩ Mod Thq C = S∃PuPω(C) = S∃PPu(C). In particular, C is definable by
quasi-identities relatively to C0 if and only if it is closed under S∃, Pu, and
Pω [under S∃, Pu, and P, respectively].

(iii) C0 ∩ Mod Thp C = HS∃Pu(C). In particular, C is definable by conditional
disjunctions of equations relatively to C0 if and only if it is closed under H,
S∃, and Pu.

(iv) C0 ∩ Mod The C = HS∃PuPω(C) = HS∃PPu(C). In particular, C is definable
by conditional identities relatively to C0 if and only if it is closed under H,
S∃, Pu, and Pω [under H, S∃, P, and Pu, respectively].

Classes as in (iii) and (iv) will be called ∃-semivarieties and ∃-varieties, respectively.
If Ψ0 is empty, one has semivarieties and varieties. By W∃(C) [by V∃(C), W(C), V(C),
respectively], we denote the smallest ∃-semivariety [∃-variety, semivariety, variety,
respectively] containing C, cf. Theorem A.5(iii)-(iv).

Of course, the statements of Theorem A.5 are well known results in the case of
empty Ψ0. Proofs of (i) and (ii) are included since they can be seen as a preparation
for proofs of (iii)-(iv); the latter are our primary interest.

Proof. Inclusion in the model class is well known and easy to verify in any of the
cases (i)-(iv) using Definition A.1. In particular in cases (iii)-(iv), inclusion H(C) ⊆
Mod Thx C follows directly from Definition A.1(iii).

The proof of the reverse inclusion relies on adapting the method of diagrams.
Given a structure A, let a 7→ xa be a bijection onto a set of variables and let
x̄ = (xa | a ∈ A). We consider quantifier free formulas χ(x̄) in these variables;
evaluations x̄ in a structure B are given as b̄ = (ba | a ∈ A) ∈ BA, and we write
B |= χ(b̄) if χ(x̄) is valid under evaluation b̄. For a set Φ = Φ(x̄) of formulas,
B |= Φ(b̄) if B |= χ(b̄) for all χ(x̄) ∈ Φ. Let At denote the set of atomic formulas
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and let

∆+(A) ={χ(x̄) ∈ At | A |= χ(ā)};
∆−(A) ={¬χ(x̄) | χ(x̄) ∈ At, A 6|= χ(ā)};

∆0(A) =
{
α
(
t1(x̄), . . . , tn(x̄), xa

)
|

t1, . . . , tn are terms, α(x1, . . . , xn, y) ∈ Ψ0, A |= α
(
t1(ā), . . . , tn(ā), a

)}
;

∆u(A) = ∆q(A) = ∆+(A) ∪∆−(A);

∆p(A) = ∆e(A) = ∆0(A) ∪∆−(A).

For x ∈ {u, q, p, e} and a finite subset Φ of ∆x(A), let Φ− = Φ∩∆−(A), Φ+ = Φ\Φ−,
and let Φ† denote the formula ∧

φ∈Φ+

φ →
∨

¬χ∈Φ−

χ;

while for ¬χ ∈ Φ−, let Φ†
χ denote the quasi-identity∧

φ∈Φ+

φ → χ.

Thus for any finite Φ ⊆ ∆u(A) and for χ ∈ Φ−, we have Φ† ∈ Lu and Φ†
χ ∈ Lq,

while for any finite Φ ⊆ ∆p(A) and for χ ∈ Φ−, we have Φ† ∈ Lp and Φ†
χ ∈ Le.

Observe that A 6|= Φ† and A 6|= Φ†
χ in any case (verified by substituting xa with a).

Let A ∈ C0 ∩Mod Thx C. We have to obtain A from C by means of operators.
First, we consider the case x ∈ {u, p}. Let Φ ⊆ ∆x(A) be finite. As A 6|= Φ†, we

have that Φ† /∈ Thx C. Thus there are a structure BΦ ∈ C and b̄Φ = (bΦa | a ∈ A) ∈
BA

Φ such that BΦ 6|= Φ†(b̄Φ), i.e. BΦ |= Φ(b̄Φ).
As in the proof of the Compactness Theorem, let I be the set of all finite subsets

of ∆x(A) and let U be an ultrafilter containing all sets {Ψ ∈ I | Ψ ⊇ Φ}, where
Φ ∈ I. Let B =

∏
Φ∈I BΦ/U , ba = (bΦa | Φ ∈ I)/U and b̄ = (ba | a ∈ A). By

(the quantifier free part of) the  Loś Theorem, we have B |= ∆x(A)(b̄). Moreover,
B ∈ Pu(C) ⊆ C0.

Let C be the subalgebra of B generated by the set {ba | a ∈ A}. We claim that
C ∈ C0, i.e. C ∈ S∃(B). Indeed, let α(x1, . . . , xn, y) ∈ Ψ0 and let c1, . . . , cn ∈ C. As
C is generated by the set {ba | a ∈ A}, there are terms t1(x̄), . . . , tn(x̄) such that
ci = ti(b̄) for all i ∈ {1, . . . , n}. Since A ∈ C0, by Definition A.1(i) there is a ∈ A
such that

A |= α
(
t1(ā), . . . , tn(ā), a

)
.

Therefore,

α
(
t1(x̄), . . . , tn(x̄), xa

)
∈ ∆+(A) ∩∆0(A).

Since B |= ∆x(A)(b̄), we conclude that B |= α
(
t1(b̄), . . . , tn(b̄), ba

)
. This implies

that C |= α(c1, . . . , cn, ba). On the other hand, B ∈ Pu(C) ⊆ C0 ⊆ S, as C0 is
closed under Pu by Definition A.1(ii). Therefore, C ∈ S(B) ⊆ S(S) ⊆ S again by
Definition A.1(ii). This implies by Definition A.1(i) that C ∈ C0 which is our desired
conclusion. Furthermore, the map

ϕ : C → A; t(b̄) 7→ t(ā)
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is well-defined (since B |= ∆−(A)(b̄)), a homomorphism (in view of term composi-
tion), and surjective (since ϕ(ba) = a). Moreover, in case x = u, ϕ is an isomorphism,
as B |= ∆+(A)(b̄). This proves (i) and (iii).

Let x ∈ {q, e}. Given a finite subset Φ ⊆ ∆x(A) and ¬χ ∈ Φ−, one has A 6|= Φ†
χ,

whence Φ†
χ /∈ Thx C. Thus there are a structure BΦ,χ ∈ C and b̄Φχ = (bΦχa | a ∈

A) ∈ BA
Φ,χ such that

BΦ,χ |= Φ+(b̄Φχ) and BΦ,χ |= ¬χ(b̄Φχ).

Taking BΦ =
∏

¬χ∈Φ− BΦ,χ ∈ Pω(C) and bΦa = (bΦχa | ¬χ ∈ Φ−), we get that BΦ |=
Φ(b̄Φ). As above, let B =

∏
Φ∈I BΦ/U , ba = (bΦa | Φ ∈ I)/U , so that B |= ∆x(A)(b̄).

Let C be again the subalgebra of B generated by the set {ba | a ∈ A}. We get as
above that C ∈ S∃PuPω(C). Thus A ∈ H(C) for x = e and A ∼= C for x = q follow
exactly as above.

It remains to show that A ∈ HS∃PPu(C) if x = e and A ∈ S∃PPu(C) if x = q.
Here, we fix ¬χ ∈ ∆(A)− and consider the set Iχ = {Φ ∈ I | ¬χ ∈ Φ−}. Then there
is a non-principal ultrafilter Uχ on I which contains all sets {Ψ ∈ Iχ | Ψ ⊇ Φ} with
Φ ∈ Iχ. Take

Bχ =
∏
Φ∈Iχ

BΦ,χ/Uχ; bχa = (bΦχa | Φ ∈ Iχ)/Uχ; b̄χ = (bχa | a ∈ A),

so that Bχ |= ¬χ(b̄χ) and Bχ |= ∆+(A)(b̄χ) if x = q, Bχ |= ∆0(A)(b̄χ) if x = e. Then

B′ =
∏

¬χ∈∆−(A)

Bχ ∈ PPu(C); B′ |= ∆x(A)(b̄′), where b′a = (bχa | χ ∈ ∆−(A)).

Let C ′ be the subalgebra of B′ generated by the set {b′a | a ∈ A}. As above, C ′ ∈
S∃(B

′) and A ∈ H(C ′) (if x = e) or A ∼= C ′ (if x = q) via the map ϕ′
(
t(b̄′)

)
= t(ā).

The proof is now complete. �

The following recaptures [23, Proposition 10]. For convenience, we include proofs.
hs1b

Proposition A.6. Let C0 be a strongly regular class and let C ⊆ C0.

(i) S∃H(C) ⊆ HS∃(C);
(ii) V∃(C) = HS∃P(C);
(iii) If all members of C0 have a distributive congruence lattice, then A ∈ W∃(C)

for any subdirectly irreducible structure A ∈ V∃(C).

Proof. (i) Let structures A, B and C be such that A ∈ C, C ∈ S∃(B), and let
ϕ : A → B be a surjective homomorphism. Then B, C ∈ C0 by Definition A.1(ii).
Choose a Skolem expansion C∗ of C and extend it to a Skolem expansion B∗ of
B. According to Remark A.3, there is a Skolem expansion A∗ of A such that
ϕ : A∗ → B∗ is a homomorphism. Then C∗ ∈ S(B∗) ⊆ SH(A∗) ⊆ HS(A∗), whence
C∗ ∈ H(D∗) for some D∗ ∈ S(A∗) and C ∈ H(D) with D ∈ S∃(A).

(ii) According to Theorem A.5(iv), V∃(C) = HS∃PPu(C). Straightforward inclu-
sions Pu(C) ⊆ HP(C) and PH(C) ⊆ HP(C) together with (i) imply:

V∃(C) ⊆ HS∃PHP(C) ⊆ HS∃HP(C) ⊆ HS∃P(C).

The reverse inclusion is obvious.
(iii) Let A ∈ V∃(C) be subdirectly irreducible. Then by (ii), there is B ∈ S∃P(C)

such that A ∈ H(B). By Jónsson’s Lemma, there is C ∈ SPu(C) such that A ∈ H(C)
and C ∈ H(B). The latter inclusion implies by Definition A.1(ii) that C ∈ C0,
whence C ∈ S∃Pu(C). �
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