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Abstract. We establish unsolvability of the satisfiability problem in the fol-
lowing cases: conjunctions of equations within any class of (bounded) lattices

of subspaces resp. endomorphism rings associated with a class of vector spaces,

over a fixed or all fields of characteristic 0, of unbounded finite dimension; the
same for any expansion of such class, e,g, the ortholattices of subspaces of inner

product spaces (in this case, it suffices to consider single equations); conjunc-

tions of equations within finite relation algebras; conjunctions of functional and
embedded multivalued dependencies within the class of finite databases; con-

junctions of equations between simple expressions within Grassmann-Cayley

algebras of unbounded dimension.

1. Introduction

The classical triviality problem (cf. [12]), say for groups, asks for an algorithm
which, given any finite group presentation, that is a conjunction π(x̄) of equations,
decides whether the group Gπ given by the presentation π is trivial. As for many
other equationally defined classes this problem is well known to be unsolvable.
Based on the undecidability of the universal theory of the class of finite groups,
shown by Slobodskoi [15], and advanced methods of geometric group theory, Brid-
son and Wilton [1] have shown that the triviality problem for finitely presented

profinite groups is algorithmically unsolvable: Let Ĝπ denote the inverse limit of
all Gπ/N , N a normal subgroup of finite index.

Fact 1. There is no algorithm which for any π decides whether Ĝπ is trivial.

Moreover, they derive that there is no algorithm deciding for every π whether
Gπ admits a non-trivial finite dimensional F -linear representation, F a fixed or
arbitrary field.

As for word problems, the triviality problem for a class C of algebraic structures
can be reformulated: to decide for any conjunction π(x̄) of equations whether there
is A ∈ C and a satisfying assignment x̄ 7→ ā for π in A such that the ai from ā
generate a non-singleton subalgebra of A. Note that, in the case of finite signature,
the triviality problem is an instance of the uniform word problem.

The complement of the triviality problem for C can be understood as satisfiability
problem for C: to decide for any π(x̄) whether it has a non-trivial (i.e. generating
a non-singleton subalgebra) satisfying assignment in some member A of C. In the
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presence of constants 0, 1 such that 0 = 1 only in trivial members of C (as in
the case of bounded lattices and rings with unit), the satiafiability problem asks
whether there is a satisfying assignment in some non-trivial member of C. In this
case, unsolvability of the problem is preserved under expansions.

For a vector space V let L(V ) denote the lattice of all subspaces and L1
0(V )

the same with bounds 0 = 0 and V = 1 as constants. Let F be a class of fields
containing a field of characteristic 0 or fields of arbitrarily large characteristic and
V a class of finite dimensional F -vector spaces, F ∈ F , such that for any F ∈ F
and d ∈ N there are an extension F ′ of F in F , and a F ′-vector space W ′ ∈ V with
dimF ′ W ′ ≥ d. In the sequel, V will always denote such class. One may assume F
closed under isomorphism and V under semilinear isomorphism. We also say that
V satisfies condition (∗) if W ′, above, can be chosen such that dimF ′ W ′ = 3md for
some m. In particular, this applies if V consists of all finite dimensional F -vector
spaces, F in a given class F of fields as above.

Our main result is the following, based on Fact 1 and the well known interpre-
tation of rings within modular lattices, due to von Neumann [14] (cf. Lipshitz [13],
Freee [2,3] which is the first step in Coordinatization Theory (in the setting of lat-
tices L1

0(V ) relevant proofs can be given within elementary Linear Algebra, cf. [11,
§3]).

Theorem 2. The satisfiability problems for {L(V ) | V ∈ V} and {L1
0(V ) | V ∈ V}

are algorithmically unsolvable.

We apply this to the analogous problems: for endomorphism rings (Subsec-
tion 3.5); for ortholattices of subspaces and ∗-rings of endomorphisms, in case V
is a class of inner product spaces, answering a question left open in [10, §III.C]
(Subsection 3.6); for equations between simple expressions in Grassmann-Cayley
algebra (Subsection 3.3): for finite relation algebras and for dependencies in finite
databases (Subsection 3.4).

2. Proof of Theorem 2

The following can be seen as a variant of Lemma 3.5 in Lipshitz [13].

Fact 3. Fix d ∈ N. The universal theory of all L1
0(V ), V ranging over d-dimensional

vector spaces over fields F , coincides with that where the F are finite.

Proof. We may assume V = F d. By tensoring with F̄ , the algebraic closure of
F , we have L1

0(F d) embedded into L1
0(F̄ d). The algebraic closure P̄ of the prime

subfield P of F is elementarily equivalent to F̄ , and it follows that L1
0(F̄ d) and

L1
0(P̄ ) are elementarily equivalent, too. Being a directed union, the latter is in the

universal class generated by the L1
0(Kd), [K : P ] <∞ – and K is finite if P is finite.

Finally, observe that Q̄ embeds into a suitable ultraproduct of the P̄ , P finite, since
that is algebraically closed and of characteristic 0. �

We now give a short review of the basic facts needed from coordinatization
theory. All vector spaces will be over fields and of finite dimension. The lattice
operations of L1

0(V ) are the meet U ∩W (intersection) and the join U +W (sum) –
we write U +W = U ⊕W to indicate that also U ∩W = 0. 0 and V are considered
as constants 0, 1. For any vector space V , we say that Ā = (A1, A2, A3, A12, A13)
in L1

0(V ) forms a 3-frame if V = A1⊕A2⊕A3 and A1j ⊕A1 = A1j ⊕Aj = A1 +Aj
for j = 2, 3. Then there are unique linear isomorphisms εjĀ : A1 → Aj such
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that A1j = {~v − εjĀ~v | ~v ∈ A1}, j = 2, 3. Observe that this concept of frame is
equivalent to the von Neumann one; cf. [3]. In the following, (i), (ii), and (iv) are
obvious. For (iii) choose a linear isomorphism f1 : A1 → B1 and fj , j = 2, 3 so
that εjB̄ ◦ f1 = fj ◦ εjĀ.

Fact 4. (i) If Ā is a 3-frame of L1
0(V ) then V = 0 if and only if A1 = 0 if

and only if A12 = 0.
(ii) Given V ∈ L1

0(V ), there is 3-frame Ā such that V = A1 if and only if
dimV = d

3 .

(iii) Given 3-frames Ā, B̄ of L1
0(V ) there is an automorphism of L1

0(V ) mapping
Ā onto B̄.

(iv) Choose distinguished variables z1, z2, z3 and z12, z13: shortly, z̄. There is a
conjunction Φ(z̄) of bounded lattice equations such that for any Ā ∈ L1

0(V )
one has Ā a 3-frame of L1

0(V ) if and only if L1
0(V ) |= Φ(Ā).

We define R(L1
0(V ), Ā) = {U ∈ L1

0(V ) | U ⊕ A2 = A1 + A2} and γĀ(ϕ) =
{~v−ε2Āϕ~v | ~v ∈ A1}, the negative graph of the map ε2Ā ◦ϕ. This yields a bijection
γĀ : End(A1)→ R(L1

0(V ), Ā). The following is well known [3, §1], [7, Theorem 2.2],
cf. [11, §3].

Fact 5. There are conjunctions σ(x, z̄) and σ×(x, z̄) of term equations and, for
each fundamental operation q(x̄) of rings with unit and partial inversion, a term
q̂(x̄, z̄) in the language of bounded lattices such that the following are true for any
3-frame Ā ∈ L1

0(V ). Moreover, in any of these terms each of the variables in x̄
occurs exactly once.

(i) γĀ is an isomorphism of End(A1) (with partial inversion) onto R(L1
0(V ), Ā)

endowed with the operations x̄ 7→ q̂(x̄, Ā). Here, the ring elements 0 and
idA1

are mapped onto A1, A12. In particular, γĀ restricts to an isomor-
phism of GL(A1) onto the group R×(L1

0(V ), Ā) of units of R(L1
0(V ), Ā).

(ii) For any U ∈ L1
0(V ) one has U ∈ R(L1

0(V ), Ā) if and only if L1
0(V ) |=

σ(U, Ā); and U ∈ R×(L1
0(V ), Ā) if and only if L1

0(V ) |= σ×(U, Ā).

We refer to R(L1
0(V ), Ā) as the coordinate ring of the frame Ā.

Lemma 6. With any finite conjunction π(x̄) of group relations one can effectively
associate conjunctions π̂(x̄, z̄) and π#(x̄, z̄) of equations in the language of bounded
lattices (with binary term length a constant multiple of that of π(x̄)) such that the
following hold for the group Gπ presented by π(x̄).

(i) For any F -vector space V and 3-frame Ā of L = L1
0(V )

(a) If xi 7→ ϕi ∈ GL(A1) defines a representation of Gπ then xi 7→ γĀ(ϕi),
z̄ 7→ Ā is a satisfying assignment for π̂ in L.

(b) If L |= π̂(ḡ, Ā) then xi 7→ γ−1
Ā

(gi) defines a representation of Gπ in
A1.

(ii) If 0 < dimV <∞ and L1
0(V ) |= ∃x̄∃z̄. π̂ ∧ π# then there is a subspace W

of V , dimW = 1
3 dimV , and a non-trivial representation of Gπ in W .

(iii) If Gπ has a finite homomorphic image H admitting a non-trivial irreducible
representation in W and dimV = 3 dimW then L1

0(V ) |= ∃x̄∃z̄. π̂ ∧ π#.

Proof. Choice of π̂ and (i) are obvious by Fact 5. Define π# as Φ(z̄)∧ u = 0 where
u :=

⋂
i xi ∩ z12.

In (ii) choose witnessing Ā and ḡ and apply (b) to obtain a representation of Gπ
within W = A1. Assuming this to have singleton image, we have xi 7→ idA1

for all
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i, whence u 7→ A12. In view of π# it follows A12 = 0 whence V = 0 by Fact 4(i); a
contradiction. Thus, the representation of Gπ has non-singleton image.

Concerning (iii), choose a 3-frame Ā in L1
0(V ) so that w.l.o.g. A1 = W and apply

(a) substituting γĀ(ϕi) for xi. Let U the value of u in L1
0(V ), that is

U = {v − ε2Āv | v ∈ A1} ∩
⋂
i

{v − ε2Ā(ϕiv) | v ∈ A1}.

Put U0 = {v ∈ A1 | v − ε2Āv ∈ U} and observe that U 6= 0 implies U0 6= 0. Now,
by definition of U and U0, the ϕi act on U0 as identity; in particular U0 is invariant
under the ϕi and their inverses whence under the action of H on A1. Since that
was assumed irreducible it follows U = U0 = 0.

�

Proof of Theorem 2. We reduce the problem in Theorem 1 to the satisfiability prob-
lem for {L1

0(V ) | V ∈ V}. First, assume that V satisfies condition (∗).
Assume π̂ ∧ π# is satisfied in L1

0(V ), V 6= 0 a finite dimensional F -vector space;
that is, the universal sentence ∀z̄∀x̄. π̂ ∧ π# ⇒ 1 = 0 fails in L1

0(V ). By Fact 3 it
fails as well in L1

0(V ′) for some K-vector space V ′ 6= 0 with K finite, and dimK V
′ =

dimF V . Then by Lemma 6(ii) Gπ has a non-trivial representation in some subspace

W of V ′. Since K is finite, the image H of Gπ in GL(W ) is finite, too. Thus, Ĝπ
is non-trivial.

Conversely, assume, that Ĝπ is non-trivial. Then Gπ has a non-trivial finite
homomorphic image H. Choose F ∈ F of characteristic not dividing the order of
H and apply Maschke’s Theorem to the regular representation of H to obtain a
non-trivial irreducible representation of H (and Gπ) within some F -vector space
W , d := dimF W <∞. By (∗) there is an extension F ′ of F and an F ′-vector space
W ′ ∈ V with dimF ′ W ′ = 3md. By (iii) of Lemma 6 we have π̂ ∧ π# satisfiable in
L(V ) if V is any F -vector space with dimF V = 3d. Since (by tensoring with F ′)
L(V ) embeds into L(V ′) for any F ′-vector space V ′ of dimF ′ V ′ = dimF V , there
is a satisfying assignment νk for π̂ ∧ π# in L(Vk), Vk any subspace Vk of W ′ with
dimVk = 3d. Take W ′ =

⊕
k Vk and ν =

⊕
νk to obtain a satisfying assignment

in L(W ′).
In the general case we have to modify the concept of a 3-frame to that of a skew

3-frame in L(V ): given by Ai (i = 0, 1, 2, 3) and A1i (i = 0, 2, 3) such that that
the Ai, A1i, i 6= 0, form a 3-frame in U = A1 + A2 + A3 and, moreover, such that
V = U ⊕A0, and A10⊕A0 = A10⊕ (A1∩ (A0 +A10)) = A0 + (A1∩ (A0 +A10)). In
particular, A10 is the negative graph of an embedding of A0 into A1. Modify Φ in
Fact 5(iv) to capture this and modify π#, accordingly, to π@. If π̂ ∧ π@ is satisfied
in L(V ), then the above reasoning is still valid. For the converse, the condition on
V might yield W ′ with dimW ′ = 3md+k, k ∈ {1, 2} (and we may assume md ≥ 2).
Then use the given reasoning for a 3dm-dimensional subspace W ′′ and 3-frame Ā
of W ′; and choose A0 ⊕W ′′ = W ′ and A10 as the negative graph of an embedding
of A0 into A1 to achieve a satisfying assignment.

In the absence of constants 0,1, replace 0 by
∏
i zi and 1 by

∑
i zi; it suffices to

consider the case of condition (∗). �

3. Corollaries

3.1. Special equations.
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Corollary 7. There is no algorithm deciding for any given terms s, t in the lan-
guage of bounded lattices whether s = 0 ∧ t = 1 is solvable in some L1

0(V ), V ∈ V,
V 6= 0.

Proof. To reduce the case of arbitrary conjunctions of equations sj = tj , to that of
the special form s = 0 ∧ t = 1, observe each sj = tj equivalent over every L1

0(V )
to ∃v : s̃j = 0 ∧ t̃j = 1 for s̃j := (sj + tj) ∩ v and t̃j := (sj ∩ tj) + v (due to
modularity and existence of complements); and s̃j = 0 ∧ t̃j = 1 ∧ s̃i = 0 ∧ t̃i = 1
equivalent to s̃j + s̃i = 0 ∧ t̃j ∩ t̃i = 1. �

3.2. Fast growth. In [4] the bit length of a group presentation is defined as the
total number of bits required to write the presentation; in particular, words are
considered as strings of powers of generators and inverses of generators, the expo-
nents encoded in binary. Transferring this to lattice presentations, we allow the use
of recursively defined subterms, encoding the number of iteration steps in binary.

Corollary 8. There are a constant K and for any n > 7 a conjunction ψn(ȳ) of
bounded lattice equations in 8 variables ȳ and of bit length O(log nK) such that,
ψn(ȳ) is satisfiable in some L1

0(V ), V ∈ V, with dimV = d > 0 for d = n but not
for d < n.

Proof. By [4, Theorem C] the alternating groups An, n > 7, have presentations of
bit length O(log n) in 3 generators x̄ = (x1, x2, x3); and any non-trivial irreducible
representation of An has degree ≥ n − 1 [17]. Based on such presentation of An,
define, for each n, π̂n(x̄, z̄) and π#

n (x̄, z̄) as in Lemma 6 and put ψn the conjunction
of both. The constant K comes from Fact 4: for every group word w(x̄) one has a
lattice term wz̄(x̄) (in the extended sense) such that |wz̄(x̄)| ≤ K|w(x̄)| and wĀ(x̄)
evaluates as w(x̄) in any R(L1

0(V ), Ā). �

3.3. Grassmann-Cayley algebra. Recall, that a Grassmann-Cayley algebra (cf
[16]) with underlying vector space V has operations ∧ and ∨ and terms built from
that (and 0,1) are simple Cayley algebra expressions. One has A ∧ B = A ∩ B if
A+B = V and A ∨B = A+B if A ∩B = 0.

Corollary 9. There is no algorithm to decide satisfiability, of conjunctions of equa-
tions between simple expressions. within the class of Grassmann-Cayley algebras
over V ∈ V.

Proof. We have to show that the lattice terms and equations used in the proof of
Theorem 2 can be modified so that satisfying assignments in L1

0(V ) are carried out
subject to the above side condition for any meet or join in the evaluation of terms.
First, let X ∈ Rij iff X ∩ (Aj + Ak) = 0 and X + Aj = Ai + Aj where i, j, k
are pairwise distinct (which obeys the side conditions) and use this to modify the
definition of a 3-frame: A1j ∈ R1j ∩ Rj1. Now multiplication and inversion are
obtained via terms like (X + Y ) ∩ (Ai +Ak) where X ∈ Rij and Y ∈ Rjk. �

3.4. Relation algebras and databases. For an abelian group V let L1
0(V ) denote

its lattice of subgroups with bounds 0 and V .

Corollary 10. The satisfiability problem for the class of all L1
0(V ), V a finite

abelian group is unsolvable.
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Proof. The primary decomposition shows that L1
0(V ) is the direct product of the

L1
0(Vp), Vp the subgroup of elements having order a power of p. Proceeding as in

the proof of Theorem 2, obtaining a finite homomorphic image H of Gπ uses only
Lemma 6(ii) while in the converse direction one chooses F = Z/(p) with p not
dividing the order of H. �

Corollary 11. The satisfiability problem for the class of finite relation algebras
(with or without complementation) is unsolvable.

Proof. Recall that for an abelian group V , there is a 1-1-correspondence between
subgroups and congruence relations, giving rise to an isomorphism of L1

0(V ) onto
the lattice Con(V ) of congruence relations of V . Continuing with the proof of
Corollary 10, consider the congruence relations αi, αij associated with Ai, Aij and
ρk with γĀ(gk). Considering the αi, αij , ρk as elements of the relation algebra on
the set V , one has to introduce relations between them which allow to recapture
the group V and to derive that they are congruence relations. First of all, one can
encode the fact that these elements of the relation algebra are indeed equivalence
relations on the set V . The abelian group V can be recovered requiring that the
αi, αij permute pairwise and satisfy the relations of a frame w.r.t. intersection
and relational product. [8, Theorem 1]. Moreover, by the proof of [8, Corollary
2] (cf. [9, Lemma 32]), the ρk are congruences of V iff they permute with the
αi, αij and satisfy, in terms of αi, αij , the relations σ of Fact 5(ii) characterizing
elements of the coordinate ring. Thus, having required all the relevant relations,
the αi, αij , ρk generate a sublattice of the lattice of all equivalence relations on V
which is isomorphic to the sublattice of L1

0(V ) generated by Ā and the γĀ(gi) and
in which the join is given by the relational product. Now, the claim follows from
Corollary 10. �

Corollary 12. There is no algorithm to decide for any given finite set of functional
and embedded multi-valued database dependencies whether it admits a finite model
with more than one data set.

Proof. Following the approach of Corollaries 10 and 11 use the correspondence
between systems of equivalence relations on a finite set and finite databases and [9,
Lemma 11] to translate relations in terms of intersection and product into functional
and embedded multivalued dependencies. �

Corollary 13. There is no algorithm to decide for any given finite set of inclusion
and conditional independence atoms whether it admits a non-trivial finite model.

Proof. By [5, Section 2.2], this follows from Corollary 12. �

3.5. Rings. Let End(V ) denote the endomorphism ring of the vector space V , with
unit idV . Recall that a ring R with unit is (von Neumann) regular if for any a ∈ R
there is x ∈ R such that axa = a; equivalently, any of its principal right ideals is
generated by an idempotent. Then the principal right ideals form a sublattice L(R)
of the lattice of all right ideals. The analogues hold on the left. In particular, the
endomorphism ring R = End(V ) of a finite dimensional F -vector space V is regular
and one has L(R) ∼= L1

0(V ) via ϕR 7→ imϕ.
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Fact 14. For any idempotents e, f, g in a regular ring R one has

eR ⊆ fR ⇔ fe = e
eR = fR ⇔ fe = e ∧ ef = f

gR = eR+ fR ⇔ ge = e ∧ gf = f ∧ ∃r∃s. g = er + fs
gR = eR ∩ fR ⇔ eg = fg = g ∧ ∃r∃s. 1− g = r(1− e) + s(1− f).

Proof. The first claims are obvious, the last one follows from R(1−g) = R(1−e) +
R(1− f) and the fact that the latter means gR = eR∩ fR [14, Lemma II.2.3]. �

Corollary 15. The satisfiability problem for {End(V ) | V ∈ V} is unsolvable.

Proof. Given any signature, call an equation basic if it is of the form y = f(x̄),
f an operation symbol, or y = x. Then, for any t(x̄) and new variable y one
may choose new variables z̄ such that y = t(x̄) is logically equivalent to some
∃z̄. ϕ(y, x̄, z̄) where ϕ is a conjunction of basic equations (actually, one introduces
new variables to denote intermediate values). Thus, any equation t(x̄) = s(x̄) is
logically equivalent to some ∃z̄. ψ(x̄, z̄), ψ a conjunction of basic equations with
new variables z̄. Apply this to given lattice equations; associate with each lattice
variable x, occurring in the formulas so obtained, a ring variable x̂ and let χ be the
conjunction of all equations x̂2 = x̂ capturing idempotency. Use Fact 14 to replace
basic lattice equations by existentially quantified conjunctions of ring equations e.g.
z = x ∩ y by

∃u∃v
(
x̂ẑ = ŷẑ = ẑ ∧ 1− ẑ = u(1− x̂) + v(1− ŷ)

)
with new rings variables u, v. In this way, from any lattice equation ϕ(x1, . . . , xn)
one obtains a positive primitive ring formula ϕ̂(x̂1, . . . , x̂n) such that ϕ has a sat-
isfying assignment in L(End(V )) if and only if ϕ̂ ∧ χ has a satisfying assignment in
End(V ). Thus, the problem in Theorem 2 reduces to that in the corollary which
proves undecidability of the latter. �

3.6. Ortholattices. If V is a finite dimensional vector space over a field with
involution r 7→ r† and endowed with an anisotropic †-hermitean form, then L1

0(V )
becomes a (modular) ortholattice L⊥(V ) with orthocomplementation U 7→ U⊥.

Moreover, End(V ) becomes a ∗-ring End†(V ) under the involution f 7→ f†, the
adjoint of f w.r.t. the given form. Let V† a class of such spaces having reduct V.
By Theorem 2 and Corollary 15 one has the following.

Corollary 16. Then the satisfiability problems for {L⊥(V ) | V ∈ V†} and {End†(V ) |
V ∈ V†} are unsolvable.

A particular feature of the theory of these ortholattices is the following; thus,
Corollary 16 answers the question left open in [10, §III.C].

Fact 17. Within the class of all modular ortholattices any conjunction of equations
si = ti is equivalent to one of the form t = 1.

Proof. Observe that the following are equivalent for any given x, y: x+ x⊥y⊥ = 1;
x⊥ = x⊥(x+ x⊥y⊥); x⊥ = xx⊥ + x⊥y⊥ (by modularity); x⊥ ≤ y⊥; y ≤ x. �

Corollary 18. The satisfiability problem for {L⊥(V ) | V ∈ V†} and equations
t(x̄) = 1 with 6-variable terms t(x̄) is unsolvable.
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Proof. It remains to reduce the number of ortholattice variables. First, assume that
for any F ∈ F and any d there is a d-dimensional space over F in V†. The concept
of k-frame generalizes from k = 3 to arbitrary k, obviously (cf. [2]). Recall from [6]
that the modular lattice freely generated by a k+ 1-frame is finitely presented as a
modular lattice with four generators. Thus, we have terms b̄(ȳ), ȳ = (y1, y2, y3, y4),
and finitely many relations such that b̄(Ē) is a k+1-frame B̄ for any Ē in any L1

0(V )
satisfying the relations. Dealing with a group presentation with k generators x̄ we
use a k + 1-frame B̄ to encode these into a single lattice element, as follows. Let
the 3-frame Ā given by the Bi, B1j , i, j ≤ 3 and L′ = [0,

∑
iAi]. Then the xi define

gi ∈ R(L′, Ā). Let B2j = (B2+Bj)∩(B12+B1j) and g′i = (B1+Bi+1)∩(B2 i+1+gi).

Then gi = (B1+Bi+1)∩(B2 i+1+g′i) and g′i = (B1+Bi+1)∩E where E5 =
∑k+1
j=2 g

′
j .

Introducing the variable y5 for the latter, this yields the conjunction ψ of 5-variable
lattice relations replacing π̂ ∧ π# from Lemma 6. Now combine ψ into t = 1 via
Fact 17.

In the general case, one has to consider skew k + 1-frames as in the proof of

Theorem 2; since A0 may be chosen as (
∑k+1
i=1 Ai)

⊥ only one additional variable is
needed to denote A10. �
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