UNIT-REGULARITY AND REPRESENTABILITY FOR SEMIARTINIAN *-REGULAR RINGS. ERRATUM

CHRISTIAN HERRMANN

ABSTRACT. We show that any semiartinian *-regular ring R is unit-regular; if, in addition, R is subdirectly irreducible then it admits a representation within some inner product space.

0. Erratum

There is no proof of Thm. 7. since the quoted Fact 5 is incorrect.

1. Introduction

The motivating examples of *-regular rings, due to Murray and von Neumann, were the *-rings of unbounded operators affiliated with finite von Neumann algebra factors; to be subsumed, later, as *-rings of quotients of finite Rickart C^* -algebras. All the latter have been shown to be *-regular and unit-regular (Handelman [5]). Representations of these as *-rings of endomorphisms of suitable inner product spaces have been obtained first, in the von Neumann case, by Luca Giudici (cf. [6]), in general in joint work with Marina Semenova [9]. The existence of such representations implies direct finiteness [7]. In the present note we show that every semiartinian *-regular ring is unit-regular and a subdirect product of representables. This might be a contribution to the question, asked by Handelman (cf. [3, Problem 48]), whether all *regular rings are unit-regular. We rely heavily on the result of Baccella and Spinosa [1] that a semiartinian regular ring is unit-regular provided that all its homomorphic images are directly finite. Also, we rely on the theory of representations of *-regular rings developed by Florence Micol [12] (cf. [9, 10]). Thanks are due to the referee for a timely, concise, and helpful report.

2. Preliminaries: Regular and *-regular rings

We refer to Berberian [2] and Goodearl [3]. Unless stated otherwise, rings will be associative, with unit 1 as constant. A (von Neumann)

 $^{2000\} Mathematics\ Subject\ Classification.\ Primary:16E50,\ 16W10.$ Key words and phrases. *-regular ring, representable, unit-regular.

regular ring R is such that for each $a \in R$ there is $x \in R$ such that axa = a; equivalently, every right (left) principal ideal is generated by an idempotent.

The $socle\ Soc(M)$ of a right R-module is the sum of all minimal submodules. For a ring R define its $Loewy\ series$ of right ideals $L_{\alpha}(R)$ by $L_0(R)=0$. $L_{\alpha+1}=Soc(R/L_{\alpha}(R))$, and $L_{\alpha}(R)=\bigcup_{\beta<\alpha}L_{\beta}(R)$ is α is a limit ordinal. R has $Loewy\ length\ \alpha$ if $R=L_{\alpha}(R)$ with α minimal, provided that such exists. A ring R with unit is (right) semiartinian if R/M has nonzero socle for each right ideal of R; equivalently, R has Loewy length α for some α - which must be of the form $\xi+1$ since R has unit 1. If R is regular, then the $L_{\alpha}(R)$ are, moreover, ideals since left and right socle of a regular ring coincide [11].

A ring R is directly finite if xy = 1 implies yx = 1 for all $x, y \in R$. A ring R is unit-regular if for any $a \in R$ there is a unit u of R such that aua = a. Unit-regular rings are directly finite, in particular. The crucial fact to be used, here, is the following result of Baccella and Spinosa [1].

Theorem 1. A semiartinian regular ring is unit-regular provided all its homomorphic images are directly finite.

A *-ring is a ring R endowed with an involution $r \mapsto r^*$. Such R is *-regular if it is regular and $rr^* = 0$ only for r = 0. A projection is an idempotent e such that $e = e^*$; we write $e \in P(I)$ if $e \in I$. A *-ring is *-regular if and only if for any $a \in R$ there is a projection e with aR = eR; such e is unique and obtained as aa^+ where a^+ is the pseudo-inverse of a. In particular, for *-regular R, each ideal I is a *-ring with involution $a+I \mapsto a^*+I$ and a homomorphic image of the *-ring R. In particular, R/I is regular; and *-regular since aa^++I is a projection generating (a+I)(R/I).

If R is a *-regular ring and $e \in P(R)$ then the *corner* eRe is a *-regular ring with unit e, operations inherited from R, otherwise. For a *-regular ring, P(R) is a modular lattice, with partial order given by $e \leq f \Leftrightarrow fe = e$, which is isomorphic to the lattice L(R) of principal right ideals of R via $e \mapsto eR$. In particular, eRe is artinian if and only if e is contained in the sum of finitely many minimal right ideals.

A *-ring is subdirectly irreducible if it has a unique minimal ideal, denoted by M(R). Observe that $Soc(R) \neq 0$ implies $M(R) \subseteq Soc(R)$ since Soc(R) is an ideal. For the following see Lemma 2 and Theorem 3 in [8].

Fact 2. If R is a subdirectly irreducible *-regular ring then eRe is simple for all $e \in P(M(R))$ and R a homomorphic image of a *-regular sub-*-ring of some ultraproduct of the eRe, $e \in P(M(R))$.

3. Preliminaries: Representations

We refer to Gross [4] and Sections 1 of [9], 2–4 of [10]. By an inner product space V_F we will mean a right vector space (also denoted by V_F) over a division *-ring F, endowed with a sesqui-linear form $\langle . | . \rangle$ which is anisotropic ($\langle v | v \rangle = 0$ only for v = 0) and orthosymmetric, that is, $\langle v | w \rangle = 0$ if and only if $\langle w | v \rangle = 0$. Let $\operatorname{End}^*(V_F)$ denote the *-ring consisting of those endomorphisms φ of the vector space V_F which have an adjoint φ^* w.r.t. $\langle . | . \rangle$.

A representation of a *-ring R within V_F is an embedding of R into $\operatorname{End}^*(V)$. R is representable if such exists. The following is well known, cf. [11, Chapter IV.12]

Fact 3. Each simple artinian *-regular ring is representable.

The following two facts are consequences of Propositions 13 and 25 in [9] (cf. Micol [12, Corollary 3.9]) and, respectively, [7, Theorem 3.1] (cf. [8, Theorem 4]).

Fact 4. A *-regular ring is representable provided it is a homomorphic image of a *-regular sub-*-ring of an ultraproduct of representable *-regular rings.

Fact 5. Every representable *-regular ring is directly finite.

4. Main results

Theorem 6. If R is a subdirectly irreducible *-regular ring such that $Soc(R) \neq 0$, then Soc(R) = M(R), each eRe with $e \in P(M(R))$ is artinian, and R is representable.

Proof. Consider a minimal right ideal aR. As R is subdirectly irreducible, M(R) is contained in the ideal generated by a; that is, for any $0 \neq e \in P(M(R))$ one has $e = \sum_i r_i as_i$ for suitable $r_i, s_i \in R, r_i as_i \neq 0$. By minimality of aR, one has $as_i R = aR$ and $r_i as_i R = r_i aR$ is minimal, too. Indeed, $x \mapsto r_i x$ is an R-linear map of aR onto $r_i aR \neq 0$. Thus, $e \in \sum_i r_i aR$ means that eRe is artinian. By Facts 3, 2, and 4, R is representable.

It remains to show that $Soc(R) \subseteq M(R)$. Recall that the congruence lattice of L(R) is isomorphic to the ideal lattice of R ([13, Theorem 4.3] with an isomorphism $\theta \mapsto I$ such that $aR/0 \in \theta$ if and only if $a \in I$. In particular, since R is subdirectly irreducible so is L(R).

Choose $e \in M(R)$ with eR minimal. Then for each minimal aR one has eR/0 in the lattice congruence θ generated by aR/0. Since both quotients are prime, by modularity this means that they are projective to each other. Thus, aR/0 is in the lattice congruence generated by eR/0 whence eR/0 is in the ideal generated by eR/0 whence eR/0 is in the ideal generated by eR/0 is in eR/0.

Theorem 7. Every semiartinian *-regular ring R is unit-regular and a subdirect product of representable homomorphic images.

Proof. Consider an ideal I of R. Then $I = \bigcap_{x \in X} I_x$ with completely meet irreducible I_x , that is, subdirectly irreducible R/I_x . Since R is semiartinian one has $Soc(R/I_x) \neq 0$, whence R/I_x is representable by Theorem 6 and directly finite by Fact 5. Then R/I is directly finite, too, being a subdirect product of the R/I_x . By Theorem 1 it follows that R is unit-regular.

5. Examples

It appears that semiartinian *-regular rings form a very special subclass of the class of unit-regular *-regular rings, even within the class of those which are subdirect products of representables. E.g. the *-ring of unbounded operators affiliated to the hyperfinite von Neumann algebra factor is representable, unit-regular, and *-regular with zero socle. On the other hand, due to the following, for every simple artinian *-regular ring R and any natural number n>0 there is a semiartinian *-regular ring having ideal lattice an n-element chain and R as a homomorphic image.

Proposition 8. Every representable *-regular ring R embeds into some subdirectly irreducible representable *-regular ring \hat{R} such that $R \cong \hat{R}/M(\hat{R})$. In particular, \hat{R} is semiartinian if and only if so is R.

The proof needs some preparation. Call a representation $\iota: R \to \operatorname{End}^*(V_F)$ large if for all $a, b \in R$ with $\operatorname{im} \iota(b) \subseteq \operatorname{im} \iota(a)$ and finite $\dim(\operatorname{im} \iota(a)/\operatorname{im} \iota(b))_F$ one has $\operatorname{im} \iota(a) = \operatorname{im} \iota(b)$.

Lemma 9. Any representable *-regular ring admits some large representation.

Proof. Inner product spaces can be considered as 2-sorted structures V_F with sorts V and F. In particular, the class of inner product spaces is closed under formation of ultraproducts. Representations of *-rings R can be viewed as R-F-bimodules $_RV_F$, that is as 3-sorted structures, with R acting faithfully on V. It is easily verified that the class of representations of *-rings is closed under ultraproducts cf. [9, Proposition 13].

Now, given a representation η of R in W_F , form an ultrapower ι , that is ${}_SV_{F'}$, such that $\dim F'_F$ is infinite (recall that F' is an ultrapower of F). Observe that $\operatorname{End}^*(V_{F'})$ is a sub-*-ring of $\operatorname{End}^*(V_F)$ and $\dim(U/W)_F$ is infinite for any subspaces $U \supseteq W$ of $V_{F'}$. Also, S is an ultrapower of R with canonical embedding $\varepsilon: R \to S$. Thus, $\varepsilon \circ \iota$ is a large representation of R in V_F .

Proof. of Proposition 8. In view of Lemma 9 we may assume a large representation ι of R in V_F . Identifying R via ι with its image, we have R a *-regular sub-*-ring of $\operatorname{End}^*(V_F)$. Let I denote the set of all $\varphi \in \operatorname{End}(V_F)$ such that $\dim(\operatorname{im}\varphi)_F$ is finite. According to Micol [12, Proposition 3.12] (cf. Propositions 4.4 (i),(iii) and 4.5 in [10]) R+I is a *-regular sub-*-ring of $\operatorname{End}^*(V_F)$, with unique minimal ideal I. By Theorem 6 one has $I = \operatorname{Soc}(R+I)$. Moreover, $R \cap I = \{0\}$ since the representation ι of R in V_F is large. Hence, $R \cong (R+I)/I$.

References

- [1] Baccella, G., Spinosa, L.: K_0 of semiartinian von Neumann regular rings. Direct finiteness versus unit-regularity. Algebr. Represent. Theory 20 (2017), 1189–1213
- [2] S. K. Berberian, Baer *-rings, Springer, Grundlehren 195, Berlin 1972.
- [3] K. R. Goodearl, Von Neumann Regular Rings, second edition, Krieger, Malabar, 1991.
- [4] H. Gross, Quadratic Forms in Infinite Dimensional Vector spaces, Birkhuser, Basel, 1979.
- [5] D. Handelman, Finite Rickart C^* -algebras and their properties, in Studies in analysis, ed. G.-C. Rota, pp. 171–196, Adv. in Math. Suppl. Stud., 4, Academic Press, New York-London, 1979.
- [6] Herrmann, C.: On the equational theory of projection lattices of finite von Neumann factors. The Journal of Symbolic Logic, Vol. 75, No. 3 (2010), 1102–1110
- [7] Herrmann, C., Direct finiteness of representable regular -rings. Algebra Universalis 80 (2019), no. 1, Art. 3, 5 pp. http://arxiv.org/abs/1904.04505
- [8] Herrmann, C., Varieties of *-regular rings. http://arxiv.org/abs/1904. 04505
- [9] Herrmann, C., Semenova, M. V., Rings of quotients of finite AW-algebras. Representation and algebraic approximation. (Russian) Algebra Logika 53 (2014), no. 4, 466–504, 550–551; translation in Algebra Logic 53 (2014), no. 4, 298–322
- [10] Herrmann, C., Semenova, M., Linear representations of regular rings and complemented modular lattices with involution. Acta Sci. Math. (Szeged) 82 (2016), no. 3–4, 395–442.
- [11] N. Jacobson, Structure of Rings, AMS Col. Publ. XXXVII, Amer. Math. Soc., Providence, RI, 1956
- [12] F. Micol, On representability of *-regular rings and modular ortholattices, Ph.D. thesis, TU Darmstadt, January 2003, http://elib.tu-darmstadt.de/diss/000303/diss.pdf.

- [13] F. Wehrung, A uniform refinement property for congruence lattices, Proc. Amer. Math. Soc. 127 (1999), 363–370.
- (C. Herrmann) TUD FB4, Schlossgartenstr. 7, 64289 Darmstadt, Germany

 $E ext{-}mail\ address: herrmann@mathematik.tu-darmstadt.de}$