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Abstract. We show that any semiartinian ∗-regular ring R is
unit-regular; if, in addition, R is subdirectly irreducible then it
admits a representation within some inner product space.

0. Erratum

There is no proof of Thm. 7. since the quoted Fact 5 is incorrect.

1. Introduction

The motivating examples of ∗-regular rings, due to Murray and von
Neumann, were the ∗-rings of unbounded operators affiliated with finite
von Neumann algebra factors; to be subsumed, later, as ∗-rings of
quotients of finite Rickart C∗-algebras. All the latter have been shown
to be ∗-regular and unit-regular (Handelman [5]). Representations of
these as ∗-rings of endomorphisms of suitable inner product spaces have
been obtained first, in the von Neumann case, by Luca Giudici (cf. [6]),
in general in joint work with Marina Semenova [9]. The existence of
such representations implies direct finiteness [7]. In the present note
we show that every semiartinian ∗-regular ring is unit-regular and a
subdirect product of representables. This might be a contribution to
the question, asked by Handelman (cf. [3, Problem 48]), whether all ∗-
regular rings are unit-regular. We rely heavily on the result of Baccella
and Spinosa [1] that a semiartinian regular ring is unit-regular provided
that all its homomorphic images are directly finite. Also, we rely on
the theory of representations of ∗-regular rings developed by Florence
Micol [12] (cf. [9, 10]). Thanks are due to the referee for a timely,
concise, and helpful report.

2. Preliminaries: Regular and ∗-regular rings

We refer to Berberian [2] and Goodearl [3]. Unless stated otherwise,
rings will be associative, with unit 1 as constant. A (von Neumann)
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regular ring R is such that for each a ∈ R there is x ∈ R such that
axa = a; equivalently, every right (left) principal ideal is generated by
an idempotent.

The socle Soc(M) of a right R-module is the sum of all minimal
submodules. For a ring R define its Loewy series of right ideals Lα(R)
by L0(R) = 0. Lα+1 = Soc(R/Lα(R)), and Lα(R) =

⋃
β<α Lβ(R) is α

is a limit ordinal. R has Loewy length α if R = Lα(R) with α minimal,
provided that such exists. A ring R with unit is (right) semiartinian
if R/M has nonzero socle for each right ideal of R; equivalently, R has
Loewy length α for some α - which must be of the form ξ + 1 since R
has unit 1. If R is regular, then the Lα(R) are, moreover, ideals since
left and right socle of a regular ring coincide [11].

A ring R is directly finite if xy = 1 implies yx = 1 for all x, y ∈ R.
A ring R is unit-regular if for any a ∈ R there is a unit u of R such
that aua = a. Unit-regular rings are directly finite, in particular. The
crucial fact to be used, here, is the following result of Baccella and
Spinosa [1].

Theorem 1. A semiartinian regular ring is unit-regular provided all
its homomorphic images are directly finite.

A ∗-ring is a ring R endowed with an involution r 7→ r∗. Such R
is ∗-regular if it is regular and rr∗ = 0 only for r = 0. A projection
is an idempotent e such that e = e∗; we write e ∈ P (I) if e ∈ I. A
∗-ring is ∗-regular if and only if for any a ∈ R there is is a projection
e with aR = eR; such e is unique and obtained as aa+ where a+ is
the pseudo-inverse of a. In particular, for ∗-regular R, each ideal I is a
∗-ideal, that is, closed under the involution. Thus, R/I is a ∗-ring with
involution a+I 7→ a∗+I and a homomorphic image of the ∗-ring R. In
particular, R/I is regular; and ∗-regular since aa+ + I is a projection
generating (a+ I)(R/I).

If R is a ∗-regular ring and e ∈ P (R) then the corner eRe is a ∗-
regular ring with unit e, operations inherited from R, otherwise. For a
∗-regular ring, P (R) is a modular lattice, with partial order given by
e ≤ f ⇔ fe = e, which is isomorphic to the lattice L(R) of principal
right ideals of R via e 7→ eR. In particular, eRe is artinian if and only
if e is contained in the sum of finitely many minimal right ideals.

A ∗-ring is subdirectly irreducible if it has a unique minimal ideal,
denoted by M(R). Observe that Soc(R) 6= 0 implies M(R) ⊆ Soc(R)
since Soc(R) is an ideal. For the following see Lemma 2 and Theorem
3 in [8].
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Fact 2. If R is a subdirectly irreducible ∗-regular ring then eRe is
simple for all e ∈ P (M(R)) and R a homomorphic image of a ∗-regular
sub-∗-ring of some ultraproduct of the eRe, e ∈ P (M(R)).

3. Preliminaries: Representations

We refer to Gross [4] and Sections 1 of [9], 2–4 of [10]. By an inner
product space VF we will mean a right vector space (also denoted by
VF ) over a division ∗-ring F , endowed with a sesqui-linear form 〈. | .〉
which is anisotropic (〈v | v〉 = 0 only for v = 0) and orthosymmetric,
that is, 〈v | w〉 = 0 if and only if 〈w | v〉 = 0. Let End∗(VF ) denote
the ∗-ring consisting of those endomorphisms ϕ of the vector space VF
which have an adjoint ϕ∗ w.r.t. 〈. | .〉.

A representation of a ∗-ring R within VF is an embedding of R into
End∗(V ). R is representable if such exists. The following is well known,
cf. [11, Chapter IV.12]

Fact 3. Each simple artinian ∗-regular ring is representable.

The following two facts are consequences of Propositions 13 and 25
in [9] (cf. Micol [12, Corollary 3.9]) and, respectively, [7, Theorem 3.1]
(cf. [8, Theorem 4]).

Fact 4. A ∗-regular ring is representable provided it is a homomorphic
image of a ∗-regular sub-∗-ring of an ultraproduct of representable ∗-
regular rings.

Fact 5. Every representable ∗-regular ring is directly finite.

4. Main results

Theorem 6. If R is a subdirectly irreducible ∗-regular ring such that
Soc(R) 6= 0, then Soc(R) = M(R), each eRe with e ∈ P (M(R)) is
artinian, and R is representable.

Proof. Consider a minimal right ideal aR. As R is subdirectly irre-
ducible, M(R) is contained in the ideal generated by a; that is, for any
0 6= e ∈ P (M(R)) one has e =

∑
i riasi for suitable ri, si ∈ R, riasi 6= 0.

By minimality of aR, one has asiR = aR and riasiR = riaR is min-
imal, too. Indeed, x 7→ rix is an R-linear map of aR onto riaR 6= 0.
Thus, e ∈

∑
i riaR means that eRe is artinian. By Facts 3, 2, and 4,

R is representable.
It remains to show that Soc(R) ⊆M(R). Recall that the congruence

lattice of L(R) is isomorphic to the ideal lattice of R ([13, Theorem
4.3] with an isomorphism θ 7→ I such that aR/0 ∈ θ if and only if
a ∈ I. In particular, since R is subdirectly irreducible so is L(R).
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Choose e ∈ M(R) with eR minimal. Then for each minimal aR one
has eR/0 in the lattice congruence θ generated by aR/0. Since both
quotients are prime, by modularity this means that they are projective
to each other. Thus, aR/0 is in the lattice congruence generated by
eR/0 whence a is in the ideal generated by e, that is, in M(R). �

Theorem 7. Every semiartinian ∗-regular ring R is unit-regular and
a subdirect product of representable homomorphic images.

Proof. Consider an ideal I of R. Then I =
⋂
x∈X Ix with completely

meet irreducible Ix, that is, subdirectly irreducible R/Ix. Since R is
semiartinian one has Soc(R/Ix) 6= 0, whence R/Ix is representable by
Theorem 6 and directly finite by Fact 5. Then R/I is directly finite,
too, being a subdirect product of the R/Ix. By Theorem 1 it follows
that R is unit-regular. �

5. Examples

It appears that semiartinian ∗-regular rings form a very special sub-
class of the class of unit-regular ∗-regular rings, even within the class of
those which are subdirect products of representables. E.g. the ∗-ring of
unbounded operators affiliated to the hyperfinite von Neumann algebra
factor is representable, unit-regular, and ∗-regular with zero socle. On
the other hand, due to the following, for every simple artinian ∗-regular
ring R and any natural number n > 0 there is a semiartinian ∗-regular
ring having ideal lattice an n-element chain and R as a homomorphic
image.

Proposition 8. Every representable ∗-regular ring R embeds into some
subdirectly irreducible representable ∗-regular ring R̂ such that R ∼=
R̂/M(R̂). In particular, R̂ is semiartinian if and only if so is R.

The proof needs some preparation. Call a representation ι : R →
End∗(VF ) large if for all a, b ∈ R with im ι(b) ⊆ im ι(a) and finite
dim(im ι(a)/ im ι(b))F one has im ι(a) = im ι(b).

Lemma 9. Any representable ∗-regular ring admits some large repre-
sentation.

Proof. Inner product spaces can be considered as 2-sorted structures
VF with sorts V and F . In particular, the class of inner product spaces
is closed under formation of ultraproducts. Representations of ∗-rings
R can be viewed as R-F -bimodules RVF , that is as 3-sorted structures,
with R acting faithfully on V . It is easily verified that the class of rep-
resentations of ∗-rings is closed under ultraproducts cf. [9, Proposition
13].
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Now, given a representation η of R in WF , form an ultrapower ι,
that is SVF ′ , such that dimF ′F is infinite (recall that F ′ is an ultra-
power of F ). Observe that End∗(VF ′) is a sub-∗-ring of End∗(VF ) and
dim(U/W )F is infinite for any subspaces U ⊇ W of VF ′ . Also, S is an
ultrapower of R with canonical embedding ε : R→ S. Thus, ε ◦ ι is a
large representation of R in VF . �

Proof. of Proposition 8. In view of Lemma 9 we may assume a large
representation ι of R in VF . Identifying R via ι with its image, we
have R a ∗-regular sub-∗-ring of End∗(VF ). Let I denote the set of all
ϕ ∈ End(VF ) such that dim(imϕ)F is finite. According to Micol [12,
Proposition 3.12] (cf. Propositions 4.4 (i),(iii) and 4.5 in [10]) R + I
is a ∗-regular sub-∗-ring of End∗(VF ), with unique minimal ideal I. By
Theorem 6 one has I = Soc(R + I). Moreover, R ∩ I = {0} since the
representation ι of R in VF is large. Hence, R ∼= (R + I)/I. �
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