
PERSPECTIVITY IN COMPLEMENTED MODULAR
LATTICES AND REGULAR RINGS

CHRISTIAN HERRMANN

Abstract. Based on an analogue for systems of partial isomor-
phisms between lower sections in a complemented modular lattice
we prove that principal right ideals aR ∼= bR in a (von Neumann)
regular ring R are perspective if aR∩bR is of finite height in L(R).
This is applied to derive, for existence-varieties V of regular rings,
equivalence of unit-regularity and direct finiteness, both conceived
as a property shared by all members of V.

1. Introduction

(Von Neumann) regular rings R and complemented modular lattices
are closely connected fields since the work of von Neumann cf. [19] -
with R one associates its lattice L(R) of principal right ideals. Unit-
quasi-inverses u of elements a (i.e. aua = a) have been introduced by
Ehrlich [4, 5], a ring being unit-regular if each element admits some
unit-quasi-inverse (such rings are, in particular directly finite: ab = 1
implies ba = 1). Ehrlich also showed that a regular ring R is unit-
regular if and only if for all idempotents e, f one has eR ∼= fR imply-
ing (1 − e)R ∼= (1 − f)R. Handelman [11] added further equivalent
conditions, one of them being that eR ∼= fR implies eR perspective to
fR in L(R). Perspectivity, regularity, and unit-regularity of elements
in general rings have been intensively studied, see e.g. [6, 16, 17, 18].

The purpose of the present note is to give a sufficient condition on
aR ∼= bR in a regular ring R granting that aR is perspective to bR
(and thus a to have a unit-quasi-inverse) and to show that this applies
if aR ∩ bR is of finite height in L(R).

Here, establishing perspectivity relies on calculations in L(R), for
convenience done in abstract complemented modular lattices endowed
with a system of isomorphisms between lower sections requiring prop-
erties present in the case of isomorphisms induced by isomorphisms
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between principal right ideals. The principal result is a reduction pro-
cess associating en+1 ≤ en and fn+1 ≤ fn with given en, fn such that en
is perspective to fn (and so e0 perspective to f0) if en+1∩fn+1 = en∩fn
or if en+1 is perspective to fn+1. In ℵ0-complete complemented modu-
lar lattices e0 is perspective to f0 if the meet of the en is perspective
to the meet of the fn.

If one considers regular rings endowed with an operation of quasi-
inversion, termination of this reduction process after n-steps can be
captured by an identity. This is applied to study unit-regularity in
the context of existence varieties V of regular rings, that is, classes
closed under homomorphic images, direct products, and regular sub-
rings. It is shown that for such class unit-regularity is equivalent to
direct finiteness, both considered as a property required for all mem-
bers. (Compare this to the result of Baccella and Spinosa [2] that a
semiartinian regular ring is unit-regular if and only if all its homomor-
phic images are directly finite.) Another property shown equivalent to
unit-regularity is that V does not contain nonartinian subdirectly irre-
ducibles. Though, having V generated by artinians is not sufficient for
direct finiteness in view of the result, established by Goodearl, Menal,
and Moncasi [8, Thm. 2.5], that free regular rings are residually ar-
tinian (and, according to Herrmann and Semenova [13, Cor. 14], even
residually finite). Varieties of ∗-regular rings (with pseudo-inversion)
generated by artinians have all members directly finite [14] (and may
contain nonartinian simple members) but unit-regularity remains an
open problem.

2. Complemented modular lattices

2.1. Preliminaries. We refer to Birkhoff [3] and von Neumann [19].
A lattice L is a set endowed with a partial order ≤ such that any two
elements a, b have infimum and supremum written as meet a ∩ b and
join a + b. We also write ab = a ∩ b and apply the usual preference
rules. All lattices to be considered will have smallest element 0 and
greatest element 1.

For u ≤ v in L, the interval [u, v] = {x | u ≤ x ≤ v} is again a
lattice with the inherited partial order and operations. A lattice L is
modular if

b ≤ a⇒ a(b+ c) = b+ ac.

Then the maps x → x + b and y → ay are mutually inverse isomor-
phisms between [ab, a] and [b, b+a]. An element u of a modular lattice
L is neutral if (u+x)(u+y) = u+xy for all x, y ∈ L; the set of neutral
elements is a sublattice of L. An element a of a modular lattice L is of
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height d if some (equivalently: each) maximal chain in [0, a] has length
d, that is d+ 1-elements. For the following see [3, Ch. III Thm. 15].

Fact 1. In a modular lattice, the direct product [ab, a]× [ab, b] embeds
into [ab, a+ b] via (x, y) 7→ x+ y = (x+ b)(y + a).

If ab = 0 then we write a + b = a ⊕ b. If a ⊕ b = 1 then b is a
complement of a. A lattice L is complemented if each element admits
some complement. If L is, in addition, modular then we speak of a
CML. In a CML each interval [u, v] is again a CML (within [u, v], a
complement of x is given by yv + u = (y + u)v where x⊕ y = 1 in L).

In a CML, elements a, b are perspective, written as a ∼ b, if they
have a common complement; equivalently, a ∼c b for some c, the latter
meaning that a + b = a + c = b + c and ab = ac = bc. We write a ≈c

if a ∼c b and ab = 0; also a ≈ b if a ≈c b for some c. Applying Fact 1
one obtains the following.

Fact 2. In a modular lattice, if ai ∼ci bi, i = 1, 2 and a1b1a2b2 ≥
(a1 + b1)(a2 + b2) then a1 + b1 ∼c1+c2 a2 + b2.

Fact 3. In a modular lattice one has a ∼ b if and only if x ∼ y for
some (equivalently: all) x, y such that a = x ⊕ ab and b = y ⊕ ab,
Moreover, one has a⊕ y = a+ b = b⊕ x for such x, y.

Proof. Observe that for such x, y one has ay = aby = 0 whence by
modularity a(x + y) = x and, similarly, bx = 0 and b(x + y) = y. By
modularity it follows that ab(x+y) = 0. Now one has ab+x+y = a+b
so that the map z 7→ z+ab is an isomorphism of [0, x+y] onto [ab, a+b].
Moreover, a+y = a+ab+y = a+ b. Thus a⊕y = a+ b and, similarly,
b⊕ x = a+ b. �

2.2. Two lemmas on modular lattices.

Lemma 4. In a modular lattice, if z = x⊕ y, w = u⊕ v, and zw = xu
then yv = 0. If, in addition, x ∼ u and y ∼ v then also z ∼ w.

Proof. Clearly, yv ≤ yzw ≤ yx = 0. Moreover, by modularity one
has (x + w)z = x + wz = x whence (x + w)y = (x + w)zy = xy = 0
and, similarly, (u + z)v = 0. Now, by Fact 1 (x + w)(u + z) = x + u
it follows (y + v)(x + u) = (y + v)(x + w)(u + z) = [y(x + w) +
v)](u + z) = v(u + z) = 0 by modularity. In particular, this implies
xu(y + v) = 0 establishing the isomorphism r 7→ r + xu of [0, y + v]
onto [xu, y+xu+ v]. Thus, if y ∼ v then one has also y+xu ∼ v+xu.
Assuming that, in addition, x ∼ u one derives z ∼ w by Fact 2 since
(x+ u)(y + xu+ v) = (x+ u)(y + v) + xu = xu. �
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Figure 1. Lemma 4
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Figure 2. Lemma 5

Lemma 5. In modular lattice, L, a ∼ b and d = (a+ d)(b+ d) jointly
imply a+ d ∼ b+ d.

Proof. Assume a ∼c b in L and let S denote the sublattice S generated
by a, b, c, d. Let D2 and M3 denote the 2-element lattice and the height
2 lattice with 3 atoms, respectively. Obviously. S is also generated by
c, and the two chains a ≤ a+ d and b ≤ b+ d. Thus, by [12] S is a sub
direct product of lattices D2, M3, and lattices M where (the images of)
a, a+d, b, b+d generate a boolean sublattice with (a∗b)(a+d)(b+d) = 0
and a+d+ b = 1 and where (the image of) c is a common complement
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of the “atoms” d = (a + d)(b + d), a, and b. Since also a ∼c b, M is
easily seen to be trivial in both cases..

Thus, S is a subdirect product of factors D2 and M3, only. Due to
the given relations, in any of these factors the images of d and a + b
take value 0 or 1, only; this means that a+b and d are neutral elements
of S. It follows, that u = d(a+b) is neutral, too, whence a ∼c b implies
a+ u ∼c+u b+ u and this in turn a+ d ∼c+d b+ d via the isomorphism
of [u, a+ b] onto [d, 1]. �

2.3. Partial isomorphisms and perspectivity. Motivated by the
case where L is the lattice of principal right ideals of a regular ring, for
any CML L we consider lattice isomorphisms α : [0, e]→ [0, f ], shortly
written as α : e → f . For g = e ∩ f one has both α−1(g) and α(g)
defined. If e′ ≤ e let α|e′ denote the restriction of α to [0, e′], that is
α|e′ : e′ → f ′, f ′ = α(e′).

Observation 6. α−1(g) ∩ α(g) ≤ g and equality holds if and only if
α(g) = g.

Proof. Clearly, α−1(g) ∩ α(g) ≤ α−1(f) ∩ α(e) = e ∩ f = g. Also, if
α(g) = g then α−1(g) = g whence α−1(g)∩α(g) = g. Conversely, if the
latter holds then g ≤ α(g) and α(g) ≤ α(α−1(g)) = g and it follows
g = α(g). �

We introduce a reduction process which yields perspectivity provided
that it stops after finitely many steps. With g = e ∩ f one has α# :
α−1(g)→ α(g) defined by α#(x) = α2(x).

We consider admissible systems A of isomorphisms α : e→ f requir-
ing the following axioms:

(A1) If α : e→ f is in A and e′ ≤ e then α|e′ is in A.
(A2) If α : e→ f is in A and e ∩ f = 0 then e ≈ f .
(A3) If α : e→ f is in A and g = e ∩ f then α# is in A.

Lemma 7. Consider α : e→ f in admissible A.

(i) If α(e ∩ f) = e ∩ f then e ∼ f .
(ii) If α−1(e ∩ f) ∼ α(e ∩ f) then e ∼ f .

Proof. Let g = e∩f . In (i) choose y so that y⊕g = e and put v = α(y).
Then f = α(e) = α(y ⊕ g) = α(y) ⊕ α(g) = v ⊕ g. With x = u = g
in Lemma 4 it follows yv = 0 whence y ∼ v by axioms (A1) and (A2);
moreover, e ∼ f by Lemma 4, again.

(ii): Put x = g + α−1(g) and u = g + α(g), observe that u = α(x).
Observe that g ≤ x ≤ e and g ≤ u ≤ f whence x ∩ u = g. Thus, by
hypothesis and Lemma 5 one has x ∼ u. Choose y such that y⊕ x = e
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and put v := α(y). Then f = α(x ⊕ y) = α(x) ⊕ v and we conclude
y ∩ v = 0 by Lemma 4 whence y ∼ v by axioms (A1) and (A2); finally,
e ∼ f by Lemma 4. �

Given α : e→ f in admissible A define, by induction, α0 = α, e0 = e,
f0 = f and αn+1 = α#

n : en+1 → fn+1 . Put gn = en ∩ fn and observe
that en+1 ≤ en and fn+1 ≤ fn whence also gn+1 ≤ gn.

Theorem 8. Given a CML, L, an admissible system A of partial iso-
morphisms in L, and α : e → f in A, one has e ∼ f provided that
em ∼ fm for some m. In particular, this applies if αm(gm) = gm re-
spectively gm+1 = gm for some m or if e ∩ f is of finite height in L.

Proof. If em ∼ fm (which by (i) of Lemma 7 is the case if αm(gm) = gm)
then em−1 ∼ fm−1 by (ii) of Lemma 7 and it follows e ∼ f by induction.
Now, assume e ∩ f of finite height in L. By Observation 6, gm+1 < gm
unless αm(gm) = gm; thus, the latter has to occur for some m. �

We now give for the case gm+1 = gm a proof with a single appli-
cation of Lemma 5, only. A sequence a0, . . . , am in a modular lattice
is independent, if for all n < m, an

∑
n<k≤m ak = 0 ; equivalently if

(
∑

n∈I an)(
∑

n∈J an) = 0 for all I, J ⊆ {0, . . . ,m} such that I ∩ J = ∅.
Induction using Fact 2 yields the following.

Fact 9. In a modular lattice, if a0 + b0, a1 + b1, . . . , am + bm is inde-
pendent and an ≈ bn for all n ≤ m then

∑
n≤m an ≈

∑
n≤m bn.

Lemma 10. Consider αn : en → fn and gn, n ≤ m + 1 as above and,
for n ≤ m, xn such that en = xn ⊕ (en+1 + gn) and yn = αn(xn). Then
the following hold.

(i) fn = yn ⊕ (gn + fn+1) and (ek + fk)(xn + yn) = 0 for all k > n.
(ii) xn ≈ yn for all n ≤ m.

(iii) x0, y0, . . . , xm, ym is an independent sequence.
(iv) x :=

∑
k≤m xk ≈ y :=

∑
k≤m yk.

(v) If gm = gm+1 then x+ g0 = e0, y + go = f0, and e0 ∼ f0.

Proof. Recall that en+1 = α−1n (gn) ≤ en and fn+1 = αn(gn) = α2
n(en+1) ≤

fn and observe that en = xn ⊕ (α−1n (gn) + gn). It follows that fn =
αn(en) = yn ⊕ (gn + αn(gn)) = yn ⊕ (gn + fn+1) for n ≤ m. Observe
that xnyn ≤ enfn = gn whence xnyn ≤ xngn = 0. Thus xn ≈ yn by
axiom (A2).

Moreover, modularity yields (en+1+fn+1)(xn+yn) ≤ (en+1+fn)(xn+
yn) = (en+1+fn)xn+yn = (en+1+fn)enxn+yn = (en+1+fnen)xn+yn =
(en+1+gn)xn+yn = 0+yn = yn and so (en+1+fn+1)(xn+yn) = (en+1+
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fn+1)yn = (en+1 + fn+1)fnyn = (en+1fn + fn+1)yn ≤ (gn + fn+1)yn = 0.
It follows for all n < m( ∑

n<k≤m

xk + yk

)
(xn + yn) ≤ (en+1 + fn+1)(xn + yn) = 0,

proving (iii); (iv) follows by Fact 9. Dealing with (v), observe that
em+1 = gm whence g0 + xm ≥ em. Now, backward induction yields
g0 +

∑
m≥k≥n xk ≥ en for all n ≤ m, whence g0 +x = e0. Similarly, one

has g0 + y = f0 and it follows e0 ∼ f0 by Lemma 2.
�

2.4. ℵ0-complete complemented modular lattices. A CML is ℵ0-
complete if supremum

∑
n an and infimum

∏
n an exist for all families

(an | n < ω). According to Amemiya and Halperin [1, Thm.9.5] any
such is also ℵ0-continuous, i.e. b

∑
n an =

∑
n ban (resp. b +

∏
n an =∏

n(b + an)) if (an | n < ω) is upward (resp. downward) directed. A
sequence (an | n < ω) is independent if each of its finite subsequences
is independent.

Fact 11. In an ℵ0-complete CML, if a0 + b0, a1 + b1, . . . is independent
and an ≈ bn for all n < ω then

∑
n an ≈

∑
n bn.

Proof. Suppose an ≈cn bn for n < ω and write x+n =
∑

m≤n xm and

xω =
∑

n<ω xn =
∑

n<ω x
+
n for any sequence x0, x1, . . .. By Fact 9

one has a+n ≈c+n
b+n for all n. Since sequences x+0 , x

+
1 , . . . are upward

directed, ℵ0-continuity yields aωbω = (
∑

n<ω a
+
n )bω =

∑
n<ω a

+
n bω =∑

n<ω a
+
n

∑
m<ω b

+
m =

∑
n<ω

∑
m<ω a

+
n b

+
m ≤

∑
n,m<ω a

+
max (n.m)b

+
max (n,m) =

0. By symmetry one obtains aωcω = bωcω = 0 while aω+bω = aω+cω =
bω + cω is obvious. �

Theorem 12. Assume that α : e → f is member of an admissible
system A of partial isomorphisms of an ℵ0-complete CML, L, and that∏

n<ω en ∼
∏

n<ω fn for en, fn defined as in Subsection 2.3. Then it
follows that e ∼ f in L.

Proof. Given α : e → f in A define αn : en → fn as in Subsection 2.3
and gn = enfn. Put e∞ =

∏
n en, f∞ =

∏
n fn, and g∞ =

∏
n gn =

e∞f∞ and recall that en+1 = α−1n (gn) ≤ en and fn+1 = αn(gn) =
α2
n(en+1) ≤ fn.
Choose xn such that en = xn ⊕ (en+1 + gn) and yn = αn(xn). By

Lemma 10 one has fn = αn(en) = yn ⊕ (gn + fn+1) and the sequence
x0, y0, x1, y1, . . . is independent; thus, Fact 11 yields xω ≈ yω where
xω =

∑
n xn and yω =

∑
n yn. On the other hand, again by Lemma 10
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and modularity,(
e∞ + f∞ +

∑
n<k≤m

xk + yk

)
(xn + yn) = 0 for all m > n

that is e∞ + f∞, x0 + y0, x1 + y1, . . . is an independent sequence, too.
By hypothesis e∞ ∼ f∞ and in view of (xω + yω)(e∞ + f∞) = 0 Fact 2
applies to yield xω + e∞ ∼ yω + f∞.

Now g + en+1 + xω ≥ en+1 + gn + xn = en and by induction it
follows g + en + xω = e for all n. Thus, by ℵ0-continuity one has
g+xω+e∞ =

∏
n(g+xω+en) = e. Similarly, one obtains g+yω+f∞ = f .

Finally, e ∼ f follows by Lemma 5. �

3. Regular rings

3.1. Preliminaries. A ring R (associative and with unit) is (von Neu-
mann) regular if for each a ∈ R there is a quasi-inverse or inner inverse
x ∈ R such that axa = a; equivalently, every right (left) principal ideal
is generated by an idempotent, see Goodearl [7] and Wehrung [20].
For a regular ring, R, the principal right ideals form a complemented
sublattice L(R) of the lattice of all right ideals; in particular, L(R) is
modular. For artinian R, the height of L(R) is the length of R.

An element a of R is unit-regular if there is a unit u ∈ R, a unit-
quasi-inverse, such that aua = a. R is unit-regular if all its elements
are unit-regular. Any such ring is directly finite (that is ab = 1 implies
ba = 1), the converse not being true for regular rings, in general.

If e is an idempotent in a regular ring R, then the corner eRe is a
regular ring with unit e, a homomorphic image of the regular subring
eRe+ (1− e)R(1− e) of R.

Idempotents e, f are Murray von Neumann equivalent if e = yx and
f = xy for some x, y. For the following see e.g. Handelman [11].

(1) For any a there is a generalized or reflexive inverse b such that
aba = a and bab = b, e.g. b = xax where axa = a. Then ab and
ba are idempotents.

(2) e, f are idempotents and equivalent if and only if e = ba and
f = ab for some a, b as in (1). Moreover, in this case ωa,b(r) = ar
defines an isomorphism ωa,b : bR = eR→ aR = fR of right R-
modules with inverse ωb,a. It follows that fae = a and ebf = b.

(3) For idempotents e, f , every R-module isomorphism ω : eR →
fR is as in (2) where ω(e) = a and ω−1(f) = b.

(4) If eR ∼ fR in L(R) then eR ∼= fR as right R-modules. If
eR ∩ fR = 0 then the converse holds, too.
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(5) If c is another generalized inverse of a then bR ∼ cR (being com-
plements of {x ∈ R | ax = 0}) and x 7→ cax is an isomorphism
of bR onto cR.

To prove (3), put a = ω(e) and b = ω−1(f). Then one has ω(r) =
ω(er) = ω(e)r = ar for r ∈ eR and, similarly, ω−1(s) = bs for s ∈ fR.
Thus, aba = ω(ba) = ω(ω−1(a)) = a and, similarly, bab = b.

A regular ring R is perspective if isomorphic direct summands of RR

are perspective in L(R); equivalently, aR is perspective to bR for all
aR ∼= bR - for a more general result see Mary [17, Thm.3.1].

Theorem 13. Handelman [11] A regular ring is unit-regular if and
only if it is perspective.

An element a of R is stronlgy π-regular if there is n such that an ∈
an+1R ∩Ran+1. R is stronlgy π-regular if so are all its elements.

Theorem 14. Goodearl and Menal [10, Thm. 5.8]. Strongly π-regular
regular rings are unit-regular.

In general rings, a strongly π-regular element is unit-regular provided
all its powers are regular. For a detailed discussion and proofs see
Khurana [15]

3.2. Perspectivity. The following “local version” of Handelman’s The-
orem should be well known.

Lemma 15. Given a generalized inverse b of a in a regular ring R one
has idemptents e = ba, f = ab, and g such that gR = eR ∩ fR. Now,
the following are equivalent.

(i) fR and eR are perspective in L(R).
(ii) For some (all) idempotents e′, f ′ such that e′R⊕ gR = eR and

f ′R⊕ gR = fR one has e′R ∼= f ′R.
(iii) For some (all) idempotents e′, f ′ such that e′R⊕ gR = eR and

f ′R ⊕ gR = fR there is a unit u of R such that aua = a and
e′R ∼= f ′R via ue′.

Proof. In view of (2) in the preceding subsection, e = ba and f = ab
are idempotents. Consider e′, f ′ as in (ii) and (iii) and observe that
such exist since L(R) is complemented.

By Fact 3 we have e′R ∩ f ′R = 0 and, moreover, eR ∼ fR if and
only if e′R ∼ f ′R. By (4), the latter is equivalent to e′R ∼= f ′R. This
proves that (i) is equivalent to (ii).

Now, assume (ii), in particular f ′R ∼= e′R via some isomorphism ω′.
Choose an idempotent h such that eR + fR = hR. Then

eR⊕ f ′R⊕ (1− h)R = R = fR⊕ e′R⊕ (1− h)R,
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again by Fact 3. In view of (2) define

ω(r + s+ t) = ωb,a(r) + ω′(s) + t for r ∈ fR, s ∈ e′R and t ∈ (1− h)R

to obtain an automorphism of the right R-module R = 1R. By (3)
there are u, v in R such that ω = ωu,v; in particular, u is a unit and
v = u−1. Moreover, ur = ωb.a(r) = br for r ∈ fR, in particular
ua = ba = e. Thus aua = ae = a, proving that (ii) implies (iii).

Finally, assume (iii). Then u−1f ′ = e′ whence x 7→ ux is an R-
module isomorphism of e′R onto f ′R with inverse y 7→ u−1y. Thus,
(ii) and (iii) are equivalent, too. �

For A,B ∈ L(R) and right module isomorphism ω : A→ B one has
the induced lattice isomorphism ωL : [0, A]→ [0, B]. Let A(R) denote
the set of all these.

Lemma 16. A(R) is an admissible system of partial isomorphisms of
L(R).

Proof. Consider ω : A → B in A(R) and observe that ωL(X) = ω(X)
for all X ≤ A. Thus, if A′ ≤ A in L(R) then (ω|A′)L : [0, A′] → [0, B′]
in A(R) with B′ = ω(A′) ≤ B, proving axiom (A1). Similarly, for

C = A ∩ B, A′ = ω−1(C), and B′ = ω(C) one has ω#
L = (ω|C ◦ ω|A′)L

in A(R), proving axiom (A3). Finally, (A2) follows from (4). �

Corollary 17. For A,B in the lattice L(R) of principal right ideals of
the regular ring R, if A ∩ B is of finite height in L(R) then A,B are
perspective in L(R) if and only if they are isomorphic as R-modules.

Proof. Assume A ∩ B of finite height. If A ∼= B then there is a lattice
isomorphism α : [0, A]→ [0, B] in A(R) and in view of Lemma 16 and
Theorem 8 it follows that A ∼ B. The converse follows from (4). �

Corollary 18. An element a in a regular ring R is unit-regular pro-
vided that there is a reflexive inverse b of a such that bR ∩ aR is of
finite height in L(R).

3.3. Regular rings with operation of quasi-inversion. A regular
ring may be considered as an algebraic structure also endowed with an
operation a 7→ a′ of quasi-inversion. The class R of all these structures
is then defined by the identities for rings with unit together with xx′x =
x. As observed above, the term x+ = x′xx′ then yields a generalized
inverse a+ of a and γ(x) = xx+ yields idempotents γ(a) such that
γ(a)R = aR. For the following see Wehrung [20, Lemma 8-3.12].

Lemma 19. There are binary terms x ∨ y, x ∧ y, and x 	 y in the
language of R such that, for all R ∈ R and a, b ∈ R, a ∨ b, a ∧ b, and
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a 	 b are idempotent, (a ∨ b)R = aR + bR, (a ∧ b)R = aR ∩ bR, and
(a	 (a ∧ b))R⊕ (a ∧ b)R = aR.

Theorem 20. For each natural number n there are binary terms tn(x, y),
un(x, y), and pn(x, y) in the language of R such that the following hold
for all R ∈ R and mutually reflexive inverses a, b ∈ R: tn(a, b) is
idempotent; moreover, if tn+1(a, b)tn(a, b) = tn(a, b) then

(i) bR and aR are perspective in L(R): bR ∼pn(a,b) aR:
(ii) un(a, b) is a unit such that aun(a, b)a = a.

If R is of length at most n + 2 then tn+1(a, b)tn(a, b) = tn(a.b) for all
mutally reflexive inverses a, b in R.

Proof. With idempotents e0 = ba and f0 = ab one has the isomorphism
ωab : e0R → f0 given by x 7→ ax inducing the isomorphism α = α0 :
[0, eR]→ [0, fR] given by α(xR) = axR with inverse α−1(xR) = bxR.
Recalling the construction in Subsection 2.3 put g0 = e0 ∧ f0 and,
recursively,

gn = en ∧ fn, en+1 = γ(b2
n

gn), fn+1 = γ(a2
n

gn)

to obtain αn+1 : [0, en+1R]→ [0, fn+1R] given by αn+1(xR) = α2
n(xR) =

a2
n
xR. Accordingly, put t0(x, y) = yx ∧ xxy, and, inductively,

tn+1(x, y) = y2
n

tn(x, y) ∧ x2ntn(x, y).

Thus, for a, b as above one has tn(a, b)R = gnR = enR ∩ fnR whence

tn+1(a, b)tn(a, b) = tn(a.b) ⇔ gn+1R = gnR.

Thus, supposing tn+1(a, b)tn(a, b) = tn(a, b), bR and aR are perspective
in L(R) by Theorem 8 and Lemma 15 applies to provide the existence
of a unit u in R such that aua = a and idempotent p ∈ R such that
bR ∼pR aR. To prove the existence of terms un(x, y) and pn(x, y), as
required, it suffices to observe that all this applies, in particular, to R
being the free algebra in R with generators a, b and relations aba = a,
bab = b, and tn+1(a, b)tn(a, b) = tn(a, b).

Now, assume that gk 6= gk+1 for all k ≤ m. Then one obtains a chain
e0R+f0R > e0R > g0R > . . . > gm+1R of length m+3 in L(R). Thus,
if r is of length at most n+ 2 then gm = gm+1 for some m ≤ n+ 2 and
it follows gk = gm for all k ≥ m, in particular gn = gm = gn+1. �

Example 21. (i) There are a, b, c in some unit-regular ring R such
that a, b and a, c are pairs of reflexive inverses, aR, bR, and cR
pairwise perspective, tn+1(a, b)tn(a, b) 6= tn(a, b) for all n, and
t0(a, c) = 0.

(ii) There are a regular ring R and reflexive inverses a, b in R such
that t0(a, b) = 0 but both a and b are not strongly π-regular,
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Proof. Considering (i) let V a vector space of dimension n+3. We show
by induction that End(V ) contains some a, b with associated gn > gn+1.
More precisely, we show that for any subspaces V1 6= V2 of codimension
1 there is such a with generalized inverse a+ and restricting to an
isomorphism V1 → V2 and such that V1 = im a+ and V2 = im a. If
n = 0 choose vi such that V1 ∩ V2 = span v3 and Vi = span vi + V1 ∩ V2
for i = 1, 2. Define the endomorphism a by a(v1) = v2, a(v2) = 0, and
a(v1+v3) = v3 and a+ by a+(v1) = 0, a+(v2) = v1, and a+(v3) = v1+v3.
Proceeding from n− 1 to n choose W of codimension 1 in V such that
V1 ∩ V2 6⊆ W and put Wi = W ∩ Vi. Choose endomorphisms a0, a

+
0 of

W connecting W1 and W2 according to hypothesis. Choose v3 6∈ W
and vi such Vi = span vi + Wi for i = 1, 2 and extend a0 and a+0 to
obtain a and a+, defined for vi as above.

By this construction there are finite dimensional Wn = Vn⊕Un with
reflexive inverses a0n, b0n in Vn such that tn+1(a0n, b0n)tn(a0n, b0n) 6=
tn(a0n, b0n) and isomorphism c0n : Vn → Un. Choose an extending
a0n and c−10n , and bn, cn extending b0n and c0n, respectively, such that
bn|Un = 0 and cn|Un = 0. Then the direct product of the End(Wn)
provides R and a, b, c as required.

In (ii) consider a vector space V with basis vn, wn(n ∈ N), R =
End(V ) and define a(vn) = wn, a(wn) = wn+1, b(wn) = vn, and b(vn) =
vn+1. �

3.4. (Existence-)varieties of unit-regular rings. Observe that sub-
rings of regular rings are not regular, in general, an obvious exam-
ple being Z ⊂ Q. Thus, to deal with classes C of regular rings in
the framework of Universal Algebra, without specifying operations of
quasi-inversion, it is convenient to introduce the class operator S∃(C)
associating with C the class of all regular rings which are subrings of
members of C. Referring to the usual operators H, P, and Pu for ho-
momorphic images, direct products and ultraproducts (which preserve
regularity), a class V of regular rings which is closed under under these
operators is an existence-variety (cf. Hall [9] for this concept). For a
class C of regular rings let T(C) consist of all regular rings endowed
with an operation of quasi-inversion (that is, members of R as defined
in the previous subsection) where the underlying ring is in C. For the
following see Propositions 7 and 10 and Theorem 16 of Herrmann and
Semenova [13].

Fact 22. (i) The smallest existence variety V∃(C) containing C is
HS∃P(C).

(ii) V = S∃P{R ∈ V | R subdirectly irreducible} for any existence
variety V.
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(iii) R ∈ HS∃Pu(C) for every subdirectly irreducible R ∈ V∃(C).
(iv) Any subdirectly irreducible regular ring R is an F -algebra for

a suitable field F . Moreover, if such R is nonartinian then
V∃(R) = V∃{F n×n | n < ω}.

(v) TV∃(C) = HSPT(C); in particular, any identity in the language
of R which is valid in T(C) is also valid in TV∃(C).

Define tn(x) = tn(x, x+).

Theorem 23. For an existence variety V of regular rings the following
are equivalent

(1) All members of V are perspective.
(2) All members of V are unit-regular.
(3) All subdirectly irreducible members of V are directly finite.
(4) All subdirectly irreducible members of V are artinian.
(5) There is d < ω such that all artinian subdirectly irreducible

members of V are of length ≤ d.
(6) There are d < ω and and a class C of artinian regular rings of

length ≤ d such that V = V∃(C).
(7) There is n < ω such that tn+1(x)tn(x) = tn(x) is valid in T(V).
(8) There is m < ω such that the idenkities (xm+1)(xm+1)+xm = xm

and xm(xm+1)+xm+1 = xm are valid in T(V).

Actually, given d ≥ 2 one can choose n = d− 2 and m = d.

Proof. (7) implies (1) by (i) of Theorem 8. (8) implies (1), too, in view
of Theorem 14. (1) implies (2) by Theorem 13, and (2) implies (3).

Each of (3) and (4) implies (5): Indeed, assume that there are
artinian subdirectly irreducibles Rn ∈ V with no bound on length.
Renumbering and passing to corners and isomorphic copies, we may
assume that Rn

∼= Dn×n
n for some division ring Dn. Thus, for fixed m

and all n ≥ m, the ring Rn contains a subring Rmn
∼= Dm×m

n . Choose
Rmn = 0 for n < m. Thus, in particular Rmn ∈ V for all m,n. Re-
call that, for fixed m, the class of all rings isomorphic to Dm×m for
some division ring d can be finitely first order axiomatized if one adds
m2 constants for a system of matrix units. Thus, choosing a non-
principal ultrafilter F on N one has for any fixed m the ultraproduct
(
∏

n∈NRmn)/F isomorphic to Dm×m where D = (
∏

n∈NDn)/F . It fol-
lows Dm×m ∈ V and thus Fm×m ∈ V for all m where F is the prime
subfield of D. Now, consider any infinite dimensional F -vector space
W and End(WF ); the latter is subdirectly irreducible, nonartinian, and
not directly finite. By Fact 22(iv) one has End(WF ) ∈ V contradicting
both (3) and (4).
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(5) implies (4): Assume there is subdirectly irreducible R ∈ V which
is not artinian. By Fact 22(iv), R is an F .algebra for some field F and
V ⊇ V∃(R) = V∃{F n×n | n < ω} so that the (subdirectly irreducible)
F n×n ∈ V for all n < ω, contradicting (5).

(5) implies (6): Since (5) implies (4), in view of Fact 22(ii) it follows
that V is generated by members of length ≤ d.

(6) implies (7) and (8): Let Rd consist of all artinian regular rings
which are of length at most d. Thus, V ⊆ V∃(Rd). Now, consider
subdirectly irreducible R ∈ V∃(Rd). By Fact 22(iii) one has R ∈
HS∃Pu(Rd). Since the property of having length ≤ d can be expressed,
easily, by a first order formula (in various ways), we have Pu(Rd) ⊆
Rd while HS∃(Rd) ⊆ Rd is obvious. This implies that R ∈ Rd

whence V ⊆ V∃(Rd) by Fact 22(ii). By (ii) of Theorem 8 the identities
tn+1(x)tn(x) = tn(x), (xm+1)(xm+1)+xm = xm, and xmxm(xm+1)+xm+1

(where n = d − 2 and m = d) are valid in T(Rd) and so in T(V) by
Fact 22(v). �

4. Declarations

4.1. Funding. None.

4.2. Data availability. Not applicable.

4.3. Ethical standards. The author declares that there are no con-
flicts of interest.

References

[1] Amemiya, I., Halperin, I.: Complemented modular lattices. Canadian J. Math.
11, 481–520 (1959)

[2] Baccella, G., Spinosa, L.: K0 of semiartinian von Neumann regular rings. Direct
finiteness versus unit-regularity. Algebr. Represent. Theory 20, 1189–1213 (2017)

[3] Birkhoff, G.: Lattice Theory. AMS Colloq.Publ. Vol. 25, Providence RI (1967)
[4] Ehrlich, G.: Unit-regular rings. Portugal. Math. 27, 209–212 (1968)
[5] Ehrlich, G.: Units and one-sided units in regular rings.Trans. Amer. Math. Soc.
216, 81–90 (1976)

[6] Garg, Sh., Grover, H. K., Khurana, D.: Perspective rings. J. Algebra 415, 1–12
(2014)

[7] Goodearl, K.R.: Von Neumann Regular Rings, second edition, Krieger, Malabar
(1991)

[8] Goodearl, K.R. Menal,P., Moncasi,L.: Free and residually artinian regular rings,
J. Algebra 156, 407–432 (1993)

[9] Hall, T.E.: Identities for existence varieties of regular semigroups, Bull. Austral.
Math. Soc. 40, 59–77 (1989)

[10] Goodearl, K.R. Menal,P.: Stable range one for rings with many units, J. Pure
Appl. Alg. 54, 261–287 (1988)



PERSPECTIVITY 15

[11] Handelman, D.: Perspectivity and cancellation in regular rings. J. Algebra 48,
1–16 (1977)

[12] Herrmann. C., Kindermann, M., Wille, R.: On modular lattices generated by
1 + 2 + 2. Algebra Universalis 2, 243–251 (1975)

[13] Herrmann, C., Semenova, M.: Existence varieties of regular rings and comple-
mented modular lattices. J. Algebra 314, 235–251 (2007)

[14] Herrmann, C.: Direct finiteness of representable regular ∗-rings. Algebra Uni-
versalis 80:1 Paper No. 3, 5 pp. (2019)

[15] Khurana, D.: Unit-regularity of regular nilpotent elements. Algebr. Represent.
Theory 19 no. 3, 641644 (2016)

[16] Lee, T.-K.: Unit-regularity of elements in rings. J. Algebra Appl. 22 No. 6,
Paper No. 2350135, 13 pp. (2023)

[17] Mary, X.: Special clean elements, perspective elements and perspective rings.
J. Algebra Appl. 22 No. 4, Paper No. 2350090, 19 pp. (2023)
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