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ABSTRACT

The nonlocal boundary value problems for degenerate differential-operator
equations with variable coefficients are studied. The L,, separability properties
of elliptic problems and well-posedeness of parabolic problems in mixed Ly
spaces are derived. Then by using the regularity properties of linear problems,
the existence and uniqueness of solution of nonlinear elliptic problem is obtained.
Note that, applications of these problems can be models of different physics
process.
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0. Introduction

In this work, the boundary value problems (BVPs) for parameter dependent
degenerate differential-operator equations (DOEs) are considered. Namely, the
equations contain a small parameter. These problems have numerous appli-
cations in PDE, pseudo DE, mechanics and environmental engineering. The
BVP for DOEs have been studied extensively by many researchers (see e.g.
[2-5, 7-21, 24-26] and the references therein). A comprehensive introduction to
the DOEs and historical references may be found in [12] and [25] . The maximal
regularity properties for DOEs have been studied e.g. in [2, 6-7, 15-21, 24]. De-
generate DOEs in abstract function spaces are investigated e.g. in [3, 11, 16, 19, 20, 22].
The maximal regularity properties of BVP for elliptic equations are studied e.g.
in [1, 8, 23]. The main objective of the present paper is to discuss maximal
regularity properties of the following degenerate elliptic DOE

—ea (z)u® (2)+A () u (x)+e? Ay (2) u™ (2)+Ag () u (z)+ u = f (z), (0.1)

where ¢ is a small positive parameter, A is a complex parameter, a (z) is a
complex valued function and A, Ay, A; are linear operators in a Banach space
E. Since the above equation depends on parameter &, then the solution u also
depend of ¢, i.e., u(z) = u(z,e). Note that, the principal part of the above
problem is nonselfadjoint and also have the variable coefficients. The regularity



properties for the problem of type (0.1) was studied in [16] for € = 1. Here, sev-
eral conditions for the separability and sharp resolvent estimates uniformly with
respect to parameter ¢ are given. Especially, it is shown that the correspond-
ing differential operator is R-positive and also generates an analytic semigroup.
In first section, we introduce some notations, definitions and background. In
section 2, we consider nonlocal nonhomogenous BVP for the degenerate DOE
with constant coefficients. We prove that this problem is isomorphism from
WZ? (0,1; E(A), E) onto L, (0,1; E) x Eq x E5, where Ej, are interpolation spaces
between F (A) and F ( see section 1 for definition of these spaces). In section
3, we show that the problem (0.1) is L, (0, 1; E') separabile, i.e., we prove that
problem (0.1) for f € L, (0,1; E) has a unique solution u € W2 (0,1; E (A), E)
and the following uniform coercive estimate holds

2 .
St
=0

for larg A| < ¢, ¢ < 7 with sufficiently large |A|, where the constant C' depend
only on p and A.

The section 4 devoted to R-positivity of the corresponding differential op-
erator. In section 5, the uniform well-posedeness of initial and BVP for the
degenerate abstract parabolic equation

u 2u
% +ea(x) % + A(x)u(x,t) = f(x,t)

is established in E-valued mixed L, space. In section 6, nonlocal BVP
for degenerate abstract elliptic equation considered in the moving domain. By
using the maximal regularity properties of linear problem (0.1), in section 7 we
derive the existence and uniqueness of nonlocal BVP for the following nonlinear
degenerate abstract equation

u® +Aully, 01,8 < CIFlL,0.0m)

Lp(0,1E)

—q(z)u® (2)+ B (m,u,u(l)) u(z)=F (:E,u7u(1)) ,

where ¢ is a real valued function, B and F' are nonlinear operator in a Banach
space E. In application, the separability properties of the system of degenerate
parabolic equations is obtained.

Modern analysis methods, particularly abstract harmonic analysis, the op-
erator theory, interpolation of Banach Spaces, theory of semigroups of linear
operators, microlocal analysis, embedding and trace theorems in vector-valued
Sobolev-Lions spaces are the main tools implemented to carry out the analysis.

1. Notations, definitions and background

Let L, (€; E) denote the space of strongly measurable E-valued functions
defined on 2 with the norm

17z, = 1707, qum = ( [ dx)” d<p<



Let p = (p1,p2,.-s0n). Lp (G} E), G = H (0, by) will denote the space of

k=1
all measurable E-valued p-summable functions with mixed norm
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1fllz, G = / / /||f (z)||% dxy dzy day, < 0.
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The Banach space E is called an U M D-space if the Hilbert operator (H f) (z) =
lirr(l) Ik i(fy;dy is bounded in L, (R, E), p € (1,00) ( see. e.g. [6] ). UMD
T z—yl>e
spaces include e.g. L,, I, spaces and Lorentz spaces Lypq, p, ¢ € (1,00).

Let C be the set of the complex numbers and
Se={X XeC, JargA| < p}U{0},0<p <.

A linear operator A is said to be op-positive in a Banach space E with bound
M > 01if D(A) is dense on E and H(A—l— )\I)fll 5E) < M (1+|X)"" for any

A€ Sy, 0 < ¢ <, where I is the identity operator in E and B (F) denotes
the space of bounded linear operators in E. Sometimes A + Al will be written
as A + X and denoted by Ay. It is known [23,§1.15.1] that a positive operator
A has well-defined fractional powers AY. Let E (Ae) denote the space D (Ae)
with norm

lulpasy = (Nl + | A%]") " 1< p < o0, 0< < o0,

Let E7 and F> be two Banach spaces. By (El,E2)97p, 0<f<1l,1<p<o0
we will denote the interpolation spaces obtained from { £, E2} by the K-method
23, §1.3.2).

Weight function v satisfies A, condition (i.e. v € A, ) if there is a constant
C such that

p—1

|22/7(:z:)dx Lél/’fpil(f)dz <C pe(loo)
Q Q

for all cubes @ C R™.

Let S (R"™; FE) denote the Schwartz class, i.e. the space of all F-valued rapidly
decreasing smooth functions on R". Let F' denote the Fourier transformation.
A function ¥ € C (R"; B(FE)) is called Fourier multiplier in L, (R"; E) if the
map

u— Gdu=F 'V (&) Fu,u € S(R™E)

is well defined and extends to a bounded linear operator in L, (R"; E') . The set
of all multipliers in L, (R"; E) denotes by M, (E).



Let Wy, = {¥), € M, (E), h € C} be a collection of multipliers in M, (E).
We say W}, is a uniform collection of multipliers if there exists a positive constant
M independent of h such that

HF’I\I/hFuHLP(Rn;E) <M ”u”LP(R";E)

forallhe Q and u € S (R™; E).

Let N denote the set of natural numbers and {r;} is a sequence of indepen-
dent symmetric {—1, 1}-valued random variables on [0,1]. A set K C B (F1, Es)
is called R-bounded ( see e.g. [8] ) if there is a constant C' such that for all
T, T5,...., Ty € K and u; ug, ..., um € B1, m €N

1 m 1 m

/ er (y) Tju, dy < C/ er (y) u; dy.

o ||7=1 Es o ||7=1 E,
The smallest C' > 0 for which the above estimate holds is called a R-bound of
the collection K and denoted by R (K).

A set W), C L(E1, E») is called uniform R-bounded in h € C if there is a

constant C' independent of h such that for all Ty (h), T2 (h),...,Tpn (h) € W),
and u; ug, ..., Um € B1, m €N

1 m 1 m
JIEnwnmu)| wee [|Srnwy)| aw
0 |li=t By o |lu=t B

Definition 1.1. A Banach space E is said to be the space satisfying multi-
plier condition, if for any ¥ € C") (R; B (E)) the R-boundedness of the set

{kak\If(g) LEeR\{0), k= 0,1}

implies ¥ € M, - (E).
An operator A (t) is said to be uniformly @-positive in E if D (A(t)) is

independent of ¢ and dense in F and H(A (t) + )\)71H < %IM for A € S(yp),

0 < ¢ < 7, where M is independent of ¢.
Definition 1.2.The ¢-positive operator A (x), z € G is said to be uniformly
R-positive in a Banach space E if there exists ¢ € [0, ) such that the set

{A(m) (A(x)+€eD " ice Sq,}

is uniformly R-bounded, that is

supR({ [A(x) (A(x) +§I)_1} : e Sw}) < M.

zeG

Let Ey and E be two Banach spaces and Ej is continuously and densely
embeds into . Let us consider the space W)™ (a,b; Eo, E), consisting of all



functions u € L, (a,b; Ey) that have generalized derivatives u(™ € L, (a,b; E)
with the norm

H“HWP = ||u||WT’;”(a,b;EO,E) = HUHLP((L,b;Eg) + Hu(m)‘ < 00.

Ly(a,b;E)

Let € > 0 be a parameter. We define the following parameterized norm in
W;;n (CI,, b7 EOa E)

(m) ‘

< 0

I, = N, iy = Wl gy + ™,

BMO (E) is the space of all E-valued local integrable functions with the
norm

sup f 1 () = follpde =1l < oo,
B B

where B ranges in the class of the balls in R™ and fp is the average ﬁ/f (z) dx.

B
For f € BMO (F) and r > 0 we set

sup ¢ ||f (z) — fpllpdz =n(r),
péf’B

where B ranges in the class of the balls with radius p.

We will say that a function f € BMO (F) is in the space VMO (E) if
rlirilon (r) = 0. We will call 5 (r) the VMO modulus of f.

If E = C, then BMO (E) and VMO (E) coincide with John-Nirenberg class
BMO and Sarason class VMO respectively.

From [23, §1.8.2] we obtain the following:

Theorem A. Assume m and j are integers 0 < j < m — 1, §; = %,
p € (1,00); € € (0,1) is a parameter, g € [0,b]. Then, the linear transforma-
tion u — u¥ (2) is bounded from W™ (0,b; Ey, E) onto (Eo, E),, ,, and the
following inequality holds

g

Ly(0,5;E) el (O’b;EU)> '

O, <)

(E07E)9]',p

As a corollary of [20, Theorems 2.3, 2.4] we have the following result:

Theorem B. Assume the following conditions are satisfied:

(1) b=b(s) is a continuous function on [c, d];

(2) E is a Banach space satisfying the multiplier condition with respect to
p and 7;

(3) A is a R-positive operator in E, 0 < <1 — %, p € (1,00);
(4) e € (0,1) and h € (0, ho), are some parameters, where hy < 00;

(5) there exists a bounded linear extension operator from W™ (0,b; E (A) , E)
to W' (R; E(A), E).



Then, the embedding
DIV (0,b: E(A), B) C Ly (0.6, E (A5 7#))

is continuous and the following uniform estimate holds

|

l .
gmuow

. Iz —(1—p)
Ly (O’b;E(Ak#“» < W ullwg o)) + 1 1ull £, (0,6:)

for all w € W) (0,b; E (A), E).
Consider the following parameter dependent degenerate DOE on R = (—o0, 00)

(L+Nu=—cul? (z) + (A+ N u(z) = f(2), (1.1)

where A is a linear operator in a Banach space E.
Let

X =1L, ((_OO>OO)§E)7Y = W;EZ] ((—O0,00);E(A),E).

From [17, Theorem 4.1 | we obtain:

Theorem C. Assume:

(1) € € (0,1) is a small parameter;

(2) E is the Banach space satisfying the multiplier condition with respect
to p;

(3) A is a R positive operator in E.

Then, problem (1.1) has a unique solution u € Y for f € X and |arg \| < ¢

with sufficiently large |A|. Moreover, the following uniform coercive estimate
holds

2 i . .
SO [uld

=0

o Tl Aully < Clifllx -

2. Degenerate DOEs with constant coeflicients

Consider the nonlocal BVP for degenerate DOE
(Le+Nu=—eu® (2)+ (A+Nu(z)=f(z), z€(0,1),

mg
Lmu=§:fipwﬂwm+ﬁmwﬂu):fmkzlg, (2.1)
=0

where my, € {0,1};0; = % + m, Qi PB; are complex numbers, A is a pos-
sible unbounded operator in a Banach space E and f; € X; = (E(A) ,E)ej o
0; = %L + 2—117, J=1,2. Let ax = Qgm,,, By = B, - For the sake of simplicity
L., Ly, Lo, will be denoted by L, L, L, respectively. Nonlocal BVP for PDE
studied e.g. in [18 — 22].

Remark 2.0. Generally the operator A is non selfadjoint (only in particu-
larly case it can be selfedjoint), so in general case ((E (A) ,E)Q,p) #E (A7),



Really, if we chooce F = H, where H is a Hilbert space and A to be selfadjoint
than we can take complex interpolation [H (A), H], = H (A'7?).

Any function u € W2 (0,1; E (A), E) satisfying the equation (2.1) a.e. on
(0,1) will be called the solution of (2.1).

Condition 2.1. Assume the following conditions are satisfied:

(1) € € (0,1) is a small parameter and n = (—1)"" @18, — (—1)"" a3, # 0;

(2) E is a Banach space satisfying the multiplier condition with respect to p;

(3) A is a R positive operator in E.

The main result of this section is the following

Theorem 2.1. Let the Condition 2.1hold. Then, problem (2.1) has a
unique solution u € W72 (0,1; E(A),E) for f € L,(0,;E), f; € X; and for
sufficiently large |\| with |arg A| < . Moreover, the following uniform coercive
estimate holds

2
| +[Aully, 0,158) < C | If1lL, 0,158 + Z 1fillx,
j=1

=0 L,(0,1;E
(2.3)
First, we consider the homogenous problem
(L+XNu=0, Lyu= fi, k=1,2, (2.4)

where L and Ly are defined as in (2.2).
Let
X =Ly ((0,0); B),Y = W7 (0,b; E(A), E).

In a similar way as [18, Theorem 3.2] and [20, Theorem 5.1] we obtain the fol-
lowing result:

Proposition 2.1. Assume FE is a Banach space satisfying the multiplier
condition with respect to p € (1,00) and A is a R-positive operator in E. Let

M, 1
2 2p(1-9)
Then, problem (2.4) has a unique solution u € Y for f; € E, and A € S,

with sufficiently large |A|. Moreover, the following coercive uniform estimate
holds

0<e<l,n=(-1D)"" 18, — (—=1)" 2By #0, O =

u®

2 ) )
>et
i=0

A 2.
L+ lAull (25)

2
<MY (Ufillg, + W' il
k=1

Now, consider the problem (2.2).



Theorem 2.2. Let the Condition 2.1 hold. Then, the operator u —
{(Le + A) u, Lyu, Lyu} is an isomorphism from Y onto X x Ey X Es for |arg A| <
©, 0 < ¢ < 7 and sufficiently large |A|. Moreover, the following uniform coercive
estimate holds:

<j>H A 9.
u X+|| ullx (2.9)

2 j J
> et it
j=0

<C

2
-6
£+ 3 (Wil + A |fk||E)] -
k=1
We have proved the uniqueness of solution for (2.3) in Proposition 2.1. Let us
define () 0.5
7.n | f(x)ifzel0,b
f(x)_{ 0 if 2¢[0,b] [

Now we have to show that the problem (2.3) has a solution v € Y and that
U = U1 + ug, where uq is the restriction of solution of the problem

(Le +Nu=f(z), v € R=(—00,00) (2.10)
and wus is a solution for

(LE + )\) u=0, Lyu= fk — Lyuy. (211)
A solution to (2.10) should be in the following form

uly) = FL WO FF = oo [ @9t (0 (F) (€ de

where L. (), €) = €€ + A + . In a similar way as [18, Theorem 3.2] we ob-
tain that the operator-valued functions W,y (&) = ALZ1 (N, €) and 0.y (&) =

2 i
S e N2 E LI (), €) are uniform Fourier multipliers in L, (R; E). Then,
j=0

we get that (2.10) has a solution u € Y and

2

et

Jj=0

+ ||AUHLp,a(R;E) <C HfHLp(R;E) : (2.12)

) H
Ly (R;E)

Let u; be the restriction of u on (0,b) . Then (2.12) implies u; € Y. By Theorem
A, we get

ui™ () € (B (A); B)
which implies Lyu; € Fy. Thus, by using trace theorems and Proposition 2.1,
problem (2.11) has a unique solution ug € Y and for sufficiently large |A| and

k=1,2,

Ok.p?
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m
Wl
>
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IS,

uf|| + 4wl < CIflx- (2.14)

2
c (IIfIX + 3 (Uil + " ||ka)>
k=1

which together with (2.14) concludes the proof.

Theorem 2.2 implies that problem (2.3) has a unique solution v € Y for
fe X, f; € X; and |arg\| < ¢ with sufficiently large |A|. Moreover, the
uniform coercive estimate (2.9) holds. By virtue of Theorem 2.2 we obtain the
assertion of Theorem 2.1.

Let B. denote the operator generated by (2.1) with f =0 and A =0 i.e.,

D(B.) = W2(0,;E(A),E, L) = {u € W2(0,1;E (A),E), Lyu=0},
Bou = —eu? (z) + Au.
3. DOEs with variable coefficients
Consider the following BVP for DOE with parameter

1
i

(L+Nu=—ea(@)u? (z)+ A\ (@) u (@) + Y _e?A; (2)ul? (z) = f (2),

1=0
(3.1)
mi
Liw=Y" e agu® (0) + fu® (1) =0, k=1,2, z€ (0,1),  (3.2)
=0

where ; = £+ ﬁ, my € {0,1}, ags, By; are complex numbers; A and A; (x) are

linear operators in a Banach space E, Ay (z) = A(x) + A, € is a small positive
and A is a complex parameter.

Let us consider the boundary value problem (3.4) — (3.5) .

Condition 3.1. Assume the following conditions are satisfied:

(1) akmy,s Bem,, 7 0, a(y) is a positive continuous function on [0,b], a (0) =
a(b);

(2) E is the Banach space satisfying the multiplier condition with respect
to p and the weight function

n#0,1<p<oo,e€(0,1);

(3) A (y) is a R positive operator in E uniformly with respect to y € [0, b] and
A(y) A~ (yo) € C([0,6]; B(E)), yo € (0,b), A(0) A" (yo) = A (D) A" (o) 5



(4) for any ¢ > 0 there is a positive C (9) such that
1Ay (W) ull < 6 llullpay,p), _ +C0)|ull
1,

and Ao (y) ull < 0 [|A(y) ull + C(9) [lu]| for v €

,OO

for u € (E(A),E)%
D(A).

Theorem 3.1. Let the Condition 3.1 hold. Then, problem (3.4) — (3.5)
has a unique solution v € Y for f € X and |arg A\| < ¢ with |A| large enough.
Moreover, the following uniform coercive estimate holds

2 o
S

=0

0

L Aul <Ol (36)

By using microlocal analysis, first we will show the uniqueness of solution.
Let G1,Gs, ..., Gy be intervals in R covering (0, b) and {<pj}, j=1,2,...,N be
a corresponding partition of unity, i.e. ¢; are sufficiently smooth functions,

N
suppp; C G and > ®; (y) = 1. Assume u € Y is a solution of the problem
j=1

(3.4) — (3.5). We have u(y) = % uj (y), where u; (y) = u(y) ¢, (y). Then,

Jj=1
from the equalities (3.4) and (3.5) we obtain

(L+Nuj=—ca@)ul? (@) +[A@) +Nu () = f;y), (37
Lyu; =0, k=1,2, j =1,2,...N,

where

fi=fp; —ae [QU(D(,O;D + ug0§-2)] + 5%90;1)14171 — Apu;. (3.8)

By freezing the coefficients in (3.7) we obtain

—a(yo) eul™ (y) + A (yo;)uj (y) = F; (), y € (supp ;) N (0,6),  (3.9)
Lyu; =0, k=1,2, j=1,2,..N,

where
Fj = Fj(u) = f; + [A(yo;) — A @) w; + a (y) — a(yo;)] u?. (3.10)

Since functions u; (x) have compact supports, extending u; (x) in outside of
supp ¢;,we obtain BVPs with constant coefficients

2 (y) + A (yoj) us (y) = F; (v) . y € G, (3.11)

Lyu; =0, k=1,2.

—ea (yo;) ul

By using Theorem 2.1 and embedding theorem B, we get

10



+ 4wl , < C [Ifllg, p+ sl ) - (317)

=0 3P

N
Then, by using (3.17) and the fact that u (y) = > u; (y) we obtain
j=1

u®

2 ) )
St
=0

Consider the operator O in L, (0,b; E) generated by (3.4) — (3.5), i.e

,HlAul, < CIEL+ A ul, (3.18)

D(0.) = W2(0,b; E(A), B, L), Ocu = —cau'® + Au+ 3 A1uM + Agu.

The estimate (3.20) implies that (3.4) — (3.5) has a unique solution and the
operator O, + A has an inverse in its rank space. We need to show that this
rank space coincides with the space Ly, (0,b; ). Whence, we obtain that the
BVP (3.4) — (3.5) for f € X has a unique solution

-1

N
w@) =0+ N f=Ue4N) [ T+) ¥ | f=  (325)

-1

Z‘:Dj J)\g I Kj)\s -t I+Z(bj)\s f

Thus, by (3.25), Theorem 2.1 and Theorem C we get the desired result.
Let G, denote the operator in Ly, (0, 1; E') generated by problem (3.1)—(3.2),
i.e.,

D (G.) = W}? (0,1; E(A),E, L), Geu = —cau'® + Au + e2 Ayu + Agu.

By virtue of Theorem 3.1 and Remarks 2.1, 3.1 we obtain:

Result 3.2. Let all conditions of Theorem 3.1 be satisfied. Then, problem
(3.1) — (3.2) has a unique solution u € W7 (0,1; E(A),E) for f € L, (0,1; E)
and |arg A\| < ¢ with sufficiently large |A|. Moreover, the following uniform
coercive estimate holds

2 . .
OIYE
=0

5. Abstract Cauchy problem for parabolic equation with parameter

(@)

Lp(071;E) + ||AUHLP(011§E) S O Hf”L;;(O,l;E) .

11



Result 3.2 implies that G, is positive in F = L, (0,1; E). In the following
theorem we will prove that the operator . is also R-positive in F.

Theorem 5.0. Let the Condition 2.1 hold. Then, G; is R-positive in F.

Consider the following initial-value problem with parameter

% o) ZE 4 A u—l—Z Yo fa), (5.1)

ot Ox? 8:10’

Lku—za ozk( )(Ot)—i—s ﬁ,m(D@ )(bt)—O k=12,

u(z,0) =0, t € (0,00), z € (0,b). (5.2)

where v = w (x,t) is a solution ay;, B; are complex numbers, ¢ is a positive
parameter, a (z) is a complex-valued function on (0,b), A (z) and A (z) are
linear operators in a Banach space E, d > 0, o; are positive numbers defined in
section 2.

Let p =(p,p1) and A4 = (0,b) x (0, 00).

Theorem 5.1. Assume Condition 3.1 hold for ¢ > 7. Then, for f €
Ly (A4; E) and sufficiently large d > 0 problem (5.1) — (5.2) has a unique
solution belonging to W;j,[f] (A4; E(A), E) and the following coercive estimate
holds

The problem (5.1) can be expressed as the following abstract Cauchy problem

o
0x?

Ou +
ot g

Lp(Ay;E)

1 Aully arim) S CIFL (aym) -
Lp(A4;E)

du

EJr(G +d)u(t)=f(t), u(0)=0. (5.3)
From Theorems 4.1 we get that G. is R-positive in F' = L, (0,b;E). By
[23, §1.14], G¢ is a generator of an analytic semigroup in F. Then, by virtue of
[24, Theorem 4.2] problem (6.2) has a unique solution u € W, ((0,00); D (G.), F)
for f € Ly, ((0,00) ; F') and sufficiently large d > 0. Moreover, the following uni-
form estimate holds

du
dt

+ ||G5u||Lp1((07oo);F) <C ||f||L,,1(R+;F) :
Ly ((0,00);F)

Since Ly, (0,00; F) = L, (A4; E), by Theorem 3.1 we have
(G +d) u||Lp1(R+;F) = ||u||D(GE) :
Hence, the assertion follows from the above estimate.
Remark 5.1. Conditions a (0) = a (b), A (0) A= (yo) = A (b) A~1 (yo) arise

due to nonlocality of the boundary conditions (3.1) and (5.1) . If boundary
conditions are local then conditions mentioned above are not required any more.

12



6. Elliptic DOE on the moving domain

Consider the degenerate problem (3.1)—(3.2) on the moving domain (0, b (s)):

—a(z)u® + A(z)u+ Z A; (2)uD (2) + du = f (z), (6.1)
i=0

my
Lyu =Y apu® (0) + Bu® (b(s)) =0, k = 1,2,
1=0

where ag;, B; are complex numbers, a is a positive function; A
and A; (x) are linear operators in a Banach space E, the end point b (s) depend
on the parameter s, z € (0,b(s)) and b(s) is a positive continues function on
compact domain ¢ C R. Theorem 3.1 implies the following:

Proposition 6.1. Assume the Condition 3.1 hold for b = b(s). Then, prob-
lem (6.1) has a unique solution u € W,SQ) ((0,b);E(A),E) for f € L,(0,b; E)
and sufficiently d > 0. Moreover, the following coercive uniform estimate holds

||

LP(OJ);E) + ||Au||Lp(0,b;E) S C ||fHLp(O,b;E) . (62)

Proof. Under the substitution 7 = 2b=1(s) the problem (6.1) reduced to
the following BVP in fixed domain (0, 1):

1

)
[V
—~
w
S—
I
—
\‘
S—
IS
S
+
R
—~
\]
S—
IS
+
<
iy
»
N~—
Ebz
—~
\]
S~—
gﬁ
—~
\]
S—
Il
=
—
\‘
m
—
“O
=

where

ar (1) = ag, (Tb_l) L A(r)=A ((Tb_l)) A (1) = A (Tb_l) L f(n) =7 ((Tb_l)) .

Then, by virtue of Theorem 3.1 we obtain the required assertion.

7. Nonlinear abstract elliptic problem

Consider the following nonlinear parabolic problem

—q(@)u® (@) + B (I, u,u(1)> w—F (JC,U, u(1)) 7 (71)
my _ -

Liyu = Z apiu? (0) + ﬁkiu(z) (@) =0, k=1,2, (7.2)
=0

where ¢ is a real valued function, ay;, 8;; are complex numbers, my, € {0,1}.
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In this section we will prove the existence and uniqueness of maximal regular
solution for the nonlinear problem (7.1) — (7.2). Let

U= (uoaul)’ X:LP(Oaa;E)a Y:W;? (O7a;E(A)7E)7

Remark 7.1. By using J.Lions-I. Petree result ( see e.g [23, § 1.8.] ) and
Remarks 2.1 we obtain that the embedding D'Y" € Ej; is continuous and there
is a constant Cy such that for w € Y, W = {w;}, w; = D'w (), i =0, 1,

1 1
leloc o = ILIP ooy = o TLIPw @), < Gl
i=0 z€(0,a] j—
For r > 0 denote by O, the closed ball in X of radios r, i.e.

O, = {u € Xo, |lully, <r}.

Consider the linear problem,

Lu=—q(z)w® (2) + (A (2) + D) w (2) = f, (7.3)

Liw=0, k=1,2,

where A (x) is a linear operator in a Banach space E for x € (0,a), L are
boundary conditions defined by (7.1) and d > 0.

Assume FE is a Banach space satisfying the multiplier condition with re-
spect to p € (1,00), ¢(0) = ¢(a) and A (z) is uniformly R-positive in E,
A(0) A7 (yo) = A(a) A= (yo). By virtue Theorem 3.1 and Proposition 6.1,
problem (7.3) has a unique solution w € Y for all f € X and for sufficiently
large d > 0. Moreover, the following coercive estimate holds

lwlly < Collflix

where the constant Cy do not depend on f € X and a € (0 ao].

Condition 7.1. Assume the following satisfied:

(1) @kmy,s Bem,, 7 0, q () is a positive continuous function on [0, a], ¢ (0) =
q(a) ;

(2) E is a Banach space satisfying the multiplier condition with respect to
p € (1,00);

(3) F:]0,a] x Xo — E is a measurable function for each v; € E;, i = 0, 1;
F(z,.,.) is continuous with respect to € [0,a] and f(z) = F(z,0) € X.
Moreover, for each r > 0 there exists the positive functions hy, (z) such that

1 (2, U)ll g < ha (2) U] x, »

14



1 (@, U) = F (2,0)|| p < he (@) [|U = Ul ,
where hy, € L, (0,a) with
||hk||Lp(07a) < C(;lv k = 1727

and U = {U07U1}, U= {'I_LQ,’L_Ll}, u;, U; € F; and U, Ue O,.

(4) there exist ®; € F;, such that the operator B (x,®) for & = {®;} is
R-positive in E uniformly with respect to z € [0,a]; B (z,®) B! (a:o,‘I)) €
C ([0, a); L(E)); B (2,0) = A(x), A(0) A" (yo) = A(a) A~ (o) ;

(5) B (z,U) for = € (0,a) is a uniform positive operator in a Banach space E,
where domain definition D (B (z,U)) does not depend on x,U and B: (0,a) x
Xo — L(E(A), E) is continuous. Moreover, for each r > 0 there is a positive
constant L (r) such that

H [B(z,U) - B (z,U)] UHE < L(r) HU - UHXO |Av|| for z € (0,a), U,U €
O, and v € D (B (z,U)).

Theorem 7.1. Assume the Condition 7.1 holds. Then there is a € (0 ag]
such that problem (7.1)—(7.2) has a unique solution belongs to W2 ((0,a; E (A) , E) .

Proof. We want to solve the problem (7.1) — (7.2) locally by means of
maximal regularity of the linear problem (7.3) via the contraction mapping
theorem. For this purpose, let w be a solution of the linear problem (7.3).
Consider a ball

B,={veY, Ly(v-—w)=0, ||lv-w|y, <r}.
Let w € Y be a solution of the problem (7.3) and
W =w(0),w!(0).
Given v € B, solve the linear problem
—q(z)u® (z) + A(z)u(z) + du = F (z,v) +

[B(z,0) — B(z,v)]v(z), Lyru=0, k=1,2, (7.4)

where
V= (’U,U(l)> ,vEY.

Consider the function
®(z) = F(z,v) + [B(2,0) — B (z,v)]v (2).

Let first, we show that ® € X and [|® < Cy'r for v € Y, ||[v]ly < 7. Indeed,
by Remark 7.1, v € C ([0, a] ; Ep), one has

B($7O) 7B(:C7U) € C([Oaa] 7L(E(A)aE)) :
Hence, by assumption (3), ® is measurable and

1@l x < L(r) [vllx, [Av]lx +h @) [lv]x, -
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Then, by using the Remark 7.1 we obtain
@]l < 7L (r) [vllx +rllhally, <r2L(r) +rllhally, <7

Define a map @ on B, by Qu = u, where u is a solution of the problem (7.4) . We
want to show that @ (B,) C B, and that @ is a contraction operator provided
a is sufficiently small, and r is chosen properly. For this aim, by using maximal
regularity properties of the problem (7.3) we have

1Qu —wlly = flu—wly <Co{llF (z,v) = F(z,0)]x +
1B (2,0) = B (z, V)] vl x}-
By assumption (3) for v € O, we get
1 (z,0) = F (2,0)[[x <llhllL, 0.0 lvx, -

By assumptions (4), (5) and Remark 7.2, for v € O, we have

I[B(z,0)v =B (z,V)]v|x < sup {”[B(xvo)_B(an)]U”L(XO,X)

z€[0,a]
B (W) = B @, V)] vl ) I0lly | <
L) [IWlx, 140l + llo = wlloe ] 10 = wlly + wlly] <

rL (r) {[IWllx, lvlly + Crllv = wlly ] +L(7) wlly } -

By chousing r and a € (0 ao] so that |w||y, < d, by assumptions (3)-(5) we
obtain from the above inequalities

1Qu = wlly <7 +r2L () Wiy, + 7L () Cy +rL(r) ully <.
That is the operator @Q maps B, into itself, i.e.
Q(By) C B,.
Let u3 = Q (v1) and ug = @ (v2) . Then uy — usg is a solution of the problem
—q @) ul? (2) + A@)u(x) +du = F (z,0,) —
F (2,01) + [B (2,02) — B (2,0)] [o1 (&) — v (2)] -
[B(z,v1) — B(z,v2)]vi (z), Lyu=0, k=1,2.

In a similar way, by using the assumption (5) we obtain
lur — uzlly < Co{rL(r)llvr —vallx + L (r) o1 = vlly (vl x

+ l1hal, s = vally § < Co |2rL (r) +IIhslly, | s = vally -

Thus Q is a strict contraction. Eventually, the contraction mapping principle
implies a unique fixed point of @) in B, which is the unique strong solution

ueY =WH (0,0, E(A),E).
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8. Degenerate abstract elliptic and parabolic equations

The main objective of the present section is to discuss maximal regularity
properties of the BVP degenerate elliptic DOE

—ea(z)ul? (2)+A (2)u (@) +e? Ay (2) ul” () + Ag (2) u (@) +Au = f (), (8.1)

Lyeu= Ze‘” {akium (0) + B, ul” (1)} = fr, k=1,2, (8.2)
i=0

where .
, . d\"
DUy, = ol (z) = <x7d> u(z), v>0, z€(0,1),
x

¢ is a small positive parameter, A is a complex parameter, a(x) is a complex
valued function and A, Ay, A are linear operators in a Banach space E. Since
the above equation depends on parameter €, then the solution u also depend of
g, e, u(z) = u(z,e). Note that, the principal part of the above problem is
nonselfadjoint and also have the variable coefficients. The regularity properties
for the problem of type (0.1) was studied in [16] for ¢ = 1. Here, several
conditions for the separability and sharp resolvent estimates uniformly with
respect to parameter € are given. Especially, it is shown that the corresponding
differential operator is R-positive and also generates an analytic semigroup.
In first section, we introduce some notations, definitions and background. In
section 2, we consider nonlocal nonhomogenous BVP for the degenerate DOE
with constant coefficients. We prove that this problem is isomorphism from
W,£2]7 (0,1;E(A),FE) onto L, (0,1; E) x E; x Ey, where Ej are interpolation
spaces between E (A) and E ( see section 1 for definition of these spaces).
In section 3, we show that the problem (0.1) is L, (0,1; E) separabile, i.e.,
we prove that problem (0.1) for f € L, (0,1;E) has a unique solution u €

W,?]V (0,1; E(A), FE) and the following uniform coercive estimate holds

2 ) )
Yot
=0

for larg A| < ¢, ¢ < 7 with sufficiently large |A|, where the constant C' depend
only on p and A.

Then we established the uniform well-posedeness of initial and BVP for the
degenerate abstract parabolic equation

Wl

L,(0,1,E) + HAUI”L;D(OJ;E) <C ||f||Lp(0,1;E)

ou oy
E —|—5a(£c) Ox2 +A(x)u(:c,t) - f(x’t)v T e (O,b)v te (0,00),
Zeai [Olkiu[i] (0,) + ﬁkium (1,75)} =fr, k=12, (8.3)
=0
u (z.0) =0,
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where u = u (z,t) is a solution, Dy = % = [.’IJ’Y%]L u(x,t), agi, By; are
complex numbers, ¢ is a positive parameter, a (z) is a complex-valued function

n (0,b), A(x) and Ay (z) are linear operators in a Banach space E, d > 0,
O; =0; = % + m

Let p =(p,p1) and A4 = (0,b) x (0, 00).

In this secton, we established the uniform well-posedeness of initial and BVP
for the degenerate abstract parabolic equation:

Theorem 8.1. Assume Condition 3.1 hold for ¢ > 7. Then, for f €
Ly (A4; E) and sufficiently large d > 0 problem (5.1) — (5.2) has a unique
solution belonging to W;jg] (Ay; E(A), F) and the following coercive estimate
holds

du
at

9. The mixed value problem for system of parabolic equations

oy
Ox?

1 Aullp ayim) S CU L aym) -

Lp(A4sE) Lp(A4sE)

Consider the initial and BVP for the system of parabolic equations

Oum, B[Q]Um
o ea ( o2 dej x)uj (x,t)

; Ol
+sz55bimj (.%') 8;7 = fm (wat)7 (9.1)

i=0 j=1

%5‘”04;“' (Dg]um) (0,t) + €% 5y, (D:[Ei]um) (b,t) =0, k=1,2,

i=0
U (£,0) =0, t € (0,00), z € (0,b),

m=1,2,..,N, NeN,

where u = (u1,us, ...,un), mi; € {0,1}, aws, By; are complex numbers, a is a
complex valued functions, o; are positive numbers defined in section 2 and

SjZS(l—Hj), s >0, Bj :l;j, j=12,
Let A be the operator in [, (IV) defined by
D (A) = l(j (N)a A= [dmj (33)} 5 dmj (Jf) = 9m ($) 28j7 myj = 1727 ---7N7

where

Q=

N
lq (N): u:{uj}a j:172a'~'N7 ||u||lq(N) = Z|uj‘q < 0o 1)
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N q
ly (A) = u e ly(N), llully,ay = [ Aull, ) = [ D [270]" | <00y,
j=1

x€(0,b),1<g<oo, N=1,2,...,00.
Let
Ay =(0,b) x (0,00), B =L(Ly (G;lq (N)))-
By applying the Theorem 5.1 we obtain the following result.
Theorem 9.1. Assume q, d,,,; € C([0,b]), a(z) > 0, d;; () > 0 and eigen-
values of the matrix [d,,; (z)] are positive for all x € (0,b), m,j = 1,2,...,N.
Moreover, bim; € Lo (0,b) and there exist v € (0,1) and p € (07 %) such that

N N L
supZ bom;j () d;n(}_'/) (x) < M, suprlmj (z) d;w(lz “) () < M for z € (0,b).
j=1

Then for f (¢, 2) = {fm (t,2)}]° € L, (At;ly), p,q € (1,00) and for sufficiently
large d > 0, problem (9.1) has a unique solution u = {u,, (t,2)};° that belongs

to the space W;j[f] (A4,l; (D), l,) and the following coercive uniform estimate
holds

du
ot

+1Aull, apq) S C I L a0, -

+ e HD&z]u‘
) LP(A+§lq)

Lp(Ayslg
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