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ABSTRACT

The nonlocal boundary value problems for degenerate di¤erential-operator
equations with variable coe¢ cients are studied. The Lp separability properties
of elliptic problems and well-posedeness of parabolic problems in mixed Lp
spaces are derived. Then by using the regularity properties of linear problems,
the existence and uniqueness of solution of nonlinear elliptic problem is obtained.
Note that, applications of these problems can be models of di¤erent physics
process.
Key Words: Abstract harmonic analysis, di¤erential-operator equations,

degenerate PDE, semigroups of operators, Sobolev-Lions spaces, separable dif-
ferential operators

0. Introduction

In this work, the boundary value problems (BVPs) for parameter dependent
degenerate di¤erential-operator equations (DOEs) are considered. Namely, the
equations contain a small parameter. These problems have numerous appli-
cations in PDE, pseudo DE, mechanics and environmental engineering. The
BVP for DOEs have been studied extensively by many researchers (see e.g.
[2-5, 7-21, 24-26] and the references therein). A comprehensive introduction to
the DOEs and historical references may be found in [12] and [25] : The maximal
regularity properties for DOEs have been studied e.g. in [2, 6-7, 15-21, 24]. De-
generate DOEs in abstract function spaces are investigated e.g. in [3, 11, 16, 19, 20, 22].
The maximal regularity properties of BVP for elliptic equations are studied e.g.
in [1, 8, 23]. The main objective of the present paper is to discuss maximal
regularity properties of the following degenerate elliptic DOE

�"a (x)u(2) (x)+A (x)u (x)+" 12A1 (x)u(1) (x)+A0 (x)u (x)+�u = f (x) ; (0.1)

where " is a small positive parameter, � is a complex parameter, a (x) is a
complex valued function and A, A0; A1 are linear operators in a Banach space
E. Since the above equation depends on parameter ", then the solution u also
depend of ", i.e., u (x) = u (x; "). Note that, the principal part of the above
problem is nonselfadjoint and also have the variable coe¢ cients. The regularity

1



properties for the problem of type (0:1) was studied in [16] for " = 1. Here, sev-
eral conditions for the separability and sharp resolvent estimates uniformly with
respect to parameter " are given. Especially, it is shown that the correspond-
ing di¤erential operator is R-positive and also generates an analytic semigroup.
In �rst section, we introduce some notations, de�nitions and background. In
section 2, we consider nonlocal nonhomogenous BVP for the degenerate DOE
with constant coe¢ cients. We prove that this problem is isomorphism from
W 2
p (0; 1;E (A) ; E) onto Lp (0; 1;E)�E1�E2; where Ek are interpolation spaces

between E (A) and E ( see section 1 for de�nition of these spaces). In section
3, we show that the problem (0:1) is Lp (0; 1;E) separabile, i.e., we prove that
problem (0:1) for f 2 Lp (0; 1;E) has a unique solution u 2 W 2

p (0; 1;E (A) ; E)
and the following uniform coercive estimate holds

2X
i=0

j�j1�
i
2 "

i
2




u(i)



Lp(0;1;E)

+ kAukLp(0;1;E) � C kfkLp(0;1;E)

for jarg �j � '; ' < � with su¢ ciently large j�j, where the constant C depend
only on p and A.
The section 4 devoted to R-positivity of the corresponding di¤erential op-

erator. In section 5, the uniform well-posedeness of initial and BVP for the
degenerate abstract parabolic equation

@u

@t
+ "a (x)

@2u

@x2
+A (x)u (x; t) = f (x; t)

is established in E-valued mixed Lp space. In section 6, nonlocal BVP
for degenerate abstract elliptic equation considered in the moving domain. By
using the maximal regularity properties of linear problem (0:1) ; in section 7 we
derive the existence and uniqueness of nonlocal BVP for the following nonlinear
degenerate abstract equation

�q (x)u(2) (x) +B
�
x; u; u(1)

�
u (x) = F

�
x; u; u(1)

�
;

where q is a real valued function, B and F are nonlinear operator in a Banach
space E: In application, the separability properties of the system of degenerate
parabolic equations is obtained.
Modern analysis methods, particularly abstract harmonic analysis, the op-

erator theory, interpolation of Banach Spaces, theory of semigroups of linear
operators, microlocal analysis, embedding and trace theorems in vector-valued
Sobolev-Lions spaces are the main tools implemented to carry out the analysis.

1. Notations, de�nitions and background

Let Lp (
;E) denote the space of strongly measurable E-valued functions
de�ned on 
 with the norm

kfkLp = kfkLp(
;E) =
�Z

kf (x)kpE dx
� 1

p

; 1 � p <1:
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Let p =(p1; p2; :::; pn). Lp (G;E), G =
nY
k=1

(0; bk) will denote the space of

all measurable E-valued p-summable functions with mixed norm

kfkLp(G;E) =

0BBB@
0BB@

bnZ
0

0B@::: b2Z
0

0@ b1Z
0

kf (x)kp1E dx1

1A
p2
p1

dx2

1CA
p3
p2

:::

1CCA
pn

pn�1

dxn

1CCCA
1
pn

<1:

The Banach space E is called an UMD-space if the Hilbert operator (Hf) (x) =
lim
"!0

R
jx�yj>"

f(y)
x�ydy is bounded in Lp (R;E) ; p 2 (1;1) ( see. e.g. [6] ). UMD

spaces include e.g. Lp, lp spaces and Lorentz spaces Lpq; p, q 2 (1;1).
Let C be the set of the complex numbers and

S' = f�; � 2 C, jarg �j � 'g [ f0g ; 0 � ' < �:

A linear operator A is said to be '-positive in a Banach space E with bound

M > 0 if D (A) is dense on E and



(A+ �I)�1




B(E)
� M (1 + j�j)�1 for any

� 2 S'; 0 � ' < �; where I is the identity operator in E and B (E) denotes
the space of bounded linear operators in E: Sometimes A + �I will be written
as A + � and denoted by A�: It is known [23; x1:15:1] that a positive operator
A has well-de�ned fractional powers A�: Let E

�
A�
�
denote the space D

�
A�
�

with norm

kukE(A�) =
�
kukp +



A�u

p� 1
p

; 1 � p <1; 0 < � <1:

Let E1 and E2 be two Banach spaces. By (E1; E2)�;p, 0 < � < 1; 1 � p � 1
we will denote the interpolation spaces obtained from fE1; E2g by theK-method
[23, §1.3.2].
Weight function 
 satis�es Ap condition (i.e. 
 2 Ap ) if there is a constant

C such that0@ 1

jQj

Z
Q


 (x) dx

1A0@ 1

jQj

Z
Q


�
1

p�1 (x) dx

1Ap�1

� C; p 2 (1;1)

for all cubes Q � Rn:
Let S (Rn;E) denote the Schwartz class, i.e. the space of all E-valued rapidly

decreasing smooth functions on Rn: Let F denote the Fourier transformation.
A function 	 2 C (Rn;B (E)) is called Fourier multiplier in Lp (Rn;E) if the
map

u! �u = F�1	(�)Fu; u 2 S (Rn;E)
is well de�ned and extends to a bounded linear operator in Lp (Rn;E) : The set
of all multipliers in Lp (Rn;E) denotes by Mp (E) :
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Let Wh = f	h 2Mp (E) ; h 2 Cg be a collection of multipliers in Mp (E) :
We sayWh is a uniform collection of multipliers if there exists a positive constant
M independent of h such that

F�1	hFu

Lp(Rn;E)

�M kukLp(Rn;E)

for all h 2 Q and u 2 S (Rn;E) :
Let N denote the set of natural numbers and frjg is a sequence of indepen-

dent symmetric f�1; 1g-valued random variables on [0; 1]. A setK � B (E1; E2)
is called R-bounded ( see e.g. [8] ) if there is a constant C such that for all
T1; T2; :::; Tm 2 K and u1;u2; :::; um 2 E1; m 2 N

1Z
0








mX
j=1

rj (y)Tjuj








E2

dy � C
1Z
0








mX
j=1

rj (y)uj








E1

dy:

The smallest C > 0 for which the above estimate holds is called a R-bound of
the collection K and denoted by R (K) :
A set Wh � L (E1; E2) is called uniform R-bounded in h 2 C if there is a

constant C independent of h such that for all T1 (h) ; T2 (h) ; :::; Tm (h) 2 Wh

and u1;u2; :::; um 2 E1; m 2 N

1Z
0








mX
j=1

rj (y)Tj (h)uj








E2

dy � C
1Z
0








mX
j=1

rj (y)uj








E1

dy:

De�nition 1:1: A Banach space E is said to be the space satisfying multi-
plier condition, if for any 	 2 C(1) (R;B (E)) the R-boundedness of the setn

�kDk	(�) : � 2 Rn f0g ; k = 0; 1
o

implies 	 2 Mp;
 (E) :
An operator A (t) is said to be uniformly '-positive in E if D (A (t)) is

independent of t and dense in E and



(A (t) + �)�1


 � M

1+j�j for � 2 S (') ;
0 � ' < �, where M is independent of t:
De�nition 1:2:The '-positive operator A (x) ; x 2 G is said to be uniformly

R-positive in a Banach space E if there exists ' 2 [0 ; �) such that the setn
A (x) (A (x) + �I)

�1
: � 2 S'

o
is uniformly R-bounded, that is

sup
x2G

R
�nh

A (x) (A (x) + �I)
�1
i
: � 2 S'

o�
�M:

Let E0 and E be two Banach spaces and E0 is continuously and densely
embeds into E. Let us consider the space Wm

p (a; b;E0; E) ; consisting of all
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functions u 2 Lp (a; b;E0) that have generalized derivatives u(m) 2 Lp (a; b;E)
with the norm

kukWm
p
= kukWm

p (a;b;E0;E)
= kukLp(a;b;E0) +




u(m)



Lp(a;b;E)

<1:

Let " > 0 be a parameter. We de�ne the following parameterized norm in
Wm
p (a; b;E0; E)

kukWm
p;"
= kukWm

p;"(a;b;E0;E)
= kukLp(a;b;E0) +




"u(m)



Lp(a;b;E)

<1:

BMO (E) is the space of all E-valued local integrable functions with the
norm

sup
B

I
B

kf (x)� fBkE dx = kfk�;E <1;

where B ranges in the class of the balls in Rn and fB is the average 1
jBj

Z
B

f (x) dx:

For f 2 BMO (E) and r > 0 we set

sup
��r

I
B

kf (x)� fBkE dx = � (r) ;

where B ranges in the class of the balls with radius �:
We will say that a function f 2 BMO (E) is in the space VMO (E) if

lim
r!+0

� (r) = 0: We will call � (r) the VMO modulus of f:

If E = C, then BMO (E) and VMO (E) coincide with John-Nirenberg class
BMO and Sarason class VMO respectively.

From [23, §1.8.2] we obtain the following:
Theorem A: Assume m and j are integers 0 � j � m � 1; �j = pj+1

pm ,
p 2 (1;1) ; " 2 (0; 1) is a parameter; x0 2 [0; b]. Then, the linear transforma-
tion u ! u(j) (x0) is bounded from Wm

p (0; b;E0; E) onto (E0; E)�j ;p and the
following inequality holds

"�j



u(j) (x0)




(E0;E)�j;p

� C
�


tu(m)




Lp(0;b;E)
+ kukLp (0;b;E0)

�
:

As a corollary of [20, Theorems 2.3, 2.4] we have the following result:
Theorem B. Assume the following conditions are satis�ed:
(1) b = b (s) is a continuous function on [c; d];
(2) E is a Banach space satisfying the multiplier condition with respect to

p and 
;
(3) A is a R-positive operator in E, 0 � � � 1� j

m , p 2 (1;1) ;
(4) " 2 (0; 1) and h 2 (0; h0), are some parameters, where h0 <1;
(5) there exists a bounded linear extension operator fromWm

p (0; b;E (A) ; E)
to Wm

p (R;E (A) ; E).
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Then, the embedding

DjWm
p (0; b;E (A) ; E) � Lp

�
0; b;E

�
A1�

j
m��

��
is continuous and the following uniform estimate holds


" j

mu(j)




Lp

�
0;b;E

�
A1� j

m
��
�� � h� kukWm

p;"(0;b;E(A);E)
+ h�(1��) kukLp(0;b;E)

for all u 2Wm
p (0; b;E (A) ; E).

Consider the following parameter dependent degenerate DOE on R = (�1;1)

(L+ �)u = �"u[2] (x) + (A+ �)u (x) = f (x) ; (1.1)

where A is a linear operator in a Banach space E:
Let

X = Lp ((�1;1) ;E) ; Y =W [2]
p ((�1;1) ;E (A) ; E) :

From [17, Theorem 4.1 ] we obtain:
Theorem C. Assume:
(1) " 2 (0; 1) is a small parameter;
(2) E is the Banach space satisfying the multiplier condition with respect

to p;
(3) A is a R positive operator in E:
Then, problem (1:1) has a unique solution u 2 Y for f 2 X and jarg �j � '

with su¢ ciently large j�j : Moreover, the following uniform coercive estimate
holds

2X
i=0

j�j1�
i
2 "

i
2




u[i]



X
+ kAukX � C kfkX :

2. Degenerate DOEs with constant coe¢ cients

Consider the nonlocal BVP for degenerate DOE

(L" + �)u = �"u(2) (x) + (A+ �)u (x) = f (x) ; x 2 (0; 1) ;

Lk"u =

mkX
i=0

"�i
h
�kiu

(i) (0) + �kiu
(i) (1)

i
= fk, k = 1; 2; (2.1)

where mk 2 f0; 1g ;�i = i
2 +

1
2p(1�
) ; �ki; �ki are complex numbers, A is a pos-

sible unbounded operator in a Banach space E and fj 2 Xj = (E (A) ; E)�j ;p ;
�j =

mj

2 + 1
2p ; j = 1; 2: Let �k = �kmk

; �k = �kmk
: For the sake of simplicity

L"; L1"; L2" will be denoted by L;L1; L2; respectively. Nonlocal BVP for PDE
studied e.g. in [18� 22] :
Remark 2.0. Generally the operator A is non selfadjoint (only in particu-

larly case it can be selfedjoint), so in general case
�
(E (A) ; E)�;p

�
6= E

�
A1��

�
:
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Really, if we chooce E = H; where H is a Hilbert space and A to be selfadjoint
than we can take complex interpolation [H (A) ;H]� = H

�
A1��

�
:

Any function u 2 W 2
p (0; 1;E (A) ; E) satisfying the equation (2:1) a.e. on

(0; 1) will be called the solution of (2.1):
Condition 2.1. Assume the following conditions are satis�ed:
(1) " 2 (0; 1) is a small parameter and � = (�1)m1 �1�2� (�1)

m2 �2�1 6= 0;
(2) E is a Banach space satisfying the multiplier condition with respect to p;
(3) A is a R positive operator in E:
The main result of this section is the following
Theorem 2.1. Let the Condition 2.1hold. Then, problem (2:1) has a

unique solution u 2 W 2
p (0; 1;E (A) ; E) for f 2 Lp (0; 1;E), fj 2 Xj and for

su¢ ciently large j�j with jarg �j � ': Moreover, the following uniform coercive
estimate holds

2X
i=0

j�j1�
i
2 "

i
2




u(i)



Lp(0;1;E)

+ kAukLp(0;1;E) � C

0@kfkLp(0;1;E) + 2X
j=1

kfjkXj

1A :
(2.3)

First, we consider the homogenous problem

(L+ �)u = 0; Lku = fk; k = 1; 2; (2.4)

where L and Lk are de�ned as in (2:2) :
Let

X = Lp ((0; b) ;E) ; Y =W
2
p (0; b;E (A) ; E) :

In a similar way as [18, Theorem 3.2] and [20, Theorem 5.1] we obtain the fol-
lowing result:
Proposition 2.1. Assume E is a Banach space satisfying the multiplier

condition with respect to p 2 (1;1) and A is a R-positive operator in E. Let

0 < " � 1; � = (�1)m1 �1�2 � (�1)
m2 �2�1 6= 0, �k =

mk

2
+

1

2p (1� 
) :

Then, problem (2:4) has a unique solution u 2 Y for fk 2 Ek and � 2 S'
with su¢ ciently large j�j : Moreover, the following coercive uniform estimate
holds

2X
i=0

"
i
2 j�j1�

i
2




u(i)



X
+ kAukX (2.5)

�M
2X

k=1

�
kfkkEk + j�j

1��k kfkkE
�
:

Now, consider the problem (2:2) :
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Theorem 2.2. Let the Condition 2.1 hold. Then, the operator u !
f(L" + �)u; L1u; L2ug is an isomorphism from Y onto X�E1�E2 for jarg �j �
', 0 � ' < � and su¢ ciently large j�j. Moreover, the following uniform coercive
estimate holds:

2X
j=0

"
j
2 j�j1�

j
2




u(j)



X
+ kAukX (2.9)

� C
"
kfkX +

2X
k=1

�
kfkkEk + j�j

1��k kfkkE
�#
:

We have proved the uniqueness of solution for (2:3) in Proposition 2.1. Let us
de�ne

�f (x) =

�
f (x) if x 2 [0; b]
0 if x =2 [0; b]

�
:

Now we have to show that the problem (2:3) has a solution u 2 Y and that
u = u1 + u2, where u1 is the restriction of solution of the problem

(L" + �)u = �f (x) ; x 2 R = (�1;1) (2.10)

and u2 is a solution for

(L" + �)u = 0, Lku = fk � Lku1: (2.11)

A solution to (2:10) should be in the following form

u (y) = F�1L�1" (�; �)F �f =
1

2�

1Z
1

ei�yL�1" (�; �)
�
F �f
�
(�) d�;

where L" (�; �) = "�2 + A + �: In a similar way as [18, Theorem 3.2] we ob-
tain that the operator-valued functions 	"� (�) = AL�1" (�; �) and �"� (�) =
2P
j=0

"
j
2 j�j1�

j
2 �jL�1" (�; �) are uniform Fourier multipliers in Lp (R;E). Then,

we get that (2:10) has a solution u 2 Y and

2X
j=0

"
j
2 j�j1�

j
2




u(j)



Lp(R;E)

+ kAukLp;~
(R;E) � C


 �f



Lp(R;E)
: (2.12)

Let u1 be the restriction of u on (0; b) : Then (2:12) implies u1 2 Y . By Theorem
A, we get

u
(mk)
1 (:) 2 (E (A) ;E)�k;p ; k = 1; 2;

which implies Lku1 2 Ek: Thus, by using trace theorems and Proposition 2.1,
problem (2:11) has a unique solution u2 2 Y and for su¢ ciently large j�j and
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2X
j=0

"
j
2 j�j1�

j
2




u(j)1 



X
+ kAu1kX � C kfkX : (2.14)

From (2:12) and (2:14) we get

2X
j=0

"
j
2 j�j1�

j
2




u(j)2 



X
+ kAu2kX �

C

 
kfkX +

2X
k=1

�
kfkkEk + j�j

1��k kfkkE
�!

which together with (2:14) concludes the proof:
Theorem 2.2 implies that problem (2:3) has a unique solution u 2 Y for

f 2 X, fj 2 Xj and jarg �j � ' with su¢ ciently large j�j : Moreover, the
uniform coercive estimate (2:9) holds. By virtue of Theorem 2.2 we obtain the
assertion of Theorem 2.1.
Let B" denote the operator generated by (2:1) with fk = 0 and � = 0 i.e.,

D (B") =W
2
p (0; 1;E (A) ; E; Lk) =

�
u 2W 2

p (0; 1;E (A) ; E) ; Lku = 0
	
;

B"u = �"u(2) (x) +Au:

3. DOEs with variable coe¢ cients

Consider the following BVP for DOE with parameter

(L+ �)u = �"a (x)u(2) (x) +A� (x)u (x) +
1X
i=0

"
i
2Ai (x)u

(i) (x) = f (x) ;

(3.1)

Lku =

mkX
i=0

"�i�kiu
(i) (0) + �kiu

(i) (1) = 0, k = 1; 2; x 2 (0; 1) ; (3.2)

where �i = i
2+

1
2p ; mk 2 f0; 1g, �ki, �ki are complex numbers; A and Ai (x) are

linear operators in a Banach space E; A� (x) = A (x) + �; " is a small positive
and � is a complex parameter:
Let us consider the boundary value problem (3:4)� (3:5) :
Condition 3.1. Assume the following conditions are satis�ed:
(1) �kmk

; �kmk
6= 0, a (y) is a positive continuous function on [0; b], a (0) =

a (b) ;
(2) E is the Banach space satisfying the multiplier condition with respect

to p and the weight function
� 6= 0; 1 < p <1; " 2 (0; 1) ;
(3) A (y) is a R positive operator in E uniformly with respect to y 2 [0; b] and

A (y)A�1 (y0) 2 C ([0; b] ;B (E)) ; y0 2 (0; b), A (0)A�1 (y0) = A (b)A�1 (y0) ;
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(4) for any � > 0 there is a positive C (�) such that

kA1 (y)uk � � kuk(E(A);E) 1
2
;1
+ C (�) kuk

for u 2 (E (A) ; E) 1
2 ;1

and kA0 (y)uk � � kA (y)uk + C (�) kuk for u 2
D (A) :
Theorem 3.1. Let the Condition 3.1 hold. Then, problem (3:4) � (3:5)

has a unique solution u 2 Y for f 2 X and jarg �j � ' with j�j large enough.
Moreover, the following uniform coercive estimate holds

2X
i=0

j�j1�
i
2 "

i
2




u(i)



X
+ kAukX � C kfkX : (3.6)

By using microlocal analysis, �rst we will show the uniqueness of solution.
Let G1;G2; :::; GN be intervals in R covering (0; b) and

�
'j
	
, j = 1; 2; :::; N be

a corresponding partition of unity, i.e. 'j are su¢ ciently smooth functions,

supp'j � Gj and
NP
j=1

'j (y) = 1: Assume u 2 Y is a solution of the problem

(3:4) � (3:5) : We have u (y) =
NP
j=1

uj (y) ; where uj (y) = u (y)'j (y) : Then,

from the equalities (3:4) and (3:5) we obtain

( L+ �)uj = �"a (y)u(2)j (y) + [A (y) + �]uj (y) = fj (y) ; (3.7)

Lkuj = 0; k = 1; 2; j = 1; 2; :::N;

where

fj = f'j � a"
h
2u(1)'

(1)
j + u'

(2)
j

i
+ "

1
2'

(1)
j A1u�A0uj : (3.8)

By freezing the coe¢ cients in (3:7) we obtain

�a (y0j) "u(2)j (y) +A� (y0j)uj (y) = Fj (y) ; y 2
�
supp 'j

�
\ (0; b) ; (3.9)

Lkuj = 0; k = 1; 2; j = 1; 2; :::N;

where

Fj = Fj (u) = fj + [A (y0j)�A (y)]uj + [a (y)� a (y0j)]u(2)j : (3.10)

Since functions uj (x) have compact supports, extending uj (x) in outside of
supp 'j ;we obtain BVPs with constant coe¢ cients

�"a (y0j)u(2)j (y) +A� (y0j)uj (y) = Fj (y) ; y 2 Gj ; (3.11)

Lkuj = 0; k = 1; 2:

By using Theorem 2.1 and embedding theorem B, we get

10



2X
i=0

j�j1�
i
2 "

i
2




u(i)j 



Gj ;p

+ kAujkGj ;p
� C

h
kfkGj ;p

+ kujkGj ;p

i
: (3.17)

Then, by using (3:17) and the fact that u (y) =
NP
j=1

uj (y) we obtain

2X
i=0

j�j1�
i
2 "

i
2




u(i)



p
+ kAukp � C k(L+ �)ukp (3.18)

Consider the operator O in Lp (0; b;E) generated by (3:4)� (3:5), i.e.,

D (O") =W
2
p (0; b;E (A) ; E; Lk) ; O"u = �"au(2) +Au+ "

1
2A1u

(1) +A0u:

The estimate (3:20) implies that (3:4) � (3:5) has a unique solution and the
operator O" + � has an inverse in its rank space. We need to show that this
rank space coincides with the space Lp (0; b;E) : Whence, we obtain that the
BVP (3:4)� (3:5) for f 2 X has a unique solution

u (y) = (O" + �)
�1
f = (U" + �)

0@I + NX
j=1

�j�"

1A�1

f = (3.25)

NX
j=1

'j (y)O
�1
j�" [I �Kj�"]

�1

0@I + NX
j=1

�j�"

1A�1

f:

Thus, by (3:25) ; Theorem 2.1 and Theorem C we get the desired result.
LetG" denote the operator in Lp (0; 1;E) generated by problem (3:1)�(3:2),

i.e.,

D (G") =W
2
p (0; 1;E (A) ; E; Lk) ; G"u = �"au(2) +Au+ "

1
2A1u

(1) +A0u:

By virtue of Theorem 3.1 and Remarks 2.1, 3.1 we obtain:
Result 3.2. Let all conditions of Theorem 3.1 be satis�ed. Then, problem

(3:1) � (3:2) has a unique solution u 2 W 2
p (0; 1;E (A) ; E) for f 2 Lp (0; 1;E)

and jarg �j � ' with su¢ ciently large j�j : Moreover, the following uniform
coercive estimate holds

2X
i=0

j�j1�
i
2 "

i
2




u(i)



Lp(0;1;E)

+ kAukLp(0;1;E) � C kfkLp(0;1;E) :

5. Abstract Cauchy problem for parabolic equation with parameter

11



Result 3.2 implies that G" is positive in F = Lp (0; 1;E) : In the following
theorem we will prove that the operator G" is also R-positive in F:
Theorem 5.0. Let the Condition 2.1 hold. Then, G" is R-positive in F:
Consider the following initial-value problem with parameter

@u

@t
� "a (x) @

2u

@x2
+A (x)u+

1X
i=0

Ai (x)
@iu

@xi
= f (x; t) , (5.1)

Lku =

mkX
i=0

"�i�ki

�
D(i)
x u
�
(0; t) + "�i�ki

�
D(i)
x u
�
(b; t) = 0; k = 1; 2;

u (x; 0) = 0; t 2 (0;1) , x 2 (0; b) : (5.2)

where u = u (x; t) is a solution �ki; �ki are complex numbers, " is a positive
parameter, a (x) is a complex-valued function on (0; b) ; A (x) and Ak (x) are
linear operators in a Banach space E, d > 0; �i are positive numbers de�ned in
section 2.
Let p =(p; p1) and �+ = (0; b)� (0;1).
Theorem 5.1. Assume Condition 3.1 hold for ' > �

2 . Then, for f 2
Lp (�+;E) and su¢ ciently large d > 0 problem (5:1) � (5:2) has a unique
solution belonging to W 1;[2]

p;� (�+;E (A) ; E) and the following coercive estimate
holds



@u@t






Lp(�+;E)

+ "





@2u@x2





Lp(�+;E)

+ kAukLp(�+;E)
� C kfkLp(�+;E)

:

The problem (5:1) can be expressed as the following abstract Cauchy problem

du

dt
+ (G" + d)u (t) = f (t) ; u (0) = 0: (5.3)

From Theorems 4.1 we get that G" is R-positive in F = Lp (0; b;E) : By
[23, §1.14] ; G" is a generator of an analytic semigroup in F: Then, by virtue of
[24, Theorem 4.2] problem (6:2) has a unique solution u 2W 1

p1 ((0;1) ;D (G") ; F )
for f 2 Lp1 ((0;1) ;F ) and su¢ ciently large d > 0: Moreover, the following uni-
form estimate holds



dudt






Lp1 ((0;1);F )

+ kG"ukLp1 ((0;1);F ) � C kfkLp1 (R+;F )
:

Since Lp1 (0;1;F ) = Lp (�+;E) ; by Theorem 3.1 we have

k(G" + d)ukLp1 (R+;F )
= kukD(G")

:

Hence, the assertion follows from the above estimate.
Remark 5.1. Conditions a (0) = a (b) ; A (0)A�1 (y0) = A (b)A�1 (y0) arise

due to nonlocality of the boundary conditions (3:1) and (5:1) . If boundary
conditions are local then conditions mentioned above are not required any more.
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6. Elliptic DOE on the moving domain

Consider the degenerate problem (3:1)�(3:2) on the moving domain (0; b (s)):

�a (x)u(2) +A (x)u+
1X
i=0

Ai (x)u
(i) (x) + du = f (x) , (6.1)

Lku =

mkX
i=0

�kiu
(i) (0) + �kiu

(i) (b (s)) = 0; k = 1; 2;

where �ki, �ki are complex numbers, a is a positive function; A
and Ai (x) are linear operators in a Banach space E; the end point b (s) depend
on the parameter s; x 2 (0; b(s)) and b(s) is a positive continues function on
compact domain � � R: Theorem 3.1 implies the following:
Proposition 6.1. Assume the Condition 3.1 hold for b = b (s). Then, prob-

lem (6:1) has a unique solution u 2 W (2)
p ((0; b) ;E (A) ; E) for f 2 Lp (0; b;E)

and su¢ ciently d > 0. Moreover, the following coercive uniform estimate holds


u(2)



Lp(0;b;E)

+ kAukLp(0;b;E) � C kfkLp(0;b;E) : (6.2)

Proof. Under the substitution � = xb�1(s) the problem (6:1) reduced to
the following BVP in �xed domain (0; 1):

b�2 (s) ~a (�)u(2) + ~A (�)u+
1X
i=0

b�i (s) ~Ai (�)u
(i) (�) = ~f (�) , � 2 (0; 1) ;

1X
i=0

b�i (s)
h
�kjiu

(i) (0) + �kjiu
(i) (1)

i
= 0; k = 1; 2;

where

~ak (�) = ak
�
�b�1

�
; ~A (�) = A

��
�b�1

��
; ~Ai (�) = Ai

�
�b�1

�
; ~f (�) = f

��
�b�1

��
:

Then, by virtue of Theorem 3.1 we obtain the required assertion.

7. Nonlinear abstract elliptic problem

Consider the following nonlinear parabolic problem

�q (x)u(2) (x) +B
�
x; u; u(1)

�
u = F

�
x; u; u(1)

�
; (7.1)

Lku =

mkX
i=0

�kiu
(i) (0) + �kiu

(i) (a) = 0; k = 1; 2, (7.2)

where q is a real valued function, �ki; �ki are complex numbers, mk 2 f0; 1g :
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In this section we will prove the existence and uniqueness of maximal regular
solution for the nonlinear problem (7:1)� (7:2). Let

U = (u0; u1) ; X = Lp (0; a;E) ; Y =W
2
p (0; a;E (A) ; E) ;

Ei = (E (A) ; E)�i;p ; �i =
i+ 1

p

2
; X0 =

1Y
i=0

Ei;

Remark 7.1. By using J.Lions-I. Petree result ( see e.g [23, § 1.8.] ) and
Remarks 2.1 we obtain that the embedding DiY 2 Ei is continuous and there
is a constant C1 such that for w 2 Y; W = fwig ; wi = Diw (�) ; i = 0; 1;

kuk1;X0
=

1Y
i=0



Diw



C([0;a];Ej)

= sup
x2[0;a]

1Y
i=0



Diw (x)



Ej
� C1 kwkY .

For r > 0 denote by Or the closed ball in X0 of radios r, i.e.

Or =
�
u 2 X0, kukX0

� r
	
:

Consider the linear problem,

Lu = �q (x)w(2) (x) + (A (x) + d)w (x) = f; (7.3)

Lkw = 0; k = 1; 2;

where A (x) is a linear operator in a Banach space E for x 2 (0; a), Lk are
boundary conditions de�ned by (7:1) and d > 0:
Assume E is a Banach space satisfying the multiplier condition with re-

spect to p 2 (1;1) ; q (0) = q (a) and A (x) is uniformly R-positive in E;
A (0)A�1 (y0) = A (a)A�1 (y0). By virtue Theorem 3.1 and Proposition 6.1,
problem (7:3) has a unique solution w 2 Y for all f 2 X and for su¢ ciently
large d > 0. Moreover, the following coercive estimate holds

kwkY � C0 kfkX ;

where the constant C0 do not depend on f 2 X and a 2 (0 a0] :
Condition 7.1. Assume the following satis�ed:
(1) �kmk

; �kmk
6= 0, q (x) is a positive continuous function on [0; a] ; q (0) =

q (a) ;
(2) E is a Banach space satisfying the multiplier condition with respect to

p 2 (1;1);
(3) F : [0; a] �X0 ! E is a measurable function for each �i 2 Ei; i = 0; 1;

F (x; :; :) is continuous with respect to x 2 [0; a] and f (x) = F (x; 0) 2 X:
Moreover, for each r > 0 there exists the positive functions hk (x) such that

kF (x;U)kE � h1 (x) kUkX0
;
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F (x; U)� F �x; �U�


E
� h2 (x)



U � �U



X0
;

where hk 2 Lp (0; a) with

khkkLp(0;a) < C
�1
0 , k = 1; 2;

and U = fu0; u1g, �U = f�u0; �u1g, ui; �ui 2 Ei and U; �U 2 Or:
(4) there exist �i 2 Ei, such that the operator B (x;�) for � = f�ig is

R-positive in E uniformly with respect to x 2 [0; a] ; B (x;�)B�1
�
x0;�

�
2

C ([0; a] ;L (E)); B (x; 0) = A (x), A (0)A�1 (y0) = A (a)A�1 (y0) ;
(5) B (x;U) for x 2 (0; a) is a uniform positive operator in a Banach space E;

where domain de�nition D (B (x;U)) does not depend on x; U and B: (0; a)�
X0 ! L (E (A) ; E) is continuous. Moreover, for each r > 0 there is a positive
constant L (r) such that

�B (x;U)�B �x; �U�� �



E
� L (r)



U � �U



X0
kA�kE for x 2 (0; a), U; �U 2

Or and � 2 D (B (x; U)) :
Theorem 7.1. Assume the Condition 7.1 holds. Then there is a 2 (0 a0]

such that problem (7:1)�(7:2) has a unique solution belongs toW 2
p ((0; a;E (A) ; E) :

Proof. We want to solve the problem (7:1) � (7:2) locally by means of
maximal regularity of the linear problem (7:3) via the contraction mapping
theorem. For this purpose, let w be a solution of the linear problem (7:3):
Consider a ball

Br = f� 2 Y; Lk (� � w) = 0; k� � wkY � rg :

Let w 2 Y be a solution of the problem (7:3) and

W = w (0) ; w[1] (0) :

Given � 2 Br solve the linear problem

�q (x)u(2) (x) +A (x)u (x) + du = F (x; �)+

[B (x; 0)�B (x; �)] � (x) ; Lku = 0; k = 1; 2; (7.4)

where
V =

�
�; �(1)

�
, � 2 Y:

Consider the function

� (x) = F (x; �) + [B (x; 0)�B (x; �)] � (x) :

Let �rst, we show that � 2 X and k�kX � C
�1
0 r for � 2 Y; k�kY � r: Indeed,

by Remark 7.1, � 2 C ([0; a] ;E0), one has

B (x; 0)�B (x; �) 2 C ([0; a] ;L (E (A) ; E)) :

Hence, by assumption (3), � is measurable and

k�kX � L (r) k�kX0
kA�kX + h (t) k�kX0

:
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Then, by using the Remark 7.1 we obtain

k�kX � rL (r) k�kX + r kh1kLp � r
2L (r) + r kh1kLp � r:

De�ne a map Q on Br by Q� = u; where u is a solution of the problem (7:4) :We
want to show that Q (Br) � Br and that Q is a contraction operator provided
a is su¢ ciently small, and r is chosen properly. For this aim, by using maximal
regularity properties of the problem (7:3) we have

kQ� � wkY = ku� wkY � C0 fkF (x; �)� F (x; 0)kX +

k[B (x; 0)�B (x; V )] �kXg :
By assumption (3) for � 2 Or we get

kF (x; �)� F (x; 0)kX � kh2kLp(0;a) k�kX0
:

By assumptions (4), (5) and Remark 7.2, for � 2 Or we have

k[B (x; 0) � �B (x; V )] �kX � sup
x2[0;a]

n
k[B (x; 0)�B (x;W )] �kL(X0;X)

+ k[B (x;W )�B (x; V )] �kL(X0;X)
k�kY

o
�

L (r)
h
kWkX0

kA�kX + k� � wk1;X0

i
[k� � wkY + kwkY ] �

rL (r)
��
kWkX0

k�kY + C1 k� � wkY
�
+L (r) kwkY g :

By chousing r and a 2 (0 a0] so that kwkY < �a by assumptions (3)-(5) we
obtain from the above inequalities

kQ� � wkY � r + r
2L (r) kWkX0

+ r2L (r)C1 + rL (r) kwkY < r:

That is the operator Q maps Br into itself, i.e.

Q (Br) � Br:

Let u1 = Q (�1) and u2 = Q (�2) : Then u1� u2 is a solution of the problem

�q (x)u[2] (x) +A (x)u (x) + du = F (x; �1)�

F (x; �1) + [B (x; �2)�B (x; 0)] [�1 (x)� �2 (x)]�
[B (x; �1)�B (x; �2)] �1 (x) ; Lku = 0; k = 1; 2:

In a similar way, by using the assumption (5) we obtain

ku1 � u2kY � C0 frL (r) k�1 � �2kX + L (r) k�1 � �2kY k�1kX

+ kh2kLp k�1 � �2kY
o
� C0

h
2rL (r) + kh2kLp

i
k�1 � �2kY :

Thus Q is a strict contraction. Eventually, the contraction mapping principle
implies a unique �xed point of Q in Br which is the unique strong solution

u 2 Y =W [2]
p;
 (0; a;E (A) ; E) :
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8. Degenerate abstract elliptic and parabolic equations

The main objective of the present section is to discuss maximal regularity
properties of the BVP degenerate elliptic DOE

�"a (x)u[2] (x)+A (x)u (x)+" 12A1 (x)u[1] (x)+A0 (x)u (x)+�u = f (x) ; (8.1)

Lk"u =

mkX
i=0

"�i
h
�kiu

[i] (0) + �kiu
[i] (1)

i
= fk, k = 1; 2; (8.2)

where

D[i]
x u = u

[i] (x) =

�
x

d

dx

�i
u (x) ; 
 � 0; x 2 (0; 1) ;

" is a small positive parameter, � is a complex parameter, a (x) is a complex
valued function and A, A0; A1 are linear operators in a Banach space E. Since
the above equation depends on parameter ", then the solution u also depend of
", i.e., u (x) = u (x; "). Note that, the principal part of the above problem is
nonselfadjoint and also have the variable coe¢ cients. The regularity properties
for the problem of type (0:1) was studied in [16] for " = 1. Here, several
conditions for the separability and sharp resolvent estimates uniformly with
respect to parameter " are given. Especially, it is shown that the corresponding
di¤erential operator is R-positive and also generates an analytic semigroup.
In �rst section, we introduce some notations, de�nitions and background. In
section 2, we consider nonlocal nonhomogenous BVP for the degenerate DOE
with constant coe¢ cients. We prove that this problem is isomorphism from
W

[2]
p;
 (0; 1;E (A) ; E) onto Lp (0; 1;E) � E1 � E2; where Ek are interpolation

spaces between E (A) and E ( see section 1 for de�nition of these spaces).
In section 3, we show that the problem (0:1) is Lp (0; 1;E) separabile, i.e.,
we prove that problem (0:1) for f 2 Lp (0; 1;E) has a unique solution u 2
W

[2]
p;
 (0; 1;E (A) ; E) and the following uniform coercive estimate holds

2X
i=0

j�j1�
i
2 "

i
2




u[i]



Lp(0;1;E)

+ kAukLp(0;1;E) � C kfkLp(0;1;E)

for jarg �j � '; ' < � with su¢ ciently large j�j, where the constant C depend
only on p and A.
Then we established the uniform well-posedeness of initial and BVP for the

degenerate abstract parabolic equation

@u

@t
+ "a (x)

@[2]u

@x2
+A (x)u (x; t) = f (x; t) ; x 2 (0; b) ; t 2 (0;1) ;

mkX
i=0

"�i
h
�kiu

[i] (0; t) + �kiu
[i] (1; t)

i
= fk, k = 1; 2; (8.3)

u (x:0) = 0;
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where u = u (x; t) is a solution, D[i]
x u =

@[i]u
@xi =

�
x
 @

@x

�i
u (x; t) ; �ki; �ki are

complex numbers, " is a positive parameter, a (x) is a complex-valued function
on (0; b) ; A (x) and Ak (x) are linear operators in a Banach space E, d > 0;
�i = �i =

i
2 +

1
2p(1�
) .

Let p =(p; p1) and �+ = (0; b)� (0;1).
In this secton, we established the uniform well-posedeness of initial and BVP

for the degenerate abstract parabolic equation:
Theorem 8.1. Assume Condition 3.1 hold for ' > �

2 . Then, for f 2
Lp (�+;E) and su¢ ciently large d > 0 problem (5:1) � (5:2) has a unique
solution belonging to W 1;[2]

p;� (�+;E (A) ; E) and the following coercive estimate
holds



@u@t






Lp(�+;E)

+ "





@[2]u@x2






Lp(�+;E)

+ kAukLp(�+;E)
� C kfkLp(�+;E)

:

9. The mixed value problem for system of parabolic equations

Consider the initial and BVP for the system of parabolic equations

@um
@t

� "a (x) @
[2]um
@x2

+
NX
j=1

dmj (x)uj (x; t)

+

1X
i=0

NX
j=1

"
i
2 bimj (x)

@[i]uj
@x

= fm (x; t) , (9.1)

mkX
i=0

"�i�ki

�
D[i]
x um

�
(0; t) + "�i�ki

�
D[i]
x um

�
(b; t) = 0; k = 1; 2;

um (x; 0) = 0; t 2 (0;1) , x 2 (0; b) ;

m = 1; 2; :::; N; N 2 N;
where u = (u1; u2; :::; uN ) ; mkj 2 f0; 1g ; �ki; �ki are complex numbers, a is a
complex valued functions, �i are positive numbers de�ned in section 2 and

sj = s (1� �j) , s > 0; Bj = lsjq ; j = 1; 2,
Let A be the operator in lq (N) de�ned by

D (A) = lsq (N) , A = [dmj (x)] , dmj (x) = gm (x) 2
sj ; m; j = 1; 2; :::; N;

where

lq (N) =

8><>: u = fujg ; j = 1; 2; :::N; kuklq(N) =

0@ NX
j=1

juj jq
1A 1

q

<1

9>=>; ;
18



lq (A) =

8><>:u 2 lq (N) ; kuklq(A) = kAuklq(N) =
0@ NX
j=1

��2sjuj��q
1A 1

q

<1

9>=>; ;
x 2 (0; b) , 1 < q <1; N = 1; 2; :::;1:

Let
�+ = (0; b)� (0;1) , B = L (Lp (G; lq (N))) :

By applying the Theorem 5.1 we obtain the following result.
Theorem 9.1. Assume a; dmj 2 C ([0; b]), a (x) > 0, dii (x) > 0 and eigen-

values of the matrix [dmi (x)] are positive for all x 2 (0; b) ; m; j = 1; 2; :::; N:
Moreover, bimj 2 L1 (0; b) and there exist � 2 (0; 1) and � 2

�
0; 12
�
such that

sup
m

NX
j=1

b0mj (x) d
�(1��)
jm (x) < M , sup

m

NX
j=1

b1mj (x) d
�( 12��)
jm (x) < M for x 2 (0; b) :

Then for f (t; x) = ffm (t; x)g11 2 Lp (�+; lq) ; p; q 2 (1;1) and for su¢ ciently
large d > 0; problem (9:1) has a unique solution u = fum (t; x)g11 that belongs

to the space W 1;[2]
p;
 (�+; lq (D) ; lq) and the following coercive uniform estimate

holds



@u@t





Lp(�+;lq)

+ "



D[2]

x u




Lp(�+;lq)

+ kAukLp(�+;lq)
� C kfkLp(�+;lq)

:
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