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1 Introduction: Proof Theory, Hilbert’s Pro-
gram and Kreisel’s ‘Unwinding of Proofs’

Proof theory has its origin in what has been called ‘Hilbert’s program’: Since
the 19th century noneffective and nonfinitary (set-theoretic) principles became
increasingly important which raised the issue of their legitimacy. Hilbert’s ap-
proach was to establish the consistency of a suitable formalization T of math-
ematics (first number theory and then analysis and set theory) within some
finitary reasoning Tfin. In the language of number theory and with a minimal
amount of number-theoretic tools one can express the consistency of T (ax-
iomatized by an effective list of axioms) as a purely universal number-theoretic
sentence (a so-called Π0

1-sentence)

ConT := ∀n ∈ N¬ProvT (n, d0 = 1e)

which states that no n ∈ N := {0, 1, 2, . . .} is the code of a T -proof of 0 = 1.

Consider now an arbitrary Π0
1-sentence (called a ‘real statement’ by Hilbert)

S := ∀n ∈ N (t(n) = 0) , where t is some primitive recursive function term.
If S is provable in T (using any nonfinitary ‘ideal elements’ of T ), then also
Tfin +ConT proves S (see [67][5.2.1]). So if ConT could be proved in Tfin, one
could convert the ‘ideal’ proof of S in T into a finitistic proof of S in Tfin.
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Obviously, Gödel’s second incompleteness theorem rules out that the consis-
tency of any T ⊇ Tfin can be established inside of Tfin. Nevertheless, Hilbert’s
program gave rise to many ‘relative consistency proofs’ where the consistency
of T is reduced to that of an in some sense more elementary theory T ′. ‘More
elementary’ often is related to being ‘quantifier-free’: e.g. Gentzen’s proof-
theoretic analysis of first-order number theory PA ([20]) reduces logically com-
plex instances of ordinary induction to quantifier-free instances of transfinite
induction (along ordinals α < ε0) and Gödel’s consistency proof for PA ([24])
reduces PA to a quantifier-free calculus of so-called primitive recursive function-
als of finite type (considered already by Hilbert himself in [27]).

In the early 50’s, Georg Kreisel suggested to re-orient proof theory by apply-
ing proof-theoretic methods - which in some way eliminate quantifiers in terms
of quantifier-free constructions - to proofs of theorems which are not purely
universal (as consistency statements) but e.g. of the form

(∗) ∀n ∈ N ∃m ∈ NAqf (n,m) (Aqf quantifier-free).

Kreisel noted that the respective consistency proofs for PA due to Gentzen
(see [52, 53]) and Gödel resp. (see [54] (3.4)) actually characterize the class of
subrecursive functions f needed to realize (∗) in the form

∀n ∈ NAqf (n, f(n))

for theorems (∗) which are provable in PA, namely as the class of α < ε0-
recursive functions (in the case of Gentzen’s proof) and - equivalently - as the
class of functions definable in the aforementioned calculus of primitive recursive
functionals (in the case of Gödel’s proof [23, 24]), see also [61].

While such results concern (the provability of ∀∃-sentences in) formal systems
such as PA rather than individual proofs, Kreisel already in [53] also launched
the program of analyzing specific prima facie nonconstructive proofs with the
aim of extracting new (e.g. effective) information on the theorem proven:

Input: A (prima facie) noneffective proof P of a conclusion C.

Goal: Additional information on C such as:

• effective bounds,

• algorithms,

• continuous dependency or full independence from certain parameters,

• generalizations of proofs: weakening of premises.

Kreisel’s examples and suggestions for applications mainly concerned proofs in
number theory. E.g. in [55], Kreisel suggested to analyze finiteness statements
such as Roth’s theorem in diophantine approximation with the aim of extracting
bounds on the number of solutions. In [59], Luckhardt extracted the first poly-
nomial such bound for Roth’s theorem from a proof due to Esnault and Viehweg
(independently, this result was also obtained in [12]). Since the 90’s, the program
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has been developed most systematically and with specially designed so-called
logical metatheorems (see the next section) in the context of nonlinear analysis
(‘proof mining’). Also while Kreisel’s unwindings were based on techniques re-
lated to cut-elimination (Herbrand theory, ε-substitution etc.) the applications
to analysis are all based on functional interpretations which have their origin in
Gödel’s ‘Dialectica’ interpretation on which Gödel’s aforementioned consistency
proof is based.

2 Logical metatheorems for bound extractions

In order to establish general theorems on the extractability of effective uniform
bounds from given proofs one has to set up an appropriate formal deductive
context. As the bound extraction methods are based on modern (‘monotone’)
extensions and variants (see [34]) of Gödel’s functional interpretation ([23, 24])
one uses formal systems formulated in the language of functionals in all finite
types such as appropriate forms of Peano arithmetic in all finite types PAω.
In such systems one already can represent complete separable metric (‘Polish’)
spaces (X, d) as continuous images of the Baire space NN. However, this requires
the separability of the space X and for separable spaces one can show that the
independence of the extracted bounds from parameters in subspaces of X in
general can only be expected if these subspaces are compact (see [34] for dis-
cussions of this point). Many theorems in nonlinear analysis, however, involve
- in addition to concrete Polish spaces such as R - general classes of abstract
spaces X (e.g. general Hilbert spaces) which are not required to be separable
and one can extract bounds that are independent from parameters in X (and
even functions T : X → X) if general metric bounds (‘majorants’) are given.

Many abstract types of metric structures can be added as atoms to our
formal systems. E.g. this applies to metric, W-hyperbolic (see below), CAT(0),
CAT(1), δ-hyperbolic, normed, uniformly convex, Hilbert, abstract Lp, abstract
C(K) spaces and R-trees, and, in fact, all normed structures that are axiom-
atizable in so-called positive bounded logic (see [25]). In order to be able to
speak about such spaces one adds a new base type X to the formal system
and forms all finite types over N, X (see [32]; one may also have several such
types: see [34], section 17.6). One also adds constants for the metric dX or
normed space operators with appropriate axioms that characterize the class of
structures in question.

Condition: the defining axioms must have a monotone functional interpreta-
tion (possibly with the addition of appropriate moduli, see [34]).

Counterexamples (to the extractability of uniform bounds) exist for the classes
of strictly convex or separable spaces which get upgraded by the monotone func-
tional interpretation to uniformly convex resp. boundedly compact spaces.

Formal systems for analysis with abstract spaces X

Types: (i) N, X are types, (ii) with ρ, τ also ρ→ τ is a type.
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Functionals of type ρ→ τ map type-ρ objects to type-τ objects.

PAω,X is the extension of PA to all types, Aω,X :=PAω,X+DC, where

DC: axiom schema of dependent choice for all types,

which implies the axiom schema of countable choice and so, applied to the
law-of-excluded middle, full comprehension for numbers

CA: ∃fN→N ∀nN (f(n) = 0↔ A(n),

where A(n) may contain quantifiers (and parameters) of arbitrary types.

Aω[X, d, . . .] results by adding constants dX , . . . with axioms expressing that
(X, d, . . .) is a nonempty metric, hyperbolic . . . space (we deviate here from
the notation used in [34] where this theory is denoted by Aω[X, d, . . .]−b, and
Aω[X, d, . . .] denotes the theory with an axiom stating the boundedness of (X, d)
by some constant b being added).

A warning concerning equality: our formal theories only have a quantifier-
free rule of extensionality (with Aqf being a quantifier-free formula)

Aqf → s =ρ t

Aqf → r[s/x] =τ r[t/x]
,

where only x =N y is a primitive predicate but for X and ρ→ τ one defines

xX =X yX :≡ dX(x, y) =R 0R, x =ρ→τ y :≡ ∀vρ(x(v) =τ y(v)).

This is crucial as the uniform quantitative rendering of the extensionality axiom
x =X y → Tx =X Ty for T of type X → X implies the uniform continuity
of T (on bounded subsets) and we want (in contrast to the setting of current
continuous model theory; see, however, the recent [18]) also to be able to treat
discontinuous situations (see [34] for extensive discussions of this point).

Extension of majorizability to the new types: A crucial notion used is
an extension of Howard’s ([28]) concept of majorizability to the new types,
where we ‘bound’ an element in a metric space by the distance it has from a
fixed reference point a ∈ X (where a = 0X in the normed case): let y, x be
functionals be of types ρ, ρ̂ := ρ[N/X] and aX of type X:

xN &aN y
N :≡ x ≥ y, xN &aX yX :≡ x ≥ d(y, a).

For complex types ρ→ τ this is extended in a hereditary fashion.

Example: for monotone T ∗ one defines

T ∗ &aX→X T ≡ ∀n ∈ N, x ∈ X[n ≥ d(a, x)→ T ∗(n) ≥ d(a, T (x))] (see [21, 34]).

T : X → X is nonexpansive (n.e.) if d(T (x), T (y)) ≤ d(x, y).

Then λn.n+ b &aX→X T, if d(a, T (a)) ≤ b.
Proof mining exhibits the finitary combinatorial kernel of a proof and as a
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consequence of this it often is easy to generalize things from a normed linear
setting to some geodesic setting. In fact, the approach has been particularly
useful in the context of hyperbolic spaces which is a variant of notions considered
by Takahashi [70], Goebel and Kirk [22, 30] and Reich and Shafrir [62] (see [32]
for the precise relationship):

Definition 2.1 ([32]). A (W -)hyperbolic space is a triple (X, d,W ) where (X, d)
is a metric space and W : X × X × [0, 1] → X s.t. for all x, y, z ∈ W and
λ, λ̃ ∈ [0, 1]

(i) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(ii) d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),

(iii) W (x, y, λ) = W (y, x, 1− λ),

(iv) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

CAT(0)-spaces (Gromov) are hyperbolic spaces (X, d,W ) which satisfy the CN-
inequality of Bruhat-Tits (determining W uniquely): for all x, y0, y1, y2 ∈ X{

d(y0, y1) = 1
2d(y1, y2) = d(y0, y2)→

d(x, y0)2 ≤ 1
2d(x, y1)2 + 1

2d(x, y2)2 − 1
4d(y1, y2)2.

Small types (over N, X) include: N, N→ N, X, N→ X, X → X.

Theorem 2.2 ([21, 34]). Let P,K be Polish resp. compact metric spaces (de-
finable in Aω), A∃

1 be an ∃-formula and τ be a tuple of small types.
If Aω[X, d,W ] proves

∀x ∈ P ∀y ∈ K ∀zτ ∃vNA∃(x, y, z, v),

then one can extract a computable Φ : NN×N(N) → N s.t. the following holds in
every nonempty hyperbolic space: for all representatives rx ∈ NN of x ∈ P and
all zτ and z∗ ∈ N(N) s.t. ∃a ∈ X(z∗ &aτ z):

∀y ∈ K ∃v ≤ Φ(rx, z
∗)A∃(x, y, z, v).

For the case of bounded hyperbolic spaces, see [32].

As a special case of the above metatheorem one has:

Corollary 2.3 ([21, 34]). If Aω[X, d,W ] proves

∀x ∈ P ∀y ∈ K ∀z ∈ X ∀T : X → X
(
T n.e.→ ∃v ∈ NA∃

)
,

then one can extract a computable Φ : NN × N→ N s.t. for all x ∈ P, b ∈ N

∀y ∈ K ∀z ∈ X ∀T : X → X
(
T n.e. ∧ dX(z, T (z)) ≤ b→ ∃v ≤ Φ(rx, b)A∃

)
holds in all nonempty hyperbolic spaces (X, d,W ).

1There are some mild restrictions on the types of the quantified variables in A∃.
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Similar results hold for the other classes of metric and normed structures listed
above. In the normed case, one additionally needs ‖z‖ ≤ b as an assumption in
the conclusion of the corollary.

Remark 2.4. Usually, proofs in ordinary mathematics only require a small
fragment of Aω[X, d, . . .] with e.g. the binary (‘weak’) König’s lemma WKL
instead of DC and Σ0

1-induction only, which guarantees the extractability of
primitive recursive (in the sense of Kleene) bounds. WKL is equivalent to a
sentence of the form ∀fN→N ∃b ≤N→N 1∀xNAqf (f, b, x) and can be added to the
system via a Skolem constant B with the purely universal axiom ∀f, x(Bf ≤
1 ∧ Aqf (f,Bf, x)) which is satisfiable in the full set-theoretic model and B is
trivially majorized by the constant-1 functional in the extracted bound (see [34]).

3 General types of applications

3.1 Asymptotic regularity theorems

Consider a metric space (X, d) and a continuous function F : X → R. Many
problems can be stated in the form of finding a zero z ∈ X of F. Such problems
are often algorithmically approached by setting up some iterative procedure
resulting in a sequence (xn) in X which converges to a zero z of F :

(∗) F ( lim
n→∞

xn) = F (z) = 0.

In this case one, in particular, has that

(∗∗) F (xn)→ 0.

Quite often, (∗∗) holds under much more general conditions than those needed
to ensure the convergence of (xn) itself. In the case of fixed point problems
for mappings T : X → X, i.e. the case where F (x) := d(x, Tx), results of
the form (∗∗) are usually referred to as asymptotic regularity statements where
this term was originally introduced by Browder and Petryshyn [15] to refer
to the property of T that the sequence xn := Tnx of Picard iterates satisfies
d(xn, Txn) → 0. In many cases (see below) (d(xn, Txn))n∈N for some iterative
process not only converges to 0 but does so in a nonincreasing way. In this
situation the asymptotic regularity statement can be equivalently written in the
form

∀k ∈ N ∃n ∈ N (d(xn, Txn) < 2−k) ∈ ∀∃

and any upper bound Φ(k) on ‘∃n’ provides a rate of convergence. This means
that one can apply the logical metatheorems mentioned in the previous section
to extract effective and highly uniform rates of asymptotic regularity even from
prima facie noneffective proofs of asymptotic regularity. In fact, this has been
achieved in many instances in the context of nonlinear analysis (see some of the
applications below and [35, 39] for general surveys).
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3.2 Strong convergence theorems

Suppose that the theorem to be studied is not about an asymptotic regularity
result but about the convergence of the sequence (xn) itself, e.g. towards a zero
of F or a fixed point of T. Already the Cauchy property of (xn)

(+) ∀k ∈ N ∃n ∈ N∀i, j ≥ n (d(xi, xj) ≤ 2−k) ∈ ∀∃∀

has too complicated a logical form to directly apply the logical metatheorems
on uniform bound extractions and, in fact, there are already simple cases of
computable monotone sequences of rational numbers in [0, 1] which do not have
a computable rate of convergence ([68]).

Roughly speaking, one can distinguish the following situations:

1) The proof of the Cauchy property of (xn) (or of the convergence of (xn) to
some known element x ∈ X) uses - on top of constructive (‘intuitionistic’) rea-
soning - at most the law-of-excluded-middle schema LEM for negated formulas

LEM¬ : ¬A ∨ ¬¬A

which, in particular covers the case where A is ∃-free (e.g. A ∈ Π0
1) as such

formulas are equivalent to their double negation (using the stability of the prime
formulas in our formal systems).
Alternatively (but not combined), one may use the so-called Markov principle

M : ¬¬∃n ∈ NAqf (n)→ ∃n ∈ NAqf (n) (Aqf quantifier-free with parameters)

together with the following weak form of LEM (weaker than LEM for Π0
1-

formulas):

LLPO : ¬(∃n ∈ NAqf (n)∧∃n ∈ NBqf (n))→ ∀n ∈ N¬Aqf (n)∨∀n ∈ N¬Bqf (n),

where Aqf , Bqf are quantifier-free formulas. In both scenarios one can set up
logical bound extraction metatheorems, where instead of the purely existential
formula A∃ one may now have an arbitrary formula (see [34]). Since (+) is
monotone w.r.t. ‘∃n ∈ N’ any upper bound on n ≤ Φ(k) in fact is a Cauchy
rate for (xn) and so one can in these cases extract effective rates of convergence.

2) If the proof of the Cauchy property of (xn) uses LEM for Σ0
1-formulas (purely

existential formulas for natural numbers) as in the case of the Specker sequences
from [68], then one often has the following dichotomy: either one can show that
(xn) converges to the unique zero of F or fixed point of T, or one can use the
non-uniqueness of the solution to construct an instance of the Cauchy statement
in question which provably does not allow for an effective Cauchy rate.

(i) Unique existence: in many cases one can obtain effective rates of conver-
gence (and in fact also with a constructive verification of this fact) for (xn) if
(xn) converges towards a unique zero of F resp. fixed point of T : consider a
function F : X → R on some metric space (X, d) which has exactly one zero z.
The uniqueness part

(a) ∀x, y ∈ X (F (x) = 0 = F (y)→ x = y)
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can be written equivalently as

(b) ∀x, y ∈ X ∀k ∈ N ∃n ∈ N (|F (x)|, |F (y)| ≤ 2−n → d(x, y) < 2−k) ∈ ∀∃.

Then logical metatheorems can be applied to extract from a proof of (a) an
effective uniform bound Φ(k) on ‘∃n ∈ N’ in (b), which we called in [31] a
‘modulus of uniqueness’, where Φ(k) depends on x, y only via general majorizing
data and, in particular, is independent of x, y if X is bounded (in the case where
X can be treated as an abstract space and, otherwise, if X is compact). Suppose
now that we can construct some (bounded) sequence (xn) of approximate zeros,
i.e.

(c) ∀k ∈ N∃n ∈ N(|F (xn)| < 2−k) ∈ ∀∃

from which we then can extract (using again a logical metatheorem) an effective
bound Ψ(k) on ‘∃n ∈ N’ in (c), then for χ(k) := Ψ(Φ(k)) we have

∀k ∈ N ∃n ≤ χ(k) (d(xn, z) < 2−k)

and, if we even have that (|F (xn)|)n is nonincreasing, it follows that χ is a rate
of convergence for limxn = z. In [14], it is shown that for Picard iterations xn =
Tnx for suitable classes of mappings T the aforementioned logical metatheorems
can be used to obtain such rates of convergence even when (|F (xn)|)n (for
F (x) := d(x, Tx)) is not nonincreasing which explains the explicit construction
of effective rates of convergence for the classes of asymptotic contractions in
the sense of Kirk and of uniformly generalized p-contractive mappings given by
Briseid (see [14] and the literature cited there).

(ii) Non-unique existence: when F or T possess many zeros resp. fixed
points, one usually can construct computable instances of iterative procedures
(xn) (converging to some zero or fixed point) that do not have a computable
rate of convergence. In fact, [60] shows that this is the case for the usual
iterative schemes used in metric fixed point theory, ergodic theory and convex
optimization which even for (firmly) nonexpansive selfmappings T : [0, 1] →
[0, 1] fail to have a computable rate of convergence for simple computable such
mappings T.One then has to weaken the goal to what has been called an effective
rate of metastability: Noneffectively, (+) is equivalent to

(++) ∀k ∈ N ∀g ∈ NN ∃n ∈ N ∀i, j ∈ [n, n+ g(n)] (d(xi, xj) < 2−k) ∈ ∀∃,

the so-called Herbrand normal of (+), and a bound Φ(k, g) on ‘∃n’ is a bound for
the Kreisel ‘no-counterexample interpretation’ ([52, 53]) of the Cauchy property.
Since Tao [71] calls an interval [n, n+g(n)] with the property in (++) an interval
of ‘metastability’, we call bounds Φ(k, g) on ‘∃n’ in (++) rates of metastability.
If one additionally knows that (xn) is converging to a zero of F or a fixed point
of T with some rate of metastability then one can actually combine both rates
into a common one (formulated here for the case of fixed points), i.e. a bound
Φ(k, g) such that for all k ∈ N and g : N→ N

(+ + +) ∃n ≤ Φ(k, g)∀i, j ∈ [n, n+ g(n)] (d(xi, xj), d(xi, Txi) ≤ 2−k).
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If one has a rate of convergence for d(xn, Txn)→ 0, one can even achieve that

∃n ≤ Φ(k, g)∀i, j ∈ [n, n+ g(n)]∀l ≥ n (d(xi, xj), d(xl, Txl) ≤ 2−k)

(see e.g. [46] and [38], Rem.2.11).
The extraction of explicit bounds Φ on the metastable form of Cauchy or con-
vergence statements is of interest for the following reasons:

a) Disregarding bounded quantifiers, the statement (+ + +) is purely univer-
sal (‘real’) and captures all the mathematical content of the theorem limxn =
x = Tx : by a fixed piece of proof it implies back the original convergence
theorem: forgetting the bound Φ gives the Herbrand normal form which by
recursive comprehension (more precisely QF-AC0,0 in the terminology of [34])
and LEM implies the Cauchy property and so by arithmetical comprehension
(more precisely Π0

1-AC0,0 in our formal context, see [34]) the convergence of
(xn). Applying (+ + +) to the constant function g(n) := K ∈ N shows the
existence of i ≥ K with d(xi, Txi) < 2−k which - together with the continuity
of T - gives Tx = x for x := limxn.

b) The proof-theoretic extraction of a rate of metastability from a convergence
proof exhibits the finitary combinatorial content of that proof which may lead
to generalizations of the resulting metastable statement and so - when unpacked
into the full convergence statement (see above) - to generalized convergence the-
orems.

c) The concrete bounds extracted are of numerically interest: often they provide
explicit information on the algorithmic learnability of a rate of convergence
which - if a gap condition is satisfied - yields oscillation bounds ([3, 49] and
section 5 below).

d) In many cases, asymptotic regularity is just the special case of metastability
where g(n) := 1, e.g. for Picard iterates of nonexpansive functions T.

Some history:

• 2004, first rate of metastability (for the asymptotic regularity of asymp-
totically nonexpansive mappings) extracted ([43]).

• 2005, rate of metastability for Krasnoselski-Mann iterations of nonexpan-
sive selfmappings T : X → X of compact hyperbolic spaces X ([33]).

• 2007, Tao [71] introduced the term ‘metastability’ in connection with the
von Neumann Mean Ergodic Theorem (MET).

• 2007, independently from Tao, the first rate of asymptotic regularity for
MET was extracted in [2].

• 2008, [44] generalized this with a better bound to uniformly convex Banach
spaces which, subsequently, led to oscillation bounds by [3] (see below).

• Since then, many papers extracting explicit rates of metastability have
appeared, including [3, 36, 37, 38, 41, 44, 45, 46, 47, 50, 57, 64, 66].
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We like to emphasize that sometimes in analyzing convergence proofs one uses
a combination of the approach used in the semi-constructive context discussed
further above (applied to those parts of the proof that do not require Σ0

1-LEM)
and the approach to proofs based on full classical logic (applied to the more
noneffective parts of the proof). E.g. [56, 65] provide interesting instances of
such a hybrid approach.

In very special, but important, cases for applications one can extract rates
of convergence for iterative procedures towards some non-unique zero of F or
fixed point of T, namely when one has an effective so-called modulus of regu-
larity which is closely related to the concepts of weak sharp minima and metric
regularity used in convex optimization (see [48]).

3.3 Inclusions between sets of solutions

Consider functions F,G : X → R on a metric space (X, d) such that every zero
of F is also one of G :

∀x ∈ X (F (x) = 0→ G(x) = 0)

which can be re-written in ∀∃-form as

∀x ∈ X ∀k ∈ N∃n ∈ N

∈Σ0
1︷ ︸︸ ︷

(|F (x)| ≤ 2−n → |G(x)| < 2−k)

so that logical metatheorems can be applied to extract effective uniform bounds
(which due to monotonicity are in fact realizers) for ‘∃n’, i.e.

∀k ∈ N (|F (x)| ≤ 2−Φ(x∗,k) → |G(x)| < 2−k),

where x∗ are appropriate majorizing data for x.
For concrete instances of such applications see sections 4 and 6 below.

3.4 Extraction of effective moduli

The first applications of the proof mining methodology in analysis concerned
the extraction of explicit moduli of uniqueness in the aforementioned sense (as
well as so-called constants of strong unicity) in Chebycheff approximation by us
in 1990-1993 which in 2003 - together with Paulo Oliva - was also carried out
for best L1-approximation (see [34] for an extensive coverage of this and the
references given there). However, many more concepts of quantitative ‘moduli’
exist in mathematics or have been introduced as quantitative proof-theoretic
versions of qualitative concepts in analysis. Proof mining has been used to
explicitly transform moduli for one situation into moduli for another one. This
e.g. is used essentially in [4] and [48].

In the rest of the paper we give a few typical examples of explicit bounds which
have been obtained by the proof-theoretic machinery discussed so far. For more
comprehensive surveys, see [35] for results up to 2008 and [39] for applications
since 2008.
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4 Proof Mining in Convex Analysis

A polynomial rate of asymptotic regularity in Bauschke’s solution of
the ‘zero displacement conjecture’

Consider a real Hilbert space H and nonempty closed and convex subsets
C1, . . . , CN ⊆ H with metric projections PCi , define T := PCN ◦ . . . ◦ PC1 .
In 2003, Bauschke proved the ‘zero displacement conjecture’ ([8]):

‖Tn+1x− Tnx‖ → 0 (x ∈ H).

Previously, this was only known for N = 2 or Fix(T ) 6= ∅ (or even
⋂N
i=1 Ci 6= ∅)

or Ci half spaces etc.

The proof uses the Bruck/Reich [17] theory of firmly and strongly nonexpansive
mappings and the abstract theory of maximal monotone operators: Minty’s
theorem, Brézis-Haraux theorem, Rockafellar’s maximal monotonicity and sum
theorems, conjugate functions, normal cone operator.

The sequence (‖Tn+1x − Tnx‖)n∈N is nonincreasing and hence the conclusion
in Bauschke’s theorem is of the form ∀∃. Logical metatheorems as discussed
above, therefore, guarantee (modulo the formalizability of the proof in the resp.
formal system which, however, does not need to be checked if one explicitly
has carried out the extraction) the extractability of an effective uniform rate
of asymptotic regularity which only depends on the error ε > 0, N ∈ N and
majorants for x ∈ H and PC1

, . . . , PCN , i.e. b ≥ ‖x‖ and K ≥ ‖c1‖, . . . , ‖cN‖
for some points c1 ∈ C1, . . . , cN ∈ CN since

n ≥ ‖y‖ → n+K ≥ ‖PCiy − PCi0‖+ ‖PCi0‖ ≥ ‖PCiy‖.

So one gets a computable Φ(ε,N, b,K) s.t. for b ≥ ‖x‖

∀ε > 0 ∀n ≥ Φ(ε,N, b,K) (‖Tn+1x− Tnx‖ < ε).

Strongly nonexpansive mappings

Definition 4.1 ([38]). Let S ⊆ X be a nonempty subset of a normed space X.
T : S → X is strongly nonexpansive with SNE-modulus ω : R∗+ × R∗+ → R∗+ if

∀d, ε > 0 ∀x, y ∈ S (‖x− y‖ ≤ d ∧ ‖x− y‖ − ‖Tx− Ty‖ < ω(d, ε)
→ ‖(x− y)− (Tx− Ty)‖ < ε).

Remark: T is strongly nonexpansive in the sense of Bruck and Reich [17] iff it
possesses an SNE-modulus.

Recall that in Hilbert spaces H = X, a function T : S → H is called firmly
nonexpansive if

∀x, y ∈ S (‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉)

and metric projections onto closed convex subsets of H are firmly nonexpansive.

The next two results have been obtained by a proof-theoretic analysis of [17]:
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Lemma 4.2 ([38]). Let H be a real Hilbert space and T = TN ◦ . . . ◦ T1 with
firmly nonexpansive T1, . . . , TN : H → H. Then T is SNE with modulus

ωT (d, ε) :=
1

16d

( ε
N

)2

.

A rate of asymptotic regularity for SNE-mappings

Theorem 4.3 ([40]). Let T : S → S be SNE with modulus ω s.t. inf{‖x−Tx‖ :
x ∈ S} = 0 and let α : R∗+ → R∗+ be such that

∀ε > 0 ∃y ∈ S (‖y‖ ≤ α(ε) ∧ ‖y − Ty‖ ≤ ε) .

Then for x ∈ S, xn := Tnx and D > 0 such that ‖x− Tx‖ ≤ D one has

∀ε > 0 ∀n ≥ ψ(ε, b,D, α, ω) (‖xn+1 − xn‖ < ε) , where

ψ(ε, b,D, α, ω) :=

⌈
18b+ 12α(ε/6)

ε
− 1

⌉⌈(
D

ω(D, ε̃)

)⌉
, ε̃ :=

ε2

27b+ 18α(ε/6)
.

The proof-theoretic analysis of the operator-theoretic part of Bauschke’s
proof gives:

Theorem 4.4 ([40]). Let H be real Hilbert space, C1, . . . , CN ⊆ H nonempty
closed and convex subsets, PCi metric projections onto Ci for i = 1, . . . , N . Let

c = (c1, . . . , cN ) ∈ C1× . . .×CN be arbitrary and K ≥ ‖c‖ =
√∑N

i=1 ‖ci‖2. Let

T := PCN ◦ . . . ◦PC1 . Then for every ε ∈ (0, 1) there exists a point y ∈ CN with

‖y‖ ≤ α(ε) and ‖Ty − y‖ ≤ ε, where

α(ε) :=
(K2 +N3(N − 1)2K2)N2

ε
.

Corollary 4.5 ([40]).

Φ(ε,N, b,K) :=

⌈
18b+ 12α(ε/6))

ε
− 1

⌉⌈(
D

ω(D, ε̃)

)⌉
is a rate of asymptotic regularity in Bauschke’s result, where

ε̃ :=
ε2

27b+ 18α(ε/6)
, D := 2b+NK, ω(D, ε̃) :=

1

16D
(ε̃/N)2.

α(ε) :=
(K2 +N3(N − 1)2K2)N2

ε
.

The case where Fix(T ) 6= ∅ is much simpler:

Theorem 4.6 ([38]). Let C ⊆ H be any nonempty subset of a real Hilbert space
H, T1, . . . , TN : C → C be firmly nonexpansive. Let T := TN ◦ . . . ◦ T1 possess
a fixed point p ∈ C and, for x ∈ C, let b ≥ ‖x− p‖, b > 0. Then for xn := Tnx:

∀ε > 0 ∀n ≥ db/ωT (b, ε)e (‖xn+1 − xn‖ < ε), where

ωT (b, ε) :=
1

16b
(ε/N)2.

12



Convex feasibility problems

If in Theorem 4.6 the fixed point sets Fix(T1), . . . , F ix(TN ) have a nonempty
intersection, then any fixed point of T in fact is a common fixed point of
T1, . . . , TN . This even holds for arbitrary strongly nonexpansive mappings
T1, . . . , TN in arbitrary Banach spaces X. In [38], an explicit bound ρ(b, ε) (in
terms of SNE-moduli for T1, . . . , TN ) is extracted from the classical proof of this
fact such that for x, p ∈ C, p a common fixed point of T1, . . . , TN and b ≥ ‖x−p‖

∀ε > 0 (‖TNTN−1 . . . T1x− x‖ < ρ(b, ε)→
N∧
i=1

(‖Tix− x‖ < ε)).

Combined with a rate of asymptotic regularity for T = TN ◦ . . .◦T1 (which even
in this generality is provided in [38]) this quantitatively solves the problem of
constructing a common approximate fixed point of T1, . . . , TN .

All this largely holds even in general metric spaces and for strongly quasi-
nonexpansive mappings in the sense of [16]. Metric projections in so-called
CAT(κ)-spaces X (in the sense of Gromov) with κ > 0 are strongly quasi-
nonexpansive and one can construct an explicit modulus for this property which
then makes it possible to quantitatively solve the problem to construct a point
in the intersection of (ε-neighbourhoods of) finitely many overlapping closed
convex subsets of X (i.e. the so-called convex feasibility problem for CAT(κ)-
spaces). In the case where X is compact one obtains a rate of metastability
for the strong convergence of the iterative use of the composition of the corre-
sponding projections towards a point in the intersection of these sets (see [38]).

Other quantitative results in convex optimization have been obtained in

• [1, 47]: rates of asymptotic regularity and - for compact X - metastability
for iterations of compositions of two resolvents in CAT(0)-spaces.

• [46, 48, 66] rates of asymptotic regularity, strong convergence (in special
cases) resp. metastability for the proximal point algorithm.

• [50] explicit such rates for Yamada’s hybrid steepest descent method.

5 Proof Mining in Ergodic Theory

Let H be a real Hilbert space, T : H → H be linear and ‖T (x)‖ ≤ ‖x‖ for all
x ∈ H. Consider the Cesàro mean of the iterates of T :

An(x) :=
1

n
Sn(x), where Sn(x) :=

n−1∑
i=0

T i(x) (n ≥ 1).

The von Neumann Mean Ergodic Theorem in the formulation of Riesz states:

Theorem 5.1 (von Neumann Mean Ergodic Theorem). For every x ∈ H, the
sequence (An(x))n strongly converges.
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In [2], it is shown that in general there is no computable rate of convergence, but
a primitive recursive rate of metastability is extracted using the proof-theoretic
methods discussed above. Tao [72] also established (without bound) a uniform
metastable version of the Mean Ergodic Theorem in Hilbert space and used that
uniformity as a base step for a generalization to commuting families of opera-
tors. On the connection to the proof-theoretic approach he comments:

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques, rem-
iniscent of those used in [Green-Tao]...’ ‘The main advantage of working in
the finitary setting ... is that the underlying dynamical system becomes ex-
tremely explicit’...‘In proof theory, this finitisation is known as Gödel functional
interpretation...which is also closely related to the Kreisel no-counterexample
interpretation’ (T. Tao [72]).

In 1939, Garrett Birkhoff proved:

Theorem 5.2 ([11]). The Mean Ergodic Theorem holds for arbitrary uniformly
convex Banach spaces.

Remark 5.3. In the same year as [11], Lorch [58] showed that the mean er-
godic theorem even holds in all reflexive spaces. However, the class of reflexive
spaces does not have enough uniformity to allow for a logical metatheorem on
uniform bound extractions and, in fact, in [3] it is shown that a uniform rate of
metastability has to depend on the modulus of uniform convexity.

Since Birkhoff’s proof formalizes in the deductive framework of uniformly convex
normed spaces (with modulus η) Aω[X, ‖ ·‖, η] (see [34] for the definition of this
system) the following is guaranteed a-priorily:

Let X be a uniformly convex Banach space with modulus η and T : X → X
nonexpansive linear operator. Let b > 0. Then there is an effective functional
Φ in ε, g, b, η s.t. for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : N→ N :

∃n ≤ Φ(ε, g, b, η)∀i, j ∈ [n, n+ g(n)]
(
‖Ai(x)−Aj(x)‖ < ε

)
.

Note that T ∗ := id majorizes T.

Based on the logical metatheorem above (for uniformly convex normed spaces)
the following rate of metastability was extracted from Birkhoff’s proof:

Theorem 5.4 ([44]). Let X be a uniformly convex Banach space, η a modulus
of uniform convexity, T : X → X be as above and b > 0. Then for all x ∈ X
with ‖x‖ ≤ b, all ε > 0 and all g : N→ N :

∃n ≤ Φ(ε, g, b, η)∀i, j ∈ [n, n+ g(n)]
(
‖Ai(x)−Aj(x)‖ < ε

)
, where

Φ(ε, g, b, η) := M · h̃(K)(1), with M :=
⌈

16b
ε

⌉
, γ := ε

16η
(
ε
8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : N→ N, h(n) := 2(Mn+ g(Mn)), h̃(n) := maxi≤n h(i).

If η(ε) = ε · η̃(ε) with increasing η̃, then we can replace ‘η’ by ‘η̃’ and ‘16’ by
‘8’. In particular, for X = Lp with 1 < p <∞, we may take η̃(ε) = εp−1/(p2p).
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Bounding the number of fluctuations: We say that (xn) admits k ε-
fluctuations if there are i1 ≤ j1 ≤ . . . ik ≤ jk s.t. ‖xjn−xin‖ ≥ ε for n = 1, . . . , k.

Using the analysis of Birkhoff’s proof in [44], Avigad and Rute subsequently im-
proved the rate of metastability to a bound on the number of ε-fluctuations:

Theorem 5.5 ([3]). (An(x)) admits at most⌊
4 log(M) · b

ε

⌋
+

⌊
b

γ

⌋
·
⌊

(4 log(2M) · b
ε

⌋
+

⌊
b

γ

⌋
many ε-fluctuations with b,M, γ as in Theorem 5.4.

In the Hilbert space case, fluctuation bounds had already been obtained in [29].

If the linearity of the nonexpansive operator T is dropped, then the convergence
of (xn) holds weakly (but in general not strongly, see [19]) by Baillon’s nonlinear
ergodic theorem:

Theorem 5.6 ([5]). Let H be a real Hilbert space, C ⊆ H bounded closed and
convex and T : C → C be nonexpansive. Then for every x0 ∈ C, the sequence
of Cesàro means (xn) converges weakly to a fixed point of T.

A rate of metastability for the weak Cauchy property is extracted in [37].

If one either changes the Cesàro means slightly (or adds some weak form of
linearity, see below) one can achieve strong convergence. Consider the so-called
Halpern iteration [26]: Let T : C → C be nonexpansive, x1 ∈ C, αn ∈ [0, 1]

xn+1 := αn x1 + (1− αn)T (xn) (n ≥ 1).

In contrast to other iterative schemes such as Krasnoselski-Mann iterations,
the Halpern iteration often converges strongly (one reason, though, why it is
less used convex optimization is that it is not Fejér monotone; see [46] for
explicit rates of metastability from strong convergence proofs based on Fejér
monotonicity).

Using a weak compactness argument, Wittmann proved in 1992 the following
strong convergence result:

Theorem 5.7 ([74]). Let H be a real Hilbert space, C ⊆ H closed and convex,
x0 ∈ C and Fix(T ) 6= ∅. Under suitable conditions on (αn) (e.g. for αn := 1

n+1)
(xn) converges strongly towards the fixed point of T that is closest to x0.

Remark 5.8. 1. Wittmann’s theorem is a nonlinear generalization of the
Mean Ergodic Theorem: for αn := 1/(n + 1), C := H and linear T, the
Halpern iteration coincides with the Cesàro means.

2. Another nonlinear generalization of the Mean Ergodic Theorem has been
obtained in [6]. Here one keeps the original Cesàro means but requires that
T (in addition to being nonexpansive) is odd (and C is symmetric). This
was further generalized in [73] from which an explicit rate of metastability
was extracted in [64].
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Wittmann’s result has been generalized to CAT(0)-spaces by Saejung [63] using
Banach limits. Explicit rates of metastability have been extracted in [36] (for
Hilbert spaces) with an elimination of the use of weak compactness and in [45]
(for CAT(0) spaces) with an elimination of the use of Banach limits.

Moreover, one has a quadratic rate of asymptotic regularity d(xn, T (xn))→ 0 :

∀ε > 0 ∀n ≥ 4M

ε
+

32M2

ε2
(d(xn, T (xn)) < ε) ([45]).

In [57], the proof-theoretic analysis of Saejung’s proof has been further gener-
alized to the highly nontrivial case of CAT(κ)-spaces for κ > 0 producing an
explicit rate of metastability even in this context.

6 Proof Mining in Nonlinear Semigroup Theory

Let X be a Banach space, C ⊆ X be a nonempty subset and λ ∈ (0, 1).

Definition: A family {T (t) : t ≥ 0} of nonexpansive mappings T (t) : C → C
is a nonexpansive semigroup if

(i) T (s+ t) = T (s) ◦ T (t) (s, t ≥ 0),
(ii) for each x ∈ C, the mapping t 7→ T (t)x is continuous.

Theorem 6.1 ([69]). Let 0 < α < β such that α/β is irrational. Then any
fixed point p ∈ C of

S := λT (α) + (1− λ)T (β) : C → X

is a common fixed point of T (t) for all t ≥ 0.

Let t 7→ T (t)x be equicontinuous on norm-bounded subsets of C with modulus
ω, let fγ be an effective irrationality measure for γ := α/β, Λ, N,D ∈ N be s.t.
1/Λ ≤ λ, 1 − λ and 1/N ≤ β ≤ D. Then one can extract a bound (see section
3.3) Φ(ε,M, b) := Φ(ε,M, b,N,Λ, D, fγ , ω) s.t. for all M, b ∈ N, p ∈ C, ε > 0

‖p‖ ≤ b ∧ ‖S(p)− p‖ ≤ Φ(ε,M, b)→ ∀t ∈ [0,M ] (‖T (t)p− p‖ ≤ ε).

The main noneffective tool used in Suzuki’s proof is the binary König’s lemma
WKL and by Remark 2.4 it is guaranteed to have a primitive recursive (in the
sense of Kleene) bound Φ. In fact, the bound actually extracted in [42] is of
rather low complexity:

Φ(2−m,M, b) =
2−m

8(
∑φ(k,fγ)−1
i=1 Λi + 1)(1 +MN)

, where

k := D2ωD,b(3+[log2(1+MN)]+m)+1, φ(k, f) := max{2f(i) + 6 : 0 < i ≤ k}.

Example: α =
√

2, β = 2, λ = 1/2. Then Λ = 2, N = 1, D = 2, fγ(p) = 4p2.
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If C is convex (so that S : C → C) and xn+1 := 1
2xn + 1

2Sxn ∈ C starting from
x0 ∈ C is a d-bounded Krasnoselski iteration sequence of S one has a quadratic
rate of asymptotic regularity Ψ(ε, d) := 4d2/(πε2) ([7]) and so

∀n ≥ Ψ(Φ(ε,M, b), d) ∀t ∈ [0,M ] (‖T (t)xn − xn‖ ≤ ε).

Nonexpansive semigroups feature prominently - via the Crandall-Liggett for-
mula - in the study of abstract Cauchy problems that are given by accretive
set-valued operators. Explicit rates on the asymptotic behavior of solutions
have been obtained by our proof-theoretic methods in [41, 51].
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[1] Ariza-Ruiz, D., López-Acedo, G., Nicolae, A., The asymptotic behavior of
the composition of firmly nonexpansive mappings. J. Optim. Theory Appl.
167, pp. 409-429 (2015).

[2] Avigad, J., Gerhardy, P., Towsner, H., Local stability of ergodic averages.
Trans. Amer. Math. Soc. 362, pp. 261-288 (2010).

[3] Avigad, J., Rute, J., Oscillation and the mean ergodic theorem for uni-
formly convex Banach spaces. Ergod. Th. & Dynam. Sys. 35, pp. 1009-1027
(2015).

[4] Bačák, M., Kohlenbach, U., On proximal mappings with Young functions
in uniformly convex Banach spaces. To appear in: J. Convex Analysis.
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