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Abstract. The guarded fragment (GF) was introduced in [ABN98] as

a fragment of �rst order logic which combines a great expressive power

with nice modal behavior. It consists of relational �rst order formulas

whose quanti�ers are relativized by atoms in a certain way. While GF

has been established as a particularly well-behaved fragment of �rst order

logic in many respects, interpolation fails in restriction to GF, [HM99].

In this paper we consider the Beth property of �rst order logic and

show that, despite the failure of interpolation, it is retained in restriction

to GF. Being a closure property w.r.t. de�nability, the Beth property

is of independent interest, both theoretically and for typical potential

applications of GF, e.g., in the context of description logics. The Beth

property for GF is here established on the basis of a limited form of

interpolation, which more closely resembles the interpolation property

that is usually studied in modal logics. From this we obtain that, more

speci�cally, even every n-variable guarded fragment with up to n-ary

relations has the Beth property.

1 Introduction

The Guarded Fragment It has proven useful to view modal logics not only as

systems in themselves but also as fragments of �rst order logic. As is well-known,

the basic modal logic K can be seen as a fragment of �rst order logic via the

translation t which maps a proposition letter p to the atom Px, which com-

mutes with the Boolean connectives, and which maps formulas of the form 3'

to 9y(Rxy ^ '

t

(y)) and 2' to 8y(Rxy ! '

t

(y)). The image of K under this

translation is referred to as the modal fragment. This fragment turns out to be-

have excellently. It shares several nice model-theoretic properties with full �rst

order logic (e.g., interpolation, Beth de�nability, or the  Los-Tarski property),

and has in addition good algorithmic qualities: it is decidable and every satis-

�able modal formula has a �nite model and a tree model (in other words, the

modal fragment has the �nite model property and the tree model property).

Moreover, the decidability of this fragment is robust in the sense that various

extensions remain decidable. For example, adding features like counting quanti-

�ers or �xed points to the modal fragment does not a�ect decidability.



The usefulness of the modal fragment brought logicians to search for gener-

alizations of this fragment which retain the afore-mentioned nice properties. An

obvious candidate for such a generalization is the two variable fragment of �rst

order logic, denoted by L

2

. Although this logic is decidable and has the �nite

model property, it does not have interpolation nor the Beth property. Neither

does it have the tree model property, and also its decidability is not as robust

as that of the modal fragment [Var98][GO99].

In [ABN98] it is argued that the distinguishing characteristic of the modal frag-

ment is not its restriction to two variables but its restriction on quanti�ers,

namely to quanti�er patterns 9y(Rxy ^ '(y)) or 8y(Rxy ! '(y))). This brings

Andr�eka, van Benthem and N�emeti to investigate to what extent these quanti�er

restrictions can be loosened while retaining the attractive modal behavior. The

outcome is the guarded fragment (GF) which allows for quanti�cations of the

form 9�y(R�x�y ^ '(�x; �y)) and 8�y(R�x�y ! '(�x; �y)), where �x; �y are �nite sequences

of variables and ' is a guarded formula with free variables among �x; �y which all

must appear in the atomic formula R�x�y.

In [ABN98] this fragment is shown to have the �nite model property, the  Los-

Tarski property and, most importantly, to be decidable. Gr�adel [Gr�a97] improves

on this result by classifying the satis�ability problem for GF to be complete

for deterministic double exponential time; satis�ability for the �nite variable

guarded fragments is even in Exptime, in fact Exptime-complete. This is worth

comparing with the satis�ability problem for L

2

which is known to be Nexptime-

complete [GKV97]. What is more, GF has a certain tree model property. Since

the tree model property of the modal fragment can be seen as the main reason

behind the robustness of the decidability of that fragment (cf. e.g., [Var98]), this

gives hope as to the robustness of GF. And indeed, adding least and greatest

�xed points to GF yields a decidable extension [GW99].

However, as shown in [HM99], the interpolation theorem of �rst order logic fails

for GF. In the present paper it will be shown that GF does have an alternative

interpolation property, which closely resembles the interpolation property usu-

ally studied in modal logics. This result turns out to be strong enough to entail

the Beth de�nability theorem for GF.

The Beth (De�nability) Property In a slogan, the Beth de�nability property

states that implicit de�nability equals explicit de�nability. Generally, this prop-

erty may be regarded as an indication that there is a good balance between

syntax and semantics of a logic: the semantic phenomenon that the meaning of

a basic relation is implicitly determined, guarantees that there is an explicit syn-

tactic expression for that relation. Intuitively, an implicit de�nition of a relation

R is a de�nition of R, in the sense that it �xes the interpretation of R, in which

the relation symbol R may occur. For example, consider the conjunction � of

formulas saying that < is an irreexive linear order, there exists a �rst element



and this element has property R, and an element has property R i� its successor

does not have property R. Note that these statements can be formulated in �rst

order logic (with equality) using the predicates < and R. It is obvious that on

every �nite irreexive linear order the interpretation of the relation R is �xed.

In other words, on �nite models, � implicitly de�nes R. On the other hand,

as �rst observed by [H�aj77], there is no �rst order formula �(x) which does not

mention R and which would explicitly de�ne R over the �nite models of �. I.e.,

there is no formula �(x) using just < such that � j= Rx $ �(x) would be true

over all �nite models. Obviously, every relation that is explicitly de�nable is also

implicitly de�nable. As the above example showed, the converse is in general not

true. However, in the classical context of not necessarily �nite models, implicit

de�nability and explicit de�nability in �rst order logic coincide. This property of

�rst order logic has �rst been observed by E.W. Beth (see [Bet53]). Nowadays,

logics for which an analogous statement holds are said to have the Beth (de�n-

ability) property. So the above-mentioned example shows that �rst order logic

restricted to �nite models does not have the Beth property. Another logic which

fails to have this property is L

2

(cf. [Sai90], see also Remark 2). Besides �rst

order logic, logics with the Beth property include classical (and intuitionistic)

propositional calculus, or the modal logics K, K4 and S5.

Note that for GF, and the modal logics, as long as we consider �nite sets of

sentences � it does not make a di�erence for the Beth property whether we are

in the classical context of not necessarily �nite models, or regard �nite models

only. For, as these logics have the �nite model property, a �nite set of sentences

� implicitly de�nes a relation over �nite models if and only if it does so over all

models. The same for explicit de�nitions.

Description Logics Description logics were designed for the purpose of knowledge

representation. Roughly speaking, a description logic starts from some set of

primitive concepts (which are unary predicates) and roles (binary predicates).

The logic then speci�es (or de�nes) complex concepts out of these primitives

and makes assertions about these speci�cations, mostly in terms of modally

expressible dependencies between concepts via roles. E.g., the logic can assert

that a certain object, or all objects related to it via a designated role, belongs to

a certain concept. Although they originated from entirely di�erent backgrounds,

there is therefore a close correspondence between description logics and modal

logics. For example the description logic ALC is nothing but a syntactic variant

of the basic multi-modal logic K

n

[Sch91]. Hence the guarded fragment can also

be seen as a general framework for description logics, which may express more

than the ordinary modal dependencies. In particular, it may go beyond the built-

in arity restriction of modal logics, so that one can speak of higher-arity concepts

and roles. The interested reader is referred to [Gr�a98] for a proposal of GF as a

framework for description logic and for further references. In the description logic

context, the Beth property seems particularly desirable as it guarantees explicit

de�nability of concepts (and roles): e.g., concept speci�cation in the framework

of GF is closed in the sense that any concept that can implicitly be characterized

can actually be de�ned explicitly within the logic.



Outline of the Paper Ever since 1956 when W. Craig gave an alternative proof

of the Beth theorem for �rst order logic via his interpolation theorem, these

two properties are almost always studied simultaneously. This paper forms no

exception. In Section 3 we will prove a certain interpolation property for GF

from which the Beth property for GF will be derived in Section 4. Even better,

both these properties will be shown to hold for each of the n-variable fragments

of GF individually, in the presence of at most n-ary relations.

2 Preliminaries

In this section we will collect all the necessary preliminaries. It also serves to �x

notation and terminology.

Convention 1 By a language L we will henceforth understand a relational �rst

order language without function- or constant symbols. Besides variables, and

the parentheses ); (, we consider as logical symbols the connectives ^, :, the

existential quanti�er 9 and the identity symbol =. a

Notation 1 Models are denoted by calligraphic letters like M, N , and their

respective universes by M;N , etc. The interpretation of an n-ary predicate R

in the model M (notation: I

M

(R) � M

n

) is de�ned as usual. Moreover, we

extend this terminology to sets. That is, for X �M we write X 2 I

M

(R) if the

elements of X are R-related, in any order or multiplicity. E.g., if R is ternary and

hn;m; ni 2 I

M

(R), then fm;ng 2 I

M

(R). For a model M, m

1

; : : : ;m

n

2M and

a formula ' with free variables among fv

1

; : : : ; v

n

g, we writeM j= '[m

1

; : : : ;m

n

]

i� each assignment which maps v

i

to m

i

satis�es ' in M. If � is a formula (or a

set of formulas) and  a formula, then � j=  denotes the consequence relation.

That is, � j=  i� any assignment into a model M which satis�es (all formulas

in) � also satis�es  . In particular, ' j=  is the same as to say that ' !  is

valid, i.e., j= ' !  . For any formula ', by free(') we denote the set of free

variables occurring in '. By L

'

(read: the language of ') we denote the set of

relation symbols occurring in '. a

2.1 De�ning the Guarded Fragment: Syntax

De�nition 1 (Guarded formula). Let L be a language. The atomic L-formulas

(or, L-atoms) are of the usual form:

1. v

1

= v

2

, for variables v

1

; v

2

.

2. Pv

1

� � � v

n

, for n-ary P 2 L and variables v

1

; : : : ; v

n

, not necessarily distinct.

The guarded L-formulas are de�ned by induction as follows.

1. Any atomic L-formula is a guarded L-formula.

2. If ';  are guarded L-formulas, then ' ^  and :' are guarded L-formulas.



3. Let �v be a �nite, non-empty sequence of variables,  a guarded L-formula,

and G an L-atom such that free( ) � free(G). Then 9�v(G^ ) is a guarded

L-formula. In this case, the atom G is called the guard of the quanti�er. a

Note that as a dual of guarded existential quanti�cation we also get guarded

universal quanti�cation, of the form 8�v(G!  ).

A typical example of a guarded formula is the one expressing symmetry of a re-

lation: 8v

1

v

2

(Rv

1

v

2

!Rv

2

v

1

). On the other hand, the formula 8v

1

v

2

v

3

((Rv

1

v

2

^

Rv

2

v

3

)!Rv

1

v

3

), which expresses the transitivity of the relationR, is not guarded,

as Rv

1

v

2

^ Rv

2

v

3

is not a guard.

Remark 1. For readers familiar with [ABN98] we note that contrary to that

paper, De�nition 1 allows for identity atoms as guards. Since this issue does not

a�ect decidability nor interpolation, we decided to concentrate on this slightly

more general fragment. This also places us in line with [Gr�a97]. a

Guarded formulas are obviously �rst order formulas. The fragment of �rst order

logic consisting of guarded formulas is called the guarded fragment (GF). We

understand by GF

n

; n 2 !, the fragment of GF that consists of formulas whose

variables (free or bound) are among v

1

; : : : ; v

n

. The collection of formulas in

GF

n

which are built up from at most k-ary relation symbols is denoted by GF

k

n

.

2.2 Semantic Characterization of the Guarded Fragment

Similar to modal logics, the guarded fragment can be semantically analyzed via

a suitable notion of bisimulation. This has been done in [ABN98]. Here we will

recapitulate as much of these results as needed for the purposes of the present

paper.

De�nition 2 (live set). Let Z be a �nite subset of a model M. The set Z is

called live in M if Z is either a singleton, or there exists a relation R and a set

X such that Z � X 2 I

M

(R). In this case we will say that Z is R-live (in M).

For any language L we use the notation Z �

l

L

M to denote that Z is L-live in

M. That is, Z is R-live in M for some R 2 L. We will omit the subscript L if

it does not cause confusion. a

Note that by de�nition subsets of live sets are again live.

Below, by a �nite partial L-isomorphism we mean a �nite one-to-one partial map

between two models which preserves the relations in L both ways. By the image

of a map f : X �! Y we understand the set ff(x) : x 2 Xg, and we refer to X

as its domain.

De�nition 3 (Guarded bisimulation). A guarded L-bisimulation between

two models M and N is a non-empty set F of �nite partial L-isomorphisms

between M and N such that for any f : X �! Y 2 F the following hold:



1. For any Z �

l

L

M there is a g 2 F with domain Z such that g and f agree

on the intersection of their domains. (The zig-condition)

2. For any W �

l

L

N there is a g 2 F with image W such that g

�1

and f

�1

agree on the intersection of their domains. (The zag-condition) a

Guarded bisimulations are de�ned in such a way as to preserve guarded formu-

las. That is, for a guarded L-formula ' with free variables among fv

1

; : : : ; v

k

g, a

guarded L-bisimulation F between models M, N , an f 2 F , and m

1

; : : : ;m

k

2

dom(f) it is the case that M j= '[m

1

; : : : ;m

k

] , N j= '[f(m

1

); : : : ; f(m

k

)].

This can be shown by a straightforward induction on the complexity of '. The

zig- and zag-conditions precisely take care of the induction step for existential

quanti�cation. Indeed, preservation under guarded bisimulations is the charac-

teristic feature of GF, in the sense of the following Characterization Theorem

from [ABN98]: up to logical equivalence, GF precisely consists of those �rst order

formulas that are preserved under guarded bisimulations.

Note that in the de�nition of a guarded bisimulation that can be found in

[ABN98], the above role of live sets is taken over by what ABN call guarded

sets. These are subsets Z of a model M such that Z 2 I

M

(R), for some re-

lation R. Mutatis mutandis, all arguments in [ABN98] and in particular the

characterization theorem also apply to guarded formulas and guarded bisimu-

lations as de�ned in this paper. Note e.g., that a guarded formula of the form

9v(v = v ^ :Pv) which is not guarded in the ABN-sense, is preserved under

guarded bisimulations in our sense by virtue of the fact that singletons are live.

For further use we exhibit, for any relation R, a formula �

R

(v

1

; : : : ; v

l

) which

de�nes the set of R-live l-tuples. More precisely, for models M and m

1

; : : : ;m

l

2

M : M j= �

R

(v

1

; : : : ; v

l

)[m

1

; : : : ;m

l

] i� the set fm

1

; : : : ;m

l

g is R-live in M.

Let s be the arity of R. Let e range over all complete equality types in

variables v

1

; : : : ; v

l

. We regard e both as a quanti�er-free formula e(v

1

; : : : ; v

l

)

in the empty vocabulary and as an equivalence relation on the set f1; : : : ; lg

according to (j; i) 2 e i� e j= v

j

= v

i

. Let �: f1; : : : ; sg ! f1; : : : ; l + sg be

a mapping that is onto f1; : : : ; lg=e, i.e., for every j 2 f1; : : : ; lg there is some

i 2 f1; : : : ; sg such that �(i) is in the same e equivalence class with j. Put, for

any such pair of e and �,



e;�

= e(v

1

; : : : ; v

l

) ^ 9�v

�

Rv

�(1)

: : : v

�(s)

^ true

�

; (1)

where �v consist of those v

�(i)

for which �(i) > l (if there are such; else no

quanti�cation is necessary and 

e;�

is actually atomic). The desired formula

�

R

(v

1

; : : : ; v

l

) is obtained as the disjunction over all 

e;�

for matching pairs

(e; �).

For any �nite language L we further obtain a formula �

L

(v

1

; : : : ; v

l

) de�ning

the set of L-live l-tuples by putting

�

L

(v

1

; : : : ; v

l

) =

�

^

1�i;j�l

v

i

= v

j

�

_

_

R2L

�

R

(v

1

; : : : ; v

l

); (2)



where the �rst disjunct reects the fact that all singleton sets are regarded as

live (namely, as guarded by equality).

We �nally note that 

e;�

is equivalent to a formula in GF

max(l;s)

. We conclude

that for every �nite language L which contains at most k-ary relations and for

any l � k we may assume �

L

(v

1

; : : : ; v

l

) 2 GF

k

k

.

3 Interpolation for the Guarded Fragment

As shown in [HM99], GF does not have the interpolation property.

Theorem 1 (Failure of interpolation in GF, [HM99]). There exist sen-

tences ',  2 GF

3

3

such that j= ' !  , without a guarded interpolant (in any

number of variables). That is, there does not exist a guarded formula # built

up from relation symbols which occur both in ' and  such that j= ' ! # and

j= #!  .

To see why this property fails for GF, it is useful to compare it to the interpo-

lation property studied in modal logic. In modal logic, the interpolant is usually

con�ned to proposition letters in the common language but may contain non-

shared modalities. Strengthening the requirement on the common language to

also include common modalities results in a much stronger interpolation prop-

erty. [Ben99] shows this property for the basic multi-modal K. [Mar99] gener-

alizes this result to Sahlqvist axiomatizable multi-modal logics whose axioms

correspond to universal Horn frame conditions which do not specify any inter-

action between the di�erent accessibility relations (e.g., bi-modal S5). When we

have interaction, the stronger interpolation property is easily lost as the follow-

ing example from [Ben99] shows. Consider the multi-modal logic de�ned by the

axiom 3

1

p!3

2

p. This logic does not have the stronger interpolation property.

For, in this logic 3

1

True !3

2

True is a theorem whereas the only formulas

in the common language (in the strong sense) are True and False, which are

obviously not interpolants. However, this logic does have the usual interpolation

property (cf. [MV97, Corollary B.4.1]).

Thinking of guarded formulas as translations of modal formulas, we see that The-

orem 1 formulates exactly this stronger version of interpolation, where `common

language' means the set of common relation symbols, which includes both the

relations which are translated proposition letters and the relations that are ob-

tained in translating the modalities. This suggests to consider an alternative

interpolation property for GF that more closely resembles the one that is usu-

ally studied in modal logic. For this we will distinguish occurrences of relation

symbols as guards from other occurrences.

Notation 2 For any guarded formula ' we understand by L

G(')

the set of

relations that occur in ' as the guard of some quanti�er. a

Note that the relations in L

G(')

may at the same time occur in ' at non-guard

positions. For example, in ' = 9x(Px ^ 8y(Sxy!Py)), the relation P occurs

both as a guard and as a non-guard.



De�nition 4 (Guarded L

1

=L

2

-bisimulation). Let L

1

� L

2

be languages. A

guarded L

1

=L

2

-bisimulation between models M and N is de�ned as a non-empty

set of �nite partial L

2

-isomorphisms between M;N with zig- and zag- condition

stipulated for L

1

-live sets only. a

This type of bisimulation supports a characterization theorem for that fragment

of GF in which only L

1

-predicates may be used as guards, but all predicates in L

1

and L

2

may occur at non-guard positions. Analogously to the characterization

theorem for GF, the following characterization can be shown, using [HM99,

Proposition 3.11].

Proposition 1. Let L

1

� L

2

be languages which contain at most k-ary relation

symbols. A �rst order sentence ' is preserved under guarded L

1

=L

2

-bisimulations

i� ' is logically equivalent to an L

2

-sentence  2 GF

k

k

with L

G( )

� L

1

.

Notation 3 For models M;N , and m

1

; : : : ;m

k

2M , n

1

; : : : ; n

k

2 N , we write

M;m

1

� � �m

k

�

GF

k

L

N ; n

1

� � �n

k

, if M j= �[m

1

; : : : ;m

k

] i� N j= �[n

1

; : : : ; n

k

],

for all L-formulas � 2 GF

k

. a

Recall that for any formula #, by L

#

we denote the language consisting of all the

relation symbols occurring in #. The theorem below states that GF

k

k

(and hence

GF) has interpolation provided an interpolant for ' !  is allowed to contain

relations in L

G(')

and L

G( )

which are not necessarily in the common language.

Modally speaking, an interpolant may use non-shared modalities.

Theorem 2 (GF

k

k

has interpolation w.r.t. non-guard occurrences). Let

k 2 !. For any ';  2 GF

k

k

such that j= ' !  , there exists a # 2 GF

k

k

such

that

1. L

#

� (L

'

\ L

 

) [ L

G(')

[ L

G( )

, and

2. j= '! # and j= #!  .

Proof of Theorem 2: We will show `amalgamation via bisimulation' in the same

spirit as e.g., the proof of interpolation for the basic modal logic K in [ABN98,

Theorem 2.5]. Its main construction is a deviation of a fairly standard amalga-

mation method as can be found e.g., in [Mar95] and [N�em85].

For the course of this proof, let k 2 ! be �xed but arbitrary. Consider ';  2 GF

k

k

such that j= ' !  . For brevity, write L for (L

'

\ L

 

) [ L

G(')

[ L

G( )

. Let

�

def

= f# 2 GF

k

: L

#

� L & j= '! #g. Our aim is to show that

Claim 1 � j=  .

Note that in the formulation of this claim free variables play the role of individ-

ual constants. By compactness, it then follows that  is implied by some �nite

conjunction # of formulas in �. Note that # is again an L-formula in GF

k

k

. Hence

# is an interpolant for ',  , and we are done.



To prove Claim 1, consider an arbitrary L

 

[ L-model N , and b

1

; : : : ; b

k

2 N

such that N j= #[b

1

; : : : ; b

k

], for every # 2 �. Our task is to show that N j=

 [b

1

; : : : ; b

k

].

We �rst note that there exists some L

'

[ L-model M and a

1

; : : : ; a

k

2 M

such that M j= '[a

1

; : : : ; a

k

] and M; a

1

� � � a

k

�

GF

k

L

N ; b

1

� � � b

k

. For, reason-

ing to contraposition, assume such M, a

1

; : : : ; a

k

do not exist. In that case,

�

def

= f# 2 GF

k

: L

#

� L & N j= #[b

1

; : : : ; b

k

]g j= :'. By compactness it follows

that j= ' ! :

V

�

0

, for some �nite conjunction of formulas in �. Therefore

:

V

�

0

2 �, whence N j= :

V

�

0

[b

1

; : : : ; b

k

]. Quod non.

By passing to !-saturated elementary extensions of M and N , we may w.l.o.g.

assume that M, N are !-saturated. As shown in the proof of the Characteri-

zation Theorem for GF in [ABN98, Theorem 4.2.2], the relation of guarded L-

equivalence between !-saturated structures induces a guarded L-bisimulation.

The same is true for the relation of �

GF

k

L

if L contains at most k-ary rela-

tions. Hence our assumption in particular implies the existence of a guarded

L-bisimulation between M, N which links ha

1

; : : : ; a

k

i and hb

1

; : : : ; b

k

i.

The aim of the rest of this proof is to amalgamate the models M and N in

such a way that we can de�ne guarded L

G(')

=L

'

- (resp. L

G( )

=L

 

-) bisimula-

tions between the amalgamated model and M (resp. N ) which, when composed,

will map ha

1

; : : : ; a

k

i to hb

1

; : : : ; b

k

i. Chasing the resulting diagram and using the

fact that ' j=  will yield the desired conclusion that N j=  [b

1

; : : : ; b

k

]. This

will be made precise in the sequel.

We de�ne a model over the set MN consisting of pairs hm;ni 2 M �N whose

components cannot be distinguished by L-formulas in GF

k

. The interpretation

of the predicates is read o� coordinatewise. More precisely,

{ MN

def

= fhm;ni 2M �N : M;m �

GF

k

L

N ; ng.

{ For l-ary R 2 L

'

, set hhm

1

; n

1

i; : : : ; hm

l

; n

l

ii 2 I

MN

(R) i�

� M;m

1

� � �m

l

�

GF

k

L

N ; n

1

� � �n

l

,

(i.e., the m

i

and n

i

are not only pairwise equivalent but jointly so), and

� hm

1

; : : : ;m

l

i 2 I

M

(R).

{ The interpretation of relations in L

 

is de�ned similarly.

Note that the interpretation of relations in the common language is well-de�ned

thanks to the requirement on live subsets of MN to be jointly L-equivalent. The

upshot of amalgamating our models into a product is that we can take projection

functions as building blocks for the desired bisimulations. This is the purport

of the following lemma, where �

i

, i = 1; 2, denotes the projection function to

the i-th coordinate. De�ne F

�

1

def

= f�

1

: X �! Y : X �

l

L

G(')

MN or X =

fha

1

; b

1

i; : : : ; ha

k

; b

k

igg, where the elements a

1

; : : : ; a

k

2 M; b

1

; : : : ; b

k

2 N are

the ones picked at the very beginning of this proof.



Lemma 1 (Amalgamation lemma). The set F

�

1

is a guarded L

G(')

/L

'

-

bisimulation between MN and M. The analogously de�ned set F

�

2

is a guarded

L

G( )

/L

 

-bisimulation between MN and N .

Before proving the lemma, let us �rst demonstrate its use and �nish the proof

of Claim 1. Recall that the model M and the sequence a

1

; : : : ; a

k

2 M were

chosen in such a way that M j= '[a

1

; : : : ; a

k

]. We took care to include �

1

:

fha

1

; b

1

i; : : : ; ha

k

; b

k

ig �! fa

1

; : : : ; a

k

g in F

�

1

. Since ' is invariant under guarded

L

G(')

/L

'

-bisimulations, it follows from the amalgamation lemma that MN j=

'[ha

1

; b

k

i; : : : ; ha

k

; b

k

i]. By assumption thenMN j=  [ha

1

; b

1

i; : : : ; ha

k

; b

k

i]. Since

we included �

2

: fha

1

; b

1

i; : : : ; ha

k

; b

k

ig �! fb

1

; : : : ; b

k

g in F

�

2

, the second part

of the amalgamation lemma allows us to conclude that N j=  [b

1

; : : : ; b

k

].

Q.E.D. Claim 1.

Now we turn to the proof of the amalgamation lemma.

Proof of Lemma 1: We will prove the �rst part of the lemma concerning F

�

1

.

The second statement about F

�

2

can be shown similarly.

F

�

1

is obviously non-empty. Let �

1

: X �! Y 2 F

�

1

. Then X = fx

1

; : : : ; x

l

g,

for some l � k, and M; �

1

(x

1

) � � ��

1

(x

l

) �

GF

k

L

N ; �

2

(x

1

) � � ��

2

(x

l

). By construc-

tion this implies that for any n-ary R 2 L

'

, and any hx

i

1

; : : : ; x

i

n

i 2 X

n

it is the

case that hx

i

1

; : : : ; x

i

n

i 2 I

MN

(R) i� h�

1

(x

i

1

); : : : ; �

1

(x

i

n

)i 2 I

M

(R). In other

words, �

1

is a partial L

'

-isomorphism.

For the zag-condition, consider �

1

: X �! Y 2 F

�

1

, andW �

l

R

M, for some R 2

L

G(')

. As above,X = fx

1

; : : : ; x

l

g, for some l � k, andM; �

1

(x

1

) � � ��

1

(x

l

) �

GF

k

L

N ; �

2

(x

1

) � � ��

2

(x

l

). Recall that the relation�

GF

k

L

forms a guarded L-bisimulation

between M and N . We saw that the partial map f from M to N which maps

�

1

(x) to �

2

(x), for x 2 X , is an element of this bisimulation. By the zig-condition,

there exists a partial L-isomorphism g in this bisimulation with domain W which

agrees with f on the intersection of their domains. Let W

�

= fhw; g(w)i : w 2

Wg �

l

R

MN . Then W

�

is the desired pre-image for W . As the zig-condition is

trivially ful�lled, this completes the proof.

Q.E.D. Lemma 1.

Q.E.D. Theorem 2.

Corollary 1. GF has interpolation w.r.t. non-guard occurrences.

4 The Beth Theorem for the Guarded Fragment

In general, an important reason to investigate the interpolation property is that

it can be seen as an intermediate stage in proving the Beth de�nability theorem.

It will be shown that the limited form of interpolation expressed in Theorem 2

still serves this purpose for GF.

Let L

0

be a language and R and R

0

distinct relation symbols of the same arity

that are not in L

0

. Let L = L

0

[ fRg. Let � be a set of guarded sentences in

the language L, and let �

0

denote the result of renaming R to R

0

in �.



Theorem 3 (Beth Theorem for GF

k

k

). Let L

0

, L, R, R

0

, � and �

0

be as

above. Let k 2 ! be such that � [fR�vg � GF

k

k

. If � implicitly de�nes R, i.e., if

�;�

0

j= 8�v(R�v $ R

0

�v), then there exists some '(�v) 2 GF

k

k

in the language L

0

such that � j= 8�v(R�v $ '(�v)). This formula ' is called an explicit de�nition

for R relative to �.

Proof of Theorem 3: Let all data be as in the theorem, and assume that

�;�

0

j= 8�v(R�v $ R

0

�v): (3)

We �rst show that (3) implies that any R-live set in a model for � is L

0

-live.

Claim 2 Let M be a model of �, and let Y �

l

R

M. Then Y �

l

L

0

M.

Proof of Claim 2: Let M be a model of �, and let Y

0

�

l

R

M. Reasoning to

contraposition, suppose Y

0

6�

l

L

0

M. We will derive a contradiction from this.

Let 2 denote the two-element universal L-model with domain f0; 1g. That is,

�s 2 I

2

(P ), for every l-ary P 2 L and every �s 2 f0; 1g

l

. Let M�2 denote

the usual product model. Writing �

1

for the projection on the �rst coordinate,

this de�nition entails that �s 2 I

M�2

(P ) i� h�

1

(s

1

); : : : ; �

1

(s

l

)i 2 I

M

(P ), for all

�s 2 (M�f0; 1g)

l

and l-ary P 2 L. As the reader can easily verify, this in its turn

implies that F

1

def

= f�

1

: X �! Y : X �

l

L

M� 2g is a guarded L-bisimulation

between M�2 and M. Since M j= �, we conclude that M�2 j= �.

Our aim is to modify the interpretation of R on M�2 in such a way that

the resulting structure is again a model for �, contradicting the fact that �

implicitly de�nes R. For this, we consider X

0

def

= Y

0

� f0g. Let (M�2)

0

be the

model which di�ers from M�2 only in that X

0

62 I

(M�2)

0

(R). We claim that

F

0

1

def

= f�

1

: X �! Y : X �

l

L

(M�2)

0

g is a guarded L-bisimulation between

(M�2)

0

and M.

F

0

1

is certainly not empty. Consider some �

1

: X �! Y in F

0

1

. If X

0

6� X ,

then L-relations are obviously preserved by �

1

in both ways. But we changed

the interpretation of R such that X

0

is not R-live in (M�2)

0

. As Y

0

is not L

0

-

live, it follows that X

0

is not L

0

-live in (M�2)

0

either, and hence no superset

of X

0

is the domain of some �

1

2 F

0

1

.

The zig-condition needs no comment. For the zag-condition, consider some

�

1

: X �! Y in F

0

1

, and W �

l

L

M. If W � Y , the condition is trivially ful�lled.

If not, then �

�1

1

[Y \W ] can be extended in at least two ways to a set Z for

which �

1

[Z] = W . For W 6= Y

0

, either one of these two extensions constitutes the

domain of a projection in F

0

1

ful�lling the zag condition for �

1

;W . For W = Y

0

any extension other than X

0

can be taken as such.

This shows that (M�2)

0

j= �. Summarizing, we see thatM�2 j= �, (M�2)

0

j=

� but I

M�2

(R) 6= I

(M�2)

0

(R). This contradicts the fact that � implicitly de�nes



R. We conclude that Y

0

is indeed L

0

-live, as was to be shown.

Q.E.D. Claim 2.

By compactness we may assume � to be a single sentence, and L

0

�nite. Assume

R is l-ary, and let �

0

(v

1

; : : : ; v

l

) be the canonical L

0

-formula in GF

k

k

saying that

the set fv

1

; : : : ; v

l

g is L

0

-live (cf. page 6). For brevity, we write �

0

. For all

L-models M we de�ne R

0

def

= f �m 2 M

l

: M j= R ^ �

0

[ �m]g: Hence for every

L

0

-model M, �m 2M

l

, and every interpretation of R in M: (M; R) j= R^�

0

[ �m]

i� (M; R

0

) j= R[ �m]. Note that by Claim 2, I

M

(R) = R

0

, for models M of �.

Let �

0

be the result of replacing in � any occurrence of R by the conjunction

R ^ �

0

. It is now straightforward to check the following:

(i) �

0

is preserved under guarded L

0

/L-bisimulations. Hence, by Proposition 1,

�

0

is equivalent to an L-formula � in GF

k

k

with L

G(� )

� L

0

.

(ii) � j= �

0

, by Claim 2.

(iii) For every L

0

-model M, and every interpretation of R in M: if (M; R) j= �

0

,

then (M; R

0

) j= �.

Let �

0

0

be the result of replacing R by R

0

in �

0

. It follows from (3) and (iii) that

�

0

^ R ^ �

0

j= �

0

0

! R

0

: (4)

For, consider an L

0

[ fR;R

0

g-model (M; R;R

0

) and some �m 2 M

l

such that

(M; R;R

0

) j= (�

0

^ R ^ �

0

^ �

0

0

)[ �m]. We have to show that (M; R;R

0

) j=

R

0

[ �m]. It follows from (iii) that (M; R

0

; R

0

0

) j= (� ^ R ^ �

0

)[ �m]. By (3), then

(M; R

0

; R

0

0

) j= R

0

[ �m]. Hence, certainly, (M; R;R

0

) j= R

0

[ �m].

Replace �

0

and �

0

0

in (4) by L

0

-guarded formulae � and �

0

according to (i).

We then apply Theorem 2 to obtain, as an interpolant for (4), a formula # in

GF

k

k

such that L

#

� L

0

and (�

0

^ R ^ �

0

) j= # and # j= �

0

0

! R

0

. Applying

(ii) and Claim 2, we �nd that � ^ R j= #. Renaming R

0

back into R in the

second implication and one more appeal to (ii) gives us that # j= � ! R. Hence

� j= R$ # and # provides the desired explicit de�nition of R relative to �.

Q.E.D. Theorem 3.

Corollary 2. GF has the Beth de�nability theorem.

Remark 2. Theorem 3 shows that the guarded �nite variable fragments behave

much nicer w.r.t. de�nability than the full �nite variable fragments of �rst order

logic (FO). For not only does the Beth theorem fail for any n-variable fragment

of FO, n � 2, it fails drastically. In fact, even FO

2

2

(using the terminology FO

k

n

for fragments of FO similar to our use of GF

k

n

for guarded fragments) does not

have the Beth property. For more information, the reader is referred to [Sai90]

or [Hod93]. a
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