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The Chambery topos K is boolean, i.e. Ω ∼= 2 = 1 + 1. Therefore, we
may define a canonical map i2 : Ω � ∆(2) as [0, 1], i.e. the source tupling of
the global points 0, 1 : 1 → ∆(2), and one easily sees that i2 is monic with
characteristic predicate (i = 0) ∨ (i = 1). But i2 is not an iso since K validates
the proposition that ∆(2) is infinite. But we will show that

Theorem 1 The map K(1, i2) : K(1,Ω)→ K(1,∆(2)) is a bijection.

telling us that the existence property heavily fails for K because the valid propo-
sition that ∆(2) contains elements different from 0 and 1 is not witnessed by a
global element.

Since K is a subtopos of E = RT(D,PL) and in E the nno NE is the countable
coproduct of 1 the nno NK in K is also the countable coproduct of 1 since the
sheafification functor E → K preserves colimits and finite limits. We write nE
and nK for the n-fold copower of 1 in E and K, respectively.

From these considerations it follows that

Lemma 1
If f is a morphism from NK or nK to ∆(2) then f factors through i2.

Proof: Let ik : 1→ NK be the inclusion of the k-th summand. Thus f factors
through i2 iff all f ◦ ik factor through i2. But by Th.1 all morphisms 1→ ∆(2)
factor through i2. 2

Theorem 2 For n > 2 there is no monomorphism nK � ∆(2) and thus no
monomorphism NK � ∆(2).

Proof: If m : nK � ∆(2) then m = i2 ◦ f for some f : nK → Ω which is also
monic. Thus K validates the proposition that f is 1-1. But for n > 2 it holds
in the internal logic of K that f is not 1-1. Contradiction!
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If there were a mono NK � ∆(2) then there also were a mono 3K � ∆(2)
because 3K � NK contradicting the observation above. 2

It has been shown that K validates the propositions that ∆(2) has infinitely
many elements and that there even exists a 1-1-map from NK to ∆(2). But
these existential statements hold only in the sense of the internal logic of K
and are not witnessed by global elements which forecefully illustrates Miquel’s
warning that one should never trust a realizer of an existential statement!

Notice that these results are independent from the answer to the open ques-
tion whether ΩK is 2-valued. But Theorem 1 says that Ω has as many global
elements as ∆(2). Thus, if Ω and thus ∆(2) has n different global elements
a1, . . . , an then by source tupling we obtain a morphism nK → ∆(2) which,
however, cannot be a monomophism if n > 2. Similarly, if ΩK and thus
∆(2) has ℵ0 many different global elements then by source tupling we obtain
a map f : NK → ∆(2) which, however, cannot be a monomorphism. No-
tice that this hypothetical map f : NK → ∆(2) will not be monic although
Γ(f) = K(1, f) : K(1, NK)→ K(1,∆(2)) is one-to-one.

1 Proof of Theorem 1

Both Ω and ∆(2) have the same underlying set 2 = {0, 1}. For distinct i, j ∈ 2
we have eqΩ(i, j) = {>} = eq∆(2)(i, j) but for i ∈ 2 we have eqΩ(i, i) = ↑{>, i}
whereas eq∆(2)(i, i) = ↑{>, 0}.

A partial element of Ω is given by a predicate P : 2 → Ω such that⋂
i,j∈2

P (i) → P (j) → eqΩ(i, j) contains a proof-like element whereas a partial

element of ∆(2) is given by a predicate P : 2→ Ω such that
⋂
i,j∈2

P (i)→ P (j)→

eq∆(2)(i, j) contains a proof-like element.
We first will show that partial elements of ∆(2) are in 1-1-correspondence

with partial elements of Ω via pullback along i2 : Ω � ∆(2). Clearly, pullback

along i2 exhibits K(1, Ω̃) as a retract of K(1, ∆̃(2)) since every partial element
of Ω may be considered as a partial element of ∆(2) and i∗2 ◦Σi2 is isomorphic to
identity.1 Thus, it suffices to show that i∗2 reflects equality of partial elements.

Lemma 2 If P and Q are subsingleton predicates on ∆(2) then P and Q are
equal whenever P ◦ i2 and Q ◦ i2 are equal.

Proof: A partial element of ∆(2) is given by a map P : 2→ Ω such that

P (i)→ P (j)→ eq∆(2)(i, j)

is realized uniformly in i, j ∈ 2 by some proof-like tP ∈ D, i.e. for t ∈ P (i) and
t′ ∈ P (j) it holds that tP tt

′ ∈ eq∆(2)(i, j) = ↑({>} ∪ {0 | i = j}).

1As usual we write Ã for the partial map classifier for A.
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Obviously, w.l.o.g. it suffices to consider realizers tP with tP tt
′ ∈ {>, 0,⊥}

for all t, t′ ∈ D and we may assume tP to be commutative2. Notice, moreover,
that δP = λx.tPxx is proof-like, too.

Let A be the set of minimal elements x with δP (x) 6= ⊥. Notice that
{[x, tP (x)] | x ∈ A} is the trace of δP and, thus, by stability of δP the set A is
an antichain, i.e. coherent elements of A are equal. If e ∈ A and x, y w e with
x ∈ P (0) and y ∈ P (1) then δP (e) = > since δP (e) = tP (e, e) v tP (x, y) = >
and thus e 6∈ PL since δP is proof-like. Thus, by contraposition for e ∈ A ∩ PL
for all x, y ∈ P (0) ∪ P (1) with x, y w e we have x ∈ P (0) iff y ∈ P (0). Let
A∩ ↓(P (0)∪P (1)) = A0 ∪̇A1 ∪̇A2 such that ↑A0 ∩P (1) = ∅ = ↑A1 ∩P (0) and
A2 ⊆ ↓P (0)∩ ↓P (1). Then there exists a dP ∈ PL sending all elements of A0 to
0, all elements of A1 to 1 and all elements of A2 to >.

Obviously, this dP realizes P (i) → eqΩ(i, i) uniformly in i. Thus, we can
find proof-like realizers for the equivalence of the predicates P and λi:2. P (i) ∧
eqΩ(i, i). The latter, obviously, represents the restriction of P along i2.

Thus, if P and Q represent partial elements of ∆(2) whose restriction along
i2 is equal, i.e. λi:2. P (i) ∧ eqΩ(i, i) and λi:2. Q(i) ∧ eqΩ(i, i) are equivalent in
K, then also P and Q are equivalent in K as desired. 2

Now we are ready to give the

Proof (of Theorem 1) :

In every boolean topos the partial map classifier Ã is given by A + 1. The
subobject ι1 : A� A+1 is classified by the map cA = [trueA, false] : A+1→ Ω.
Thus a : 1→ A+ 1 is a global element of A iff cA ◦ a = true.

Notice, moreover, that for f : B → A we have cA ◦ (f + 1) = cB .
Lemma 2 says that every a : 1→ ∆(2)+1 factors through the mono i2+1 via

a unique a′ : 1→ Ω + 1. We have cΩ ◦ a′ = c∆(2) ◦ (i2 + 1) ◦ a′ = c∆(2) ◦ a = true
for which reason a is a global element of ∆(2) iff a′ is a global element of Ω. 2

2 Some General Remarks

Boolean valued models can be characterized as those Grothendieck toposes
where all epis split. One says that an elementary topos E validates the (internal)
axiom of choice iff eA is an epi whenever e is an epi. Already in Johnstone’s
1977 book on Topos Theory one finds the theorem that in an elementary topos
E every epi splits iff it validates the (internal) axiom of choice and supports
split, i.e. every epi to a subterminal object has a section. This latter property
is a natural generalization of the existence property claiming that every epi to
a terminal object has a section.

Boolean Grothendieck toposes can be characterized as localic boolean toposes
over the Schanuel topos S of all continuous actions of the topological group G0

2since there is a bistrict stable binary map ∧ on {>, 0,⊥} with 0 ∧ 0 = 0 and > = x ∧ y
whenever {>} ⊆ {x, y} ⊆ {>, 0}
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of permutations of N on sets.3 Thus, boolean Grothendieck toposes are those
equivalent to S(B) for some complete boolean algebra B in S. In set theory
these models are known as symmetric boolean valued models devised for the
purpose of refuting the axiom of choice.4 Thus, boolean Grothendieck toposes
may be understood as the synthesis of the ideas of boolean valued models and
permutation models (where S is the prototypical permutation model).

It is well known (see e.g. Jech’s 1973 book on Axiom of Choice) that sym-
metric boolean valued models may refute countable choice since there may exist
infinite sets S which are not Dedekind infinite, i.e. not admitting an injection
of N into S.

It is unlikely that classical realizability models include symmetric boolean
valued models in which case it were immediate that classical realizability does
not in general validate countable choice.

Using bar recursion one can show that the Chambery topos validates depen-
dent and thus countable choice. I hope that Keff , the effective version of the
Chambery topos, does not because it might validate the proposition that

∀f : NK → ∆(2).¬∀n,m : NK. f(n) = f(m)→ n = m

i.e. that no f : NK → ∆(2) is one-to-one.

3 A variant of K which is not 2-valued

The variant of K we have in mind differs only w.r.t. its notion of proof-like
object, namely the restriction PLeff of PL to its effective elements. Obviously,
the set PLeff is again closed under application and contains all constants. It also
contains the least fixpoint operator and thus also the bar recursor.

For a partial function f from N to 2 let kf be the element of Dω whose n-th
component is f(n) if f(n) is defined and ⊥ otherwise.

Let f now be a non-effective function from N to 2 and Af be the proposition
{kf}‚ which is disjoint from PL since kf ∈ PLω. Thus, in particular, we have
Af ∩ PLeff = ∅. We will show that ¬Af ∩ PLeff is also empty establishing that
the classical realizability model arising from PLeff is not 2-valued.

Notice that Af contains a least element df whose trace is the set Tf =
{[ke,>] | e ⊆fin f}. Suppose there exists an effective proof-like p : D → Σ
mapping all elements of Tf to >, i.e. tr(p) ⊇ Tf × {>}. Let q ⊆ p with tr(q) =
tr(p) ∩ {[[ke,>],>] | e is a finite partial function from N to 2}. This q is an
effective, linear and proof-like element of ¬Af , i.e. tr(q) ⊇ Tf×{>}. If [[e1,>],>]
and [[e2,>],>] are in tr(q) then e1 ¨ e2. Thus, for [[e′,>],>] ∈ tr(q) we have

3The topology on G0 is the subspace topology induced by G0 ⊆ NN where NN carries the
Baire topology.

4Symmetric boolean valued models may be understood from a categorical point of view as
toposes of the form C(G)(B) where G is a topological group, C(G) is the topos of continuous
actions of G on Set and B is a complete boolean algebra in C(G). For further discussion see
Blass and Scedrov’s book Freyd’s Models for the Independence of the Axiom of Choice from
1989.
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e′ ¨ e for all e ⊆fin f from which it follows that e′ ⊆ f . Thus, we have shown
that tr(q) = Tf × {>} which is r.e. since q is effective. But then {e | e ⊆fin f}
is r.e. and thus f recursive contradicting the assumption on f . Thus, we have
shown that there is no effective element in ¬Af ∩ PL, i.e. ¬Af ∩ PLeff ∩ ∅.

Let f : N → 2 and ∆(f) : ∆(N) → ∆(2). Let iN : N � ∆(N) be the
subobject whose characteristic predicate is the usual inductive definition of N .
The map ∆(f) ◦ iN : N → ∆(2) factors through i2, i.e. ∀nN . (∆(f)(n) =
0) ∨ (∆(f)(n) = 1), iff f is computable. For example for f : N → 2 with
f(n) = 1 iff ∃k.T (n, n, k) the predicates eq∆(2)(f(n), 0) and ∀kN .¬T (n, n, k) are
non-equivalent predicates on N in RT(D,PLeff).

Notice that RT(D,PLeff) validates countable and dependent choice since D
contains non-computable elements. It is not clear at all whether RT(Deff ,PLeff)
validates countable or dependent choice since it may lack the non-computable
“anti-proofs” needed for proving that bar recursion validates double negation
shift.

4 In the Effective Chambery Topos it holds that
there is an injective function from N to ∆(2)
(Krivine August 2016)

First we show that
∃ν∆(N).∀nN .¬∆(eq)(ν, n) = 0

i.e.
¬∀ν∆(N).¬∀nN .¬∆(eq)(ν, n) = 0

holds in the effective Chambery topos which can be seen as follows.
For ν ∈ N every term realizing ∀nN .¬∆(eq)(ν, n) = 0 is an extension of the

minimal term sν with sνν0 = > and sνn> = > for all n ∈ N. Suppose t realizes
∀ν∆(N).¬∀nN .¬∆(eq)(ν, n) = 0. Then t sends s0 and s1 to >. Thus, since
s0 ¨ s1 and t is stable we have > = ts0uts1 = t(s0us1). Notice that s0us1 is the
minimal term f with fn> = > for all n ∈ N. Since f is prooflike the term λx.xf
is prooflike, too, and it sends all realizers of ∀ν∆(N).¬∀nN .¬∆(eq)(ν, n) = 0 to
>, i.e. λx.xf is a prooflike term realizing ¬∀ν∆(N).¬∀nN .¬∆(eq)(ν, n) = 0 as
desired.

Now we reason internally to the effective Chambery topos. Let ν ∈ ∆(N)
such that ∀nN .¬∆(eq)(ν, n) = 0. Then the map f : N → ∆(2) with f(n) =
∆(eq)(ν, n) is injective since all f(n) 6= 0 and f(n)∧f(m) ≤∆(2) 0 for all n 6= m
in N .

But this does not mean that the effective Chambery topos validates count-
able or dependent choice. So there is still some hope but it might be difficult...

5



5 ∆(2) can be arbitrarily big

Let κ be some arbitrary cardinal. Then we may consider the recursive type
Dκ
∼= ΣD

κ
κ in Coh. This again gives rise to a model of untyped λ-calculus with

control and by Pitts’s theorem there exists a unique Pκ ⊆ Dκ consisting of all
t ∈ Dκ sending all elements of Pκκ to >.

For α < κ let α be the unique element t of Dκ such that t(~t) = > iff tα = >.
Let K be the object of RT(Dκ, Pκ) with underlying set κ and eqK(α, β) =
↑
(
{α | α = β} ∪ {>}

)
.

Just like in section 4 for κ = ω one can show that the classical realizability
model induced by Dκ, Pκ and the pole {t∗~t | t(~t) = >} validates the proposition
that there is an injective map from K to ∆(2).

Thus, we cannot expect that ∆(2) can be embedded into a fixed set in the
cumulative hierarchy as e.g. P(N). Generally, there arises the question whether
classical realizability toposes are exhausted by their cumulative hierarchy, i.e.
whether every ∆(I) embeds into a set in the cumulative herarchy.
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