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1 Giraud Splitting of PĈ

Let C be a category with finite limits. Then, as is well known, the category
Ĉ = SetC

op

of presheaves over C is a topos and, accordingly, a model of type
theory. As introduced in Giraud’s book from 1971 and used by Bénabou in
unpublished work (around 2001/2) the fundamental fibration PĈ = ∂1 : Ĉ2 → Ĉ
is equivalent to the split fibration S(C) over Ĉ as given by

S(C)(X) = SetElts(X)op S(C)(f : Y → X) = SetElts(f)op

where Elts(X) = YC↓X and Elts(f) = YC↓f , i.e. postcomposition with f .

As emphasized by Bénabou one may think of Ĉ as a (“higher order”) category
of classes and the full subcategory of representable presheaves as category of sets
which, as well known, is equivalent to C. A morphism f : Y → X is thought
of as a family of sets indexed by a class iff it is representable in the sense of
Grothendieck, i.e. for every x : YC(I)→ X we have

YC(J)
y - Y

YC(I)

YC(u)

?

x
- X

f

?

for some u : J → I unique up to isomorphism in C/I. Let us write Rep(C) for

the full subcategory of Ĉ2 on representable morphisms. Consider the diagram

Rep(C) ⊂ - Ĉ2

Ĉ

PĈ

?-
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which exhibits Rep(C) → Ĉ as a subfibration of PĈ since representable mor-

phisms are stable under pullbacks in Ĉ. Obviously, the (Giraud) splitting S(C)
of PĈ restricts to a splitting s(C) of Rep(C) where s(C)(X) is the full subcat-
egory of S(C)(X) on those presheaves over Elts(X) whose corresponding mor-

phism to X in Ĉ is representable. The situation is summarized in the following
diagram in Fib(Ĉ)

Rep(C) ⊂ - PĈ

s(C)

'

?
⊂ - S(C)

'

?

where the bottom arrow is split cartesian and the vertical arrows are (non-split)
equivalences of fibrations.

It is straightforward to extend the equivalence between PĈ and S(C) to an
equivalence between a non-split and a split model of extensional Martin-Löf type
theory with dependent sums and products, identity types and natural numbers
(see section 2).

1.1 Giraud-Bénabou Splitting of PC

Using Axiom of Choice for classes, i.e. “global choice”, one easily sees that
the split fibration Y∗Cs(C) is equivalent to PC, the fundamental fibration of C,
because every morphism between representable presheaves is a representable
morphism in Ĉ since C is assumed to have finite limits and YC preserves them.
Notice that this splitting of PC is different from the “right adjoint splitting”∏

IdC
PC (as used for proving the “fibered Yoneda lemma”) and the “left adjoint

splitting”
∐

IdC
PC which is inconvenient to work with since maps in its total

category are isomorphism classes of certain spans (see Appendix C). I think
that the Giraud-Bénabou splitting as given by Y∗Cs(C) is much more convenient
than the two other ones which are obtained via methods of splitting that are
“uniform” in the sense that they apply to arbitrary fibrations. It is not unex-
pected that one may obtain better results when exploiting the specific nature
of the fibration one wants to split.

But on the other hand there is a split cartesian functor E from the left
adjoint splitting S → C of PC as described in Appendix C to the Giraud-
Bénabou splitting Y∗Cs(C) of PC which suggest an isomorphic reformulation of
S → C making it quite similar to Y∗Cs(C). For u : I → I0 and a : A →
I0 in C let E(u, a) be the presheaf over C/I sending v : J → I to the set
E(u, a)(v) = {g : J → A | a ◦ g = u ◦ v} and whose morphism part is given

by E(u, a)(vw
w→ v)(g) = g ◦ w. A morphism (w, f) : (v, b) → (u, a) in S

is sent by E to the natural transformation E(w, f) : E(v, b) ⇒ Σ∗wE(u, a)
sending g ∈ E(v, b)(v′) to q(u, a) ◦ f ◦ hg where hg is the unique map in C with
p(v, b) ◦ hg = v′ and q(v, b) ◦ hg = g. One easily checks that E is a cartesian
equivalence but not a split cartesian equivalence.
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Thus, the left adjoint splitting of P is isomorphic to the split fibration over C
whose fibre over I has as objects pairs (u, a) of maps in C where u : I → I0 and
a : A→ I0 and whose morphism from (v, b) to (u, a) are natural transformations
from E(v, b) to E(u, a) and whose reindexing along w : J → I is given on objects
by w∗(u, a) = (uw, a) and on morphisms by w∗τ = (Σop

w )∗τ . Notice that this
split fibration is very close in spirit to the Bénabou-Giraud splitting of PC from
which it is obtained by restricting to presheaves of the form E(u, a) and refining
them by the information (u, a) describing how they arise.

2 Reformulation of Awodey’s Natural Seman-
tics in the Spirit of Bénabou’s Work on Rep-
resentable Morphisms

As is well known the Yoneda functor YC : C→ Ĉ preserves dependent products
(to the extent they exist in C). It trivially preserves dependent sums since they
are given by composition. As observed in the previous section the presheaf topos
Ĉ can be organized into a split model of type theory. For ease of exposition we
prefer to formulate things in terms of the non-split model since splitting is taken
care of by the methods of the previous section.

The basic idea of Awodey’s natural semantics is to fix a representable
morphism p = pU : EU → U in Ĉ thought of as a family of small types indexed
by a type which may be big or small. Let us write S = Sp for the class of

morphisms in Ĉ which arise as pullbacks of p. We think of p as a universe
giving rise to a class Sp of maps small in the sense of p. Now for such universes
we may require various closure properties

Definition 2.1 A universe p = pU : EU → U is closed under dependent sums
iff Sp is closed under composition and it is closed under dependent products if
Sp is closed under Π, i.e. Πab is in Sp whenever a and b are in Sp.

These notions coincide with the ones given by Awodey. But our formula-
tions are much simpler than his ones because he follows Voevodsky’s habit of
stating requirements in a “Logical Framework” style which are difficult to parse.
What’s perfectly clear when formulated syntactically in a Logical Framework
get’s somewhat obscure when formulated in terms of the categorical semantics
of the Logical Framework in Ĉ.

Notice that a universe pU : EU → U may be called small iff U is repre-
sentable, i.e. indexed by a “set” and not a “class”, i.e. pU is isomorphic to Y(u)
for some morphism u in C.

But, more importantly, there is a representable morphism pset(C) : Eset(C) →
set(C) from which all representable morphisms in Ĉ can be obtained via pull-
back as we have learned from J. Bénabou in late 2002 and will briefly explain
now.
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First consider the big presheaf Set(C) over C where Set(C)(I) = Ĉ/I =

Set(C/I)op and for u : J → I in C reindexing along u is given by Set(C)(u) =

Set(Σu)op (where Σu : C/J → C/I is postcomposition with u). We describe
ESet(C) by specifying the corresponding presheaf over Elts(Set(C)). For A ∈
Set(C)(I) let ESet(C)(I,A) = A(idI) and for u : (J, u∗A)→ (I, A) in Elts(Set(C))
the map ESet(C)(u) : ESet(C)(I, A) → ESet(C)(J, u

∗A) sends a ∈ A(idI) to
A(u : u → idI)(a) ∈ u∗A(idI) = A(u). The map pSet(C) : ESet(C) → Set(C)
is given by first projection. Let set(C) be the subpresheaf of Set(C) where
set(C)(I) consist of all representable presheaves over C/I. The representable
map pset(C) : Eset(C) → set(C) is obtained by pulling back pSet(C) along the
inclusion of set(C) into Set(C)

Eset(C)
⊂ - ESet(C)

set(C)

pset(C)

?
⊂ - Set(C)

pSet(C)

?

Notice that Set(C) is the presheaf of objects of the split fibration Y∗CS(C) and
set(C) is the presheaf of objects of its split subfibration s(C).

Of course, the presheaves Set(C) and set(C) are too large to live in SetC
op

and, therefore, in their definition one better replaces Set by a Grothendieck
universe U chosen sufficiently large for containing C as an internal category.
When understanding pset(C) this way it is a representable morphism such that
up to isomorphism its pullbacks are precisely the representable morphisms in
SetC

op

. However, when understanding pSet(C) this way its pullbacks in SetC
op

are precisely the morphisms in SetC
op

with U-small fibres.
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A Natural Numbers with Large and Small Elim-
ination

One says that the universe pU : EU → U contains the type of natural numbers
iff U has a global element ñ : 1→ U such that

YC(N) - EU

1
?

ñ
- U

pU

?

where N is a natural numbers object in C. In this case YC(N) has elimination
w.r.t. families of types as given by representable morphisms. Notice that it has
“large” elimination (w.r.t. all families of types in Ĉ) iff YC(N) is the natural

numbers object in Ĉ, i.e. isomorphic to
∐

N 1.

B Comprehension for S(C)

Suppose A ∈ Ĉ and B : Elts(A)op → Set then this gives rise to the object

A.B ∈ Ĉ which is constructed as follows. For I ∈ C the set A.B(I) = {〈x, y〉 |
x ∈ A(I) and y ∈ B(I, x)} and for u : J → I in C and 〈x, y〉 ∈ A.B(I)

A.B(u)(〈x, y〉) = 〈A(u)(x), B(〈u, x〉)(y)〉

where 〈u, x〉 : (J,A(u)(x)) → (I, x) in Elts(A). There is an obvious natural
transformation A.B → A given by first projection.

Notice that this comprehension functor from SetElts(A)op to Ĉ/A is an equiv-
alence.1

C The method of “local universes”

As observed by V. Voevodsky (and myself) around 2006 when given a category
C with finite limits and a “universe” p = pU : EU → U the full subfibration Dp

of PC

Dp
⊂ - C2

C
?

D
p

-

1It is an easy exercise in the book by MacLane and Moerdijk to show that this functor is
full, faithful and essentially surjective.
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on pullbacks of p admits the following splitting. For every a : I → U choose a
pullback

Ea
qa- EU

I

pa
?

a
- U

pu
?

This gives rise to the following split fibration Sp over C. Objects of the total
category

∫
Sp are morphism in C to U . For objects a : I → U and b : J → U a

morphism from b to a in Sp is a pair (u, f) making the diagram

Eb
f- Ea

J

pb
?

u
- I

pa
?

commute. Such a morphism is split cartesian iff a ◦ u = b and qa ◦ f = qb
which implies that the square is a pullback. Of course, the map (u, f) is just
cartesian iff the above square is a pullback. It is easy to check that split cartesian
maps are closed under composition and that (idI , idEa

) is also split cartesian.
Accordingly, the split cartesian morphisms give rise to a split cleavage of the
fibration Sp → C sending a : I → U to I and (u, f) to u.

As shown by Voevodsky

(1) Sp has split internal sums iff Dp is closed under composition

(2) Sp has split internal products iff Dp is closed under Π

P. Lumsdaine and M. Warren have generalized this to a splitting of PC via
a method which may be called “local universes” and can be described as
follows. For maps u : J → I and a : A→ I in C choose a pullback

u∗A
q(u, a)- A

J

p(u, a)

?

u
- I

a

?

without assuming any coherence conditions for this choice of pullbacks, i.e. one
chooses a cleavage of the fundamental fibration PC. Given such a choice we
may construct a split fibration S → C as follows. The objects of S are cospans
(u, a) in C, i.e. u : I → I0 and a : A→ I0. A morphism from (v, b) to (u, a) is a
pair (w, f) making the diagram
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v∗B
f- u∗A

J

p(v, b)
?

w
- I

p(u, a)
?

commute and composition is componentwise. A morphism (w, f) is cartesian
iff the square is a pullback and it is split cartesian iff a = b, v = u ◦ w and
q(u, a) ◦ f = q(v, a). It is easy to check that this choice of split cartesian arrows
gives rise to a split cleavage of the fibration S → C sending an object (u, a)
to the domain of u and a morphism (w, f) to w. Obviously, this fibration is
equivalent to the fundamental fibration PC. Moreover, one can again show that
the split fibration S → C has split internal sums and that it has split internal
products iff C is locally cartesian closed.

Obviously, for maps p : E → U the fibration Sp → C appears as a full split
subfibration of S → C which justifies the name “local universes”. Obviously,
the fibration S → C is isomorphic to the split fibration

∐
IdC

PC. In the latter
morphisms of the total category are equivalence classes from which one can
choose representatives using the chosen cleavage of PC.

Lumsdaine and Warren’s motivation for working with this “local universes”
variant of

∐
IdC

PC is that it allows one to come up with a split version of
intensional identity types arising from some model category structure on C.
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