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For unwinding classical proofs of Π2 statements A ≡ ∀n∃mR(n, m) in Peano
arithmetic PA a convenient way is to consider the functional interpretation of
some negative translation of A giving rise to a Gödel T functional f for which
HAω proves ∀nR(n, f(n)).

In his book [Sh67] J. Shoenfield introduced a functional interpretation for
Peano arithmetic PA associating with every formula A a formula AS ≡ ∀u∃xAS(u, x)
with AS quantifier-free by recursion on the structure of A in the following way

(S1) PS ≡ P ≡ PS

(S2) (¬A)S ≡ ∀f∃u¬AS(u, f(u))

(S3) (A ∨B)S ≡ ∀uv∃xy AS(u, x) ∨BS(v, y)

(S4) (∀z A)S ≡ ∀zu∃xAS(z, u, x)

where AS ≡ ∀u∃xAS(u, x) and BS ≡ ∀v∃yBS(v, y).
There arises the question whether for some appropriate negative transla-

tion (−)′ it holds that Gödel’s functional interpretation of A′ coincides with
∃f∀uAS(u, f(u)) for all arithmetic A. For this purpose one can use a negative
translation studied by T. Streicher and B. Reus in [SR98]. It is inspired by a
surprisingly simple negative translation due to J.-L. Krivine for second order
predicate logic (formulated in the →∀-fragment) which just inserts a negation
in front of every prime formula. For our purpose we prefer to introduce this
negative translation as an optimized variant of Kuroda’s negative translation.

Kuroda’s negative translation is defined as AK ≡ ¬¬A† where (−)† is defined
inductively as

(1) P † ≡ P for prime P

(2) (A2B)† ≡ A†2B† for 2 ∈ {∧,∨,→}

(3) (∃xA)† ≡ ∃xA†

(4) (∀xA)† ≡ ∀x¬¬A†

We write A◦ for ¬A†. For A in the ¬∨∃∀-fragment we have

(i) P ◦ ≡ ¬P † ≡ ¬P
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(ii) (¬A)◦ ≡ ¬(¬A)† ≡ ¬¬A† ≡ ¬A◦

(iii) (A ∨B)◦ ≡ ¬(A ∨B)† ≡ ¬(A† ∨B†) ⇐⇒ ¬A† ∧ ¬B† ≡ A◦ ∧B◦

(iv) (∀xA)◦ ≡ ¬(∀xA)† ≡ ¬∀x¬¬A† ⇐⇒ ¬¬∃x¬A† ≡ ¬¬∃xA◦

where ⇐⇒ stands for logical equivalence. Since AK ≡ ¬A◦ and ¬¬∀x¬¬A† ⇐⇒
¬¬¬∃x¬A† ⇐⇒ ¬∃xA◦ the Kuroda negative translation for the ¬∨∀-fragment
is not optimal for ∀ since it introduces a triple negation where a single negation
would suffice. This observation suggests the following negative transaltion for
the ¬∨∀-fragment which was considered in [SR98] with a different motivation:
A′ ≡ ¬A∗ where A∗ is defined inductively as

(K1) P ∗ ≡ ¬P if P is prime

(K2) (¬A)∗ ≡ ¬A∗

(K3) (A ∨B)∗ ≡ A∗ ∧B∗

(K4) (∀xA)∗ ≡ ∃xA∗.

The next theorem relates the Shoenfield translation to Gödel’s functional
interpretation of our negative translation. For convenience we recall Gödel’s
functional interpretation.

(D1) PD ≡ P

(D2) (¬A)D ≡ ∃f∀u¬AD(u, f(u))

(D3) (A ∧B)D ≡ ∃uv∀xy(AD(u, x) ∧BD(v, y))

(D4) (∀zA)D ≡ ∃f∀zxAD(z, f(z), x)

(D5) (A → B)D ≡ ∃fg∀uy(AD(u, g(u, y)) → BD(f(u), y))

(D6) (∃zA)D ≡ ∃zu∀xAD(z, u, x)

(D7) (A ∨B)D ≡ ∃nuv∀xy (n = 0 ∧AD(u, x)) ∨ (n 6= 0 ∧BD(v, y))

Theorem 0.1 For every arithemtic formula A it holds that

(1) A∗
D(u, x) ⇐⇒ ¬AS(u, x) where (A∗)D ≡ ∃u∀xA∗

D(u, x)

(2) A′
D(f, u) ⇐⇒ AS(u, f(u)) where (A′)D ≡ ∃f∀u A′

D(f, u).

where ⇐⇒ stands for provably equivalent in HAω.

Proof: First we show that for every formula A (1) implies (2). We have
(A′)D(f, u) ≡ ∃f∀u A′

D(f, u) with A′
D(f, u) ≡ ¬A∗

D(u, f(u)). From (1) we know
A∗

D(u, f(u)) ⇐⇒ ¬AS(u, f(u)) and, accordingly, we have

A′
D(f, u) ⇐⇒ ¬A∗

D(u, f(u)) ⇐⇒ ¬¬AS(u, f(u)) ⇐⇒ AS(u, f(u))
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as desired.
Next we prove (1) by induction on the structure of A. The base case is

trivial.
We have ((¬A)∗)D ≡ ∃f∀u ((¬A)∗)D(f, u) where ((¬A)∗)D(f, u) ≡ (¬A∗)D

(f, u) ≡ ¬A∗
D(u, f(u)). By induction hypothesis we have A∗

D(u, f(u)) ⇐⇒
¬AS(u, f(u)) and thus ((¬A)∗)D(f, u) ⇐⇒ ¬¬AS(u, f(u)) ≡ ¬(¬A)S(f, u) as
desired.

We have ((A∨B)∗)D ≡ ∃uv∀xy (A∨B)∗D(u, v, x, y) with (A∨B)∗D (u, v, x, y) ≡
(A∗ ∧B∗)D(u, v, x, y) ≡ A∗

D(u, x) ∧B∗
D(v, y). By induction hypothesis we have

A∗
D(u, x) ⇐⇒ ¬AS(u, x) and B∗

D(v, y) ⇐⇒ ¬BS(v, y) from which it fol-
lows that (A ∨ B)∗D(u, v, x, y) ⇐⇒ ¬AS(u, x) ∧ ¬BS(v, y) ⇐⇒ ¬(AS(u, x) ∨
BS(v, y)) ≡ ¬(A ∨B)S(u, v, x, y) as desired.

We have ((∀zA)∗)D ≡ ∃zu∀x (∀zA)∗D(z, u, x) with (∀zA)∗D ≡ (∃zA∗)D ≡
A∗

D. By induction hypothesis we have A∗
D(z, u, x) ⇐⇒ ¬(A∗)S(z, u, x) and

thus (∀zA)∗D(z, u, x) ⇐⇒ ¬(A∗)S(z, u, x) ≡ ¬(∀zA∗)S(z, u, x) as desired. 2

As usual in classical logic one defines A → B ≡ ¬A ∨ B and ∃xA(x) ≡
¬∀x¬A(x). Thus, we get as derived clauses for (−)∗

(K5) (A → B)∗ ≡ A′ ∧B∗ and thus (A → B)′ ⇐⇒ A′ → B′

(K6) (∃xA(x))∗ ≡ ¬∃x¬A∗(x) and thus
(∃xA(x))′ ≡ ¬¬∃x¬A∗(x) ≡ ¬¬∃xA′ ⇐⇒ ¬∀x¬A′.

Although one could define A∧B as ¬(¬A∨¬B) it turns out as simpler to define
(−)∗ for conjunction directly as

(K7) (A ∧B)∗ ≡ A∗ ∨B∗ and thus (A ∧B)′ ⇐⇒ A′ ∧B′.

Thus, in order to keep Theorem 0.1 valid we extend Shoenfield’s functional
interpretation of PA to the remaining connectives as follows

(S5) (A→B)S ≡ ∃fv∀uy AS(u, f(u)) → BS(v, y)

(S6) (∃zA)S ≡ ∀U∃zf AS(z, U(z, f), f(U(z, f)))

(S7) (A ∧B)S ≡ ∀nuv∃xy (n=0 → AS(u, x)) ∧ (n 6=0 → BS(v, y))

Notice that (S6) is obtained from (∀z¬A)S ≡ ∀zf∃u¬AS(z, u, f(u)) by applying
(S2). Admittedly, the clause (S6) does not look very nice but if A is quantifier-
free we get (∃zA)S ≡ ∃zA since u and x are empty lists of variables.

The somewhat strange form of (S7) is imposed on us by the Dialectica
interpretation of disjunction since we have (A ∧ B)∗D(n, u, v, x, y) ≡ (A∗ ∨
B∗)D(n, u, v, x, y) ≡ (n=0 → A∗

D(u, x)) ∧ (n 6=0 → B∗
D(v, y)) ⇐⇒ (n=0 →

¬A∗
S(u, x))∧(n 6=0 → ¬B∗

S(v, y)) ⇐⇒ ¬((n=0∧A∗
S(u, x))∨((n 6=0∧B∗

S(v, y))) ⇐⇒
¬((n=0 → A∗

S(u, x)) ∧ ((n 6=0 → B∗
S(v, y))) ≡ ¬(A ∧ B)S(n, u, v, x, y) and thus

(A ∧ B)S(n, u, v, x, y) ≡ (n=0 → A∗
S(u, x)) ∧ (n 6=0 → B∗

S(v, y)). Notice, how-
ever, that (A ∧B)S ⇐⇒ ∀uv∃xyAS(u, x) ∧BS(y, y) as one might expect.
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