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In this note we show that quotients of countably based spaces (qcb spaces) and

topological predomains as introduced by M. Schröder and A. Simpson are not closed

under sobrification. As a consequence replete topological predomains need not be sober,

i.e. in general repletion is not given by sobrification. Our counterexample also shows that

a certain tentative “equalizer construction” of repletion fails for qcb spaces.

Our results extend also to the more general class of core compactly generated spaces.

1. Background

In (Schröder 2003; Simpson 2003) M. Schröder and A. Simpson introduced the categories
QCB (quotients of countably based spaces) and PreDom (topological predomains) as
frameworks for denotational semantics containing also most classical spaces such as e.g.
separable Banach spaces. One easily shows that if a T0 space is a quotient of a countably
based space then it can also be obtained as quotient of a countably based T0 space, i.e. as
a quotient of a subspace of Scott’s Pω. As from both the topological and the semantical
point of view it is reasonable to restrict attention to T0 spaces we accordingly do so in the
rest of the paper. Thus QCB is defined as the category whose objects are T0 quotients of
countably based T0 spaces and whose morphisms are the continuous maps. Subsequently
we refer to the objects of QCB as qcb spaces.

In (Schröder 2003) qcb spaces have been characterised as those sequential T0 spaces
X for which there exists a countable pseudobase, i.e. a countable subset B of P(X) such
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that for every sequence (xn) converging to x and open neighbourhood U of x there exists
a B ∈ B with x ∈ B ⊆ U and xn eventually in B.

In (Menni and Simpson 2002; Schröder 2003) it has been shown that QCB is cartesian
closed. As QCB contains the Sierpiński space Σ (with underlying set {⊥,>} and {⊥} as
its only non-open subset) the open subsets of X may be identified with QCB-morphisms
from X to Σ. It has been shown by J. Lawson (see Theorem 4.7 of (Escardó et.al. 2004))
that the exponential ΣX in QCB is homeomorphic to (O(X),⊆) endowed with its Scott
topology. Accordingly,we will henceforth denote the covariant functor Σ(−) by O. Notice
that O(f) = f−1 : O(Y ) → O(X) for continuous maps f : X → Y .

In (Menni and Simpson 2002; Simpson 2003) it has been observed that QCB is equiv-
alent (see (Battenfeld 2004) for a proof) to the category ExPer(Pω) of extensional
pers over Scott’s graph model Pω (see (Phoa 1992) for definition and discussion of
ExPer(Pω)). This equivalence provides further evidence for the naturalness of the no-
tion of qcb space and has the consequence that qcb spaces form a model of polymorphic
λ-calculus.

Since qcb spaces in general do not enjoy the completeness properties required for deno-
tational semantics A. Simpson in (Simpson 2003) introduced the notion of a topological
predomain, i.e. a qcb space X which has suprema of ω-chains w.r.t. its information or-
dering v and where all open sets are also Scott open (w.r.t. v). In (Simpson 2003) it
has been stated that topological predomains have also arbitrary directed suprema w.r.t.
v (see (Battenfeld et.al. 2006) for a proof). In a sense, however, this form of complete-
ness is somewhat ad hoc. But already much earlier M. Hyland and P. Taylor introduced
(independently in (Hyland 1991) and (Taylor 1991) respectively) the notion of replete-
ness which is formally quite similar to the notion of sobriety (see (Johnstone 1982)).
The setting of (Hyland 1991) and (Taylor 1991) is much more general than qcb spaces.
This generality, however, is not needed for our purposes and thus we recall the notion of
repleteness for the particular case of qcb spaces.

As already mentioned the notion of repleteness looks very similar to the notion of
sobriety. Recall that a space X is sober iff for every T0 space Y a continuous map
e : X → Y is a homeomorphism whenever O(e) = e−1 : O(Y ) → O(X) is an order
isomorphism. Sober spaces form a full reflective subcategory of (T0) spaces. We write
ηX : X → Sob(X) for the reflection map and notice that O(ηX) : O(Sob(X) → O(X) is
an order isomorphism and that ηX is one-to-one if X is a T0 space. Analogously, a qcb
space X is called replete iff a map e : X → Y in QCB is a homeomorphism whenever
O(e) = e−1 : O(Y ) → O(X) is an order isomorphism, i.e. an isomorphism in QCB.
Replete qcb spaces form a full reflective subcategory of QCB and for every X ∈ QCB
the reflection map rX : X → R(X) is one-to-one, O(rX) an order isomorphism and (thus)
Sob(rX) is a homeomorphism. Despite the analogy the construction of repletion is much
more complicated than that of sobrification (see (Hyland 1991; Taylor 1991; Streicher
1999)).

We now discuss the relation between sobriety and repleteness. From the above defini-
tions it is clear that a sober qcb space is also replete. It can be shown that every replete
qcb space is a topological predomain (see (Hyland 1991; Taylor 1991)). An example
of a non-replete topological predomain is the non-sober dcpo (with its Scott topology)
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introduced in (Johnstone 1981) whose sobrification coincides with its repletion (since so-
brification adds a single new point which can be obtained as limit of a sequence of point
filters). Motivated by these observations one might hope that for qcb spaces repletion is
given by sobrification. One easily sees that this is equivalent to qcb spaces being closed
under sobrification which was raised as Question 6.1 in (Simpson 2003). In the next sec-
tion we construct a qcb space whose sobrification is not qcb anymore and thus give a
negative answer to Simpson’s question.

2. A qcb space whose sobrification is not qcb

We will construct a relatively simple replete qcb space X whose sobrificaton Sob(X) is
not sequential and thus a fortiori not qcb.

The underlying set of X is N×N. We write π0 and π1 for first and second projection,
respectively. For p = (n, m) ∈ X and f : {i ∈ N | i > n} → N let U(p, f) = {p}∪{(i, j) ∈
N2 | i > n and j ≥ f(i)}. Notice that p ∈ U(p, f). A subset U of X is called open iff
for every p ∈ U there is an f with U(p, f) ⊆ U . Obviously, we have U(p, max(f, g)) =
U(p, f) ∩ U(p, g). Moreover, if q ∈ U(p, f) then U(q, g) ⊆ U(p, f) for some g. Thus, sets
of the form U(p, f) are open and for every q ∈ U(p1, f1) ∩ U(p2, f2) there is a g with
U(q, g) ⊆ U(p1, f1)∩U(p2, f2). Thus, open sets are closed under finite intersections. Since
open sets are closed also under arbitrary unions they form a topology on X. Moreover,
sets of the form U(p, f) provide a basis for this topology.

It is easy to see that X is a T1 space. Thus, the specialization order on X is discrete.
Accordingly, the space X is a topological predomain provided it is sequential and has a
countable pseudobase and hence is a qcb space.

Lemma 2.1. For every A ⊆ X and p ∈ X \A we have p ∈ Ā iff A∩
(
{i}×N

)
is infinite

for some i > π0(p).

Proof. Let A ⊆ X and p ∈ X \A.
For the forward direction suppose that p ∈ Ā and A∩

(
{i}∩N

)
is finite for all i > π0(p).

Then there exists an f with A∩U(p, f) = ∅ contradicting p ∈ Ā since U(p, f) is an open
neighbourhood of p.

For the reverse direction suppose A∩
(
{i}×N

)
is infinite for some i > π0(p). In order

to show that p ∈ Ā suppose U is an open neighbourhood of p. Then there exists f with
U(p, f) ⊆ U . Then, since A∩

(
{i}×N

)
is infinite, there exists a j ≥ f(i) with (i, j) ∈ A.

Thus (i, j) ∈ A ∩ U(p, f) ⊆ A ∩ U as desired.

Lemma 2.2. X is a Fréchet space, i.e. for every p ∈ Ā there is a sequence (an) in A

converging to p. Thus X is in particular also a sequential space.

Proof. Suppose p ∈ Ā. W.l.o.g. assume that p 6∈ A. Then by Lemma 2.1 there exists
an i > π0(p) such that A∩

(
{i}×N

)
is infinite. Let φ : N → N be strictly increasing with

{(i, φ(n)) | n ∈ N} = A ∩
(
{i} × N

)
. Let an := (i, φ(n)) ∈ A. We show that (an) → p.

Suppose U is an open neighbourhood of p. Then U(p, f) ⊆ U for some f . Let n0 ∈ N
with φ(n0) ≥ f(i). Then for all n ≥ n0 we have φ(n) ≥ f(i) and thus an = (i, φ(n)) ∈
U(p, f) ⊆ U .
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Let B0 be the collection of all Vi,n := {(i, j) | j ≥ n} with i, n ∈ N. We define B as the
set of all finite unions B = B1∪ . . .∪Bn with Bi ∈ B0∪

{
{x} | x ∈ X

}
and B∩

(
{i0}×N

)
finite if B ∩

(
{i} × N

)
= ∅ for all i < i0.

Lemma 2.3. B is a countable pseudobase for X.

Proof. Obviously B is countable since B0 and X are both countable.
For showing that B is a pseudobase for X suppose that (pn) converges to p and U is

an open neighbourhood of p. Then U(p, f) ⊆ U for some f . For i > π0(p) let Ii = {n ∈
N | pn ∈ Vi,f(i)}.

Next we show that almost all Ii are empty. For sake of contradiction suppose this
were not the case. Then there exists a subsequence (qn) of (pn) with π0(qn) > π0(p) and
π0(qn) < π0(qn+1) for all n ∈ N. Let g : {i ∈ N | i > π0(p)} → N such that qn 6∈ U(p, g)
for all n ∈ N. Then U(p, g) is an open neighbourhood of p containing no qn which is
impossible since (qn) converges to p.

Let i0 ∈ N with Ii = ∅ for i ≥ i0. Then B = {p} ∪
⋃

π0(p)<j<i0
Vj,f(j) ∈ B and it holds

that B ⊆ U(p, f) ⊆ U and (pn) is eventually in B as desired.

Thus, since X is a sequential space with a countable pseudobase the space X is qcb.

Lemma 2.4. The irreducible closed subsets of X are the singleton subsets and X itself.

Proof. As non-empty open subsets of X are closed under finite intersections they form
a complete prime filter in O(X) and thus X is an irreducible closed subset of X. As X

is a T1 space the singleton sets are all closed and thus also irreducible closed.
Suppose C is an irreducible closed subset of X different from X. By Lemma 2.1 if

C ∩
(
{i} × N

)
is infinite then for all j < i and n ∈ N we have (j, n) ∈ C ∩

(
{i} × N

)
⊆

C̄ = C. Thus C ∩
(
{i} × N

)
is infinite for only finitely many i since otherwise X = C.

Thus, precisely one of the following two conditions holds

(1) C ∩
(
{i} × N

)
is finite for all i ∈ N

(2) there is a greatest i ∈ N with C ∩
(
{i} × N

)
infinite.

In case (1) every point of C is isolated in the subspace C. Thus C cannot be irreducible
closed unless C is a singleton.
In case (2) every point of the infinite set C ∩

(
{i}×N

)
is isolated in the subspace C. But

as irreducible closed sets contain at most one isolated point this is impossible.

Thus Sob(X) = X ∪ {∞} where ∞ stands for the irreducible closed set X. The
nonempty open sets of Sob(X) are those of the form U ∪ {∞} where U ∈ O(X) \ {∅}.

Lemma 2.5. As a subset of Sob(X) the set X is sequentially closed but not closed w.r.t.
the sober topology. Thus, the space Sob(X) is not sequential and hence not qcb.

Proof. Obviously X is not closed in Sob(X) since ∞ ∈ X̄ \ X. Nevertheless X is a
sequentially closed subset of Sob(X) which can be seen as follows.

For the sake of contradiction suppose (xn) is a sequence in X converging to ∞ in
Sob(X). As ∞ is in the closure of S = {xn | n ∈ N} it is impossible that S ∩

(
{i} × N

)
is finite for all i ∈ N. Thus, there exists an i ∈ N with S ∩

(
{i} × N

)
infinite. But then
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U = {(j, k) ∈ N2 | i < j} ∪ {∞} is an open neighbourhood of ∞ in Sob(X) such that
infinitely many elements of S, namely those of S ∩

(
{i}×N

)
, are not in U contradicting

our assumption that (xn) converges to ∞.

Thus, we have verified that X is qcb but its sobrification Sob(X) is not.

Theorem 2.6. The space X is a replete qcb space but not sober.

Proof. Let rX : X → R(X) be the reflection map from X to its repletion R(X). Since
Sob(rX) is an isomorphism and ηR(X) ◦ rX = Sob(rX) ◦ ηX we have ηX = i ◦ rX for
i = Sob(rX)−1 ◦ ηR(X). Since R(X) is a T0 space the map ηR(X) is one-to-one and thus i

is one-to-one as well. Since O(rX) and O(ηX) are both isomorphisms it follows that O(i)
is an isomorphism, too. Thus, since i is one-to-one it follows that i : R(X) → Sob(X) is
a subspace embedding. As ηX factors through i we have either R(X) = X or R(X) =
Sob(X). Since R(X) is sequential but Sob(X) is not it follows that R(X) = X, i.e. that
X is replete.

Thus X is a replete qcb space which is not sober by Lemma 2.5.

A. Simpson has pointed out to us that our counterexample can be used also for an-
swering some open questions about the category CCG of core compactly generated spaces
introduced in (Day 1972) and further investigated in (Escardó et.al. 2004). In Problem
9-5 of (Escardó et.al. 2004) it is asked whether

(a) core compactly generated spaces are closed under sobrification and
(b) the core compactly generated topology of a sober space is again sober.

For both questions the answer is negative.
ad (a) : In Theorem 6.10 of (Escardó et.al. 2004) it is shown that CCG contains QCB
as the full subcategory of those core compactly generated spaces having a countable
�-pseudobase (see (Escardó et.al. 2004) for definition). Obviously, the space X is in
CCG since it is in QCB. If Sob(X) were in CCG as well then Sob(X) would be a
subspace of O2(Sob(X)) ∼= O2(X). From (Escardó et.al. 2004) we know that QCB is
closed under subspaces in CCG and thus Sob(X) would be a qcb space in contradiction
with Lemma 2.5.
ad (b) : One easily checks that {B ∪ {∞} | B ∈ B} is a countable �-pseudobase for
Sob(X). By Corollary 6.6 of (Escardó et.al. 2004) the core compactly generated topology
on Sob(X) coincides with its sequentialisation Seq(Sob(X)). Since by (the proof of)
Lemma 2.5 the point ∞ is isolated in Seq(Sob(X)) the subset X ⊆ Seq(Sob(X)) is
irreducible closed but, obviously, not the closure of a singleton set. Thus, the space
Seq(Sob(X)) is not sober.

Obviously, these arguments apply to all cartesian closed categories of spaces considered
in (Escardó et.al. 2004) as long as they contain all T1 qcb spaces. Thus sobriety appears
as fundamentally incompatible with cartesian closedness.

We conclude this section by showing that O(X) is sober although X is not. For this
purpose we need the following lemma.

Lemma 2.7. Let B be the countable pseudobase for X as introduced before Lemma 2.3.
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For every B ∈ B the set [B] = {U ∈ O(X) | B ⊆ U} is a Scott open filter in O(X).
Moreover, every U ∈ O2(X) is the union of all [B] with B ∈ B and [B] ⊆ U from which
it follows that O(X) is countably based and thus qcb.

Proof. One easily sees that the elements of B are compact subsets of X and thus
[B] = {U ∈ O(X) | B ⊆ U} is a Scott continuous filter in O(X). As B is closed under
finite unions the set B1 = {[B] | B ∈ B} is closed under finite intersections and thus
provides a countable basis for O(X) (since as shown in (Schröder 2003) if B is countable
pseudobase for X then

{
[B1] ∪ . . . ∪ [Bn] | B1, . . . , Bn ∈ B

}
is a countable pseudobase

for ΣX = O(X)). Thus, for every U ∈ O2(X) we have U =
⋃{

[B] | B ∈ B, [B] ⊆ U
}
.

3. Failure of the “equalizer construction” of repletion

In the first half of the 1990’s several people suggested that for arbitrary X its repletion
R(X) might be given by the equalizer E(X) of the maps ηO2(X),O2(ηX) : O2(X) →
O4(X) where for arbitrary Y the map ηY : Y → O2(Y ) sends y ∈ Y to its neighbourhood
filter ηY (y) = {U ∈ O(Y ) | y ∈ U}. Since for U ∈ O2(X) and Φ ∈ O3(X) we have
ηO2(X)(U)(Φ) = Φ(U) and O2(ηX)(U)(Φ) = U(O(ηX)(Φ)) = U(Φ ◦ ηX) the equalizer
E(X) is the regular subject of O2(X) consisting of those U ∈ O2(X) such that Φ(U) =
U(Φ ◦ ηX) for all Φ ∈ O3(X).

We will show that for our space X from section 2 the equalizer E(X) contains the
element ∃ = {U ∈ O(X) | U 6= ∅} ∈ O2(X) from which it will follow that E(X) is
different from R(X) = X. For this purpose we need the following lemma.

Lemma 3.1. The closure of {ηX(x) | x ∈ X} in O2(X) contains ∃ as an element.

Proof. For n, i ∈ N consider the sets

Fi,n = {U ∈ O(X) | (∃p ∈ U. π0(p) < i) ∧ (∀j ≥ n. (i, j) ∈ U)}

which are easily shown to be elements of O2(X) and satisfy Fi,n ⊆ ηX(i, n). Thus, all
Fi,n lie in {ηX(x) | x ∈ X}. Since for all i ∈ N the sequence (Fi,n)n∈N is increasing its
union Gi =

⋃
n∈N Fi,n is in {ηX(x) | x ∈ X} as well. One easily shows that we have

Gi = {U ∈ O(X) | ∃p ∈ U. π0(p) < i} and thus ∃ =
⋃

i∈N Gi. Thus, as the sequence (Gi)
is increasing it follows that ∃ ∈ {ηX(x) | x ∈ X}.

Theorem 3.2. The set E(X) = {U ∈ O2(X) | ∀Φ ∈ O3(X). Φ(U) = U(Φ ◦ ηX)}
contains ∃ as an element. Thus ηX is not the equalizer of ηO2(X) and O2(ηX), i.e. the
equalizer construction of repletion fails for X.

Proof. For showing that ∃ ∈ E(X) we have to show that Φ(∃) = ∃(Φ ◦ ηX) for all
Φ ∈ O3(X). Let Φ ∈ O3(X). Suppose ∃(Φ ◦ ηX) = >. Then ηX(x) ∈ Φ for some x ∈ X.
Thus Φ(∃) = > since ηX(x) ⊆ ∃ and Φ preserves the specialization order. For the reverse
direction suppose Φ(∃) = >, i.e. ∃ ∈ Φ. Then by Lemma 3.1 we have ηX(x) ∈ Φ for some
x ∈ X. Thus Φ(ηX(x)) = > from which it follows that ∃(Φ ◦ ηX) = > as desired.

One easily checks that ηX equalizes ηO2(X) and O2(ηX). But since ∃ ∈ E(X) and
∃ 6∈ {ηX(x) | x ∈ X} the map ηX is not the equalizer of ηO2(X) and O2(ηX).
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Thus we have shown that all known attempts to simplify the construction of repletion
do not work for QCB and topological predomains, i.e. for realizability models over Pω.
The same holds for function realizability since ExPer(NN) ' ExPer(Pω) as shown in
(Bauer 2002). We leave it as a task for future investigations whether our counterexample
can be adapted to number realizability.
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