
Computability Theory

Prof. Dr. Thomas Streicher

SS 2002

Introduction

For knowing that a function f : Nk → N is computable one does not need a
definition of what is computable in principle simply because one recognizes
an algorithm whenever one sees it.1 However, for showing that f is not
computable one definitly has to delineate a priori the collection of functions
(on natural numbers) that are computable in principle. A stable such notion
was found in the 1930ies by some of the pioneers of mathematical logic as e.g.
S. C. Kleene, A. Church, A. Turing etc. The various different formalizations
of the concept were proven to be equivalent which led A. Church to formulate
his famous Church’s Thesis saying that all these equivalent formalizations
actually do capture the intuitive notion “computable in principle”.
One should notice that computability in principle is fairly different from
“feasible computation” where certain bounds (depending on the size of input)
are required for the amount of time and space consumed by the execution
of an algorithm. The former is a highly developed branch of mathematical
logic whereas the latter does not have such a definite shape as some of the
main questions have not been solved (e.g. the P = NP problem which has
been declared as one of the outstanding mathematical problems for the 21st
century).
In this lecture we concentrate on general computability theory whose results
are already fairly old and well known. But they are most useful and every
computer scientist should know at least the basic results because they clearly
delineate the limits of his business. Moreover, a certain amount of basic
knowledge in computability theory is indispensible for almost every branch
of mathematical logic prominently including theoretical computer science.
It is fair to say that computability theory is actually rather a theory of what
is not computable. For example the most basic result is the famous unde-
cidability of the halting problem saying that there is no algorithm deciding
whether for a given program P and input n the execution of P (n) termi-
nates. Of course, the halting problem is semi-decidable, i.e., one can find out
that P (n) terminates simply by running the program. One can show that
any semi-decidable property can be decided using a hypothetical decision
procedure for the halting problem. In this sense the halting problem is the
most difficult semi-decidable property as all other can be reduced to it. Via

1Alas, for a given algorithm it is not easy at all do decide or verify whether it meets a
given specification. Actually, as we shall see later this is an undecidable problem!

1

this notion of reduction computability theory allows one to scale undecidable
problems according to so-called degrees of unsolvability. This is an important
branch of computability theory which, however, we don’t follow in full detail.
Instead, after introducing the first notions and most basic results, we work
towards the Rice-Shapiro Theorem providing a full chararcterisation of all
semidecidable properties of programs which respect extensional equality, i.e.,
if two algorithms compute the same partial function then the first algorithm
satisfies the property if and only if the second does. A most pleasing aspect
of the Rice-Shapiro Theorem is that almost all undecidability results about
extensional properties of programs are immediate corollaries of it. Further-
more, the Rice-Shapiro Theorem gives rise to the Myhill-Shepherdson Theo-
rem characterising the computable type 2 functionals which take computable
partial functions as arguments and deliver numbers as results in case of termi-
nation as continuous functionals satisfying a certain effectivity requirement.
This inherent continuity property of type 2 functionals was taken as a starting
point by D. Scott end of the 1960ies when he developed his Domain Theory
as a mathematical foundation for the denotational semantics of programming
languages.
These results are the cornerstones of our lectures on computability theory.
They are accompanied by a few further results which are intrinsic for the
metamathematics of constructive logic and mathematics.

1 Universal Register Machines (URMs)

In this section we give one possible formalization of the concept of computable
function which is fairly close to (an idealized version of) the most common
programming languages like BASIC.
There is a lot of other provably equivalent characterisations having their
own merits. This coincidence of different attempts of formalizing the notion
of computable function supports Church’s Thesis saying that the notion of
computabe function coincides with any of these mathematical formalisations.
Often we use Church’s Thesis as an informal justification for the existence
of a program for a function which obviously is computable in the intuitive
sense. Such a sloppy style of argument is adopted in most books and papers
and we make no exception. For the novice this might be a bit unpleasant at
the beginning but you surely will get used to it as generations before. Why
should one be in logic more pedantic than in other fields of mathematics?

2

When you first saw Gauss’ algorithm it was clear to you that it can be
implemented in some programming language. Well, Gauss’ algorithm is a
useful thing for which it is worthwhile to write a program. However, in
computability theory for most arguments one just needs the existence of
an algorithm which, moreover, often is also relative to certain hypothetical
assumptions. Accordingly, it’s not worth the effort to write programs that
never will be executed.
Now to the promised formalization of computable function.

Definition 1.1 (URM)
The Universal Register Machine (URM) has infinitely many storage cells

R0, R1, . . . , Rn, . . .

also called registers which can store arbitrarily big natural numbers. A state
is a function σ assigning a natural number σ(Rn) to each register Rn where it
is assumed that σ(Rn) = 0 for almost all n ∈ N. We call σ(Rn) the contents
of Rn in state σ.
An URM-program is a finite list of commands

P ≡ C0 . . . Cnp−1

where the commands Ci are of one of the following four kinds

a) Z(n) meaning “put the contents of Rn to 0” (Rn:=0)

b) S(n) meaning “increase the contents of Rn by 1” (Rn:=Rn+1)

c) T (m,n) meaning “transfer the contents of Rm to Rn without changing
the contents of Rm” (Rn:=Rm)

d) I(n,m, k) meaning “if Rn = Rm then goto Ck and otherwise execute
the next command” (if Rn=Rm goto k).

If one starts program P in state σ then this leads to a sequence of configu-
rations

(σ, 0) = (σ0, `0) → (σ1, `1) → . . .→ (σk, `k) → (σk+1, `k+1) → . . .

which can be finite or infinite. The first component of a configuration (σ, `) is
the current state σ and its second component is the number ` of the command

3

of P which has to be executed next. How (σk+1, `k+1) is obtained from (σk, `k)
is specified by the above informal descriptions of the four kinds of commands.
A configuration (σ, `) is an end configuration w.r.t. P iff one of the following
three conditions is satisfied

(i) ` ≥ np

(ii) C` ≡ I(n,m, k) with σ(Rn) = σ(Rm) and k ≥ np

(iii) ` = np − 1 with C` ≡ I(n,m, k) and σ(Rn) 6= σ(Rm).

A possibly partial function f : Nk → N is computed by an URM-program
P iff for all ~a = (a0, . . . , ak−1) ∈ Nk the program P started in state σ~a :=
(a0, . . . , ak−1, 0, 0, 0 . . .) terminates iff f(~a) is defined in which case f(~a) is
the contents of R0 in the final state of the execution.
We call f URM-computable iff there is an URM-program P computing f . ♦

For every URM-computable function f there are infinitely many different
URM-programs computing f (exercise!).
As there are only countably many commands there are also only countably
many URM-programs. Accordingly, there are only countably many URM-
computable functions ! Thus, for cardinality reasons most functions over N
are not URM-computable! Convince yourself that there are at least infinitely
many URM-computable functions (exercise!).
Notice further, that every URM-program P during its execution can modify
only those registers which are explicitly mentioned in one of the commands
of P . Thus, for a particular program finitely many registers would suffice.

2 Partial Recursive Functions

Obviously, URM-programs are sort of idealized2 assembler code. However,
programming in assembly language is a cumbersome task because the pro-

2Idealized because we have assumed that registers can store arbitrarily big natural
numbers. Compare this with Turing machines where each cell has only finite storing
capacity (a letter of the alphabet under consideration). However, Turing machines are also
idealized in the respect that there is a potential infinity of such limited cells. Thus, Turing
machines can compute the same functions as URM-programs. But when programming
a Turing machine the programmer is responsible for memory management. That’s the
reason why in computational complexity the Turing machine model is the preferred one.

4

grammer is in charge of organizing all details. Thus, we give now a characteri-
sation of computable functionals which is much more abstract and, therefore,
much more convenient.
The partial recursive functions will be defined inductively as a certain subset
of the set ⋃

k∈N

[Nk⇀N]

where [X⇀Y] stands for the set of partial functions from X to Y . This has
the advantage that one doesn’t have to worry about execution sequences or
other nasty operational details of this kind and can all the time stay within
the familair realm of sets and functions. Later we will sketch a proof of the
fact that the partial recursive functions coincide with the URM-computable
functions.

Definition 2.1 (partial recursive functions)
The set of partial recursive or µ-recursive functions is defined inductively as
the least subset P ⊆

⋃
k∈N[Nk⇀N] satisfying the following closure conditions

(P1) for every k ∈ N the function

zerok : Nk → N : ~x 7→ 0

is in P

(P2) the function
succ : N → N : n 7→ n+1

is in P

(P3) for all natural numbers i < n the projection function

pr in : Nn → N : (x0, . . . , xn−1) 7→ xi

is in P

(P4) whenever f : Nm ⇀ N is in P and gi : Nn ⇀ N are in P for i = 1, . . . ,m
then

compmn (f, g1, . . . , gm) : Nn ⇀ N : ~x 7→ f(g1(~x), . . . , gm(~x))

is in P, too

5

(P5) whenever f : Nn ⇀ N and g : Nn+2 ⇀ N are in P then R[f, g] is in P,
too, where R[f, g] is the unique h : Nn+1 ⇀ N such that

h(~x, 0) ' f(~x) h(~x, n+ 1) ' g(~x, n, h(~x, n))

for all ~x ∈ Nn and n ∈ N

(P6) whenever f : Nn+1 ⇀ N is in P then µ(f) : Nn ⇀ N is in P, too, where
µ(f) is the unique function h : Nn ⇀ N such that for all ~x ∈ Nn and
m ∈ N, h(~x) = m iff f(~x, k) > 0 3 for all k < m and f(~x,m) = 0.

The least subset of
⋃
k∈N[Nk⇀N] closed under (P1)–(P5) is called the class

of primitive recursive functions. Obviously, the class of primitive recursive
functions is contained in

⋃
k∈N[Nk→N] as total number theoretic functions

are closed under (P1)–(P5). ♦

The schema (P5) is called primitive recursion and one easily shows by induc-
tion (on the last argument) that Rn[f, g] is total whenever f and g are total.
That (P1)–(P4) preserve totality of functions is obvious. Notice that prim-
itive recursion is more general than iteration It [a, f](n) = fn(a) because in
primitive recursion the step from n to n+1 depends on n and the parameters.
Almost all functions considered in arithmetic are primitive recursive (as e.g.
addition, multiplication, exponentition etc.). However, as we shall see later,
not all recursive functions, i.e. total partial recursive functions, are primitive
recursive. Actually, there is no programming language which allows one to
implement precisely the recursive functions.
Obviously, the source of possible nontermination is the operator µ which
allows one to search without knowing whether this search will eventually be
successful. For example the function µ0(succ) : N0 ⇀ N diverges, i.e. does
not terminate. Notice that µk(f)(~x) = n does not mean only that n is the
least number with f(~x, n) = 0 but, moreover, that f(~x,m) is defined for
all m < n. Otherwise µk(f) couldn’t be implemented in general because it
isn’t decidable in general whether f(~x,m)↓. Typical instances of “searching
without knowing” are for example

• searching for proofs in first order logic

• searching for integer solutions of a diophantine equation

3here t > 0 implies that t is defined for which we also write t↓

6

as in both cases one can show that existence of a proof or a solution are
undecidable properties.

Now we show that all partial recursive functions are URM-computable. A
proof (sketch) of the reverse direction has to wait till section 4.

Theorem 2.1 The partial recursive functions are all URM-computable.

Proof: We proceed by induction on the definition of P .
The cases of zeron, succ and pr in are obvious as these functions can be easily
implemented by an URM-program.
As every URM-program (independently from the input) reads and/or modi-
fies only finitely many registers, i.e. uses only a finite fragment of the store,
for every URM-computable function f : Nn ⇀ N there exists a program P
such that

P (σ)(R0) ' f(~a)

whenever σ(Ri) = ai for i < n.
For this reason the composition of URM-computable partial functions is
again URM-computable because one has arbitrary many registers available
for storing the intermediate results. In order to compute

compmn (f, g1, . . . , gm)(~a)

one first saves the input ~a to a region of the store not effected by the pro-
grams implementing f or some of the gi. Then one successively computes
the results of g0(~a), . . . , gm−1(~a) and stores them in the “save” part of the
store. If all these intermediary computations have terminated then store
the intermediary results into the registers R0, . . . , Rm−1 and start computa-
tion of the program implementing f . Notice, however, that before using the
URM-programs for f , g1, . . . , gm one has first to adapt the addresses in an
appropriate way because URM-programs employ absolute addressing instead
of relative addressing.
We leave it as an exercise to the reader to analogously verify that R[f, g] can
be implemented by an URM-program whenever this is the case for f and g.
Now if f : Nn+1 ⇀ N is implemented by an URM-program P then µ(f) can
be implemented as follows: first store the input to the save part of the store
and and put a distinguished register Z to 0 which is also in the save part of
the store; then start executing P after having copied the saved input and the
contents of Z to the registers R0, . . . , Rn; if the computation terminates in a

7

state where the contents of R0 is 0 then transfer the contents of Z to R0 and
terminate; otherwise increment Z by 1 and apply the same procedure again.

�

3 Primitive Recursive Functions and Codings

In order to show that all URM-computable functions are µ-recursive we have
to convince ourselves that the operational semantics of URM-programs can
be formulated in terms of primitive recursive functions. Then using the µ-
operator once one can search for codes of terminating computation sequences
(which, of course, might fail if there doesn’t exist any) and finally extract the
result of the computation from this code. This will be described in the next
section. In this section we argue in favour of the expressivity of primitive
recursive functions.
It is a straightforward exercise to show that the following functions

• addition and multiplication

• “truncated subtraction” defined as

n−. m =

{
n−m if n > m

0 otherwise

for all n,m ∈ N.

• integer division and remainder

are all primitive recursive. As a further even simpler example consider the
predecessor function pred sending 0 to 0 and n+1 to n whose primitive re-
cursive nature is exhibited by the equations

pred(0) = 0 pred(n+1) = n

for all n ∈ N. More formally, we may write

pred(zero0()) = zero0() pred(succ(n)) = pr 0
2(n, pred(n))

and thus get pred = R0[zero0, pr
0
2]. If one isn’t afraid of unnecessary work

then one may write down codes for all primitive or partial recursive functions

8

this way using the notation of Definition 2.1. However, this wouldn’t make
things more readable and, therefore, we stick to first variant, i.e., simply
write down the defining equations in ordinary mathematical format to argue
in favour of primitive (of partial) recursiveness.
Let us consider some further examples. The signum function sg is defined
by the equations

sg(0) = 0 sg(n+1) = 1

exhibiting its primitive recursive nature. Obviously, the function

leq(n,m) = sg(n−. m)

satisfies leq(n,m) = 0 if n ≤ m and leq(n,m) = 1 otherwise and, therefore,
decides the predicate ≤. Accordingly, equality of natural numbers is decided
by

eq(n,m) = leq(n,m) + leq(m,n)

which, obviously, is primitive recursive.
Moreover, primitive recursive functions are closed under case analysis as the
function cond : N3 → N defined by

cond(0, x, y) = x cond(n+1, x, y) = y

is obviously primitive recursive. That primitive recursive functions are closed
under iteration follows immediately from the fact that the function iter [f] :
N2 → N with

iter [f](0, x) = x iter [f](n+1, x) = f(iter [f](n, x))

is primitive recursive whenever f is primitive recursive. As we shall see a bit
later Nk and N are primitive recursively isomorphic. Thus, all functions which
can be computed by for-loops with primitive recursive body are primitive
recursive themselves. Thus, it is a simple exercise(!) to verify that for every
primitive recursive f : Nm+1 → N the function

µk<n. f(~x, k) = min{k ∈ N | k = n ∨ f(~x, k) = 0}

is primitive recursive.

Next we consider a few codings of mathematical objects by numbers that
will be used over and over again in the following.

9

A numbering or coding or Goedelisation of a set X is a surjective mapping
ε : N → X. Notice that then X is necessarily countable. For numberings ε1

and ε2 of X1 and X2, respectively, a function f : X → Y is computable w.r.t.
the numberings ε1 and ε2 iff there exists a computable function ϕ : N → N
rendering the diagram

N
ϕ

- N

X1

ε1

??

f
- X2

ε1

??

commutative. Very often, but not always (as for example in the case of P
studied later on) numberings ε : N → X can be chosen as bijective.

Now we study a few examples.

Let 〈 , 〉 : N2 → N be the primitive recursive function sending the pair
(n,m) to the number 〈n,m〉 = 2n(2m+1)−1 which is obviously a bijection.
Notice that n,m ≤ 〈n,m〉 for all n,m ∈ N. Thus, because bounded search
is primitive recursive (as seen just a few lines above) the functions π0, π1 :
N → N with

n = 〈π0(n), π1(n)〉

are primitive recursive (exercise!). Notice that this pairing function is expo-
nential in the first argument but as remarked before complexity issues don’t
play any role in the context of the current lecture.4

This primitive recursive coding of pairs can be extended to finite sequences
of natural numbers as follows. By recursion on k we define bijective functions
seqk : Nk → N as follows

seq1(n) = n seqk+1(n·s) = 〈n, seqk(s)〉

where n·s stands for the nonempty sequence whose head is n and whose tail
is s. This gives rise to a bijection seq+ from N+ =

⋃∞
k=1 Nk to N sending s

4However, inspired by Cantor’s first diagonal argument we could choose a polynomial
pairing function putting 〈n, m〉 = (n+m+1)(n+m)

2 + n.

10

to seq+(s) = 〈lgth(s), seq lgth(s)(s)〉 where lgth(s) stands for the length of s.

Finally we get a bijection seq from N∗ =
⋃∞
k=0 Nk to N putting

seq(ε) = 0 seq(s) = seq+(s) + 1

where ε stands for the empty sequence. It is a lengthy, but straightforward
exercise(!) that the usual operations on N∗ like length, concatenation etc.
can be implemented by primitive recursive functions on codes of sequences.
Finite sets of natural numbers can be encoded via the bijective function

ε : Pfin(N) → N : a 7→
∑
i∈a

2i

and write en for the unique a ∈ Pfin(N) with n = ε(a). Thus, a natural
number n codes the finite set a with k ∈ a iff the kth digit in the binary
expansion of n is 1. Again the usual operations and predicates on Pfin(N)
can be implemented by primitive recursive functions operating on codes.

4 Kleene’s Normal Form Theorem and

Admissible Numberings of P
Now we convince ourselves of the fact that every URM-computable function
is also partial recursive. Actually, we prove something slightly stronger,
namely that one single use of µ is sufficient, which fact is also known as

Theorem 4.1 (Kleene’s Normal Form Theorem) For every natural number
n there are primitive recursive functions Tn : Nn+2 → N and Un : N → N
such that for every n-ary URM-computable function f there exists a natural
number e such that

f(~x) ' Un(µk. Tn(e, ~x, k))

for all ~x ∈ Nn.

Proof: We only sketch the proof idea and refer the reader who wants to know
more details about coding to [Cut, TvD].
One easily can imagine how to code URM-programs by numbers as such
programs are just finite sequences of commands which, obviously, can be
coded by numbers. The configurations occuring during computations are

11

pairs (σ, `) where σ is a memory state and ` is a natural number telling
which command of the program under considerations has to be executed
next. It is appropriate to code a memory state σ by the natural number pσq

with
σ(Rn) = π0(π

n
1 (pσq))

i.e. pσq = 〈σ(R0), . . . 〈σ(Rn), 0〉 . . . 〉 where σ(Rk) = 0 for all k > n. Relative
to the chosen encodings for a given program P and configuration (σ, `) in a
primitive recursive way one may decide whether (σ, `) is a final configuration
w.r.t. P and if not compute its successor configuration (σ′, `′). Obviously,
one may also encode finite sequences of configurations and for these one may
decide in a primitive recursive way whether for a given (code of) an URM-
program and input ~x

• every successor configuration arises from its predecessor configuration
via P

• the last configuration of the sequence is final

• the first configuration equals (~x0∞, 0).

Now let Tn be the corresponding primitive recursive function with Tn(e, ~x, k) =
0 iff k codes a terminating computation sequence for the URM-program with
code e and input ~x. Let Un be the primitive recursive function sending the
code of a computation sequence with final configuration (σ, `) to σ(R0), i.e.,
U extract the result of the computation. Obviously, if e is a code for a pro-
gram computung f we have f(~x) ' Un(µk. Tn(e, ~x, k)) for all inputs ~x as
desired. �

The primitive recursive functions Tn and Un are called “Kleene’s T -predicate”
and “result extraction function”, respectively. In the following we simply
write T and U instead of T1 and U1, respectively.
Kleene’s Normal Form Theorem immediately gives rise to the following im-
portant

Corollary 4.1 All URM-computable functions are partial recursive.

Proof: Let f : Nn ⇀ N be a function implemented by an URM-program with
code e then we have

f(~x) ' Un(µk. Tn(e, ~x, k))

12

for all inputs ~x from which it follows by Kleene’s Normal Form Theorem 4.1
that f is partial recursive. �

Notice that it suffices to use µ-search at most once!
For all “machine-oriented” models of computation (as for example the famous
Turing machine model discussed e.g. in [Cut, Rog]) the proof of equivalence
with the partial recursive functions works according to the same pattern as
we have seen for URM-programs:

(i) show that all partial recursive functions can be implemented in the
language under consideration

(ii) code the programs and their operational semantics via functions Tn and
Un in Kleene’s Normal Form Theorem.

In particular, such a coding is possible also for programming languages like
BASIC, PASCAL, C etc. though the codings will get much more heavy than
for the comparatively simple case of URM-programs.
However, luckily for the considerations in the rest of these lectures (and the
theory of computability in general!) the precise nature of the functions Tn
and Un is fairly irrelevant as we need only their mere existence together with
a few structural properties which we will discuss next.

Definition 4.1 For every natural number n the partial recursive function
un : Nn+1 ⇀ N with

un(e, ~x) ' Un(µk. Tn(e, ~x, k))

for all e ∈ N and ~x ∈ Nn is called universal for n-ary partial recursive
functions. For u1 we write simply u and call it the universal function.
For e ∈ N the partial recursive function un(e,) mapping ~x to un(e, ~x) will be

denoted by ϕ
(n)
e or {e}(n) and is called the e-th partial recursive function of

arity n. We simply write ϕe and {e} for ϕ
(n)
e and {e}(n), respectively. The

notation {e} is usually referred to as “Kleene brackets”5. ♦

Notice that un may be understood as an interpreter for programs with n
arguments and that for every partial recursive function f there are always

5It will always be clear from the context whether {e} stands for the singleton set
containing e or for ϕe

13

infinitely many e with f = ϕ
(n)
e which fact is usually referred to as “padding”

(i.e. adding irrelevant code).

Suppose that f = ϕ
(k+1)
n and m ∈ N then the function g : Nk ⇀ N with

g(~x) ' f(m,~x) ' uk+1(n,m, ~x)

is partial recursive, too, and actually a Goedel number for g can be computed
from n and m in a primitive recursive way as claimed by the following

Theorem 4.2 (Parameter Theorem) For every natural number k there is a
primitive recursive function sk : N → N such that

ϕ(k+1)
n (m,~x) ' ϕ

(k)
sk(〈n,m〉)(~x)

for all m ∈ N and ~x ∈ Nk.

Proof: One easily can construct from a given URM-program P and m ∈ N
a program which first shifts the contents of the first k registers to the right
by 1, assigns m to R0 and then executes the program P with addresses
appropriatly shifted. Due to its simple nature this operation on programs
can be implemented in terms of codes by an appropriately chosen primitive
recursive function sk. �

As for k > 0 the sets Nk and N are primitive recursively isomorphic one can
always reduce k-ary functions to unary ones staying withing the realm of
primitive recursiveness, total recursiveness or partial recursiveness. Thus, in
the sequel w.l.o.g. we will consider all partial recursive functions as unary.
As already announced above the rest of this section is devoted to an axiom-
atization of the Gödel numbering ϕ = ϕ(1) up to recursive equivalence. This
numbering ϕ is effective or computable in the sense that there is an inter-
preter u = u1 for ϕ, i.e. ϕn(m) ' u(n,m) for all n,m. Furthermore, as an
immediate consequence of the Parameter Theorem 4.2 we have

Theorem 4.3 (snm-Theorem) There is a unary primitive recursive function
s such that

ϕn(〈m, k〉) ' ϕs(〈n,m〉)(k)

or equivalently
u(n, 〈m, k〉) ' u(s(〈n,m〉), k)

for all natural numbers n,m, k.

14

Proof: One easily sees that there is a primitive recursive function t such that

u(n, 〈m, k〉) ' u2(t(n),m, k)

for all n,m, k. Putting s(x) ' s1(〈t(π0(x)), π1(x)〉) with s1 as in the Param-
eter Theorem 4.2 we get

u(n, 〈m, k〉) ' u2(t(n),m, k) ' u1(s1(〈t(n),m〉, k)) ' u(s(〈n,m〉), k)

as desired. �

Now we define the notion of admissible Goedel numbering of P , the set of
unary partial recursive functions.

Definition 4.2 (Admissible Gödel Numbering of P) An admissible number-

ing of partial recursive functions is a surjective function ψ : N surj .→ P such
that

(A1) the binary partial function u(ψ)(n,m) ' ψn(m) is partial recursive and

(A2) there exists a total recursive function s : N → N such that

ψn(〈m, k〉) ' ψs(〈n,m〉)(k)

for all n,m, k ∈ N. ♦

Obviously, according to Theorems 4.1 and 4.3 the canonical numbering ϕ of
P with

ϕn(m) ' U(µk.T (n,m, k))

is admissible in the sense of the above definition. The next theorem will show
that in an appropriate sense this numbering is the only one.

Lemma 4.1 Let ψ and θ be surjective functions from N to P such that ψ
satisfies condition (A1) of Definition 4.2 and θ satisfies condition (A2) of
Definition 4.2. Then there exists a total recursive function f : N → N with
θ ◦ f = ψ, i.e.

θf(n) = ψn

for all n ∈ N.

15

Proof: Due to the assumption on ψ the mapping x 7→ ψπo(x)(π1(x)) is partial
recursive. Thus, there exists a natural number e with

θe(〈n,m〉) ' ψn(m)

for all n,m ∈ N. Due to the assumption on θ there is a total recursive function
t with θt(〈n,m〉)(k) ' θn(〈m, k〉) for all n,m, k. Now putting f(n) = t(〈e, n〉)
we obtain

θf(n)(m) ' θt(〈e,n〉)(m) ' θe(〈n,m〉) ' ψn(m)

as desired. �

As an immediate consequence we get the following

Theorem 4.4 Any two admissible Gödel numberings ψ and θ of P are re-
cursively equivalent, i.e., there exist total recursive functions f and g with
θ ◦ f = ψ and ψ ◦ g = θ. In particular, every admissible Gödel numbering of
P is recursively equivalent to the canonical numbering ϕ.

Proof: Apply Lemma 4.1 twice! �

Admissible numberings of P may be most naturally understood as universal6

programming languages in the following sense. If one considers ϕ as the

machine language then an admissible numbering, i.e. a function ψ : N surj.→ P
with total recursive f, g : N → N such that ϕ ◦ f = ψ and ψ ◦ g = ϕ, can be
understood as a notation system for partial recursive functions such that

• ψ-programs can be compiled to ϕ-programs via f and

• ϕ-programs can be decompiled to ψ-programs via g

which situation should be familiar from modern programming languages (up
to the “little” difference that real programming languages don’t restrict focus
to unary functions on N). Notice, however, that compilation and decompila-
tion are not mutually inverse on the level of programs, i.e. in general

f ◦ g 6= idN 6= g ◦ f
6“universal” here means “Turing universal”, i.e. the class of partial functions from N

to N which can be expressed in the programming language under consideration coincides
with P

16

though f and g are mutually inverse w.r.t. the extensional equality induced
by ϕ and ψ, respectively, i.e.

ϕ ◦ f ◦ g = ϕ and ψ ◦ g ◦ f = ψ .

It is a simple exercise(!) to show that whenever f, g : N→N are total recursive
functions with ϕ◦f ◦ g = ϕ the function ψ := ϕ◦f : N → P is an admissible
numbering of P . In such a situation we may define a variant Tψ of Kleene’s
T -predicate as follows

Tψ(e, n, k) ≡ T (f(e), n, k)

for which it holds that

ψe(n) ' ϕf(e)(n) ' U(µk.T (f(e), n, k)) ' U(µk.Tψ(e, n, k))

as expected.
Summarising one may say that up to recursive equivalence there is just one
“reasonable” coding of partial recursive functions where “reasonable” is cap-
tured by the precise technical meaning of “admissible”.

5 Recursive and Semidecidable Sets

In this section we will introduce the key concepts of decidable and semide-
cidable sets of natural numbers.

Definition 5.1 (decidable and semidecidable sets)
A subset A of N is called decidable iff there exists a total recursive function
p : N → N such that

n ∈ A iff p(n) = 0

for all n ∈ N.
A subset A of N is called semidecidable iff there exists a partial recursive
function f with

n ∈ A iff f(n)↓

for all n ∈ N. We say that e is a Gödel number for A iff A = dom(ϕe), i.e.
n ∈ A iff ∃k.T (e, n, k).
We write We as an abbreviation for {n ∈ N | ∃k.T (e, n, k)}. ♦

17

It is a straightforward exercise(!) to show that decidable sets are closed under
finite unions, finite intersection and complementation. Using Kleene’s T -
predicate one also easily shows that semidecidable sets are closed under finite
unions and finite intersections. As we shall see a bit later a set A is decidable
if and only if A and its complement {A = N\A are both semidecidable.
Semidecidable sets are usually called recursively enumerable (r.e.) as they
can be characterised as follows.

Lemma 5.1 A set A ⊆ N is semidecidable iff A is empty or A = f [N] for
some total recursive f .

Proof: Suppose A is semidecidable and non-empty. Let e be a natural number
with We = A and n0 ∈ A. Then for the total recursive function f with

f(n) =

{
π0(n) if T (e, π0(n), π1(n))
n0 otherwise

it obviously holds that A = f [N].
On the other hand the empty set is obviously semidecidable and if A = f [N]
for some total recursive function f then a semidecision procedure for A is
given by p(x) = µk.eq(x, f(k)). �

Notice that the function f constructed in the proof of the previous theorem
is actually primitive recursive (as T is primitive recursive). Thus, we have
actually proved something slightly stronger, namely that a set A of natural
numbers is r.e. iff it is empty or the image of a primitive recursive function.
Another characterisation of recursive enumerability is given by the following
lemma whose proof is left to the reader as a simple exercise(!).

Lemma 5.2 A set A ⊆ N is r.e. iff A is the image of some ϕe, i.e. iff

x ∈ A iff ∃n, k ∈ N. T (e, n, k) ∧ x = U(k)

for all x ∈ N.

Proof: Exercise(!) left to the reader. �

Next we give a characterisation of decidability in terms of semidecidability.

Lemma 5.3 A set A of natural numbers is decidable iff A and {A are
semidecidable.

18

Proof: The implication from left to right is trivial as one always may decide
to diverge (i.e. to not terminate).
For the reverse direction assume that A = We1 and {A = We2 . Then a
decision procedure for A is given by

p(n) = f(n, µk.T (e1, n, k) ∨ T (e2, n, k))

with

f(n, k) =

{
0 if T (e1, n, k)
1 otherwise

The idea behind p is that for given n one checks for all numbers k whether
they code a terminating computation sequence for {e1}(n) or {e2}(n) and in
the first case one outputs 0 and in the second case one outputs 1. �

Probably the most important fact of recursion theory is that there are semide-
cidable sets which are not decidable. The paradigmatic such example is the
so-called halting problem.

Theorem 5.1 (Undecidability of the Halting Problem) The sets

H = {〈n,m〉 | ∃k∈N.T (n,m, k)} and K = {n ∈ N | ∃k∈N.T (n, n, k)}

are both semidecidable but none of them is decidable.

Proof: Evidently the sets H and K are semidecidable via the partial recursive
functions

pH(n) = µk.T (π0(n), π1(n), k) and pK(n) = µk.T (n, n, k)

respectively.
Obviously, if H were decidable then so were K as n ∈ K iff 〈n, n〉 ∈ H. Thus,
it remains to show that K is not decidable. By Lemma 5.3 this is equivalent
to showing that {K is not r.e. Assume on the contrary that {K = We for
some e ∈ N, i.e.

{n}(n)↑ iff {e}(n)↓

and, therefore, in particular

{e}(e)↑ iff {e}(e)↓

19

which clearly is impossible. �

We now will show that in some sense K is the “most difficult” r.e. set. The
following notion allows one to compare the difficulty of the decision problem
for arbitrary subsets of N.

Definition 5.2 (many-one reducibility) Let A,B ⊆ N. We say that A is
many-one reducible to B (A ≤m B) iff there exists a total recursive function
f with A = f−1[B]. ♦

Obviously, if A ≤m B via a total recursive function f then a decision proce-
dure p for B gives rise to the decision procedure p ◦ f for A. In this sense B
is at least as difficult to decide as A. The terminology “many-one” reflects
the fact that f need not be one-to-one, i.e. that many different arguments
may be mapped to the same value by f . One easily shows (exercise!) that
≤m is a preorder on P(N), i.e. that ≤m is reflexive and transitive. Equiv-
alence classes w.r.t. the symmetrisation of ≤m are called many-one degrees
or simply m-degrees. Degree theory is a vast field within recursion theory
(cf. [Cut, Rog]). Particular attention is given to r.e. degrees, i.e. equivalence
classes of r.e. sets w.r.t. ≤m (or some other notion of reducibility).

Lemma 5.4 Every r.e. set is many-one reducible to K.

Proof: Suppose A = dom(f) for some partial recursive f . Then the function

g(〈n,m〉) ' f(n)

is partial recursive, too. Let e be a Gödel number for g. Then by the snm-
theorem we have

f(n) ' g(〈n,m〉) ' {e}(〈n,m〉) ' {s(〈e, n〉)}(m)

for all n,m ∈ N from which it follows that

f(n)↓ if and only if s(〈e, n〉) ∈ K

as f(n)↓ iff {s(〈e, n〉)}(s(〈e, n〉))↓. Thus, we have

n ∈ A if and only if s(〈e, n〉) ∈ K

from which it follows that A ≤m K via the total recursive function mapping
n to s(〈e, n〉). �

20

6 Why Partiality is Intrinsic

There arises the question whether it wouldn’t be reasonable to restrict one’s
attention to the collection of total recursive functions as from a practical
point of view one would rather like to avoid non-termination. The following
theorem tells us that this is impossible. The proof idea is a minor variation of
Cantor’s 2nd diagonal argument showing that there cannot exist a surjection
from a set X to the set XX of all functions from X to X.

Theorem 6.1 There does not exist a total recursive function v : N2 → N
such that for every unary total recursive function f there exists an e ∈ N
with v(e, n) = f(n) for all n ∈ N.

Proof: Suppose there exists a total recursive v such that for every total
recursive f there is an e with f = v(e,). Consider the total recursive
function f(n) = v(n, n) + 1. Due to our assumption on v there exists an
e ∈ N with v(e, n) = f(n) for all n ∈ N. Thus, in particular, we have

v(e, e) = f(e) = v(e, e) + 1

which certainly is a contradiction. �

This theorem tells us that there cannot exist a programming language al-
lowing one to implement precisely the total recursive functions because it
tells us that for every surjective function ψ from N to the set R of total
recursive functions the associated interpreter u(ψ) : N2 → N itself cannot be
computable.
Of course, it is possible to consider non-trivial programming languages where
all programs terminate. For example one may consider a programming lan-
guage where recursion is restricted to primitive recursion. Then, however,
the interpreter for this class of total recursive functions falls out of this class
as shown by the next theorem.

Theorem 6.2 Let C be a class of unary total recursive functions containing
idN and succ, closed under composition and satisfying the requirement that
〈f, g〉 ∈ C whenever f, g ∈ C (where 〈f, g〉(n) := 〈f(n), g(n)〉).
Then for every enumeration ψ : N surj.→ C of C the interpreter function uψ :
N → N with uψ(〈n,m〉) := ψn(m) is not contained in C.

21

Proof: Suppose uψ ∈ C. Then due to the assumed closure properties of C
the function f(n) := ψn(n) + 1 is also in C (as f = succ ◦ uψ ◦ δN where
δN(n) := 〈n, n〉). As ψ was assumed as surjective there exists an e ∈ N with
f = ψe and we have

ψe(e) = f(e) = ψe(e) + 1

which obviously is a contradiction. �

As a consequence we get the following corollary.

Corollary 6.1 An interpreter for primitive recursive functions cannot itself
be primitive recursive.

Proof: Immediate from Theorem 6.2 instantiating C by the set of unary
primitive recursive functions. �

There is a lot of examples of classes of recursive functions satisfying at least
the closure properties required for C in Theorem 6.2 as for example the
polynomial time computable functions or classes of recursive functions whose
termination can be proved in a fixed formal system T .7 In Chapter III on
Proof Theory we exhibit a programming language capturing the recursive
functions provably total in Peano Arithmetic.
Though we have seen that there cannot exist a programming language cap-
turing the class of total recursive functions there still remains the question
whether every partial recursive function can be extended to a total recursive
one. But the answer to this question is negative, too.

Theorem 6.3 There exists a partial recursive function which cannot be ex-
tended to a total recursive function.

Proof: Consider the partial recursive function f(n) ' u(n, n) + 1. Suppose
that there is a total recursive function ϕe with ϕe(n) = f(n) whenever f(n)↓.
As by assumption ϕe(e) is defined it follows that f(e) = u(e, e)+1 is defined
and, therefore, that ϕe(e) = f(e). Thus, we have

ϕe(e) = f(e) = ϕe(e) + 1

which obviously is impossible. �

7This formulation is somewhat inaccurate. More precisely, what we mean is that there
is an algorithm which implements the function and whose termination can be proved in
the formal system T .

22

7 Some Cheap Negative Results

Later we will show a nontrivial Theorem due to Rice and Shapiro character-
ising semidecidable extensional properties of P , i.e. those F ⊆ P for which
EF is semidecidable. As we shall see in the next section the Rice-Shapiro-
Theorem allows us to give a negative answer to most questions concerning
decidability or semidecidability of extensional predicates on P in a most sim-
ple way. Before embarking on the somewhat non-trivial proof of the Rice-
Shapiro-Theorem in this section we will give a few direct proofs of negative
results of the kind mentioned above.

Theorem 7.1 (Theorem of Rice)
Every decidable extensional predicate on P is trivial, i.e. for every F ⊆ P
with EF = {e ∈ N | ϕe ∈ F} decidable either F = P or F = ∅.

Proof: Suppose that F is a nontrivial subset of P with EF decidable. Then
there exists f ∈ P with

f ∈ F iff ∅ 6∈ F

where ∅ stands for the empty function in P . Let g : N2 ⇀ N be the partial
recursive function with

g(e, n) = m iff e ∈ K and m = f(n).

Then by the parameter theorem there exists a total recursive function h with
ϕh(e)(n) ' g(e, n) for all e, n ∈ N. Obviously, we have that ϕh(e) = f if e ∈ K
and ϕh(e) = ∅ otherwise. Assuming w.l.o.g. that ∅ ∈ F we get

h(e) ∈ EF iff e 6∈ K

for all e. Thus, the complement of K were r.e. which is known to be impos-
sible. �

Rice’s Theorem gives a devastating answer to all attempts of checking in a
purely mechanical way whether programs satisfy a non-trivial specification.
Actually, we can even show that the set of Gödel numbers of a given total
recursive function is not r.e. and, therefore, not finite.

Lemma 7.1 If f is a total recursive function then Ef = {n ∈ N | ϕn = f}
is not r.e.

23

Proof: Let g : N2 ⇀ N be the partial recursive function with

g(e, n) = m iff ¬T (e, e, n) and f(n) = m

By the parameter theorem there exists a total recursive function h with
ϕh(e) = f iff e 6∈ K, i.e.

h(e) ∈ Ef iff e 6∈ K

from which it follows that {K is r.e. which is impossible. �

From the Rice-Shapiro Theorem in the next section it will also follow that
Ef is not r.e. even if f is only partial recursive.

8 The Rice-Shapiro Theorem

In this section we will prove the Rice-Shapiro Theorem characterising the
extensionally r.e. subsets of P which are defined as follows.

Definition 8.1 (extensionally r.e.) A subset F of P is called extensionally
r.e. iff the set EF := {n ∈ N | ϕn ∈ F} is r.e. ♦

We first prove the crucial lemma which is of interest in its own right and
from which later on one rather easily obtains the Rice-Shapiro Theorem.

Lemma 8.1 For every extensionally r.e. set F it holds that

(1) if f0 is a finite partial function in F and f is a partial recursive function
with f0 ⊆ f then f ∈ F , too, and

(2) for every f ∈ F there exists a finite partial function f0 ∈ F with f0 ⊆ f .

Proof: ad (1) : Suppose that f0 is a finite partial function in F and f is a
partial recursive function f ⊇ f0 with f 6∈ F . Obviously, the partial function

g(〈n,m〉) '
{
f(m) if m ∈ dom(f0) or n ∈ K
↑ otherwise

is partial recursive. Let ϕe = g. Then by the snm-theorem we have

ϕs(〈e,n〉)(m) ' ϕe(〈n,m〉)

for all n,m ∈ N. The function h(n) = s(〈e, n〉) is total recursive and we have

24

(i) n ∈ K ⇒ ϕh(n) = f ⇒ h(n) 6∈ EF and

(ii) n 6∈ K ⇒ ϕh(n) = f0 ⇒ h(n) ∈ EF

from which it follows that

n 6∈ K ⇔ h(n) ∈ EF

for all n. Thus, as EF is r.e. and h is total recursive it follows that {K is r.e.
which is known to be impossible.
ad (2) : Suppose f ∈ F such that f0 6∈ F for every finite partial function
f0 ⊆ f . Obviously, the partial function

g(〈n,m〉) '
{
f(m) if m ∈ dom(f0) or ∀k≤m.¬T (n, n, k)
↑ otherwise

is partial recursive, i.e. g = ϕe for some e ∈ N. By the snm-theorem we have

ϕs(〈e,n〉)(m) ' ϕe(〈n,m〉)

for all n,m ∈ N. Let h be the total recursive function with h(n) = s(〈e, n〉).
Obviously, for all n we have ϕh(n) ⊆ f and n ∈ K iff ϕh(n) is finite. Thus, we
have

n 6∈ K ⇔ h(n) ∈ EF

for all n. Thus, as EF is r.e. and h is total recursive it follows that {K is r.e.
which is known to be impossible. �

It is a simple consequence of this lemma that

Corollary 8.1 Every extensionally r.e. subset F of P is upward closed, i.e.,
if f ∈ F and f ⊆ g ∈ P then g ∈ F .

Proof: Suppose f ∈ F and g ⊇ f is partial recursive. By Lemma 8.1(2) there
exists a finite partial function f0 ⊆ f with f0 ∈ F . Thus, by Lemma 8.1(1)
it follows that g ∈ F as f0 ⊆ f ⊆ g. �

Already this corollary allows us to show very easily that equality and in-
clusion8 between partial recursive functions is not semidecidable in terms of
Gödel numbers.

8We write f v g for f ⊆ g from now on!

25

Lemma 8.2 The sets

E= = {〈n,m〉 | ϕn = ϕm} and Ev = {〈n,m〉 | ϕn v ϕm}

are neither r.e. nor co-r.e.

Proof: As 〈n,m〉 ∈ E= iff 〈n,m〉 and 〈m,n〉 are both in Ev it suffices to
show that E= is neither r.e. nor co-r.e. If E= were r.e. then {∅} ⊆ P were
extensionally r.e. which by Corollary 8.1 entails that P = {∅} which is bla-
tantly wrong as not all partial recursive functions are empty! On the other
hand if E= were co-r.e., i.e. the complement of E= were r.e., then the set
F = {f ∈ P | f 6= λn.0} were extensionally r.e. and, therefore, as ∅ ∈ F
according to Corollary 8.1 we would get λn.0 ∈ F in contradiction to the
definition of F . �

The following further negative results can be obtained from Lemma 8.1.

Lemma 8.3

(1) For every partial recursive function f the set Ef = {n ∈ N | ϕn = f}
is not r.e. and it is not co-r.e. unless f is the empty function.

(2) Neither the set of total recursive functions nor its complement are ex-
tensionally r.e.

(3) Neither the set of partial recursive functions with finite domain of def-
inition nor its complement are extensionally r.e.

Proof: ad (1) Suppose Ef were r.e., i.e. {f} were extensionally r.e. If f has
an infinite domain of definition then by Lemma 8.1 the set {f} would also
contain some finite function f0 below but different from f . If f were finite
then by Lemma 8.1 the set {f} would contain some infinite extension of f .
Suppose Ef were co-r.e., i.e. P\{f} were extensionally r.e. If f is different
from the empty function then ∅ ∈ P\{f} and, therefore, f ∈ P\{f} by
Lemma 8.1. However, the set E∅ is co-r.e. as ϕe 6= ∅ iff ∃n, k.T (e, n, k).
ad (2) If the set of total recursive functions were extensionally r.e. then it also
would contain some finite function due to Lemma 8.1. If the complement of
the set of total recursive functions were extensionally r.e., i.e. the set of prop-
erly partial recursive functions were extensionally r.e., then by Corollary 8.1

26

every total recursive function were properly partial as the empty function is
properly partial.
ad (3) analogous to the proof of (2) and left to the reader. �

Now we will prove the Rice-Shapiro Theorem characterising the extensional
r.e. sets as those subsets F of P such that there exists an r.e. set F0 of finite
functions with

f ∈ F iff ∃f0 ∈ F0. f0 v f

for all partial recursive f . However, for this purpose we first have to introduce
an appropriate Gödel numbering for the finite functions.

Theorem 8.1 There exists a surjective function

ϕfin : N surj.→ {f ∈ P | dom(f) finite}

such that

(1) the function ufin(e, n) ' ϕfin
e (n) is partial recursive and

(2) the predicate ϕfin
n v ϕm is semidecidable.

Proof: First recall that Pfin(N) can be goedelized by εn = a iff n =
∑

i∈a 2i.
For this coding it holds that m ∈ εn implies m ≤ n. Accordingly, the
predicate

sv(n) ≡ ∀m1,m2 ∈ εn. π0(m1) = π0(m2) ⇒ π1(m1) = π1(m2)

is primitive recursive. Obviously, the predicate sv (standing for “single-
valued”) holds for a natural number n iff εn = {〈m, f(m)〉 | m ∈ dom(f)}
for some finite function f . Let ffin be some (primitive) recursive function
enumerating {n ∈ N | sv(n)}. Then we can define ϕfin as

ϕfin
n (m) = k iff 〈m, k〉 ∈ εffin(n)

which satisfies requirement (1) as

ϕfin
n (m) ' µk.〈m, k〉 ∈ εffin(n)

for all n,m ∈ N. Requirement (2) holds as we have

ϕfin
n v ϕe iff ∀m ∈ εffin(n). ϕe(π0(m)) = π1(m)

27

which is obviously semidecidable as the quantification over all m ∈ εffin(n)

may be replaced equivalently by the quantification over all m ≤ ffin(n) with
m ∈ εffin(n). �

Now we are ready to prove the Rice-Shapiro Theorem in its full glory.

Theorem 8.2 (Rice-Shapiro Theorem) A set F of partial recursive func-
tions is extensionally r.e. iff

F = {f ∈ P | ∃n ∈ A. ϕfin
n v f}

for some r.e. set A.

Proof: Obviously, the condition is sufficient as

e ∈ EF ⇐⇒ ϕe ∈ F ⇐⇒ ∃n ∈ A. ϕfin
n v ϕe

and, therefore, EF is r.e. by Theorem 8.1(2).
On the other hand if F is extensionally r.e. then by Lemma 8.1 we know that
f ∈ F iff f0 v f for some finite f0 ∈ F . Thus, we have

F = {f ∈ P | ∃n ∈ A. ϕfin
n v f}

for A := {n ∈ N | ϕfin
n ∈ F}. It remains to show that A is r.e. Let

ϕe(〈n,m〉) ' ϕfin
n (m). Then by the snm-theorem we have ϕs(〈e,n〉) = ϕfin

n for
all n and, therefore,

A = {n ∈ N | ϕs(〈e,n〉) ∈ F} = {n ∈ N | s(〈e, n〉) ∈ EF}

which clearly is r.e. as EF is r.e. by assumption. �

The Rice-Shapiro theorem tells us that for an extensionally r.e. set F in order
to check whether f ∈ F it suffices to check whether f extends some finite
function f0 ∈ F0 where F0 is an r.e. set of finite functions in F . Moreover,
for F0 one may take the set of all finite functions contained in F . In order
to check whether f extends a finite function f0 one just needs extensional
information about f .
The Rice-Shapiro theorem provides a very nice and very important connec-
tion between recursion theory and topology which we will explain next. The

28

set [N ⇀ N] of partial functions from N to N can be endowed with a topol-
ogy of “finite information” whose basic9 open sets are those of the form
↑f0 = {f : N ⇀ N | f0 v f} for some finite function f0 : N ⇀ N. The
induced subspace topology on P ⊆ [N ⇀ N] we also call topology of “finite
information”. The Rice-Shapiro theorem tells us that a set F is extension-
ally r.e. iff it is open in P w.r.t. the finite information topology and the basic
neighbourhoods contained in it are recursively enumerable.
This prima facie unexpected connection between computability and topology
lies at the heart of D. Scott’s Domain Theory. In the next section we will show
that computable (= effective) functionals and operators are also continuous
w.r.t. the finite information topology and can be characterised as continuous
functionals satisfying a certain effectiveness requirement (notice the analogy
to the above reading of the Rice-Shapiro theorem!).
In a sense the usual Euclidean topology on the real numbers is also a “finite
information topology” as for a Cauchy sequence (xn)n∈N with a given rate of
convergence in order to guarantee that its limit is contained in some open
set it suffices to inspect a finite initial segment of the sequence!

9 Effective Operations, Effective Operators

and the Myhill-Shepherdson Theorem

Due to admissible Gödel numberings of P one may reduce computability of
second order objects like functionals and operators to first order as in the
following definition.

Definition 9.1 (Effective Operations and Operators)
An effective operation is a partial functional φ : P ⇀ N such that for some
natural number e it holds that

φ({n}) ' {e}(n)

for all n ∈ N in which case we say that e realizes φ and for which we write
e φ.
An effective operator is a function Φ : P → P such that for some natural
number e it holds that

Φ({n}) = {{e}(n)}
9notice that in the case under consideration the basic opens are closed under finite

intersections!

29

for all n ∈ N in which case we say that e realizes Φ and for which we write
e Φ. ♦

Notice that not every natural number e realizes an effective operation. For
example if {e} = idN then e doesn’t realize any effective operation because
idN doesn’t respect extensional equality. Similarly not every natural number
e realizes an effective operator as for this purpose {e} has to be total.
Using the Rice-Shapiro theorem we get that effective operations are contin-
uous w.r.t. the “topology of finite information“.

Lemma 9.1 (Myhill and Shepherdson)
For every effective operation φ and natural number n the set φ−1(n) is exten-
sionally r.e. and, therefore, open in the topology of finite information which
more explicitly means that

(1) from φ(f) = n and f v g it follows that φ(g) = n, too, and

(2) if φ(f) = n then there is a finite function f0 v f with φ(f0) = n.

Proof: Suppose that e realizes φ and n is a natural number. Then

m ∈ Eφ−1(n) iff φ({m}) = n iff {e}(m) = n

from which it follows that φ−1(n) is extensionally r.e. Claims (1) and (2) are
immediate from the Rice-Shapiro theorem. �

The above lemma says that if φ(f) = n one just needs a finite amount
of extensional information about f , i.e. the values of f at finitely many
arguments, for computing the value φ(f). Moreover, this value φ(f) depends
only on positive information about the argument f because if φ(f) terminates
and f v g then φ(f) = φ(g).
The conditions (1) and (2) of Lemma 9.1 can be squeezed into the following
single condition

∀f ∈ P .∀n ∈ N. φ(f) = n⇒ ∃f0 vfin f.∀g ∈ P . f0 v g → φ(f0) = φ(g)

which strongly resembles the “ε-δ-characterisation of continuity” (with n
corresponding to ε and f0 to δ).

This continuity result can be extended to effective operators.

30

Lemma 9.2 (Myhill and Shepherdson)
For every effective operator Φ and finite function f0 the set Φ−1(↑f0) is ex-
tensionally r.e.

Proof: Suppose e Φ. We have

{n} ∈ Φ−1(↑f0) iff f0 v Φ({n}) iff f0 v ϕ{e}(n)

from which it follows by Theorem 8.1(2) that the set Φ−1(↑f0) is extensionally
r.e. �

As an immediate corollary we get that

Corollary 9.1 Every effective operator Φ is monotonic, i.e., if f v g then
Φ(f) v Φ(g).

Proof: Straightforward exercise(!) when using Lemma 9.2. �

It follows from the previous two lemmas that effective operations and opera-
tors are determined by their behaviour on finite arguments. This motivates
the following definition.

Definition 9.2 For an effective operation φ its graph is defined as

graph(φ) = {〈n,m〉 | φ({n}fin) = m}

and for an effective operator Φ its graph is defined as

graph(Φ) = {〈n, 〈m, k〉〉 | Φ({n}fin)(m) = k}

where {n}fin stands for ϕfin
n . ♦

Now we are ready to formulate and prove the Myhill-Shepherson Theorem(s).

Theorem 9.1 (Myhill-Shepherdson for Effective Operations)
For every effective operation φ its graph graph(φ) is r.e. Moreover, for
〈n1,m1〉, 〈n2,m2〉 ∈ graph(φ) it holds that m1 = m2 whenever {n1}fin and
{n2}fin have a common extension (for which we write {n1}fin↑{n2}fin).
Suppose that G is a r.e. subset of N which is consistent in the sense that for
all 〈n1,m1〉, 〈n2,m2〉 ∈ G, {n1}fin↑{n2}fin implies m1 = m2. Then φG with

φG(f) = m iff ∃n. {n}fin v f ∧ 〈n,m〉 ∈ G

is an effective operation.

31

Proof: Suppose e realizes the effective operation φ. Let h be a total recursive
function with {h(n)} = {n}fin for all n ∈ N. Then we have

φ({n}fin) = m iff φ({h(n)}) = m iff {e}(h(n)) = m

from which it follows that graph(φ) is r.e. For showing that graph(φ) is consis-
tent suppose that φ({n1}fin) = m1, φ({n2}fin) = m2 and {n1}fin, {n2}fin v f .
Then by Corollary 9.1 we have φ(f) = m1 and φ(f) = m2 from which it
follows that m1 = m2 as desired.
Suppose that G is a consistent r.e. set. The set

AG = {〈n,m〉 | ∃k. {k}fin v {n} ∧ 〈k,m〉 ∈ G}

is r.e. as G is r.e. by assumption and the predicate {k}fin v {n} is r.e. by
Theorem 8.1(2). Obviously φG({n}) = m iff 〈n,m〉 ∈ AG. Then φG is
realized by e with

{e}(n) ' π0(µk.T (n0, 〈n, π0(k)〉, π1(k)))

where Wn0 = AG. �

A realizer e for an effective operation φ necessarily operates on the code,
i.e. Gödel number, of its argument. The surprising fact expressed by the
Myhill-Shepherdson theorem is that φ nevertheless does not really make use
of this intensional information about the argument as the value of φ at some
argument f is determined by some finite extensional information about f .
Notice, moreover, that a Gödelization of effective operations may be obtained
using the fact that there is a total recursive function shave such that for all
n it holds that Wshave(n) is consistent and equal to Wn provided Wn itself is
consistent.

All these considerations and the Myhill-Shepherdson theorem in particular
can be extended to effective operators.

Theorem 9.2 (Myhill-Shepherdson for Effective Operators)
For every effective operator Φ its graph graph(Φ) is r.e. Moreover, for
all 〈n1, 〈k,m1〉〉, 〈n2, 〈k,m2〉〉 ∈ graph(Φ) it holds that m1 = m2 whenever
{n1}fin↑{n2}fin.
Moreover, if G is a r.e. subset of N which is consistent in the sense that for
all 〈n1, 〈k,m1〉〉, 〈n2, 〈k,m2〉〉 ∈ G, {n1}fin↑{n2}fin implies m1 = m2 then ΦG

with
ΦG(f)(k) = m iff ∃n. {n}fin v f ∧ 〈n, 〈k,m〉〉 ∈ G

32

is an effective operator.

Proof: The proof is analogous to the proof of Theorem 9.1 and, therefore,
left to the reader. �

From the Myhill-Shepherdson theorems 9.1 and 9.2 it follows rather imme-
diately that

(1) effective operations φ : P ⇀ N can be extended to partial continuous
maps from [N ⇀ N] to N putting

φ(f) = m iff ∃f0 vfin f. φ(f0) = m

for arbitrary f : N ⇀ N and

(2) effective operators Φ : P → P can be extended to continuous maps
from [N ⇀ N] to [N ⇀ N] putting

Φ(f)(n) = m iff ∃f0 vfin f. Φ(f0)(n) = m

for arbitrary f : N ⇀ N.

Obviously, this unique extension property holds also for continuous, not nec-
essarily effective φ : P ⇀ N and Φ : P → P .
This observation can be used for clarifying the notion of relative computabil-
ity.

Definition 9.3 Let f, g : N ⇀ N not necessarily computable. Then g is
partial recursive relative to f iff Φ(f) = g for some effective operator Φ.

Thus, any effective numbering (Φe)e∈N of effective operators gives rise to
an admissible numbering of functions partial recursive relative to f putting
{e}fe = Φe(f). One may show that the partial recursive functions relative to
f can be defined inductively like the partial recursive function but adding f
as a base function (which can be considered as sort of an oracle).
Relative computability can be used for defining a notion of reducibility be-
tween sets of natural numbers with better properties than the previously
considered notion of many-one reducibility. One says that A is Turing re-
ducible to B (A ≤T B) iff the characteristic function for A is partial recursive
relative to the characteristic function for B, i.e., iff there is an effective opera-
tor taking decision procedures for B to decision procedures for A in a uniform

33

way. It is easily seen that many-one reducibility entails Turing reducibility.
But the reverse implication does not hold as shown in [Rog] which generally
is a rich source of information about Turing degrees.

We conclude this section by remarking that the results of this section can
be extended from 2nd order types to arbitrary finite (and even) recursive
types. However, for this purpose one needs an appropriate class of topolog-
ical spaces as provided by Dana Scott’s Domain Theory from the end 60ies
of the last century. Domain Theory was inspired by recursion-theoretic con-
tinuity results à la Myhill-Shepherdson but was developed for the purpose of
providing a semantic foundation for programming languages.

10 Kleene’s Fixpoint Theorems

In ordinary (functional) programming the basic language construct is general
recursion which, however, does not show up as a construct in the definition of
µ-recursive functions. Due to its somewhat stupid character the µ-operator
is hardly ever used in actual programming whereas general recursion is ubiq-
uitous. Definitions of functions by general recursion are of the form

f(x) ' E[f, x]

which can be written more compactly as

f = Φ(f)

where Φ(f)(x) ' E[f, x]. Thus, definition by general recursion postulates
the existence of distinguished fixpoints for effective operators. For example
if Φ is the identity on P then all f are fixpoints of Φ whereas when we write
“f is defined recursively as f = f” we mean the least fixpoint ∅ of Φ.
The importance of the following 1st Fixpoint Theorem by Kleene is that it
guarantees the existence of least (w.r.t. v) fixpoints for all effective operators
and thus provides the mathematical foundations for the intuitively appealing
principle of function definition by general recursion.

Theorem 10.1 (1st Kleene’s Fixpoint Theorem)
For every effective operator Φ there is a unique µ(Φ) ∈ P satisfying

(1) µ(Φ) = Φ(µ(Φ)) and

34

(2) µ(Φ) v f whenever Φ(f) v f .

Moreover µ(Φ) =
⋃
n∈N Φn(∅) and can be computed recursively from realizers

for Φ in a uniform way.

Proof: Using monotonicity of Φ it follows by induction that the sequence
Φn(∅) is increasing w.r.t. v and, therefore, the union

⋃
n∈N Φn(∅) is a func-

tional relation, too. We leave it as an exercise(!) to verify that
⋃
n∈N Φn(∅)

is actually partial recursive and that a Gödel number for it can be computed
from Gödel numbers for realizers for Φ in a uniform10 way.
If Φ(f) v f one easily shows by induction that Φn(∅) v f and, therefore,
µ(Φ) v f . Thus µ(Φ) satisfies (2). Now if we can show that µ(Φ) itself is a
pre-fixpoint of Φ, i.e. that Φ(µ(Φ)) v µ(Φ), then by monotonicity of Φ we
have Φ2(µ(Φ)) v Φ(µ(Φ)) from which it follows by (2) that µ(Φ) v Φ(µ(Φ))
and, therefore, that µ(Φ) = Φ(µ(Φ)), i.e. that µ(Φ) satifies (1).
For showing Φ(µ(Φ)) v µ(Φ) we will exploit the continuity of Φ as ensured
by Lemma 9.2. Suppose that f0 is a finite function with f0 v Φ(µ(Φ)). Then
by continuity of Φ there is a finite function g0 v µ(Φ) with f0 v Φ(g0).
Thus, as µ(Φ) =

⋃
n∈N Φn(∅) there is a natural number n with g0 v Φn(∅)

from which it follows that f0 v Φ(g0) v Φ(Φn(∅)) v
⋃
n∈N Φn(∅) = µ(Φ) by

monotonicity of Φ. Thus, we have shown that for all finite f0 v Φ(µ(Φ)) it
follows that f0 v µ(Φ) which entails that Φ(µ(Φ)) v µ(Φ) as desired. �

As µ(Φ) =
⋃
n∈N Φn(∅) we have

µ(Φ)(n) = m iff ∃k. Φk(∅)(n) = m

supporting the operational intuition that for computing µ(Φ)(n) it suffices
to “unfold” the recursive definition of µ(Φ) finitely many, say k, times to get
Φk(∅) and apply it to the argument n.

There is a remarkable strengthening of Kleene’s 1st fixpoint theorem, the so-
called 2nd Kleene’s fixpoint theorem, saying that for every partial recursive
function f there exists a natural number e with ϕe = ϕf(e) (where by a minor
abus de langage ϕf(e) stands for the empty function if f(e) is undefined).

10meaning precisely that there is a partial recursive function fix 1 such that whenever e
realizes some effective operator Φ then fix 1(e) terminates and is a Gödel number for µ(Φ)

35

Theorem 10.2 (2nd Kleene’s Fixpoint Theorem)
For every partial recursive function f there exists a natural number e with

u(e, n) ' u(f(e), n)

for all n ∈ N.
Moreover, such an e can be computed recursively from a Gödel number for
f , i.e. there exists a total recursive function fix 2 with

u(fix 2(e), n) ' u(u(e, fix 2(e)), n)

for all e, n ∈ N.

Proof: Suppose that f is partial recursive. Then by the parameter theorem
there exists a total recursive function g with

u(g(n),m) ' u(u(n, n),m)

for all n,m ∈ N. Let n0 be a Gödel number for f ◦ g and define e = g(n0).
Then we have

u(e, n) ' u(g(n0), n) ' u(u(n0, n0), n) ' u(f(g(n0)), n) ' u(f(e), n)

as desired.
For uniformizing this construction consider the partial recursive function
h(e, n) ' u(e, g(n)) where g is as above. By the parameter theorem there is

a total recursive function h̃ with ϕh̃(e)(n) ' u(e, g(n)), i.e. h̃(e) is a Gödel

number for ϕe ◦ g. Now fix 2 = g ◦ h̃ does the job as required due to our
previous considerations above. �

For those familiar with untyped λ-calculus it might be informative to point
out the analogy of fix 2 with the λ-term

Y ≡ λf.(λx.λy.f(xx)y)(λx.λy.f(xx)y)

for which we have
Y fa = f(Y f)a

by β-reduction.
Besides its immediate bizarre consequences (like the existence of a number
e with ϕe = ϕe5+3e+524) the second recursion theorem can be put to use
for justifying function definitions by transfinite recursion in the theory of
constructive ordinals (see e.g. [Rog]) or for the proof of the Kreisel-Lacombe-
Shoenfield Theorem as in section 12.

36

11 Recursively Inseparable Sets

and the Kleene Tree

First we show that there exists disjoint r.e. sets A,B which are recursively
inseparable in the sense that there does not exists a decidable set C with
A ⊆ C and B ⊆ {C.

Lemma 11.1 Let Ai := {n ∈ N | {n}(n) = i} for i=0, 1. Then A0 and A1

are recursively inseparable.

Proof: If A0 and A1 were recursively separable, i.e., not recursively insepa-
rable, then there would exist a a total recursive function p : N → {0, 1} such
that

n ∈ Ai implies p(n) = 1−. sg(i)

for all n ∈ N and i ∈ {0, 1}. Let p = ϕn. Then ϕn(n) ∈ {0, 1}, i.e. n ∈ A0

or n ∈ A1. Suppose n ∈ Ai, i.e. p(n) = ϕn(n) = i. But then by the above
consideration we have p(n) = 1−. sg(i) from which it follows that i = 1−. sg(i)
which is impossible. �

Using the existence of recursively inseparable sets one may construct the
so-called Kleene tree.

Theorem 11.1 There exists a recursive binary tree TKl ⊆ {0, 1}∗, the so-
called Kleene tree, which is infinite but contains no infinite recursive path.

Proof: Let α, β range over {0, 1}N. We write α(n) for 〈α(0), . . . , α(n − 1)〉.
Let TKl be the prefix-closed recursive subset of {0, 1}∗ which is defined as
follows

α(n) ∈ TKl iff ∀m, k < n. T (m,m, k) →
(
α(m) = 0 ⇔ U(k) = 0

)
.

Suppose α(n) ∈ TKl for all n ∈ N. Then k ∈ Ai implies α(k) = i for i = 0, 1
where A0 and A1 are the recursively inseparable sets from Lemma 11.1. Thus
α cannot be recursive as then it would recursively separate A0 and A1 in
contradiction to Lemma 11.1. However, if one takes for α the characteristic
function of, say, A0 then all initial segments of α are within the Kleene tree
TKl from which it follows that TKl is infinite. �

Using the Kleene tree one can construct the computable functional

φ(α) ' µk. α(k) 6∈ TKl

37

total on all computable arguments but divergent on some non-computable
arguments. This example demonstrates that the notion of totality depends
on whether one takes non-computable arguments into account or not!
The Kleene tree is also of great importance in the metamathematics of (sys-
tems for) constructive mathematics because it shows that induction over
well-founded (binary) trees is not admissible if all functions are assumed as
computable, see [TvD] for further dicussion on these aspects.

12 Effective Operations on R
In a previous section we studied effective operations on P and shown that
they are continuous. Some effective operations φ : P ⇀ N are total on total
recursive arguments, i.e. φ({n})↓ whenever {n} is total. Now if e realizes such
a φ then it also realizes the total functional on R which is obtained from φ
by restriction to total arguments. Now one may consider quite generally
effective total operations on R as in the folowing definition.

Definition 12.1 (effective total operations)
A function F : R → N is called an effective total operation on R iff there
exists a natural number e such that F ({n}) = {e}(n) for all n with {n} total
in which case we say that e realizes F and for which we write e F . ♦

The following Kreisel-Lacombe-Shoenfield theorem says that every effective
total operation on R appears as restriction of some effective operation on
P to R entailing that all effective total operations are continuous w.r.t. the
initial segment topology, i.e. that the value F (f) is already determined by an
initial segment of f . Notice, however, that the effective total operation F
defined as

F (f) = µk. sg◦f(k) 6∈ TKl
(where TKl is the Kleene tree) cannot be extended to a total continuous
functional on the space NN of all functions on N to N endowed with the
product topology and often called Baire space.

Theorem 12.1 (Kreisel-Lacombe-Shoenfield)
For every total effective operation F : R → N there exists an effective oper-
ation φ : P ⇀ N such that F (f) = φ(f) for all f ∈ R.

38

Proof: Relative to an appropriate coding 〈. . . 〉 of N∗ we may consider the
following effective enumeration θ of those total recursive functions which are
eventually constantly 0

θ〈n0,...,nk−1〉(i) =

{
ni if i < k
0 otherwise.

Now suppose that e0 realizes some effective total operation F onR. We define
a 3-ary partial recursive function h(y, z, x) given by the following algorithm:

(1) Compute {e0}(y).

(2) Check whether ∃k < x. T (e0, z, k). If not then deliver {y}(x) as result.

(3) Otherwise, i.e. if x > w :=µk.T (e0, z, k), check whether {e0}(y) =
{e0}(z). If not then deliver {y}(x) as result.

(4) Otherwise compute {y}(0), . . . , {y}(w) and then search for the least m
with

F (θm) 6= {e0}(y) and θm(i) = {y}(i) for all i ≤ w

and if you succed deliver θm(x) as result.

By the parameter theorem there exists a 2-ary total recursive function h̃ with

{h̃(y, z)}(x) ' h(y, z, x)

for all x, y, z ∈ N. By inspection of the algorithm for h one gets that

{h̃(y, z)} =

∅ if {e0}(y)↑

{y} if {e0}(y)↓, {e0}(z)↓ and {e0}(y) 6= {e0}(z)

θm if {e0}(y) = {e0}(z) and T (e0, z, w) where
w = µk.T (e0, z, k) and {y}(i)↓ for i ≤ w and
m is the least number with F (θm) 6= {e0}(y)
and θm(i) = {y}(i) for i ≤ w

{y}[w] otherwise,where w :=µk.T (e0, z, k)

where {y}[w] stands for the restriction of {y} to {0, . . . , w}.

39

Thus, by Kleene’s 2nd recursion theorem we can find for every y ∈ N a
natural number ny with {ny} = {h̃(y, ny)} recursively in y. Then for every
y we have

{ny} =

∅ if {e0}(y)↑

{y} if {e0}(y)↓, {e0}(ny)↓ and {e0}(y) 6= {e0}(ny)

θm if {e0}(y) = {e0}(ny) and T (e0, ny, w) where
w = µk.T (e0, ny, k) and {y}(i)↓ for i ≤ w and
m is the least number with F (θm) 6= {e0}(y)
and θm(i) = {y}(i) for i ≤ w

{y}[w] otherwise,where w :=µk.T (e0, ny, k)

where again {y}[w] stands for the restriction of {y} to {0, . . . , w}.
Now if {y} ∈ R then {e0}(y)↓. Then for ny it holds that {e0}(ny) = {e0}(y)
(as otherwise {ny} = {y} and, therefore, also {e0}(ny) = {e0}(y)). Now let
w be the least number with T (e0, ny, w). Now if there existed an m with
F (θm) 6= {e0}(y) and θm(i) = {y}(i) for all i ≤ w then we would have
θm = {ny} and, therefore, also {e0}(ny) = F ({ny}) = F (θm) 6= {e0}(y)
which clearly is impossible.
Thus, for every y ∈ N with {y} ∈ R one can find a wy recursively in y such
that

F ({y}) = F (θm) whenever θm(i) = {y}(i) for all i ≤ wy.

Thus, it follows that F ({y}) = F (g) for all g ∈ R with {y}(i) = g(i) for all
i ≤ wy (as otherwise one could decide the halting problem).
The extension of F to an effective operation φ : P⇀N is given by the following
algorithm. For a given g ∈ P search for natural numbers y and w such that

(†) {e0}(y) = U(w) and T (e0, ny, w) and {y}(i) = g(i) for all i ≤ w

where ny depends recursively on y as described above. Now when one has
found such y and w satisfying (†) one applies {e0} to some Gödel number of
the “0-continuation”11 of {y}[w] and delivers this as the result of φ(g).
We now show that this algorithm for computing φ(g) is extensional and co-
incides with F (g) whenever g is total recursive. Suppose that for a given

11i.e. the function f with f(i) = {y}(i) for i ≤ w and f(i) = 0 otherwise

40

g natural numbers y and w satisfy condition (†). Then {e0}(ny)↓ and
{e0}(ny) = {e0}(y). Now if there existed a θm with F (θm) 6= {e0}(y) and
θm(i) = {y}(i) for all i ≤ w then {ny} were such a θm. But then we had

{e0}(y) = {e0}(ny) = F (θm)

in contradiction to F (θm) 6= {e0}(y). Thus, we have that

{e0}(y) = F (θm) = φ(g)

whenever θm(i) = {y}(i) for all i ≤ w. However, if θm is the “0-continuation”
of {y}[w] then F (θm) depends only on g and w. Considering a minimal such
w for the given g one easily sees that φ(g) actually does not depend on the
choice of w. �

We conclude this section by a theorem of Friedberg ([Rog], p.362) showing
that “partial effective operations on R” need not be continuous.

Theorem 12.2 (Friedberg)
There exists a partial functional ψ : R⇀ N which is realized by some natural
number e, i.e. ψ({n}) ' {e}(n) for all n ∈ N with {n} ∈ R, whose value at
λn.0 is not determined by an initial segment.

Proof: Let e be a Gödel number of the partial recursive function f with f(x)↓
iff f(x) = 0 and one of the following two conditions is satisfied

(1) ∀y ≤ x. {x}(y) = 0

(2) there exists a natural number z with {x}(z) 6= 0 and ∀y < z. {x}(z) = 0
such that for some x′ < z it holds that ∀y ≤ z. {x′}(y) = {x}(y).

The number e realizes a partial functional ψ : R⇀ N because f is extensional
on Gödel numbers of total recursive functions which can be seen as follows.
If {x} = λn.0 then f(x) = 0. If {x} is a total recursive function different
from λn.0 let z be the least number with {x}(z) 6= 0. Let x′ be the least
number with {x′}(y) = {x}(y) for all y ≤ z. If x′ < z then f(x) = 0. If
x′ ≥ z then f(x)↑ as condition (2) fails (as it is equivalent to x′ < z) and
condition (1) fails because x′ ≤ x and, therefore, we have {x}(z) 6= 0 and
z ≤ x′ ≤ x.
Obviously, we have ψ(λn.0) = 0. If ψ were continuous at λn.0 then there
would exist a natural number k with ψ(g) = 0 for all total recursive functions

41

g with g(i) = 0 for all i < k. Now let m be a natural number such that all
Gödel numbers for the total recursive function g with

g(i) =

{
0 if i 6= k
m if i = k

are strictly greater than k. Then ψ(g)uparrow due to the definition of ψ
wheras ψ(g)↓ because g and λn.0 have the same value 0 for arguments i < k.
Thus, the effective functional ψ cannot be continuous at λn.0. �

References

[Cut] N. Cutland Computability CUP, 1980.

[Rog] H. Rogers Theory of Recursive Functions and Effective Computability
McGraw-Hill Pub. Comp. , 1967.

[Tr73] A. Troelstra (ed.) Metamathematical Investigations of Intuitionistic
Arithmetic and Analysis SLNM 344, Springer Verlag, 1973.

[TvD] A. Troelstra, D. vanDalen Constructivism in Mathematics 2 vol.’s,
North Holland, 1988.

42

Contents

1 Universal Register Machines (URMs) 2

2 Partial Recursive Functions 4

3 Primitive Recursive Functions and Codings 8

4 Kleene’s Normal Form Theorem and
Admissible Numberings of P 11

5 Recursive and Semidecidable Sets 17

6 Why Partiality is Intrinsic 21

7 Some Cheap Negative Results 23

8 The Rice-Shapiro Theorem 24

9 Effective Operations, Effective Operators
and the Myhill-Shepherdson Theorem 29

10 Kleene’s Fixpoint Theorems 34

11 Recursively Inseparable Sets
and the Kleene Tree 37

12 Effective Operations on R 38

43

